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We investigate a critical issue in determining the statistical significance of candidate transient gravitational-
wave events in a ground-based interferometer network. Given the presence of non-Gaussian noise artefacts
in real data, the noise background must be estimated empirically from the data itself. However, the data also
potentially contains signals, thus the background estimate may be overstated due to contributions from signals. It
has been proposed to mitigate possible bias by removing single-detector data samples that pass a multi-detector
consistency test (and thus form coincident events) from the background estimates. We conduct a high-statistics
Mock Data Challenge to evaluate the effects of removing such samples, modelling a range of scenarios with
plausible detector noise distributions and with a range of plausible foreground astrophysical signal rates; thus,
we are able to calculate the exact false alarm probabilities of candidate events in the chosen noise distributions.
We consider two different modes of selecting the samples used for background estimation: one where coincident
samples are removed, and one where all samples are retained and used. Three slightly different algorithms for
calculating the false alarm probability of candidate events are each deployed in these two modes. The three
algorithms show good consistency with each other; however, discrepancies arise between the results obtained
under the ‘coincidence removal’ and ‘all samples’ modes, for false alarm probabilities below a certain value.
In most scenarios the median of the false alarm probability (FAP) estimator under the ‘all samples’ mode is
consistent with the exact FAP. On the other hand the ‘coincidence removal’ mode is found to be unbiased for
the mean of the estimated FAP over realisations. While the numerical values at which discrepancies become
apparent are specific to the details of our numerical experiment, we believe that the qualitative differences in the
behaviour of the median and mean of the FAP estimator have more general validity. On the basis of our study
we suggest that the FAP of candidates for the first detection of gravitational waves should be estimated without
removing single-detector samples that form coincidences.

I. INTRODUCTION

The global network of advanced gravitational wave (GW)
detectors is poised to make its first direct detection [1–4]. The
coalescence of binary systems containing neutron stars and/or
black holes is the most likely source of transient gravitational
waves [5] and the detection of such a compact binary coales-
cence (CBC) event would open the new window of GW as-
tronomy [6]. The observation of CBC events would not only
allow us to test General Relativity, but also help to give hint
on the equation-of-state of neutron-stars (NSs). The study of
populations of CBC events would help to deepen our under-
standing of stellar evolution for binary massive stars, espe-
cially the very late stages [7–9].

∗ yiming.hu@aei.mpg.de

To support possible detections, it will be necessary to deter-
mining the confidence that the candidate signals are associated
with astrophysical sources of GWs [10] rather than spurious
noise events. Thus, a FAP estimate is produced in order to
classify candidate events. Claims for the detection of previ-
ously undetected or unknown physical phenomena have been
held up to high levels of scrutiny, e.g. the Higgs boson [11]
and B-modes in the polarization of the cosmic microwave
background (CMB) [12]. The same will be true for the direct
detection of GWs: a high level of statistical confidence will be
required as well as a thorough understanding of the accuracy
and potential systematic bias of procedures to determine the
FAP of a candidate event.

Existing CBC search pipelines (e.g. [13–15]) assess the
FAP of a detection candidate by estimating its probability un-
der the null hypothesis. The null hypothesis is that candidate
events are caused by non-gravitational-wave processes acting
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on and within the interferometers. In order to determine this
probability, we assign a test statistic value to every possible
result of a given observation or experiment performed on the
data: larger values indicate a higher deviation from expecta-
tions under the null hypothesis. We compute the FAP as the
probability of obtaining a value of the test statistic equal to, or
larger than, the one actually obtained in the experiment. The
smaller this probability, the more significant is the candidate.

In general the detector output data streams are the sum
of terms due to non-astrophysical processes, known as back-
ground noise, and of astrophysical GW signals, labelled fore-
ground. If we were able to account for all contributions to
noise using predictive and reliable physical models, we would
then obtain an accurate calculation of the FAP of any ob-
servation. However, for real GW detectors, in addition to
terms from known and well-modelled noise processes, the
data contains large numbers of non-Gaussian noise transients
(“glitches”, see for example [16, 17]) whose sources are ei-
ther unknown or not accurately modelled, and which have po-
tentially large effects on searches for transient GWs. Even
given all the information available from environmental and
auxiliary monitor channels at the detectors, many such noise
transients cannot be predicted with sufficient accuracy to ac-
count for their effects on search algorithms. Thus, for transient
searches in real detector noise it is necessary to determine the
background noise distributions empirically, i.e. directly from
the strain data.

Using the data to empirically estimate the background has
notable potential drawbacks. It is not possible to operate GW
detectors so as to ‘turn off’ the astrophysical foreground and
simply measure the background; if the detector is operational
then it is always subject to both background and foreground
sources. In addition, our knowledge of the background noise
distribution is limited by the finite amount of data available.
This limitation applies especially in the interesting region of
low event probability under the noise hypothesis, correspond-
ing to especially rare noise events.

