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Abstract

The coevolution of hosts and parasites has been analysed most prominently with two types
using deterministic, population-based models. These models usually generate oscillatory (Red
Queen) dynamics. So far it was unclear in which way Red Queen dynamics persists with more
than two types of hosts and parasites. In stochastic models changing population size reduces the
probability of Red Queen dynamics in a model with two types. It was also argued that with more
types in a stochastic model Red Queen dynamics can be observed in a limited parameter space
which decreases as the number of host and parasite types increases. In this thesis an arbitrary
number of types is examined using deterministic methods. A fixed point and stability analysis
is conducted and constants of motions are formulated. We show that Red Queen dynamics can
still exist. However, Hamiltonian chaos is possible in large areas of the parameter space.

Zusammenfassung

Die Koevolution von Wirten und Parasiten wird meist mit zwei Arten mittels deterministi-
schen, populationsbasierten Modellen analysiert. Diese Modelle erzeugen in der Regel oszillie-
rende (Red Queen) Dynamiken. Bisher war unklar, in welcher Weise Red Queen Dynamiken bei
mehr als zwei Arten von Wirten und Parasiten bestehen bleiben. In stochastischen Modellen
reduziert eine veränderliche Populationsgröße die Wahrscheinlichkeit von Red Queen Dynamik
in einem Modell mit zwei Arten. Es wurde außerdem diskutiert, dass mit mehr Arten in einem
stochastischen Modell Red Queen Dynamik in einem begrenzten Parameteraum besteht. Dieser
Parameterraum reduziert sich, je höher die Anzahl der Wirt und Parasit Typen. In dieser Arbeit
wird, unter Verwendung von deterministischen Methoden, eine beliebige Anzahl an Arten von
Wirten und Parasiten untersucht. Eine Fixpunkt- und Stabilitätsanalyse wird durchgeführt und
Bewegungskonstanten werden formuliert. Wir zeigen, dass Red Queen Dynamik noch existiert.
Jedoch entsteht in großen Bereichen des Parameterraums Hamilton’sches Chaos.
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1 Introduction

Parasitism is everywhere, whether in human disease (malaria, leishmania, cercarial dermatitis),
in plants [Coors et al., 2008] or in the impact on allergies [Bell, 1996]. The importance of para-
sites must not be underestimated and should be incorporated into models on evolution. Because
of the often deadly selective pressure from parasites, resistant hosts have been able to evolve
which in turn selects for certain parasites. The coevolution of host and parasite is therefore a
contemporary topic.
Theories of host-parasite coevolution propose explanations for phenomena such as the evolution
of sexual reproduction [Lively, 2010; Hamilton et al., 1990]. Here it is believed that increased
diversity compensates for the otherwise twofold loss of fitness. In general it is necessary to study
not only evolutionary models but especially coevolutionary models which lead to different re-
sults [Best et al., 2009].

Mathematical models simplify and conceptualise biological contexts. This can give a broad
overview of the topic but it can also lead to new ideas and perspectives on the topic. Models
can give insight into the long-term future which is difficult to reproduce in the lab or observe in
nature for many generations. Models can predict the future or in the case of evolution also infer
the past [Lambert, 2014]. Theoretical models for host-parasite coevolution often include the
matching allele (MA) model or the gene-for-gene (GfG) model [Flor, 1955; Engelstädter, 2015;
Agrawal and Lively, 2002]. In the MA model only parasites with two identical alleles can infect
the corresponding host type. In the GfG model each allele contributes to the infectiousness of
the parasites, so that some can infect multiple hosts. Host-parasite coevolution is believed to
follow Red Queen dynamics [van Valen, 1973] a metaphor derived from the Red Queen’s words
to Alice in Through the looking glass: ”it takes all the running you can do, to keep in the same
place” [Carroll, 1871]. Red Queen dynamics suggest a negative frequency-dependent selection
of host and parasite resulting in oscillating frequencies. The Red Queen hypothesis has been
strengthened by empirical results from pond sediments [Decaestecker et al., 2007] and freshwa-
ter snails [Koskella and Lively, 2009]. It remains to be investigated under which circumstances
the Red Queen persists [Salathé et al., 2008].

A system with constant population sizes for hosts and parasites has been analysed with repli-
cator dynamics. Changing population sizes were recently combined in a Lotka-Volterra model
[Song et al., 2015]. Here, the matching allele model and the gene-for-gene model were incor-
porated into the fitness effect. Adding stochasticity to the Lotka-Volterra dynamics leads to
extinction of species, halting Red Queen dynamics [Gokhale et al., 2013]. So far two types of
hosts and two types of parasites were considered. Building on this we analyse multiple types of
hosts and parasites with replicator dynamics and Lotka-Volterra dynamics. Although a replica-
tor dynamics system with n types can be transformed into a Lotka-Volterra system with n− 1
types for a single species system it is nevertheless necessary to look at both models in a multi-
species system since the assumptions do not allow such a transformation. Different models
(MA, GfG or other interactions) are realised using diverse (and preferably most general) payoff
matrices. Both approaches are mathematically described by a system of ordinary differential
equations, which are solved numerically. Analytically, a stability analysis is conducted and
constants of motions for several models are presented. We will also show that the system can
already become chaotic in a certain parameter space for a minimum of three hosts and parasites
in a most simple matching allele replicator dynamics model.
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2 Mathematical methods

The two approaches used in this thesis are based on systems of ordinary differential equations.
With increasing number of dimensions systems of ordinary differential equations become harder
to solve explicitly. It is therefore necessary to use other methods to analyse the biological system.
For each model fixed points and their stability and constants of motion will be investigated.
Chaos is analysed with Lyapunov exponents which give insight into the sensitivity of initial
conditions. Before elaborating these methods, the interaction models are introduced.

2.1 Interaction models

Fitness effects of parasites on host and vice-versa are collected in a matrix, which intuitively
describes the influence of the different types of one species on the different types of the other
species. Assuming n types of hosts and n types of parasites, MH ∈ Rn×n describes the loss of
fitness hosts suffer from specific parasite types, MP ∈ Rn×n denotes the parasites’ gain. For
example

(
MH

)
2,4

is the fitness effect that parasite type 4 has on host type 2.

2.1.1 Matching allele model

To introduce host parasite dynamics it is best to look at the simple matching allele model
where only matching host and parasite can directly interact with each other. This model can
be described by the following payoff matrices

MH =


−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 and MP =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 . (2.1)

2.1.2 Cross-infection

Assuming that neighbouring parasite types have similar infection patterns and thus have the
same negative fitness effect on a host, the following model is constructed. Each host can now be
infected by three parasite types of which one can infect two other hosts and two can each infect
one other host. On the other hand a parasite type can benefit from three different host types.
One could say that neighbouring hosts hi and hi±1 have similar genetic material or are similar
in phenotype and therefore can be infected by similar parasites pi and pi±1. For symmetry
reasons types 1 and n can also interact with three types of the other species.

MH =



−1 −1 0 0 · · · −1
−1 −1 −1 0 · · · 0
0 −1 −1 −1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · −1 −1 −1
−1 0 · · · 0 −1 −1


MP =



1 1 0 0 · · · 1
1 1 1 0 · · · 0
0 1 1 1 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 1 1 1
1 0 · · · 0 1 1


(2.2)
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2 Mathematical methods

2.1.3 General infection

A most general model is now drawn: A circulant matrix where every diagonal has a specific
value [Hershey and Rao Yarlagadda, 1986]. We will see later that some further assumptions
need to be made in order to construct a constant of motion.

MH =


αP1 αP2 · · · αPn−1 αPn
αPn αP1 αP2 αPn−1
... αPn αP1

. . .
...

αP3
. . .

. . . αP2
αP2 αP3 · · · αPn αP1

 MP =


αH1 αH2 · · · αHn−1 αHn
αHn αH1 αH2 αHn−1
... αHn αH1

. . .
...

αH3
. . .

. . . αH2
αH2 αH3 · · · αHn αH1

 (2.3)

2.2 Replicator dynamics

2.2.1 Single population dynamics

To introduce replicator dynamics we first consider one species with two types x and y. The
change of frequency of the two types is then dependent on the fitness of the respective types fx
and fy. As a normalisation, the average fitness f = xfx + yfy is subtracted.

ẋ = x
(
fx − f

)
and ẏ = y

(
fy − f

)
(2.4)

The fitness is expressed through payoffs of interactions between the species. A general payoff
matrix can then be written as

x y( )
x a b
y c d

. (2.5)

For example c is the benefit of the second type with frequency y (row two) interacting with the
first type with frequency x (column one). The fitness for the types is then

fx = xa+ yb and fy = xc+ yd. (2.6)

The frequencies x and y are always between 0 and 1 because of the normalisation. The total
population size stays constant x+y = 1 and the total change of population size is zero ẋ+ ẏ = 0.
The frequency of the second type can therefore be expressed as y = 1 − x. Taking this into
account Equations 2.4 are reduced to one equation

ẋ = x (1− x) (fx − fy) . (2.7)

This is termed replicator equation [Nowak, 2006; Zeeman, 1980; Taylor and Jonker, 1978] and
used widely in evolutionary game dynamics.

2.2.2 Two population dynamics

Extending replicator dynamics to host and parasite systems comes with a two-species model
which fundamentally changes the replicator dynamics. Host fitness is only influenced by in-
teractions with parasites and parasite fitness is only influenced by hosts. The change in allele
frequency of host (h) and parasite (p) types (i = 1, ..., n) depends on the respective host and
parasite frequencies and the fitness of the types fi minus an average fitness f

ḣi = hi

(
fHi − f

H
)

and ṗi = pi

(
fPi − f

P
)
. (2.8)
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2.2 Replicator dynamics

Again, replicator dynamics are characterised by a constant population size normalised to one.
But this time, because there are two species, the normalisation is within one species

∑n
i=1 hi =

1 and
∑n

i=1 pi = 1. From this it follows that the total change in frequency d
dth and d

dtp of host

and parasite is zero respectively:
∑n

i=1 ḣi = 0 and
∑n

i=1 ṗi = 0. This leads to the following set
of differential equations

ḣi = hi

(
fHi −

n∑
k=1

hkf
H
k

)
and ṗi = pi

(
fPi −

n∑
k=1

pkf
P
k

)
, (2.9)

where fHi is a function of all parasite type frequencies pk and fPi is a function of hk, k =
1, 2, ..., n. A fundamental property of this system is the reducibility of the number of differential
equations owing to the normalisation. The state space is now 2 (n− 1)−dimensional and can
be formulated as two (n− 1)−simplices.
The fitness of hosts can now be expressed with the payoff matrices MH and MP , so that
fHi =

(
MHp

)
i

and fPi =
(
MPh

)
i
. Here h = (h1, h2, ..., hn)T and p = (p1, p2, ..., pn)T are the

vectors with relative host and parasite frequencies of each type. The differential equations for
replicator dynamics are therefore

ḣi = hi
((
MHp

)
i
− hTMHp

)
and ṗi = pi

((
MPh

)
i
− pTMPh

)
. (2.10)

The specific models, defined by the payoff matrices in Section 2.1 are now employed to replicator
dynamics

Matching allele

Even though this model is based on interaction between matching types, it is important to
realise that owing to the constant population size there is an indirect effect of other hosts and
parasites on one another. Biologically this reflects competition between hosts. For example,
if one host increases fast in numbers or when space, food or other resources are limited other
hosts suffer from the increase of that specific type. Nevertheless, the average payoff is the same
for each type so that trends can still be analysed but in a limited parameter space. Applying
the matching allele fitness effects to replicator dynamics leads to the following set of differential
equations which describe the frequency change of host and parasite types.

ḣi = hi

(
−pi +

n∑
k=1

hkpk

)
ṗi = pi

(
hi −

n∑
k=1

hkpk

)
(2.11)

Cross-infection

It is possible to simplify the notation of the differential equations as follows because of the
periodic boundary condition with p0 = pn, pn+1 = p1, h0 = hn and hn+1 = h1.

ḣi =hi

(
− (pi−1 + pi + pi+1) +

n∑
k=1

hk (pk−1 + pk + pk+1)

)
(2.12)

ṗi =pi

(
(hi−1 + hi + hi+1)−

n∑
k=1

pk (hk−1 + hk + hk+1)

)
(2.13)
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2 Mathematical methods

General infection

The differential equations are now more complicated, so that it is best to present the general
form like in Equation 2.10.

ḣi = hi
((
MHp

)
i
− hTMHp

)
ṗi = pi

((
MPh

)
i
− pTMPh

)
(2.14)

2.3 Lotka-Volterra dynamics

Lotka-Volterra dynamics are usually employed to describe predator-prey systems where the prey
reproduces at a constant rate and the predator dies at a constant rate. The growth rate of the
predator, however, is influenced by the abundance of prey and the prey numbers are diminished
by the predators.

The same concept is applied to host-parasite systems with a constant birth-rate for the host
bh and a constant parasite death-rate dp.

ḣi = hi
(
fHi + bh

)
ṗi = pi

(
fPi − dp

)
(2.15)

There is no normalisation term to ensure a constant total population. We are now looking at
abundances, not frequencies of the specific types. Like in the replicator dynamics model the
fitness is defined by payoff matrices and the other species’ abundances.

ḣi = hi
((
MHp

)
i
+ bh

)
ṗi = pi

((
MPh

)
i
− dp

)
(2.16)

Matching allele

As with the replicator dynamics we first focus on the simple matching allele model. Since bh
and dp are constants the differential equations are decoupled from one another. We obtain n
independent systems of two differential equations each.

ḣi = hi (−pi + bh) ṗi = pi (hi − dp) (2.17)

This makes the Lotka-Volterra matching allele model a limiting case, with particularly simple
dynamics.

Cross-infection

The differential equations are now connected to each other by types i± 1,

ḣi = hi (− (pi−1 + pi + pi+1) + bh) ṗi = pi ((hi−1 + hi + hi+1)− dp) (2.18)

with p0 = pn, pn+1 = p1, h0 = hn and hn+1 = h1.

General infection

Utilising the most general payoff matrices leads to these general differential equations (2.16)

ḣi = hi
((
MHp

)
i
+ bh

)
and ṗi = pi

((
MPh

)
i
− dp

)
, (2.19)

where p and h are the vectors containing all population sizes hi and pi for i = 1, 2, ..., n.
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2.4 Numerical integration

2.4 Numerical integration

A numerical analysis is conducted in python [van Rossum, 1995], starting with various initial
conditions (frequencies or abundances of hosts and parasites) and numerically iterating over
several generations. The resulting trajectories were studied more closely for the system of three
hosts and parasites.

It has to be noted that solving the differential equations for several n was done using diverse
integrators. Python’s built-in functions odeint and integrate (from scipy.integrate) often
lead to results outside the simplex for replicator dynamics. This is why a normalisation hn =
1−
∑n−1

i=1 was utilised. For all trajectories and Poincaré sections the built in function was used.
For the chaos analysis the precision was not sufficient. This is why a precision of 300 bits was
chosen in the bigfloat package which is approximately 300 · log10 2 ≈ 90 decimal digits. Since
the built-in integrators could not handle bigfloat numbers a four-step Runge-Kutta method
was implemented manually.
The four-step Runge-Kutta update shows fundamentally different results even when precision
is as high as 1000. Removing the restriction of constant population size from the Runge-Kutta
integrator does not generate different results - the values stay in the simplex.

2.5 Fixed points and stability

A fixed point per definition is a state which does not change once reached. This means that
the time derivation at this point is zero: ḣi = 0 and ṗi = 0. There are many trivial fixed points
where one host or parasite type is nonexistent (one type hi or pi has frequency 0 or abundance 0).
However, the fixed point in the interior of the simplex defined by the host/parasite populations
(h∗, p∗) is of biological interest since this means a coexistence of all types. It is further worth
knowing whether this is an attracting, repelling or neutrally stable point. This is done by
calculating the eigenvalues of the Jacobian at the inner fixed point. The real part of the
eigenvalues of this matrix gives insight into the stability of the point. If all are negative the
fixed point is attractive, if at least one is positive it is a saddle (and repulsive if all are positive)
and if all are zero it is neutrally stable. These statements hold locally, which means close to
the point of interest, since this is where the Jacobian is evaluated. In the case of replicator
dynamics it is necessary to reduce the number of differential equations to 2 (n− 1) because of
the normalisation

∑n
i=1 hi =

∑n
i=1 pi = 1. The matrix now has full rank and the number of

eigenvalues is always 2 (n− 1). In general the Jacobian is

J =



∂ḣ1
∂h1

· · · ∂ḣ1
∂hn−1

∂ḣ1
∂p1

· · · ∂ḣ1
∂pn−1

...
...

...
...

∂ḣn−1

∂h1
· · · ∂ḣn−1

∂hn−1

∂ḣn−1

∂p1
· · · ∂ḣn−1

∂pn−1

∂ṗ1
∂h1

· · · ∂ṗ1
∂hn−1

∂ṗ1
∂p1

· · · ∂ṗ1
∂pn−1

...
...

...
...

∂ṗn−1

∂h1
· · · ∂ṗn−1

∂hn−1

∂ṗn−1

∂p1
· · · ∂ṗn−1

∂pn−1


∈ R2(n−1)×2(n−1) (2.20)

for the replicator dynamics, and similar in the Lotka-Volterra case but in R2n×2n, where the
number of eigenvalues is 2n.
For deriving fixed points and stability for fixed n mathematica [Wolfram Research, 2014] was
of help.
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2 Mathematical methods

2.6 Constant of motion

A constant of motion is usually formulated as a Hamilton function in physics. It can often be
viewed as an energy function. The energy in an isolated system stays constant in time. This
concept is transferred to dynamical systems where the function is not explicitly time-dependent.
In this case we formulate a function H (hi, pi) which stays constant in time

dH

dt
= Ḣ = 0. (2.21)

We will see in the results section that this can be visualised in a two-dimensional system
(replicator dynamics with two types of hosts and parasites or Lotka-Volterra dynamics with
one type).
Again, mathematica [Wolfram Research, 2014] was useful to study constants of motion for fixed
n.

2.7 Analysis of chaotic dynamics

While working on the differential equations it became clear that not all initial conditions of the
system lead to simple orbits. In the replicator dynamics it is enough to look at the 3× 3 case
with three hosts and three parasites which reduces to a four-dimensional system. For the Lotka-
Volterra system the 2×2 case is four-dimensional if the differential equations are not decoupled.
These cases were analysed more closely by looking at projections into three-dimensional space
and Poincaré sections with certain restraints [Sato et al., 2002]. Sensitive dependence on initial
conditions are examined by estimating the largest Lyapunov exponents [Kim and Choe, 2010].

Poincaré sections

Poincaré sections are (n− 1)−dimensional planes in an n−dimensional system where the normal
vector of the plane is not orthogonal to any trajectories passing through the plane. This way
dimensions are reduced and the trajectories can be visualised more simply. Poincaré sections
from Sato et al. [2002] were reproduced successfully in python and the same method was applied
to the matching allele 3× 3 replicator dynamics model. The constraint used here was

h2 − h1 + p2 − p1 = 0. (2.22)

Another Poincaré section using the constant of motion as a constraint was generated

log h1h2h3 − log p1p2p3 = 0. (2.23)

The planes were plotted in the h1/p2-plane. Note that usually only passages through the section
from one direction are plotted. In Figure 4.2 intersections from both sides were plotted.

Lyapunov exponents

Lyapunov exponents measure the exponential divergence rate of two close initial conditions. In
[Kim and Choe, 2010] a method for estimating the largest Lyapunov exponent (without knowing
the attractor) is introduced. Two close initial conditions, which satisfy Equation 2.26, are cho-
sen. Another fixed parameter ∆ is chosen which specifies a second distance for Equation 2.27.
Now the time point is of interest after which the trajectories of the initially close conditions
have diverged as far as this second distance.
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2.8 Stochastic simulations

We start with two initial conditions indexed by a and b

x (0)a = [h (0)a , p (0)a]T = [0.5, 0.01k, 0.5− 0.01k, 0.5, 0.25, 0.25]T (2.24)

x (0)b =
[
h (0)b , p (0)b

]T
=
[
0.5, 0.01k + 10−dk, 0.5− 0.01k − 10−dk, 0.5, 0.25, 0.25

]T
, (2.25)

with a maximum distance for fixed D

‖x (0)a − x (0)b ‖≤ e−D. (2.26)

For fixed ∆ the following time is of interest

V (∆) = inf{t : ‖x (t)a − x (t)b ‖≥ e−D+∆}, (2.27)

where x = (h, p) is the vector containing host and parasite frequencies at time t starting in
x (0). This is the time it takes for an initial distance defined by D to increase to a minimal
distance defined by ∆. The divergence time should grow as ∆ gets larger. However, too large
values of ∆ are not possible since trajectories are bound to a certain state space. For replicator
dynamics ∆ ≤ D+ log 2 holds because the distance of two points in each 2−simplex cannot be
larger than one. Assuming linear growth of V (∆) with ∆, which corresponds to exponential
divergence of initial conditions, ∆

V (∆) should be a constant which is the divergence velocity and
therefore the estimated Lyapunov exponent λmax.

2.8 Stochastic simulations

A three-type matching allele model can be analysed stochastically in an individual based model.
Starting with a certain number of each type the following transitions are possible

Hi + Pi
ri−→ Pi + Pi Hi

bh−→ Hi +Hi Pi
dp−→ - (2.28)

The first reaction is the classical reaction between a host and its matching parasite, where
the host dies out and the parasite replicates with a rate ri. Hosts replicate with rate bh in
the second reaction and parasites die out with dp. The simulations are carried out using a
Gillespie stochastic simulation algorithm [Gillespie, 2007; Quigley et al., 2012; McKane and
Newman, 2004]. The simulation was started with 1000 hosts and 1000 parasites. Reaction
rates: ri = 0.01, bh = 5, dp = 2.5. The code is described in the Appendix, Section 6.3.
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3 Analytical results

In the course of analysing the systems it became clear that certain symmetry assumptions had
to be made to find some general results for stability and constant of motion. A circulant matrix
with a different value on each diagonal did not result in a simple case of stability or a constant

of motion. MH = −c ·
(
MP

)T
was therefore assumed.