CBC signals are expected to be well modelled by the pre-
dictions of Einstein’s general relativity [18]. The detector data
are cross-correlated (or matched filtered) [19] against a bank
of template CBC waveforms, resulting in an signal-to-noise
ratio (SNR) time series for each template [20]. If this time
series crosses a predetermined threshold, the peak value and
the time of the peak are recorded as a trigger. Since GWs
propagate at the speed of light (see e.g. [6]), the arrival times
of signals will differ between detectors by '40 ms or less, i.e.
Earth’s light crossing time. Differences in arrival times are
governed by the direction of the source on the sky in relation
to the geographical detector locations. We are thus able to im-
mediately eliminate the great majority of background noise by
rejecting any triggers which are not coincident in two or more
detectors within a predefined coincidence time window given
by the maximum light travel time plus trigger timing errors
due to noise. Only triggers coincident in multiple detectors
with consistent physical parameters such as binary compo-
nent masses are considered as candidate detections. In order
to make a confident detection claim one needs to estimate the
rarity, i.e., the FAP of an event, and claim detection only when

the probability of an equally loud event being caused by noise
is below a chosen threshold.

The standard approach used in GW data analysis for esti-
mating the statistical properties of the background is via anal-
ysis of time-shifted data, known as “time slides” [21, 22]. This
method exploits the coincidence requirement of foreground
events by time-shifting the data from one detector relative
to another. Such a shift, if larger than the coincidence win-
dow, would prevent a zero-lag signal remaining untouched in
a time-shifted analysis. Therefore, from a single time-shifted
analysis (“time slide”) the output coincident events should
represent one realisation of the background distribution of co-
incident events, given the sets of single-detector triggers, as-
suming that the background distributions are not correlated
between detectors. By performing many time slide analy-
ses with different relative time shifts we may accumulate in-
stances of background coincidences and thus estimate their
rate and distribution.

The time-slides approach has been an invaluable tool in the
analysis and classification of candidate GW events in the ini-
tial detector era. Initial LIGO made no detections, however
note that in 2010, the LSC (LIGO Scientific Collaboration)
and Virgo collaborations (LVC) performed a blind injection
challenge [10] to check the robustness and confidence of the
pipeline. A signal was injected in “hardware” (by actuating
the test masses) in the global network of interferometers and
analysed by the collaboration knowing only that there was the
possibility of such an artificial event. The blind injection was
recovered by the templated binary inspiral search with a high
significance [26]; however, the blind injection exercise high-
lighted potential issues with the use of time-shifted analysis
to estimate backgrounds in the presence of astrophysical (or
simulated) signals.

Simply time-shifting detector outputs with respect to each
other does not eliminate the possibility of coincident events
resulting from foreground (signal) triggers from one detector
passing the coincidence test with random noise triggers in an-
other detector. Thus, the ensemble of samples generated by
time-shifted analysis may be “contaminated” by the presence
of foreground events in single-detector data, compared to the
ensemble that would result from the noise background alone.
The distribution of events caused by astrophysical signals is
generally quite different from that of noise: it is expected
to have a longer tail towards high values of SNR (or other
event ranking test-statistic used in search algorithms). Thus,
depending on the rate of signals and on the realisation of the
signal process obtained in any given experiment, such contam-
ination could considerably bias the estimated background. If
the estimated background rate is raised by the presence of sig-
nals, the FAP of coincident search events (in non-time-shifted
or “zero-lag” data) may be overestimated, implying a conser-
vative bias in the estimated FAP. The expected number of
false detection claims will not increase due to the presence of
signals in time-slide analyses, however some signals may fail
to be detected due to an elevated background estimate. 1

1 The reader may ask what a “false detection claim” means if signals are
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Besides the standard time-shift approach, other background
estimation techniques have been developed [15, 23, 24]. All
are variants on one key concept: events that are not coincident
within the physically allowed time window cannot be from
the same foreground source. All therefore use non-coincident
triggers as proxies for the distribution of background events
due to detector noise. Differences between methods occur
in implementation, and fall into two categories. In the stan-
dard scheme, many time slides are applied to a set of trig-
gers from a multi-detector observation and all resultant coin-
cidences are retained. We label this the ‘all samples’ mode
of operation. Concern about the potential conservative bias of
including foreground GW events of astrophysical original in
the time-shifted distribution motivates a modification to this
procedure: one can instead choose to first identify all coin-
cidences between different detectors in zero-lag and exclude
them from the subsequent time-slide analysis. We label this
the ‘coincidence removal’ mode of operation.