3.1 Fixed points and stability

Solving the differential equations ḣi (h∗, p∗) = 0 and ṗi (h∗, p∗) = 0 leads to some trivial fixed
points where at least one host or one parasite are non-existent. But the most interesting is the
inner fixed point. For all replicator dynamics models (see Section 2.2.2) the inner fixed point is
simply

h∗i = p∗i =
1

n
. (3.1)

The three Lotka-Volterra models (Section 2.3) each have different inner fixed points depending
on the number of interactions. For the Lotka-Volterra matching allele model the inner fixed
point is

h∗i = dp and p∗i = bh. (3.2)

For the Lotka-Volterra cross-infection model the inner fixed point is found to be

h∗i =
dp
3

and p∗i =
bh
3
. (3.3)

For the most general Lotka-Volterra model the fixed point is

h∗i =
dp∑n
i=1 α

H
i

and p∗i = − bh∑n
i=1 α

P
i

. (3.4)

3.1.1 Replicator dynamics

Matching allele model

After reducing dimensions with hn = 1−
∑n−1

i=1 hi and pn = 1−
∑n−1

i=1 pi the differential equations
are defined for n = 1, 2, ..., n− 1 :

ḣi = hi

(
−pi +

n−1∑
k=1

hkpk +

(
1−

n−1∑
k=1

hk

)(
1−

n−1∑
k=1

pk

))
(3.5)

and

ṗi = pi

(
hi −

n−1∑
k=1

hkpk −

(
1−

n−1∑
k=1

hk

)(
1−

n−1∑
k=1

pk

))
(3.6)
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3 Analytical results

The exact form of the entries (partial derivatives in the general Jacobian matrix) are shown in
the Appendix in 6.1
The Jacobian at the inner fixed point h∗i = p∗i = 1

n simplifies to

J (h∗, p∗) =



− 1
n 0

0 . . .

0 − 1
n

1
n 0

. . . 0
0 1

n


∈ R2(n−1)×2(n−1). (3.7)

The eigenvalues of the Jacobian are calculated via the determinant det
(
J (h∗, p∗)− λI2(n−1)

)
which is not changed by adding multiples

(
1
λn

)
of the upper n− 1 rows to the lower n− 1. This

leads to the following matrix

−λ − 1
n 0

. . .
. . .

−λ − 1
n

−λ− 1
λn2

0 . . .

−λ− 1
λn2


. (3.8)

The determinant of any triangular matrix is just the product of the diagonal elements. This
can be seen by doing a Laplace extension on the first column (and the first column of each
submatrix). The following equation determines the eigenvalues:

0 = (−λ)n−1

(
−λ− 1

λn2

)n−1

(3.9)

=

(
λ+ i

1

n

)n−1(
λ− i 1

n

)n−1

It is easy to see that the eigenvalues are λ = ±i 1
n with multiplicity n − 1. This means that

the inner fixed point is neutrally stable and the oscillation frequency close to this point is 1
2πn .

This implies that the period of the oscillation 2πn depends on the number of types of host and
parasite. The more types the more complex the deterministic dynamics. To reach the initial
conditions close to the fixed point in a system with n types takes n times longer than in a
system with only one host and parasite type. In the case of replicator dynamics this is only
logical, since the differential equations are not independent of one another but coupled through
the average fitness f (normalisation term).

Cross-infection

All replicator dynamics equations can be reduced owing to the normalisation. Here we differ-
entiate between type one, type n and all other types so that no new introduction of variables
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3.1 Fixed points and stability

(e.g. hn+1 = h1) is needed. The differential equations are

ḣ1 = h1

(
−

(
1−

n−1∑
k=3

pk

)
− fH

)
(3.10)

ḣi = hi

(
− (pi + pi + pi+1)− fH

)
for i = 2, 3, ..., n− 2 (3.11)

ḣn−1 = hn−1

(
−

(
1−

n−3∑
k=1

pk

)
− fH

)
, (3.12)

with an average fitness for hosts

f
H

=− h1

(
1−

n−1∑
k=3

pk

)
−
n−2∑
k=2

hk (pk−1 + pk + pk+1)− hn−1

(
1−

n−3∑
k=1

pk

)

−

(
1−

n−1∑
k=1

hk

)(
1−

n−2∑
k=2

pk

)
, (3.13)

and similarly for the parasites

ṗ1 = p1

((
1−

n−1∑
k=3

hk

)
− fP

)
(3.14)

ṗi = pi

(
hi + hi + hi+1 − f

P
)

for i = 2, 3, ..., n− 2 (3.15)

ṗn−1 = pn−1

((
1−

n−3∑
k=1

hk

)
− fP

)
, (3.16)

with an average parasite fitness

f
P

=p1

(
1−

n−1∑
k=3

hk

)
+
n−2∑
k=2

pk (hk−1 + hk + hk+1) + pn−1

(
1−

n−3∑
k=1

hk

)

+

(
1−

n−1∑
k=1

pk

)(
1−

n−2∑
k=2

hk

)
. (3.17)

The explicit terms for the Jacobian can be found in the Appendix 6.1. Inserting the inner fixed
point results in the following Jacobian matrix

J (h∗, p∗) =

(
0 A
−A 0

)
∈ R2(n−1)×2(n−1), (3.18)

with

A =



0 0 1
n

1
n · · · 1

n
− 1
n − 1

n − 1
n 0 · · · 0

0 − 1
n − 1

n − 1
n

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · 0 − 1

n − 1
n − 1

n
1
n · · · 1

n
1
n 0 0


∈ R(n−1)×(n−1). (3.19)
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3 Analytical results

The stability of the inner fixed point is determined via the eigenvalues of the Jacobian.

0 = det
(
J (h∗, p∗)− λI2(n−1)

)
= det

(
−λIn−1 A
A −λIn−1

)
(3.20)

Using linear combinations of the first n− 1 rows added to the last n− 1 rows one gets:

0 = det

(
−λIn−1 A

0 B

)
= det (−λIn−1) det (B) = (−λ)n−1 det (B) , (3.21)

this equation follows immediately from the Laplace expansion.

B =



−λ+ 1
n2λ

0 − 1
n2λ

− 2
n2λ

··· ··· ··· − 2
n2λ

− 1
n2λ

1
n2λ

−λ+ 2
n2λ

1
n2λ

0 − 1
n2λ

··· ··· ··· − 1
n2λ

1
n2λ

2
n2λ

−λ+ 3
n2λ

2
n2λ

1
n2λ

0 ··· ··· 0

0 1
n2λ

2
n2λ

−λ+ 3
n2λ

2
n2λ

1
n2λ

0 ··· 0

...
...

...
...

...
...

...
...

...

0 ··· ··· 0 1
n2λ

2
n2λ

−λ+ 3
n2λ

2
n2λ

1
n2λ

− 1
n2λ

··· ··· ··· − 1
n2λ

0 1
n2λ

−λ+ 2
n2λ

1
n2λ

− 1
n2λ

− 2
n2λ

··· ··· ··· − 2
n2λ

− 1
n2λ

0 −λ+ 1
n2λ


(3.22)

B is still not a triangular matrix, the determinant is not solved easily for general n. The stability
analysis is therefore described for several fixed n.

For n = 4 we get

B =

−λ− 1
16λ 0 0

0 −λ− 1
16λ 0

0 0 −λ− 1
16λ

 . (3.23)

The eigenvalues are therefore calculated as follows:

0 = (−λ)3

(
−λ− 1

16λ

)3

, (3.24)

which gives

λ = ± i
4

with multiplicity 3. (3.25)

The inner fixed point for n = 4 is neutrally stable.

For n = 5 we get

B =


−λ− 1

25λ 0 1
25λ

1
25λ

− 1
25λ −λ− 2

25λ − 1
25λ 0

0 − 1
25λ −λ− 2

25λ − 1
25λ

1
25λ

1
25λ 0 −λ− 1

25λ

 . (3.26)
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3.1 Fixed points and stability

Trigonalising this matrix gives

C =


−λ− 1

25λ 0 1
25λ

1
25λ

0 −λ− 2
25λ − 2+25λ2

25(λ+25λ3)
− 1

25(λ+25λ3)

0 0 −1+75λ2+625λ4

25(λ+25λ3)
− 1+75λ2+625λ4

25(2λ+75λ3+625λ5)

0 0 0 −1+75λ2+625λ4

25(2λ+25λ3)

 . (3.27)

The eigenvalues are therefore calculated as follows:

0 = (−λ)4 det (B) =
(
−λ4

)
det (C) (3.28)

= (−λ)4

(
−λ− 1

25λ

)(
−λ− 2

25λ

)(
−1 + 75λ2 + 625λ4

25 (λ+ 25λ3)

)(
−1 + 75λ2 + 625λ4

25 (2λ+ 25λ3)

)
=

1

254

(
1 + 75λ2 + 625λ4

)2
,

so the following polynomial has to be solved. For this we define l := λ2

0 = l2 +
75

625
l +

1

625
, (3.29)

which gives

l = −3±
√

5

50
, (3.30)

and therefore the eigenvalues

λ = ±
√
l (3.31)

= ± i
5

√
1

2

(
3±
√

5
)

each with multiplicity 2.

The inner fixed point for n = 5 is neutrally stable.

For n = 6 we get

B =


−λ− 1

36λ 0 1
36λ

1
18λ

1
36λ

− 1
36λ −λ− 1

18λ − 1
36λ 0 1

36λ
− 1

36λ − 1
18λ −λ− 1

12λ − 1
18λ − 1

36λ
1

36λ 0 − 1
36λ −λ− 1

18λ − 1
36λ

1
36λ

1
18λ

1
36λ 0 −λ− 1

36λ

 . (3.32)

Trigonalising this matrix gives

C =



−λ− 1
36λ 0 1

36λ
1

18λ
1

36λ

0 −λ− 1
18λ − 1+18λ2

18(λ+36λ3)
− 1

18(λ+36λ3)
λ

1+36λ2

0 0 −1+72λ2+648λ4

18(λ+36λ3)
− 1+72λ2+648λ4

18(λ+54λ3+648λ5)
− 1+54λ2+324λ4

18(λ+54λ3+648λ5)

0 0 0 −2λ+18λ3

1+18λ2
− 36λ3+936λ5

(1+18λ2)(1+72λ2+648λ4)

0 0 0 0 −2λ(1+9λ2)(1+36λ2)
1+72λ2+648λ4


.

(3.33)
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3 Analytical results

The eigenvalues are therefore calculated as follows:

0 = (−λ)5 det (B) =
(
−λ5

)
det (C) (3.34)

= (−λ)5

(
−λ− 1

36λ

)(
−λ− 1

18λ

)(
−1 + 72λ2 + 648λ4

18 (λ+ 36λ3)

)
(
−2λ+ 18λ3

1 + 18λ2

)(
−

2λ
(
1 + 9λ2

) (
1 + 36λ2

)
1 + 72λ2 + 648λ4

)

=
4λ4

9 · 362

(
1 + 9λ2

)2 (
1 + 36λ2

)
,

the solutions of this polynomial are

λ1 = 0 with multiplicity 4, (3.35)

λ2 = ± i
3

each with multiplicity 2,

λ3 = ± i
6

with multiplicity 1.

The inner fixed point for n = 6 is neutrally stable.

It was not possible to determine the stability of the inner fixed point for general n analytically.
However, in cases where n was a fixed number (3, 4, ..., 7) the result was neutral stability.

General infection

For the most general model we assume that

MH = −c ·
(
MP

)T
. (3.36)

Biologically this makes sense: a specific parasite type (for example parasite 4) has a neg-
ative influence on a specific host (type 2). The payoff for the host is the negative entry(
MH

)
2,4

. The parasite is influenced in the same, but positive (and possibly scaled) way(
MP

)
4,2

= −c ·
(
MH

)
2,4

.

Because of the high number of parameters we will only discuss the case with n = 3 hosts and
parasites. Here αP1 = −cαH1 , αP2 = −cαH3 and αP3 = −cαH2 . Due to the normalisation (constant
population size)

ḣ1 = h1

(
αP1 p1 + αP2 p2 + αP3 (1− p1 − p2)− fH

)
(3.37)

ḣ2 = h2

(
αP3 p1 + αP1 p2 + αP2 (1− p1 − p2)− fH

)
(3.38)

ṗ1 = p1

(
αH1 h1 + αH2 h2 + αH3 (1− h1 − h2)− fP

)
(3.39)

ṗ2 = p2

(
αH3 h1 + αH1 h2 + αH2 (1− h1 − h2)− fP

)
, (3.40)
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3.1 Fixed points and stability

with an average fitness

f
H

= h1

(
αP1 p1 + αP2 p2 + αP3 (1− p1 − p2)

)
+ h2

(
αP3 p1 + αP1 p2 + αP2 (1− p1 − p2)

)
+ (1− h1 − h2)

(
αP2 p1 + αP3 p2 + αP1 (1− p1 − p2)

)
(3.41)

f
P

= p1

(
αH1 h1 + αH2 h2 + αH3 (1− h1 − h2)

)
+ p2

(
αH3 h1 + αH1 h2 + αH2 (1− h1 − h2)

)
+ (1− p1 − p2)

(
αH2 h1 + αH3 h2 + αH1 (1− h1 − h2)

)
. (3.42)

If we define Γi,j = αHi − αHj for i < j the Jacobian is

J (h∗, p∗) =


0 0 1

3

(
αP1 − αP3

)
1
3

(
αP2 − αP3

)
0 0 1

3

(
αP3 − αP2

)
1
3

(
αP1 − αP2

)
1
3Γ1,3

1
3Γ2,3 0 0

−1
3Γ2,3

1
3Γ1,2 0 0

 (3.43)

=


0 0 − c

3Γ1,2
c
3Γ2,3

0 0 c
3Γ2,3 − c

3Γ1,3
1
3Γ1,3

1
3Γ2,3 0 0

−1
3Γ2,3

1
3Γ1,2 0 0

 .

Eigenvalues are calculated by

0 = det (J (h∗, p∗)− λI4) = det (B) . (3.44)

Trigonalisation yields

B =


−λ 0 − c

3Γ1,2
c
3Γ2,3

0 −λ − c
3Γ2,3

c
3Γ1,3

0 0 −λ+ c
9λ

(
Γ2

2,3 − Γ1,2Γ1,3

)
0

0 0 0 −λ+ c
9λ

(
−Γ1,3Γ1,2 − Γ2

2,3

)
 . (3.45)

In this very general case the four eigenvalues depend on the payoffs:

λ = ±
√
c

3

√
±
(
αH2 − αH3

)
−
(
αH1 − αH2

) (
αH1 − αH3

)
(3.46)

The inner fixed point is neutrally stable if the term under the square root is negative in
all cases. If we assume that for matching hosts and parasites the payoff is maximal then
αH1 is the largest payoff. Assuming that neighbouring hosts are less suitable for the par-
asite αH1 � αH2 > αH3 the fixed point is neutrally stable. The eigenvalues are imaginary
and therefore the real part zero. If however there are two significant host types for each
parasite and only one host is unsuitable αH1 > αH2 � αH3 then for two eigenvalues we have

λ = ±
√
c

3

√(
αH2 − αH3

)
−
(
αH1 − αH2

) (
αH1 − αH3

)
. Now since αH2 − αH3 is very large the term

under the square root is positive, the two eigenvalues are therefore real and one of them is
positive. We now have a saddle. In other cases it depends on the value of the real part of the
eigenvalues. When all eigenvalues are positive the fixed point is not stable (repulsive) if all are
negative then the fixed point is stable (attractive).
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3 Analytical results

3.1.2 Lotka-Volterra

Matching allele model

The Jacobian for the differential equations is

J =



bh − p1 0 −h1 0
. . .

. . .

0 bh − pn 0 −hn

p1 0 h1 − dp 0
. . .

. . .

0 pn 0 hn − dp


∈ R2n×2n.

At the inner fixed point this simplifies to the following matrix

J (h∗, p∗) =



−dp 0

0 . . .

0 −dp
bh 0

. . . 0
0 bh


. (3.47)

Like in the replicator dynamics matching allele model the eigenvalues can be determined by

adding multiples
(
bh
λ

)
of the first rows to the last rows of J (h∗, p∗) − λI2n and setting the

determinant zero. This leads to the following equation

0 = (−λ)n
(
−λ− bh

λ

)
(3.48)

=
(
λ2 + dpbh

)n
=

(
(λ)2 −

(
i
√
dpbh

)2
)n

=
(
λ+ i

√
dpbh

)n (
λ− i

√
dpbh

)n
.

It is easy to see that the eigenvalues are λ = ±i
√
dpbh with multiplicity n. Note that the

eigenvalues do not depend on n and the differential equations for this model are independent
for each type. The real part is zero, this means that the inner fixed point is neutrally stable
and the oscillation frequency is √

dpbh

2π
. (3.49)

The period of the oscillations close to the fixed point in the matching allele model using replicator
dynamics or Lotka-Volterra dynamics is therefore 2π√

h∗i p
∗
i

.

Cross-infection

Like in the replicator dynamics case the Jacobian can be written as

J (h∗, p∗) =

(
0 A
B 0

)
∈ R2n×2n, (3.50)
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3.1 Fixed points and stability

with

A =



−dp
3 −dp

3 0 0 · · · −dp
3

−dp
3 −dp

3 −dp
3 0 · · · 0

0 −dp
3 −dp

3 −dp
3 · · · 0

...
...

. . .
. . .

. . .
...

0 0 · · · −dp
3 −dp

3 −dp
3

−dp
3 0 · · · 0 −dp

3 −dp
3


, B =



bh
3

bh
3 0 0 · · · bh

3
bh
3

bh
3

bh
3 0 · · · 0

0 bh
3

bh
3

bh
3 · · · 0

...
...

. . .
. . .

. . .
...

0 0 · · · bh
3

bh
3

bh
3

bh
3 0 · · · 0 bh

3
bh
3


.

(3.51)

For specific n the eigenvalues are calculated.

When n = 4 and trigonalising the matrix the polynomial already becomes more complicated

det(J − λI8) = det



−λ 0 0 0 −dp
3 −dp

3 0 −dp
3

0 −λ 0 0 −dp
3 −dp

3 −dp
3 0

0 0 −λ 0 0 −dp
3 −dp

3 −dp
3

0 0 0 −λ −dp
3 0 −dp

3 −dp
3

0 0 0 0
0 0 0 0
0 0 0 0 C
0 0 0 0


, (3.52)

with

C =


−λ− bhdp

3λ −2bhdp
9λ −2bhdp

9λ −2bhdp
9λ

0 −λ− bhdp(5bhdp+27λ2)
27bhdpλ+81λ3

− bhdp(2bhdp+18λ2)
27bhdpλ+81λ3

− bhdp(2bhdp+18λ2)
27bhdpλ+81λ3

0 0 −λ− bhdp(7bhdp+27λ2)
45bhdpλ+81λ3

− bhdp(2bhdp+18λ2)
45bhdpλ+81λ3

0 0 0 −λ− bhdp(bhdp+3λ3)
7bhdpλ+9λ3

 .

(3.53)

The product of the diagonal entries is the determinant, which, set to zero, generates the eigen-
values

λ1 = ± i
3

√
bhdp each with multiplicity 3, (3.54)

λ2 = ±i
√
bhdp each with multiplicity 1.

The inner fixed point for n = 4 is neutrally stable.

For n = 5 the eigenvalues are

λ1 = ± i

3
√

2

√(
3±
√

5
)
bhdp each with multiplicity 2, (3.55)

λ2 = ±i
√
bhdp each with multiplicity 1.

The inner fixed point for n = 5 is neutrally stable.
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3 Analytical results

For n = 6 the eigenvalues are

λ1 = 0 with multiplicity 4, (3.56)

λ2 = ± i
3

√
bhdp each with multiplicity 1,

λ3 = ±2i

3

√
bhdp each with multiplicity 2,

λ4 = ±i
√
bhdp each with multiplicity 1.

The inner fixed point for n = 6 is neutrally stable.

In all cases analysed the inner fixed point showed neutral stability.

General infection

Similarly to the above model the most general case becomes very complicated for n types. Even
the model with 3 types proves difficult. The Jacobian can be written as

J (h∗, p∗) =

(
0 A
B 0

)
∈ R2n×2n, (3.57)

with

A =


− cdpαH1
αH1 +αH2 +αH3

− cdpαH3
αH1 +αH2 +αH3

− cdpαH2
αH1 +αH2 +αH3

− cdpαH2
αH1 +αH2 +αH3

− cdpαH1
αH1 +αH2 +αH3

− cdpαH3
αH1 +αH2 +αH3

− cdpαH3
αH1 +αH2 +αH3

− cdpαH2
αH1 +αH2 +αH3

− cdpαH1
αH1 +αH2 +αH3

 (3.58)

and

B =


bhα

H
1

c(αH1 +αH2 +αH3 )
bhα

H
2

c(αH1 +αH2 +αH3 )
bhα

H
3

c(αH1 +αH2 +αH3 )
bhα

H
3

c(αH1 +αH2 +αH3 )
bhα

H
1

c(αH1 +αH2 +αH3 )
bhα

H
2

c(αH1 +αH2 +αH3 )
bhα

H
2

c(αH1 +αH2 +αH3 )
bhα

H
3

c(αH1 +αH2 +αH3 )
bhα

H
1

c(αH1 +αH2 +αH3 )

 . (3.59)

The eigenvalues given by mathematica are

λ1 =± i
√
bhdp each with multiplicity 1, (3.60)

λ2 =± i
√
bhdp

√
αH1
(
αH1 − αH2

)
+ αH2

(
αH2 − αH3

)
− αH3

(
αH1 − αH3

)
αH1 + αH2 + αH3

(3.61)

each with multiplicity 2.

Assuming αH1 > αH2 > αH3 the term under the square root becomes positive and all eigenvalues
have a real part zero. This means neutral stability of the inner fixed point for n = 3.

For all models in general, if birth rate of hosts and death rate of parasites are positive, and
payoffs are chosen in a logical way, the eigenvalues seem to be purely imaginary or zero which
means neutral stability of the fixed point.
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3.2 Constant of motion

3.2 Constant of motion

3.2.1 Replicator dynamics

Matching allele model

Like in the 2 × 2 case [Song et al., 2015; Hofbauer and Sigmund, 1998], a simple constant of
motion is obtained.

H = log

n∏
i=1

pi + log

n∏
i=1

hi (3.62)

=

n∑
i=1

log pi +

n∑
i=1

log hi

The time derivative is zero, which proves that this is a constant of motion.

Ḣ =
n∑
i=1

ṗi
pi

+
n∑
i=1

ḣi
hi

(3.63)

=
n∑
i=1

hi︸ ︷︷ ︸
=1

−
n∑
i=1

n∑
k=1

hkpk −
n∑
i=1

pi︸ ︷︷ ︸
=1

+
n∑
i=1

n∑
k=1

hkpk

Since the population number is kept constant the normalisation can be employed here. In

Figure 3.1: Constants of motion for a two type replicator dynamics matching allele model. Left
(and right) axis: Host (and parasite) type distribution. Hight/colour intensity:
Value of constant of motion

this case H becomes maximal when dH
dhi

= dH
dpi

= 0 which is the case when 1
hi

+ −1
1−

∑n−1
k=1 hk

= 0

and 1
pi

+ −1
1−

∑n−1
k=1 pk

= 0. This means that H reaches its maximum at the inner fixed point

h∗i = p∗i = 1
n . For other trajectories (starting with other initial conditions), the constant

of motion can be interpreted as the distance from the fixed point. For the 2 × 2 case some
constants are visualised in Figure 3.1. The state space is confined to two dimensions, leaving
room for a third axis showing the value of the constant of motion. The left axis shows the
relative frequencies of host types and the right axis shows frequencies of parasites. Different
colours represent different constants, where the darkest at the top is the largest constant and
the trajectory is close to the fixed point.
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3 Analytical results

Cross-infection

For this model the same constant of motion was found.