In this paper we describe the results of an mock data chal-
lenge (MDC) in which participants applied three different
background estimation algorithms, each applied to the MDC
data in the two modes of operation described above: the ‘co-
incidence removal’ and ‘all samples’ modes. Since some as-
pects of the MDC data generation were not fully realistic, the
algorithms were simplified compared to their use on real data;
two were based on methods currently in use in the LVC, while
the third introduces a new approach. The MDC consisted of
simulated realisations of single-detector triggers – maxima of
matched filter SNR ρ above a fixed threshold value chosen as
ρ0 = 5.5. The trigger SNR values were generated according
to analytically modelled background and foreground distribu-
tions unknown to the MDC participants. The background dis-
tributions spanned a range of complexity including a realistic
Initial detector distribution [25]. The foreground triggers were
chosen to model one of the most likely first sources, binary
neutron stars, with an expected detection rate from zero to
the maximum expected for the first Advanced detector science
runs [5]. Participants were asked to apply their algorithms to
these datasets and report, in both modes, the estimated FAP
of the loudest event found in each realisation. The MDC used
analytic formulae to generate the background distributions; al-
though we will not, in reality, have access to such formulae,
they allow us to compute an “exact” FAP semi-analytically.
We use these exact values, alongside other figures of merit, as
a benchmark for comparing the results obtained in the ‘coin-
cidence removal’ and ‘all samples’ modes, both within each
background estimation algorithm and between the different al-
gorithms.

In the following section of this paper we provide details of
the MDC, describing the background and foreground distri-
butions, the data generating procedure, and the “exact” FAP
calculation. In Sec. III we then describe the different methods

present. This refers to cases where the search result contains both fore-
ground events, and background events with comparable or higher ranking
statistic values. In particular, if the loudest event in the search is due to
background a detection claim would be misleading.

of background estimation used in this MDC. We report the
results of the challenge in Sec. IV, comparing and contrast-
ing the results obtained from each of the algorithms in each
of their 2 modes of operation. Finally in Sec. V we provide a
summary and present our conclusions.

II. THE MOCK DATA CHALLENGE

Our MDC is designed to resolve the question of whether to
remove (‘coincidence removal’) or not to remove (‘all sam-
ples’) coincident zero-lag events from the data used to esti-
mate FAP. Simulated single detector triggers are generated
from known background and foreground distributions: chal-
lenge participants are then given lists of trigger arrival times
and single detector SNRs. The ranking statistic used for each
coincident trigger is the combined multi-detector SNR. The
calculation of FAP could be carried out with any appropriate
ranking statistic. When applied to real data, different pipelines
may define their ranking statistics in slightly different ways;
in order to make a fair comparison in the challenge we use
the multi-detector SNRs as a simplified ranking statistic. The
cumulative distribution functions (CDFs) of the SNR in each
detector are described analytically and hidden from the chal-
lenge participants. With this analytic form, the challenge de-
signers are able to compute the exact FAP at the ranking statis-
tic value of the loudest coincident event in each realisation.

The challenge consisted of 14 independent experiments,
each with a different foreground and background distribution
for which 105 observational realisations are generated (see
section A). This number is large enough to reach the inter-
esting statistics region while computationally feasible. Each
realisation contained, on average, ∼104 single-detector trig-
gers in each of two detectors. A realisation should be con-
sidered analogous to a single GW observing run. Participants
were asked to estimate the FAP of the loudest coincident event
in each of the 105 realisations for each experiment. The 14
experiments cover a variety of background distributions; the
foregrounds differ in that the astrophysical rate ranges be-
tween zero, i.e., no events, and a relatively high value cor-
responding to ∼3 detections per realisation. Analysis of the
differences between the estimated and exact FAP values en-
able us to quantify the effect of removing coincident zero-lag
triggers in the background estimate, as opposed to retaining
all samples. It also allows us to directly compare implementa-
tions between different algorithms in each mode of operation.
Finally, it allows us to quantify the accuracy and limiting pre-
cision of our FAP estimates and thus their uncertainties.

We divide our simulations into three groups according to
astrophysical rate, and independently into three groups ac-
cording to background distribution complexity (“simple”, “re-
alistic” and “extreme”). To this nine combinations we have
appended an additional four simulations, three of which have
exactly the same background distributions as three of the orig-
inal nine but contain no signals. The final simulation con-
tains a background distribution with a deliberately extended
tail such that the generation of particularly loud background
triggers is possible. The primary properties of each experi-
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Background property
Foreground rate simple realistic extreme ext. tail

zero 1,3 12 14 -
low - 10 2 7

medium 9,13 8 6 -
high 5 11 4 -

TABLE I: The classification of each experiment in the MDC
in terms of background complexity and astrophysical

foreground rate. See main text for definitions.

ment are given in Table I and details are listed in Tables II, III
and IV. . A low foreground rate corresponds to <0.01 ex-
pected coincident signal triggers per realisation, a medium rate
corresponds to 0.01–1 coincidences per realisation, and high
rate corresponds to >1 per realisation. We do not consider
foreground rates above ∼3 coincidences per realisation since
we are motivated by FAP estimation for the first advanced era
GW detections.