H = log
n∏
i=1

pi + log
n∏
i=1

hi

The proof is shown in the Appendix in Section 6.2

General infection

A constant of motion was derived for the case MH = −cMP with certain restrictions that had
to be made (see Appendix 6.2). A more general approach is to assume MH = −c ·

(
MP

)T
(Equation 3.36). In [Hofbauer, 1996] a constant of motion is found for the n-dimensional
replicator equation. In this case a constant of motion is

H =

n∑
i=1

log hi + c

n∑
i=1

log pi (3.64)

This is derived in the Appendix in Section 6.2.

3.2.2 Lotka-Volterra

Matching allele model

A constant of motion was discovered similar to Theorem 4.3 in [Plank, 1995].

H =
n∑
i=1

hi −
n∑
i=1

h∗i log hi +
n∑
i=1

pi −
n∑
i=1

p∗i log pi (3.65)

=
n∑
i=1

hi − dp
n∑
i=1

log hi +
n∑
i=1

pi − bh
n∑
i=1

log pi

Ḣ =
n∑
i=1

ḣi − dp
n∑
i=1

ḣi
hi

+
n∑
i=1

ṗi − bh
n∑
i=1

ṗi
pi

(3.66)

=
n∑
i=1

hi (−pi + bh)− dp
n∑
i=1

(−pi + bh) +
n∑
i=1

pi (hi − dp)− bh
n∑
i=1

(hi − dp)

= 0

Note that in the Lotka-Volterra system the fixed point depends on the model so that this time
it is indispensable to include it in the constant.

Cross-infection

The same constant of motion is found for the cross infection model

H =

n∑
i=1

hi −
n∑
i=1

h∗i log hi +

n∑
i=1

pi −
n∑
i=1

p∗i log pi, (3.67)

with the corresponding fixed point

H =
n∑
i=1

hi −
dp
3

n∑
i=1

log hi +

n∑
i=1

pi −
bh
3

n∑
i=1

log pi. (3.68)

28



3.2 Constant of motion

The time derivation is similar to before

Ḣ =
n∑
i=1

ḣi −
dp
3

n∑
i=1

ḣi
hi

+
n∑
i=1

ṗi −
bh
3

n∑
i=1

ṗi
pi

(3.69)

=
n∑
i=1

hi (− (pi−1 + pi + pi+1) + bh)− dp
3

n∑
i=1

(− (pi−1 + pi + pi+1) + bh)

+
n∑
i=1

pi ((hi−1 + hi + hi+1)− dp)−
bh
3

n∑
i=1

((hi−1 + hi + hi+1)− dp)

= 0.

General infection

In [Hofbauer and Sigmund, 1998] (chapter 2) a constant of motion is derived for the two-
dimensional Lotka-Volterra equation. This can be extended for n dimensions (see also [Plank,

1995]). It is assumed again that MH = −c ·
(
MP

)T
.

H =
n∑
i=1

hi −
n∑
i=1

h∗i log hi + c ∗
n∑
i=1

pi + c
n∑
i=1

p∗i log pi (3.70)

Inserting the fixed point and making use of the transposition yields

H =
n∑
i=1

hi −
dp∑
k α

H
k

n∑
i=1

log hi + c

n∑
i=1

pi −
bh∑
k α

H
k

n∑
i=1

log pi. (3.71)

The time derivation proves the constant

Ḣ =

n∑
i=1

ḣi −
dp∑
k α

H
k

n∑
i=1

ḣi
hi

+ c

n∑
i=1

ṗi −
bh∑
k α

H
k

n∑
i=1

ṗi
pi
. (3.72)

After inserting the differential equations and some transformations one gets

Ḣ = bh

n∑
i=1

hi +
cdp∑
k α

H
k

n∑
i=1

((
MP

)T
p
)
i
− cdp

n∑
i=1

pi −
bh∑
k α

H
k

n∑
i=1

(
MPh

)
i

(3.73)

= bh

n∑
i=1

hi +
cdp∑
k α

H
k

n∑
k=1

n∑
i=1

αHk pi − cdp
n∑
i=1

pi −
bh∑
k α

H
k

n∑
k=1

n∑
i=1

αHk hi

= 0.

Note that for all constants of motions mentioned for Lotka-Volterra dynamics the fixed point
plays an important role.
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4 Numerical analysis

Figure 4.1: Matching allele replicator dynamics with six types
Numerical solution for six types of hosts (in blue and green) and parasites (in
red and yellow) analysed with replicator dynamics. Initial conditions: h (0) =
[0.16, 0.12, 0.13, 0.14, 0.22, 0.23]T and p (0) = [0.2, 0.15, 0.18, 0.12, 0.15, 0.2]T

A simple example host parasite replicator dynamics with six types can be seen in Figure 4.1.
The dynamics become more complex when the initial conditions are chosen further from the
inner fixed point.

4.1 Three types and chaos

Replicator dynamics

In [Sato et al., 2002] chaotic behaviour and large positive Lyapunov exponents were found
for several initial conditions in a two-person rock-paper-scissors game. This is mathematically
closely related to a 3 × 3 replicator dynamics host-parasite system. After reproducing their
results we transferred their approach to our matching allele model and analysed several ini-
tial conditions h (0) = [0.5, 0.01k, 0.05− 0.01k]T and p (0) = [0.5, 0.25, 0.25]T . We saw periodic
trajectories for k = 5 − 25 in the Poincaré section h2 − h1 + p2 − p1 = 0 (Figure 4.2a) and
log h1h2h3 − log p1p2p3 = 0 (Figure 4.2b). For initial conditions corresponding to k = 1, 2, 3, 4
(black, green, blue and red scatter points, which are not on closed trajectories) there seems to be
chaos. Two initial conditions (k = 1, 10) were further analysed to differentiate between chaotic
and non-chaotic initial conditions. A Fourier spectrum analysis did not lead to clear results
since for both initial conditions a small peak in the Fourier spectrum at 0.05 which corresponds
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4 Numerical analysis

(a) |h2 − h1 + p2 − p1|≤ 0.001 (b) |log h1h2h3 − log p1p2p3|≤ 0.001

Figure 4.2: Matching allele replicator dynamics with three types
Poincaré sections for a 3-type matching allele replicator dynamics system following
method by Sato et al. [2002]. Restrictions see (a) and (b). Plotted in the h1 −
p2−plane. Numerical integration with python’s built in odeint function. Initial
conditions: h (0) = [0.5, 0.01k, 0.5− 0.01k]T and p (0) = [0.5, 0.25, 0.25]T for k =
1, 2, ..., 25 (see legend).

to a period of 2π
0.05 = 128 showed up. This must not be confused with the oscillation frequency

close to the inner fixed point in Equation 3.49.

Plotting trajectories in the state space or, for reduction of dimensionality, on simplices visu-
alises the complexity of the system (see Appendix 6.3). Figure 4.3 shows the numerical solution
for a three-type matching allele system analysed with replicator equations. Each of the three
corners in plot 4.3a and 4.3b represents one type of host, where the other two types are nonex-
istent. It becomes clear that for balanced initial conditions corresponding to k = 10, close to
the center of the simplex, frequencies do not leave the space of the trajectory drawn and are
therefore confined to orbits around the inner fixed point. For more extreme initial conditions,
starting close to the edge of the simplex in plot (b) (k = 1) this cannot be said. The trajectory
is not limited to regular orbits but nearly fills out the whole parameter space, going from con-
ditions close to extinction of one type (edges of simplex) to a near balance of all types (close to
the inner fixed point). Figures 4.3c and 4.3d show a three dimensional projection of the four
dimensional data received after reducing the dimension to two for each species (see Appendix
6.3). The host simplex and the parasite simplex (which looks exactly the same) are combined
in these figures. Three of the dimensions are used to plot the 3D-projection. The colour depicts
the fourth dimension. Even after 10 000 generations plotted with a stepsize of 0.1 the trajectory
stays on a restricted space for initial condition k = 10. Again, the extreme condition k = 1
shows a much wider use of the state space and no regularity.

32



4.1 Three types and chaos

(a) Host simplex k = 10 (b) Host simplex k = 1

(c) 4D projection k = 10 (d) 4D projection k = 1

Figure 4.3: Matching allele replicator dynamics with three types
Simplices for a 3-type matching allele replicator dynamics system with initial con-
ditions h (0) = [0.5, 0.01k, 0.5− 0.01k]T and p (0) = [0.5, 0.25, 0.25]T , k = 10 (left)
and k = 1 (right). Numerical integration with python’s built-in odeint function.
(a) and (b): 2D-simplex for hosts. Each vertex corresponds to a sole existence of
one host type. The time is represented by the colour going from blue (generation 0)
to green (generation 2000).
(c) and (d): 4D data as 3D-projection. The x- and y-axis represent the 2D-parasite-
simplex. The z-axis represents one axis of the 2D-host-simplex of (a) and (b), the
second axis of the host simplex is represented in the colour change. Trajectories
were plotted for 10 000 generations with a stepsize of 0.1.
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4 Numerical analysis

(a) k = 10

(b) k = 1

Figure 4.4: Matching allele replicator dynamics with three types
Estimation of the largest Lyapunov exponent λmax = ∆

V (∆) for a 3-type match-

ing allele replicator dynamics system using the method of Kim and Choe [2010],
with bigfloat precision 300 in a fourth-order Runge-Kutta integration. Initial
conditions h (0) = [0.5, 0.1, 0.4]T (k = 10) and h (0) = [0.5, 0.01, 0.49]T (k = 1),
p (0) = [0.5, 0.25, 0.25]T . Initial distance defined by D = 50. Maximum 100 genera-
tions.

To further strengthen the chaos argument the largest Lyapunov exponent was estimated,
after successfully reproducing the results from Kim and Choe [2010] with methods described in
Section 2.7 (for python code see Appendix 6.3). In Figure 4.4 the estimated Lyapunov exponent
for a moderate initial condition (k = 10) is a constant of approximately 0.055 with relatively
large variance. For k = 1 a much larger value around 0.1 is obtained. This is consistent with
the magnitude of estimated values in Kim and Choe [2010].