A. Modelling the detector noise backgrounds

The CDF of the background single-detector SNR triggers is
modelled as the exponential of a piecewise polynomial func-
tion in the SNR ρ via

C(ρ) =


1 − exp

 6∑
i=0

ai (ρ − ρth)i

, for ρ ≤ ρsp

1 −Csp exp
(
b
(
ρ − ρsp

))
, for ρ > ρsp,

(1)

where the trigger generation threshold is set as ρth = 5.5. The
polynomial coefficients ai must satisfy the constraint that the
CDF remains monotonic in ρ; additionally, a0 is determined
by the constraint that the CDF should range between 0 and 1.
We define the CDF differently in the regions below and above
a switching-point ρsp value in order to satisfy the constraints
on the CDF model, such that the CDF and its derivative with
respect to ρ are continuous at the switching point. Hence, a
choice of Csp determines the values of ρsp and b. Details of
the background distribution parameters chosen for each sim-
ulation can be found in Appendix A; here we describe the
broader properties of the chosen distributions.

In cases with a “simple” background, the coefficients of
our model (Eq. 1) are all zero with the exception of a0 and
ρsp = ∞. The CDF then follows the simple form C =

1−exp(−a0(ρ−ρth)) for the single-detector SNR. A “realistic”
background is modelled by basing our analytic CDF model on
distributions of existing GW trigger data [26]. The “extreme”
backgrounds attempt to model distributions containing multi-
ple independent populations of detector noise artefacts result-
ing in CDFs that exhibit large variations in their gradients as
a function of SNR. We give examples of each type of back-
ground distribution in Fig. 1. The single experiment described
as containing an “extended tail” is similar to the extreme cases
in the sense that its gradient varies substantially as a func-
tion of SNR. However, this variation occurs at much smaller

values of 1 − C, thus it is rare that realisations have events
generated from the “tail”. This rarity and shallowness of the
tail are designed to mimic the behaviour of an astrophysical
foreground (with the exception of being coincident between
detectors).

The trigger time of a background event is a random vari-
able generated from a uniform distribution spanning the the
length of an observation realisation. The number of such trig-
gers within a realisation is drawn from a Poisson distribution
with parameter λ j, the expected number of triggers in the j’th
detector. The two detectors are treated independently and for
events to be labelled coincident, their trigger times must sat-
isfy

|t1 − t2| ≤ δt, (2)

where t1 and t2 are the times associated with a trigger from the
first and second detectors respectively and δt is our allowed
coincidence window. We can therefore estimate the expected
number of coincident events n within a single realisation as

n =
2λ1λ2δt

T
, (3)

where T is the total time of the observation and we have as-
sumed that λ jδt/T � 1 in both detectors. In order to generate
a large enough number of background triggers to adequately
model a GW observation, we use λ1∼λ2∼104. This choice
is also motivated by the expected dependence of the uncer-
tainty in estimation of FAP on the numbers of triggers, and
the computational cost to challenge participants. We set the
coincidence window δt = 50 ms to broadly model realistic
values and in order to obtain a desired ∼10 coincidences per
realisation the total observation time is set to T = 106 s.

Note, however, that the MDC does not model some aspects
of a real search for CBC signals, most notably the need for
many thousands of different template waveforms to optimise
the sensitivity to different possible source parameters. The
multiplicity of templates has various implications for estimat-
ing FAP. The numbers of single-detector background triggers
will increase, but the probability that any given pair of trig-
gers will form a coincident noise event will drop since ran-
dom noise triggers are unlikely to have consistent physical
source parameters across different detectors. The complexity
and computational load of modelling sets of single-detector
triggers would be considerably increased, since the times and
SNRs of triggers will be nontrivially correlated between tem-
plates with similar waveforms.

B. Modeling an astrophysical foreground

In the majority of experiments (10 of the 14) an astrophys-
ical foreground was simulated. We model the astrophysical
signal distribution as originating from the inspiral of equal
mass 1.4 − 1.4M� binary neutron stars having a uniform dis-
tribution in volume and in time. For each source the bi-
nary orientation is selected from an isotropic distribution (uni-
form in the cosine of the inclination angle ι), the polarisa-
tion angle ψ is uniform on the range [0, 2π) and the sky posi-
tion is distributed isotropically on the sphere parametrised by
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(a) A “simple” example background
(experiment 3).

(b) A “realistic” example background
(experiment 12).

(c) An “extreme” example background
(experiment 14).

FIG. 1: Examples of different background distributions used in the MDC. In each of the three examples we show the
complementary CDF (1 − C) versus the single-detector SNR for each detector. There were no foreground distributions present

in these experiments.

right ascension α (with range [0, 2π)) and declination δ (range
[−π/2, π/2)). Given a set of these parameters we can compute
the optimal single-detector SNR ρopt as

ρ2
opt = 4

fISCO∫
fmin

|h̃( f )|2

S n( f )
d f (4)

where the lower and upper integration limits are selected as
10 Hz and as the innermost stable circular orbit frequency
= 1570 Hz for our choice of total system mass. The detec-
tor noise spectral density S n( f ) corresponds to the advanced
LIGO design [2], and the frequency domain signal in the sta-
tionary phase approximation is given by

h̃( f ) =
Q({θ})M5/6

d

√
5
24
π−2/3 f −7/6eiΨ( f ). (5)

Here the function Q({θ}), where {θ} = (α, δ, ψ, cos ι), describes
the antenna response of the detector; d is the distance to the
source, and M is the “chirp mass” of the system given by
M = (m1m2)3/5/(m1+m2)1/5. Since we consider that such sig-
nals, if present in the data, are recovered with exactly match-
ing templates, the phase term Ψ( f ) does not influence the op-
timal SNR of Eq. 4. Hence the square of the observed (or
matched filter) SNR ρ is drawn from a non-central χ2 distri-
bution with 2 degrees of freedom and non-centrality parameter
equal to ρ2

opt.
We generate foreground events within a sphere of radius

1350 Mpc such that an optimally oriented event at the bound-
ary has <0.3% probability of producing a trigger with SNR>
ρth = 5.5. Each event is given a random location (uniform
in volume) and orientation from which we calculate the corre-
sponding optimal SNR and relative detector arrival times. The
matched filter SNR is modelled as a draw from the non-central
chi-squared distribution. For each detector, if the matched fil-
ter SNR is larger than ρth, independently of the other detector,
it is recorded as a single detector trigger. The arrival time
in the first detector (chosen as the LIGO Hanford interferom-
eter) is randomly selected uniformly within the observation

time and the corresponding time in the second detector (the
LIGO Livingston interferometer) is set by the arrival time dif-
ference defined by the source sky position. We do not model
statistical uncertainty in the arrival time measurements, hence
when a foreground event produces a trigger in both detectors
the trigger times will necessarily lie within the time window
and will generate a coincident event.

C. The definition of false alarm probability (FAP) for the
MDC

In order to define the FAP for any given realisation of an
experiment we require a ranking statistic which is a function
of the coincident triggers within a realisation. In this MDC the
chosen ranking statistic was the combined SNR of coincident
events, defined as

ρ2 = ρ2
1 + ρ2

2, (6)

where ρ1,2 are the SNRs of the single-detector triggers form-
ing the coincident event. Challenge participants were required
to estimate the FAP of the “loudest” coincident event within
each realisation, i.e. the event having the highest ρ value, in-
dependent of its unknown origin (background or foreground).
The FAP of an outcome defined by a loudest event ρ∗ is the
probability of obtaining at least one background event hav-
ing ρ ≥ ρ∗ within a single realisation. Given that single-
detector background distributions fall off with increasing ρ1,2,
the louder a coincident event is, the less likely it is for a com-
parable or larger ρ value to be generated by noise, and the
smaller the FAP.

With access to the analytical description of the backgrounds
from both detectors we may compute the single trial FAP F1
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as

1 − F1(ρ) =

√
ρ2−ρ2

th∫
ρth

dρ1

√
ρ2−ρ2

1∫
ρth

dρ2 p1(ρ1)p2(ρ2),

=

√
ρ2−ρ2

th∫
ρth

dρ1 p1(ρ1)C2

(√
ρ2 − ρ2

1

)
, (7)

where p1(ρ1) and p2(ρ2) are the probability distribution func-
tions (PDFs) of the background distributions (obtained by dif-
ferentiating the corresponding CDFs with respect to ρ j), and
C2(ρ2) is the CDF for the second detector.

To account for the fact that we are interested in the “loud-
est” coincident event within each realisation we must perform
an additional marginalisation over the unknown number of
such coincident events. To do this we model the actual num-
ber of coincidences as drawn from a Poisson distribution with
known mean n (values for the different MDC experiments are
given in Table IV). The FAP of the “loudest” event is mod-
elled as the probability of obtaining one or more coincident
events with a combined SNR ≥ ρ and is given by

F (ρ) =

∞∑
j=0

(
1 − (1 − F1(ρ)) j

) n je−n

j!
. (8)

Challenge participants only had access to the trigger ρ1,2 val-
ues and trigger times in each realisation and were not given the
distributions from which they were drawn. Estimates of the
loudest coincident event FAP F from all participants will be
compared to the “exact” values computed according to Eq. 8.