Lotka-Volterra dynamics

The Lotka-Volterra matching allele model is a system of detached differential equations so that
dimensions always reduce to two (because there are two species) independent of the number of
types n. Poincaré sections showed no irregular trajectories for Lotka-Volterra dynamics with
two types of each species (plots not shown). Since the trajectories are not restricted to a specific
parameter space, let alone a simplex, it is not possible to show similar figures as above. However,
plotting trajectories in the h1 − h2−plane lead to complex dynamics even in the case of two
types when the equations were coupled through a small payoff for mismatching types. This
observation was made independent of the initial conditions. Figure 4.5 shows trajectories of a
two-type host-parasite Lotka-Volterra model. If only matching host and parasite interact with
each other there is no influence from the separated system of second types and the dynamics
are very simple. Trajectories are drawn for initial conditions h (0) = [0.01k, 1− 0.01k]T for
k = 1, 2, ..., 25, while the parasites’ initial condition stays constant: p (0) = [0.5, 0.5]T . For each
initial condition there is a simple orbits around the inner fixed point in Figure 4.5a. However,
adding a small influence of parasite two to host one (one fifth of the payoff for matching types)
the picture already looks very different. In Figure 4.5b two initial conditions are shown, k = 1
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4.1 Three types and chaos

(a) Matching allele (b) Coupled

Figure 4.5: General Lotka-Volterra model with two types
Trajectories of Lotka-Volterra dynamics for a 2-type replicator dynamics system
plotted in the h1 − h2−plane for 1000 generations with a stepsize of 0.1. Initial
conditions: h (0) = [0.01k, 1− 0.01k]T and p (0) = [0.5, 0.5]T . Numerical integration
with python’s built-in odeint function. (a): k = 1, 2, ..., 25 in a matching allele
model. (b): Additional interaction of mismatching hosts and parasites of strength
0.2, k = 1 (black) and k = 10 (red).

in black and k = 10 in red. The dynamics now seem to be far more chaotic.
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4 Numerical analysis

4.2 Stochastic simulations

Similar to the two-type model presented in [Gokhale et al., 2013] types die out quickly in a
stochastic simulation. For a three-type system less extreme starting conditions prolong the time
before extinction compared to simulation with unbalanced initial numbers. Also, amplitudes
are generally higher in the case of extreme initial conditions. The Figures 4.6 show the scenario
for four types of hosts and parasites in a matching allele model. Starting with 250 individuals
of each type of host and parasite (Figure 4.6a) increases the chance of survival. The average
time over 20 simulations until one type dies out is 12.7 generations. For extreme conditions,
starting with 900 hosts of type one and few of the other three types (Figure 4.6b) reduces the
average time until extinction to 2.9 generations.

(a) H (0) = [250, 250, 250, 250]
T (b) H (0) = [900, 50, 25, 25]

T

Figure 4.6: Stochastic matching allele model with four types
20 stochastic simulations as in [Gillespie, 2007] for a 4-type matching allele system,
starting with balanced initial conditions (a) and extreme conditions (b) for hosts
and P (0) = [250, 250, 250, 250]T for parasites. bh = 5, dp = 2.5, interaction rate of
matching types: r = 0.01. Hosts in cold, parasites in warm colours.
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5 Discussion

Host and parasite systems with two types of each species have been analysed extensively in
deterministic and stochastic models. Hosts and parasites affect each other more than other
species due to the intimacy of their relationship. This is why coevolution plays such an important
role here.

The classic matching allele and gene-for-gene models are usually in focus when discussing
interactions on the genetic level and have even been interpolated to discuss versions in between
these two extremes [Agrawal and Lively, 2002]. Several models have shown negative frequency
dependent oscillations of host and parasite abundances, named Red Queen dynamics by van
Valen [1973]. The Red Queen theory is now a broadly discussed topic and has been empiri-
cally strengthened in several field studies [Koskella and Lively, 2009; Decaestecker et al., 2007]
and laboratory experiments [Buckling and Rainey, 2002]. A stochastic model with changing
population size (Lotka-Volterra) by Gokhale et al. [2013] shows that extinctions were possible,
contradicting the Red Queen hypothesis. Song et al. [2015] found that on the gene-for-gene
side of the continuum and with changing population size in a deterministic model oscillations
become more complex than recently believed. Constants of motion were also presented

In this thesis both models with constant population size (replicator equations) and changing
population size (Lotka-Volterra dynamics) were considered. In addition the model was extended
to incorporate more than two types of each species which is another step closer to reality. Apart
from the matching allele model, the gene-for-gene model and their interpolation, a much wider
range of interactions is possible and plausible. One of the aims was to find constant of motions
for most complex payoff matrices. They still abide by certain symmetry restrictions (Equation
3.36) but a much wider range of models is now accessible with the tools provided here.

Summary of results

It is not surprising that the inner fixed points of replicator dynamics (Equation 3.1) is 1
n for

all types, since the frequencies are restricted to the simplex by a constant population size, the
nature of replicator dynamics. In the Lotka-Volterra models with changing population size,
however, the inner fixed point depends on the birth rates and death rates of host and parasite,
respectively (Equations 3.2 - 3.4). The neutral stability of this fixed point, although not in all
cases analytically proven, was shown for all reasonable scenarios where one host-parasite pair
is dominant (see text after Equation 3.46 for further discussion). Constants of motion were
represented for all models in Section 3.2. For replicator dynamics with a uniform fixed point
the constant of motion has a simpler form. When Lotka-Volterra dynamics with changing pop-
ulation size is applied the fixed point and, in the most general case, the payoffs play a major role.

Although constants of motions were found for all models, this does not mean that this re-
sults in stable trajectories, as was found in Section 4.1. For some initial conditions close to the
edge of the simplex chaotic behaviour is possible for replicator dynamics with as little as three
types of each species (Figures 4.2, 4.3 and 4.4). For balanced frequencies of host/parasite types
there are stable and small oscillations in frequencies of the types. But when initial conditions
are further apart the amplitudes become larger. For extreme initial conditions (for example
one very frequent type, two very rare types) the system even becomes chaotic. Regular Red
Queen dynamics can not be observed under these circumstances. One may admittedly ask the
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question whether these extreme cases are likely in reality. It is safe to assume though, that for
more complex models than the matching allele model the dynamics are not simplified. It is
possible that for more complicated payoff matrices the parameter space, where regular orbits
are observed, decreases. This was already shown very recently by Rabajante et al. [2015] in
purely stochastic models. Since the differential equations are decoupled in a matching allele
model with Lotka-Volterra dynamics, it is necessary to link the equations. This was done by
allowing a small payoff for mismatching hosts and parasites (see Figure 4.5b). Independent
of the initial conditions the trajectories were now more complicated. Finally, the stochastic
simulation (Figure 4.6) showed that increasing the number of types still leads to extinction or
fixation in models with changing population size.
The results show that already slight diversity (few types or species) and antagonistic mecha-
nisms in systems with simple interactions lead to complex dynamics and chaos. Stable states
(fixed points or regular orbits) become more and more unlikely. This suggests that interactions
between diverse types of hosts and parasites do not evolve to a stable state or stable oscillations
but can persist with chaotic changes of abundances.

Outlook

In the limited time frame of a master thesis project it was not possible to solve to a satisfying
extent several problems which arose. It is especially important to find an optimal numerical
integrator for such delicate systems which result in chaos. Since the chaotic nature of the sys-
tem was discovered relatively late in the course of the project it was not possible to go into
much detail. An extensive analysis of chaos should be conducted with a better integrator for
more complicated replicator dynamic models not just the matching allele model. A focus could
lie on Lotka-Volterra dynamics, which were not studied much concerning Lyapunov exponents
and Poincaré sections. Roques and Chekroun [2011] suggested that in a Lotka-Volterra system
one needs at least four species which interact with each other so as to run into chaos. This
could be refined by proving that two species with two types are required for chaos. Apart
from Lyapunov exponents a chaos analysis could involve ergodic theory (for analytical work) or
time series analysis (concerning numerical results). Concerning the stochastic model, extinction
times and extinction probabilities for different types of hosts and parasites could be analysed
further under diverse conditions (initial abundances, total population size, reaction rates). Ad-
ditionally, exploring intra-species interactions for example competition for a common good or
cooperative infectivity could be of interest.

38



Bibliography

Agrawal, A. and Lively, C. M. (2002). Infection genetics: gene-for-gene versus matching-alleles
models and all points in between. Evolutionary Ecology Research, 4:79–90.

Bell, R. (1996). Ige, allergies and helminth parasites: A new perspective on an old conundrum.
Immunology and Cell Biology.

Best, A., White, A., and Boots, M. (2009). The implications of coevolutionary dynamics to
host-parasite interactions. The American Naturalist.

Buckling, A. and Rainey, P. B. (2002). Antagonistic coevolution between a bacterium and a
bacteriophage. Proceedings of the Royal Society B, 269:931 –936.

Carroll, L. (1871). Through the Looking-Glass, and What Alice Found There. Macmillan,
London.

Coors, A., Decaestecker, E., Jansen, M., and Meester, L. D. (2008). Pesticide exposure strongly
enhances parasite virulence in an invertebrate host model. Oikos.

Decaestecker, E., Gaba, S., Raeymaekers, J. A. M., R. Stoks, L. v. K., Ebert, D., and Meester,
L. D. (2007). Host–parasite ‘red queen’ dynamics archived in pond sediment. Nature, 450:870–
873.
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6 Appendix

6.1 Jacobian entries

In Section 3.1 a stability analysis was conducted by evaluating the Jacobian matrix close to the
inner fixed point. The number of differential equations was reduced which makes the entries
look complicated in the beginning but greatly simplifies the structure of the Jacobian after
inserting the fixed point. For the sake of completeness the Jacobian entries are listed here.

6.1.1 Replicator dynamics: matching allele model

∂ḣi
∂hi

= −pi +

n−1∑
k=1

hkpk +

(
1−

n−1∑
k=1

hk

)(
1−

n−1∑
k=1

pk

)
+ pi −

(
1−

n−1∑
k=1

pk

)
(6.1)

∂ḣi
∂hl

= hi

(
pl −

(
1−

n−1∑
k=1

pk

))
(6.2)

∂ḣi
∂pi

= hi

(
−1 + hi −

(
1−

n−1∑
k=1

hk

))
(6.3)

∂ḣi
∂pl

= hi

(
hl −

(
1−

n−1∑
k=1

hk

))
(6.4)

∂ṗi
∂hi

= pi

(
1− pi +

(
1−

n−1∑
k=1

pk

))
(6.5)

∂ṗi
∂hl

= pi

(
−pl +

(
1−

n−1∑
k=1

pk

))
(6.6)

∂ṗi
∂pi

= hi −
n−1∑
k=1

hkpk −

(
1−

n−1∑
k=1

hk

)(
1−

n−1∑
k=1

pk

)
− hi +

(
1−

n−1∑
k=1

hk

)
(6.7)

∂ṗi
∂pl

= pi

(
−hl +

(
1−

n−1∑
k=1

hk

))
(6.8)
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6.1.2 Replicator dynamics: cross-infection

∂ḣ1

∂hl
=



−

(
1−

n−1∑
k=3

pk

)
+ h1

(
1−

n−1∑
k=3

pk

)
+

n−2∑
k=2

hk (pk−1 + pk + pk+1)

+hn−1

(
1−

n−3∑
k=1

pk

)
+

(
1−

n−1∑
k=1

hk

)(
1−

n−2∑
k=2

pk

)

+h1

((
1−

n−1∑
k=3

pk

)
−

(
1−

n−2∑
k=2

pk

))
when l = 1

h1

((
1−

n−3∑
k=1

pk

)
−

(
1−

n−2∑
k=2

pk

))
when l = n− 1

h1

(
(pl−1 + pl + pl+1)−

(
1−

n−2∑
k=2

pk

))
else

(6.9)

=0 for h∗i = p∗i =
1

n

for n− 1 6= i 6= 1 :

∂ḣi
∂hl

=



hi

((
1−

n−1∑
k=3

pk

)
−

(
1−

n−2∑
k=2

pk

))
when l = 1

− (pi−1 + pi + pi+1) + h1

(
1−

n−1∑
k=3

pk

)
+

n−2∑
k=2

hk (pk−1 + pk + pk+1)

+hn−1

(
1−

n−3∑
k=1

pk

)
+

(
1−

n−1∑
k=1

hk

)(
1−

n−2∑
k=2

pk

)