D. The expected error on estimated false alarm probability
(FAP)

Inferring the FAP, as defined above, from a finite sample of
data will have associated uncertainty, i.e., the computed values
will be approximate. Methods to estimate the FAP at a given
combined SNR value F (ρ) involve counting the number of
noise events N(ρ) above that value:

N(ρ) =
x

ρ≥ρth

n1(ρ1) n2(ρ2) dρ1dρ2

= Λ1Λ2 −

x

ρ<ρth

n1(ρ1) n2(ρ2) dρ1dρ2, (9)

where ni(ρi) is the number density of background triggers
from detector i and Λi is the total number of background trig-
gers from detector i. The region of integration is bounded
by a threshold on the coincident SNR statistic of Eq. 6,
though in general one may choose other functional forms for
ρ(ρ1, ρ2, . . . ).

It is possible to compute (either analytically or numerically)
the error on N(ρ) given any functional form for ρ. However,
we seek a simple “rule of thumb” as a general approximation.
We replace the region ρ< ρth with an equivalent hyper-cuboid

with lengths ρ∗i , such that for an event to be counted towards
the FAP it must have a SNR greater than ρ∗i in either detectors.
In this case, the number of louder triggers as a function of ρ
can be approximated by

N(ρ) ≈ Λ1Λ2 −

∫ ρ∗1

0
dρ1

∫ ρ∗2

0
dρ2 n1(ρ1)n2(ρ2)

≈ Λ1Λ2 − N′1(ρ∗1)N′2(ρ∗2), (10)

where

N′i (ρ
∗
i ) ≡

∫ ρ∗i

0
ni(ρi) dρi, (11)

is the cumulative number of triggers from detector i. We then
define the inferred FAP as

F (ρ) ≈
N(ρ)
Λ1Λ2

≈ 1 −
N′1(ρ∗1)N′2(ρ∗2)

Λ1Λ2
(12)

We wish to characterise the error in F (ρ) given the error
in the number of triggers counted above ρi in each detector.
We expect that this error will increase when fewer triggers are
available to estimate the single detector counts. Transforming
Eq. 12 to use the counts above a threshold ρ∗i in each detector
via Ni(ρi) ≡ Λi − N′i (ρi), we have

F (ρ) ≈ 1 −
(
Λ1 − N1(ρ∗1)

)(
Λ2 − N2(ρ∗2)

)
Λ1Λ2

. (13)

Assuming a negligible error on the total count of triggers in
each detector Λi, we can then write

σ2
F (ρ) ≈

∑
i

(
∂F (ρ)
∂Ni(ρ∗i )

)2

σ2
Ni(ρ∗i ). (14)

Taking the distribution of counts Ni(ρ) to be Poisson, we have
standard errors σ2

Ni(ρ∗i ) = Ni(ρ∗i ); for the two-detector case we
then find

σ2
F (ρ) ≈

(
Λ2 − N2(ρ∗2)

)2N1(ρ∗1) +
(
Λ1 − N1(ρ∗1)

)2N2(ρ∗2)

Λ2
1Λ2

2

,

(15)

hence the fractional error is

σF (ρ)

F (ρ)
≈

√
(Λ2−N2(ρ∗2))2

N1(ρ∗1)N2
2(ρ∗2)

+
(Λ1−N1(ρ∗1))2

N2(ρ∗2)N1
2(ρ∗1)

Λ2
N2(ρ∗2) + Λ1

N1(ρ∗1) − 1
. (16)

In the limit of low FAPs, N′1(ρ∗1) � Λ1 and N′2(ρ∗1) � Λ2, our
expression simplifies to

σF (ρ)

F (ρ)
≈

√(
Λ2

N2(ρ∗2)

)2
1

N1(ρ∗1) +

(
Λ1

N1(ρ∗1)

)2
1

N2(ρ∗2)

Λ2
N2(ρ∗2) + Λ1

N1(ρ∗1)

. (17)
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Now we consider two limiting cases. First, when the distribu-
tion of counts is similar in each detector such that Λ1 ≈ Λ2
and N1(ρ∗1) ≈ N2(ρ∗2), we have

σF (ρ)

F (ρ)
≈

√
1

2N1(ρ∗1)
. (18)

Second, when we are probing much further into the “tail” of
the distribution of one detector, e.g., Λ1/N1(ρ∗1) � Λ2/N2(ρ∗2),
we have

σF (ρ)

F (ρ)
≈

√
1

N1(ρ∗1)
. (19)

In both cases the fractional error is related to the inverse of the
single-detector counts, not the combined counts N(ρ) as one
might naively expect. A similar contribution to the uncertainty
in false alarm rate estimation, due to Poisson counting errors
for single-detector events, was found in [27]. We note that a
number of approximations were made to derive our “rule of
thumb”, though we show the level of agreement between this
estimate and the results of the MDC analysis in Section IV.

III. BACKGROUND ESTIMATION ALGORITHMS

A. Standard offline analysis: false alarm probability (FAP) via
inverse false alarm rate (IFAR)

We now describe the time slide method implemented in the
all-sky LIGO-Virgo search pipeline for CBC [21, 22, 26, 28,
29] and indicate how the method has been adapted for the sim-
plified high-statistics study presented in this paper.