+hi (pi−1 + pi + pi+1)−

(
1−

n−2∑
k=2

pk

)
when l = i

hi

((
1−

n−3∑
k=1

pk

)
−

(
1−

n−2∑
k=2

pk

))
when l = n− 1

hi

(
pl−1 + pl + pl+1 −

(
1−

n−2∑
k=2

pk

))
else

(6.10)

=0 for h∗i = p∗i =
1

n
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∂ḣn−1

∂hl
=



hn−1

((
1−

n−1∑
k=3

pk

)
−

(
1−

n−2∑
k=2

pk

))
when l = 1

−

(
1−

n−3∑
k=1

pk

)
+ h1

(
1−

n−1∑
k=3

pk

)
+

n−2∑
k=2

hk (pk−1 + pk + pk+1)

+hn−1

(
1−

n−3∑
k=1

pk

)
+

(
1−

n−1∑
k=1

hk

)(
1−

n−2∑
k=2

pk

)

+

(
1−

n−3∑
k=1

pk

)
−

(
1−

n−2∑
k=2

pk

)
when l = n− 1

hn−1

(
pl−1 + pl + pl+1 −

(
1−

n−2∑
k=2

pk

))
else

(6.11)

=0 for h∗i = p∗i =
1

n

∂ḣ1

∂pl
=



h1 (h2 − hn−1) when l = 1

h1

(
h2 + h3 −

(
1−

n−1∑
k=1

hk

)
− hn−1

)
when l = 2

h1

(
1− h1 + hn−3 + hn−2 −

(
1−

n−1∑
k=1

hk

))
when l = n− 2

h1 (1− h1 + hn−2) when l = n− 1

h1

(
1− h1 + hl−1 + hl + hl+1 − hn−1 −

(
1−

n−1∑
k=1

hk

))
else

(6.12)

=

0 when l ∈ {1, 2}
1

n
else

for h∗i = p∗i =
1

n

∂ḣ2

∂pl
=



h2 (−1 + h2 − hn−1) when l = 1

h2

(
−1 + h2 + h3 − hn−1 −

(
1−

n−1∑
k=1

hk

))
when l = 2

h2

(
−1− h1 + h2 + h3 + h4 − hn−1 −

(
1−

n−1∑
k=1

hk

))
when l = 3

h2

(
−h1 + hn−3 + hn−2 −

(
1−

n−1∑
k=1

hk

))
when l = n− 2

h2 (−h1 + hn−2) when l = n− 1

h2

(
−h1 + hl−1 + hl + hl+1 − hn−1 −

(
1−

n−1∑
k=1

hk

))
else

(6.13)

=

−
1

n
when l ∈ {1, 2, 3}

0 else
for h∗i = p∗i =

1

n
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for i ∈ {3, 4, ..., n− 3}:

∂ḣi
∂pl

=



hi (h2 − hn−1) when l = 1

hi

(
h2 + h3 − hn−1 −

(
1−

n−1∑
k=1

hk

))
when l = 2

hi

(
−h1 + hn−3 + hn−2 −

(
1−

n−1∑
k=1

hk

))
when l = n− 2

hi (−h1 + hn−2) when l = n− 1

hi

(
− 1− h1 + hn−4 + hn−3 + hn−2

−hn−1 −

(
1−

n−1∑
k=1

hk

))
when l ∈ {i− 1, i, i+ 1}

hi

(
− h1 + hn−4 + hn−3 + hn−2

−hn−1 −

(
1−

n−1∑
k=1

hk

))
else

(6.14)

=

−
1

n
when l ∈ {i− 1, i, i+ 1}

0 else
for h∗i = p∗i =

1

n

∂ḣn−2

∂pl
=



hn−2 (h2 − hn−1) when l = 1

hn−2

(
h2 + h3 − hn−1 −

(
1−

n−1∑
k=1

hk

))
when l = 2

hn−2

(
−1− h1 + hn−4 + hn−3 + hn−2 −

(
1−

n−1∑
k=1

hk

))
when l = n− 3

hn−2

(
−1− h1 + hn−3 + hn−2 −

(
1−

n−1∑
k=1

hk

))
when l = n− 2

hn−2 (−1− h1 + hn−2) when l = n− 1

hn−2

(
−h1 + hl−1 + hl + hl+1 − hn−1 −

(
1−

n−1∑
k=1

hk

))
else

(6.15)

=

−
1

n
when l ∈ {n− 3, n− 2, n− 1}

0 else
for h∗i = p∗i =

1

n
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∂ḣn−1

∂pl
=



hn−1 (1 + h2 − hn−1) when l = 1

hn−1

(
1 + h2 + h3 − hn−1 −

(
1−

n−1∑
k=1

hk

))
when l = 2

hn−1

(
−h1 + hn−3 + hn−2 −

(
1−

n−1∑
k=1

hk

))
when l = n− 2

hn−1 (−h1 + hn−2) when l = n− 1

hn−1

(
1− h1 + hl−1 + hl + hl+1 − hn−1 −

(
1−

n−1∑
k=1

hk

))
else

(6.16)

=

0 when l ∈ {n− 2, n− 1}
1

n
else

for h∗i = p∗i =
1

n

Similar derivations are achieved for the parasites’ differential equations in the lower part of the
Jacobian.

6.1.3 Lotka-Volterra: cross-infection

∂ḣi
∂hl

=

{
− (pi−1 + pi + pi+1) + bh when l = i

0 else
(6.17)

=0 for h∗i =
dp
3

and p∗i =
bh
3

∂ḣi
∂pl

=

{
−hi when l ∈ {i− 1, i, i+ 1}
0 else

(6.18)

=

−
dp
3

when l ∈ {i− 1, i, i+ 1}

0 else
for h∗i =

dp
3

and p∗i =
bh
3

∂ṗi
∂hl

=

{
pi when l ∈ {i− 1, i, i+ 1}
0 else

(6.19)

=


bh
3

when l ∈ {i− 1, i, i+ 1}

0 else
for h∗i =

dp
3

and p∗i =
bh
3

∂ṗi
∂pl

=

{
hi−1 + hi + hi+1 − dp when l = i

0 else
(6.20)

=0 for h∗i =
dp
3

and p∗i =
bh
3
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6.2 Constant of motion

6.2.1 Replicator dynamics: cross-infection

For the replicator dynamics cross-infection model the constant of motion is proven as follows.

Ḣ =
n∑
i=1

ṗi
pi

+
n∑
i=1

ḣi
hi

(6.21)

=

n∑
i=1

hi−1 + hi + hi+1︸ ︷︷ ︸
=3

−
n∑
i=1

n∑
k=1

pk (hk−1 + hk + hk+1)

−
n∑
i=1

pi−1 + pi + pi+1︸ ︷︷ ︸
=3

+
n∑
i=1

n∑
k=1

hk (pk−1 + pk + pk+1)

= −
n∑
i=1

n∑
k=1

pkhk−1 −
n∑
i=1

n∑
k=1

pkhk −
n∑
i=1

n∑
k=1

pkhk+1

+

n∑
i=1

n∑
k=1

hkpk−1 +

n∑
i=1

n∑
k=1

hkpk +

n∑
i=1

n∑
k=1

hkpk+1

shifting the index leads to

= −n
n−1∑
k=0

pk+1hk − n
n+1∑
k=2

pk−1hk + n

n∑
k=1

hkpk−1 + n

n∑
k=1

hkpk+1

making use of the periodicity (h0 = hn, etc.) yields

= −n
n∑
k=1

pk+1hk − n
n∑
k=1

pk−1hk + n
n∑
k=1

hkpk−1 + n
n∑
k=1

hkpk+1

= 0

6.2.2 Replicator dynamics: general infection

For the most complex replicator dynamics model a constant of motion was derived following
Hofbauer [1996] and Plank [1995] where the fixed point is incorporated. Since the fixed point
is 1

n for each type it does not play a role in the constant and was later neglected (see Section
3.2.1). Here the derivation is shown with the fixed point.
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6.2 Constant of motion

H =
n∑
i=1

h∗i log hi + c
n∑
i=1

p∗i log pi (6.22)

Ḣ =
1

n

n∑
i=1

ḣi
hi

+
c

n

n∑
i=1

ṗi
pi

=
1

n

n∑
i=1

((
MHp

)
i
− hTMHp

)
+
c

n

n∑
i=1

((
MPh

)
i
− pTMPh

)
=

1

n

n∑
i=1

((
−c
(
MP

)T
p
)
i
− hT (−c)

(
MP

)T
p
)

+
c

n

n∑
i=1

((
MPh

)
i
− pTMPh

)
=
c

n

n∑
i=1

(
−
((
MP

)T
p
)
i
+ hT

(
MP

)T
p
)

+
((
MPh

)
i
− pTMPh

)
=
c

n

n∑
i=1

(
−
((
pTMP

)T)
i
+
(
pTMPh

)T)
+
((
MPh

)
i
− pTMPh

)
= c

(
pTMPh

)T − cpTMPh+
c

n

n∑
i=1

(((
pTMP

)T)
i
−
(
MPh

)
i

)
=
c

n

n∑
i=1

(((
pTMP

)T)
i
−
(
MPh

)
i

)
=
c

n

n∑
i=1

((
pTMP

)
i
−
(
MPh

)
i

)

=
c

n

n∑
i=1

αHi
n∑
k=1

pk︸ ︷︷ ︸
=1

−αHi
n∑
k=1

hk︸ ︷︷ ︸
=1


= 0

6.2.3 Replicator dynamics: general infection, without assumption

Before it became clear that a symmetry assumption (Equation 3.36) is necessary the following
constant of motion was studied.

H =
n∑
i=1

log pi + c
n∑
i=1

log hi (6.23)

Ḣ =
n∑
i=1

∂H

∂pi
ṗi +

n∑
i=1

∂H

∂hi
ḣi (6.24)

=

n∑
i=1

ṗi
pi

+ c

n∑
i=1

ḣi
hi

A constant of motion can be found under the symmetry assumption MH = −cMP or αHi =
−cαPi for all i = 1, 2, ..., n. Now with ṗi

pi
=
(
MPh

)
i
− pTMPh = −c

(
MHh

)
i

+ cpTMHh and
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ḣi
hi

=
(
MHp

)
i
− hTMHp it follows:

Ḣ =
n∑
i=1

(
MPh

)
i
+ c

n∑
i=1

(
MHp

)
i
− npTMPh− cnhTMHp (6.25)

=
n∑
i=1

αHi

(
n∑
k=1

hk

)
+ c

N∑
i=1

αPi

(
n∑
k=1

pk

)
−NpTMPh− cnhTMHp

=
n∑
i=1

−cαPi + c
n∑
i=1

αPi − npT
(
−cMH

)
h− cnhTMHp

= c
(
pTMHh− hTMHp

)
This is not yet necessarily zero. To understand the terms pTMHh and hTMHp better we will
now look at these sums:

pTMHh = p1α
P
1 h1 + p1α

P
2 h2 + p1α

P
3 h3 + ... + p1α

P
n hn (6.26)

+ p2α
P
n h1 + p2α

P
1 h2 + p2α

P
2 h3 + ... + p2α

P
n−1hn

+ p3α
P
n−1h1 + p3α

P
n h2 + p3α

P
1 h3 + ... + p3α

P
n−2hn

...