Each coincident event obtained in the search is character-
ized by its estimated coalescence time and binary component
masses, and in addition by the values of SNR ρ and the signal-
based chi-squared test χ2 [30] in each detector, which to-
gether are intended to achieve separation of signals from non-
Gaussian noise transients. The event ranking statistic used, ρc,
is the quadrature sum of re-weighted SNRs ρ̂i(ρi, χ

2
i ) [21, 26]

over participating detectors i.2 Exactly the same coincidence
test is performed in the time-shifted analyses as in the search,
resulting in a set of values {ρc,b} from time-shifted events, con-
sidered as background samples.3

With the search performed over a duration T of two- or
more-detector coincident data, and time-shifted analyses cov-
ering a total duration Tb ≡ sT , defining a background mul-
tiplier s, the estimated false alarm rate (FAR) of a candidate

2 In real data the search may be divided into event bins determined by the
component masses and participating interferometers [22, 28]; however the
present study does not attempt to simulate these complications.

3 In real data an additional time clustering step is performed on the search
and on each time-shifted analysis in order to reduce the number of strongly-
correlated coincident events separated by short intervals (. 1 s) resulting
from the multiplicity of filter templates. In this study, however, single-
detector events are already uncorrelated by construction thus such cluster-
ing is not performed.

event having ranking statistic ρ∗c is calculated as the observed
rate of louder background events over the time-shifted analy-
ses:

FAR(ρ∗c) ≡

∑
{ρc,b}

Θ(ρc,b − ρ
∗
c)

Tb
≡

nb(ρ∗c)
Tb

, (20)

where Θ(x) = 1 if x > 0 and 0 otherwise. nb is the number of
events louder than ρ∗c. Note that the FAR may equal zero for a
high enough threshold ρ∗c.

The test statistic used to determine FAP is inverse FAR
(IFAR), i.e. 1/FAR; thus a false alarm corresponds to obtain-
ing a given value of nb/Tb or lower under the null hypothesis.

Consider ranking the ρc value of a single search event rel-
ative to a total number Nb of time-shifted background event
values. Under the null hypothesis every ranking position is
equally probable, thus the probability of obtaining a count
nb or smaller of background events is P0(nb or less|1) = (1 +

nb)/Nb. Since nb decreases monotonically with increasing ρc,
if a search event has a ρc value equal to or greater than a given
threshold ρ∗c, the number of louder background events nb(ρc)
must be equal to or less than nb(ρ∗c). Thus we may also write4

P0(ρc ≥ ρ
∗
c |1) ≤

1 + nb(ρ∗c)
Nb

. (21)

Then, if there are k such search events due to noise, the prob-
ability of at least one being a false alarm above the threshold
ρc (implying an estimated IFAR as large as Tb/nb) is

P0(1 or more ≥ ρ∗c |k) = 1 −
(
1 − P0(ρc ≥ ρ

∗
c |1)

)k . (22)

The implementation is simplified by considering the largest
possible number of time-shifted analyses, such that a pair of
single-detector triggers coincident in one analysis cannot be
coincident for any other time shift. This implies that the rela-
tive time shifts are multiples of 2δt, and the maximum number
of time-shifted analyses is s = T/(2δt)−1. The resulting time-
shifted coincidences are then simply all possible combinations
of the single-detector triggers, minus those coincident in the
search (“zero-lag”), since every trigger in detector 1 will be
coincident with every trigger in detector 2 either in zero-lag
or for some time shift. Identifying ρ∗c with the loudest coinci-
dent search event value ρc,max we have

1 + nb(ρc,max) = 1 +
∑

i

∑
j

Θ(ρ2
1,i + ρ2

2, j − ρ
2
c,max), (23)

where the sums run over all single-detector triggers {ρ1i},
{ρ2 j}, i = 1 . . .Λ1, j = 1 . . .Λ2.

So far we have worked with specific values for the num-
ber of search events due to noise k and time-shifted back-
ground events Nb, however these are not known in advance

4 Note that a statistic value slightly below ρ∗c may also map to the same num-
ber of louder background events nb(ρ∗c), thus the condition ρc ≥ ρ

∗
c is more

restrictive than nb ≤ nb(ρ∗c).
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and should be treated as stochastic (see also [? ]). We as-
sume that Nb is large enough that we can neglect its fluctu-
ations, but we model k as a Poisson process with mean rate
µ = 〈Nb〉/s ' Nb/s. (In fact we know that k + Nb = Λ1Λ2, the
product of single-detector trigger counts, thus we assume that
Λ1,2 are large Poisson-distributed numbers and s � 1.) We
then marginalize over k using the Poisson prior:

p(k|µ) =
µke−µ

k!
.