+ pnα
P
2 h1 + pnα

P
3 h2 + pnα

P
4 h3 + ... + pnα

P
1 hn

and

hTMHp = p1α
P
1 h1 + p2α

P
2 h1 + p3α

P
3 h1 + ... + pnα

P
n h1 (6.27)

+ p1α
P
n h2 + p2α

P
1 h2 + p3α

P
2 h2 + ... + pnα

P
n−1h2

+ p1α
P
n−1h3 + p2α

P
n h3 + p3α

P
1 h3 + ... + pnα

P
n−2h3

...

+ p1α
P
2 hn + p2α

P
3 hn + p3α

P
4 hn + ... + pnα

P
1 hn

It is easy to see that the difference of these sums is zero if αP2 = αPn and αP3 = αPn−1 and so on.
So that αPi = αPn−i+2 for i = 2, 3, ..., dn2 e

MH =


αP1 αP2 · · · αP3 αP2
αP2 αP1 αP2 αP3
... αP2 αP1

. . .
...

αP3
. . .

. . . αP2
αP2 αP3 · · · αP2 αP1

 (6.28)

This seems to be the most general payoff matrix for which a constant of motion (of this form)
can be found if the necessary condition of transposition (see Section 3.2.1) is not made. Note

that this matrix is identical to its transposed form: MH =
(
MH

)T
which makes the model less

general than the one shown in the results Section.
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6.3 Numerical methods

6.3 Numerical methods

6.3.1 Simplices

The following setup was used for analysing the three-types replicator equation which lead to
results used in Figure 4.3.

1 a=-1. # main diagonal

2 b=0. # second diagonal

3 e=0. # third diagonal

4 mh=np.array ([[a,b,e],[e,a,b],[b,e,a]]) # payoff matrix

5 c=1. # scaling mp

6 k=1 # for initial condition

7 h0=np.array ([0.5 ,0.01*k ,0.5 -0.01*k]) # initial conditions

8 p0=np.array ([0.5 ,0.25 ,0.25])

9 generations =10000.

10 steps =100000.

11 n=len(h0)

12 mp=-c*mh

Integration step with python’s built in odeint:

13 def deriv(y,t): # define differential equations

14 h=y[:n] # host frequencies

15 p=y[n:]

16 h[n-1]=1 -sum(h[:n-1]) # normalisation

17 p[n-1]=1 -sum(p[:n-1])

18 dH=np.dot(mh ,p) # replicator dynamica

19 bh=np.dot(dH ,h) # average fitness

20 hdot=h*(dH -bh) # ode

21 bP=np.dot(mp ,h)

22 dp=np.dot(bP ,p)

23 pdot=p*(bP -dp)

24 return np.concatenate ([hdot ,pdot])

25 time = np.linspace (0.0, generations ,steps) # start ,end ,steps

26 y = odeint(deriv ,np.concatenate ([h0,p0]),time) # actual integration

27 h=y[:,:n]

28 p=y[:,n:]

The following shows how the projection onto the 2-dimensional simplex was done

29 proj=np.array ([[-math.cos (30./360.*2.* math.pi), # projection matrix

30 math.cos (30./360.*2.* math.pi),0.],

31 [-math.sin (30./360.*2.* math.pi),

32 -math.sin (30./360.*2.* math.pi) ,1.]])

33 [hx ,hy] = np.array(np.mat(proj)*np.mat(h.T)) # projection of hosts

34 [px ,py] = np.array(np.mat(proj)*np.mat(p.T))

For the two-dimensional simplices hx and hy were plotted in one plot and px and py in another.
The four-dimensional plot was done by plotting px, py, and hy, while hx was used for the colour
gradient.

6.3.2 Lyapunov exponents

Plots from Kim and Choe [2010] were partly reproduced using the bigfloat package in
python. This was done mostly to verify our code and precision. Initial variables were

1 p=1000

2 with precision(p):

3 D=BigFloat(’50’) # measure for closeness of initial condition

4 Dint =50 # for label
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5 d=D+BigFloat(’1e-200’) # for distance of initial conditions

6 k=BigFloat(’1’) # initial condition

7 # N: distance measure for trajectories after time t

8 Deltamin=BigFloat(’10’) # minimum Delta

9 Deltamax =2*D # maximum Delta

10 Deltastep=BigFloat(’1’)

11 generations=BigFloat(’200’) #maximum timepoint

12 generationsint =200. #for linspace (same as generations)

13 steps=BigFloat(’2000’) # number of points to be calculated

14 stepsint =2000. #for linspace (same as steps)

15 step=generations/steps

16 t=BigFloat(’0’) #start

17 plotmin=BigFloat(’0’) # trajectories plotted from

18 plotmax=BigFloat(’100’)/step # trajectories plotted until

To check for initial closeness the following was included

19 devi =10.**( -d) #difference between initial conditions

20 x1=BigFloat(’0’)

21 x2=BigFloat(’0.01’)

22 x0_a=np.array([x1 ,x2*k,x1]) # first initial condition

23 x0_b=np.array([x1 ,x2*k+devi ,x1]) # second initial condition

24 #choose D so that this holds: (change d)

25 if (sum((x0_a -x0_b )*(x0_a -x0_b ))==0): # maybe low precision

26 sys.exit(’Initial conditions are identical ’)

27 if (log(sum((x0_a -x0_b )*(x0_a -x0_b ))**(1./2.))/ log(10.)>-D):

28 sys.exit(’Please choose closer initial conditions (higher d)’)

The vector w will later contain all values of x, y and z for all time points. For example starting
in initial condition a

29 w0=np.array([ BigFloat(’0’),BigFloat(’0’),BigFloat(’0’)])

30 w=np.vstack ([x0_a ,w0])

31 while len(w)<steps:

32 w=np.vstack ([w,w0]) #shape(w)=(steps ,3)

The actual integration is done through a fourth-order Runge-Kutta algorithm using bigfloat

numbers.

33 for j in np.arange(1,steps): # index of timepoint

34 with precision(p):

35 def f(t,m): # differential equations

36 s=BigFloat(’10’)

37 r=BigFloat(’28’)

38 b=BigFloat(’8’)/ BigFloat(’3’)

39 return [[-s*(w[t,0]+m[0])+s*(w[t,1]+m[1])],

40 [-(w[t,0]+m[0])*(w[t,2]+m[2])+r*(w[t,0]+m[0])],

41 [(w[t,0]+m[0])*(w[t,1]+m[1])-b*(w[t,2]+m[2])]]

42 k1=np.array(f(j-1 ,[0. ,0. ,0.]))* step # Runge -Kutta k1

43 k1.shape =(3,) # reshape

44 k2=np.array(f(j-1,k1/BigFloat(’2’)))* step # Runge -Kutta k2

45 k2.shape =(3,) # reshape

46 k3=np.array(f(j-1,k2/BigFloat(’2’)))* step # Runge -Kutta k3

47 k3.shape =(3,) # reshape

48 k4=np.array(f(j-1,k3))* step # Runge -Kutta k4

49 k4.shape =(3,) # reshape

50 kr=(k1+BigFloat(’2’)*(k2+k3)+k4)/ BigFloat(’6’) # Runge -Kutta k

51 kr.shape =(3,) # reshape

52 w[j,:]=w[j-1 ,:]+kr # update values of next timepoint

53 w_a=w # matrix contains values for x, y and z for all timepoints

54 # starting with initial condition x0_a
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The same procedure is used for initial condition b. Now the larges Lyapunov exponent is
estimated.

55 with precision(p):

56 t = np.linspace (0., generationsint ,stepsint +1)

57 Delta=np.arange(Deltamin ,Deltamax ,Deltastep)

58 V=zeros(len(Delta))

59 for Deltarun in range(len(Delta )):

60 z=np.array ([(sum (((w_a -w_b)*(w_a -w_b)),axis =1))

61 **( BigFloat(’1’)/ BigFloat(’2’))]) >= BigFloat(’10’)

62 **((-D+N[Deltarun ])) # z is a boolean which is

63 # True if the trajectories are further apart than the parameter

64 # Delta allows

65 z.shape =(steps ,)

66 exist=t[z]

67 if len(exist)>BigFloat(’0’):

68 V[Deltarun ]=exist [0] # minimum time point

69 else:

70 V[Deltarun ]=float(’nan’) # not existent

71 G=Delta/V # approximates lambda_max

The same procedure of estimating the largest Lyapunov exponent was applied to the host-
parasite matching allele model with replicator equations. Initial conditions were chosen as for
the Poincaré sections.

1 d=D+log (2.)/ log (10.) # for distance of initial conditions

2 devi =10.**( -d) # half difference between initial conditions

3 x1=BigFloat(’0.5’)

4 x2=BigFloat(’0.01’)

5 x3=BigFloat(’0.25’)

6 x0_a=np.array([x1 ,x2*k,x1 -x2*k,x1 ,x3 ,x3]) #h0,p0 (a)

7 x0_b=np.array([x1 ,x2*k+devi ,x1 -x2*k-devi ,x1 ,x3 ,x3]) # h0 ,p0 (b)

Differential equations:

8 with precision(p):

9 def f(t,m):

10 w[t,:]=w[t,:]+m # timepoint t, m for Runge -Kutta update

11 h=w[t,:3]

12 p=w[t,3:]

13 avrg=h[0]*p[0]+h[1]*p[1]+h[2]*p[2]

14 return [h[0]*(-p[0]+ avrg),h[1]*(-p[1]+ avrg),h[2]*(-p[2]+ avrg),

15 p[0]*(h[0]-avrg),p[1]*(h[1]-avrg),p[2]*(h[2]-avrg)]

6.3.3 Stochastic simulations

Implementation of the Gillespie stochastic simulation algorithm described in Section 2.8 is shown
here for a matching allele model with three types.
Setup:

1 nspec =6 #number of types of both species

2 bound =1000. # number of individuals of each species

3 runs =10 # number of runs 10

4 k=1

5 bh=5. # birth host rate h1 -> h1+h1 / h2 -> h2+h2

6 dp=2.5 # death parasite rate p1 -> E / p2 -> E

7 r1 =10./ bound # interaction rate of h1 and p1 h1+p1 -> p1+p1

8 r2 =10./ bound # interaction rate of h2 and p2 h2+p2 -> p2+p2

9 r3 =10./ bound

10 h01 =0.50* bound #initial number of types

11 h02 =0.01*k*bound

51



6 Appendix

12 h03 =(0.5 -0.01*k)* bound

13 p01 =0.50* bound

14 p02 =0.25* bound

15 p03 =0.25* bound

The following loop was executed until one type of either species died out.

16 #eventprobabilities without randomness:

17 prob=np.array ([h1*bh,h2*bh ,h3*bh ,p1*dp ,p2*dp ,p3*dp ,

18 h1*p1*r1 ,h2*p2*r2 ,h3*p3*r3])

19 times =[[] for x in xrange(len(prob ))] # to store times

20

21 for i in np.arange(len(prob )): #for all possible events

22 if prob[i]==0: #no changes if species =0 or rate 0

23 times[i]=’nan’

24 else: # time until event

25 times[i]=1/ prob[i]*np.log(1/np.random.rand (1))

26 delta_t = min(times) #first event

27 pos = np.nanargmin(times) # find position of first event

28 # possible events:

29 if pos ==0:

30 h1=h1+1

31 if pos ==1:

32 h2=h2+1

33 if pos ==2:

34 h3=h3+1

35 if pos ==3:

36 p1=p1 -1

37 if pos ==4:

38 p2=p2 -1

39 if pos ==5:

40 p3=p3 -1

41 if pos ==6:

42 p1=p1+1

43 h1=h1 -1

44 if pos ==7:

45 p2=p2+1

46 h2=h2 -1

47 if pos ==8:

48 p3=p3+1

49 h3=h3 -1
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