After marginalization the dependence on µ vanishes to obtain

F (ρ∗c) = p(ρc,max) ' 1 − exp
(
−

1 + nb(ρc,max)
s

)
. (24)

Thus, false alarms louder than ρc,max arising by random coin-
cidence from our sets of single-detector triggers are approxi-
mated by a Poisson process with expected number (2δt/T )(1+

nb(ρc,max)). For this MDC, the values of the coincidence win-
dow and analysis time chosen imply s ' 107, giving a limit
p & 10−7 to any FAP estimate. We have verified that the p-
value of Eq. (24) is distributed uniformly on (0, 1] for MDC
data sets containing uncorrelated noise triggers.

So far we have considered the case where all single-detector
triggers are kept in constructing the background values. To
implement the case of removing zero-lag coincident triggers,
we simply exclude these from the sums over pairs of triggers
on the RHS of Eq. (23).

B. All possible coincidences (APC) approach

The all possible coincidences (APC) approach is described
in detail in [24]. Here we provide a brief synopsis.

To estimate the FAP of zero-lag triggers, we first find the
probability of getting a trigger from the background distribu-
tion with combined SNR ≥ ρ in a single draw. When not re-
moving zero-lag triggers from the background estimate, this
is:

F (ρ) = P0(ρ|1) =
nb(ρ)

Λ1Λ2 − k
. (25)

Both background and zero-lag triggers are constructed by
finding every possible combination of triggers in detector 1
and detector 2. Background triggers are then any coincidence
such that ∆t = |t1 − t2| > δt, while zero-lag triggers are those
with ∆t ≤ δt. These can be found by adding the matrices
Z = X + Y , where Xi j = ρ2

1,i ∀ j and Yi j = ρ2
2, j ∀i. The elements

of Z are thus the ρ2 of all possible combination of triggers.
When removing zero-lag triggers from the background, the

single detector triggers that form the zero-lags are removed
from the X and Y matrices prior to finding Z. This changes
the denominator in Eq. (25) to (Λ1 − k)(Λ2 − k). However, if
Λ1,Λ2 � k, then the denominator is approximately Λ1Λ2 in
either case; we use this approximation in the following.

Since Eq. (25) is a measured quantity, it has some uncer-
tainty δF . This is given by:δF

F

2 ∣∣∣∣∣
ρ=
√
ρ2

1+ρ2
2

=
∑
i=1,2

(
δFi(ρi)
Fi(ρi)

)2

, (26)

where Fi(ρi) is the estimated survival function in the ith de-
tector, given by:

Fi(ρi) =
ni(ρi)

Λi
. (27)

Here, ni(ρi) is the number of triggers in the ith detector with
SNR ≥ ρi. We estimate δFi by finding the range of Fi for
which ni varies by no more than one standard deviation. Using
the Binomial distribution this is (similar to equation 22):

max
minFi =

Λi(2ni + 1) ±
√

4Λini(Λi − ni) + Λ2
i

2Λi(Λi + 1)
. (28)

The error is thus:

± δFi = ∓Fi ±
max
minFi. (29)

This error estimate can be asymmetric about Fi; to propagate
to δF , we use +(−)δF1 and +(−)δF2 to find +(−)δF .

Equation (25) estimates the probability of getting a trigger
with combined SNR ρ in a single draw from the background
distribution. If we do k draws, the probability of getting one
or more events from the background with combined SNR ≥ ρ
is:

F (ρ) = 1 − (1 − F (ρ))k, (30)

with error:

± δF (ρ) = k(1 − F )k−1(±δF ). (31)

Thus, if we have two detectors with Λ1 and Λ2 triggers, k of
which form zero-lag, or correlated, coincidences, then we can
estimate the probability (and the uncertainty in our estimate
of the probability) that each trigger was drawn from the same
distribution as background, or uncorrelated, coincidences us-
ing Eqs. (25)–(31). The smaller this probability is for a zero-
lag coincidence, the less likely it is that that coincidence was
caused from uncorrelated sources. Since gravitational waves
are expected to be the only correlated source across detectors,
we use this probability as an estimate for the FAP.

As this study is concerned with just the loudest zero-lag
events, it is useful to evaluate the smallest FAP that can be es-
timated using this method, and its uncertainty. From Eq. (25),
the smallest single-draw F that can be estimated is (Λ1Λ2)−1.
By definition, this occurs at the largest combined background
SNR, ρ†. If the combined SNR of the loudest zero-lag event
is not > ρ†, then ρ† must be formed from the largest SNRs
in each detector, so that ni = 1. Assuming Λ1,Λ2 � 1, then
from Eqs. (30) and (26) we find:

minF ± δF ≈
N1,2�1

k
Λ1Λ2

[
1 ±

{
2.3
0.87

}]
. (32)
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If the combined SNR of the loudest zero-lag is > ρ†, then we
cannot measure its FAP. In this case, we use Eq. (32) to place
an upper limit on F .

Determining the F for every zero-lag trigger can require
storing and counting a large number of background triggers.
To save computational time and storage requirements, we re-
duce the number of background triggers that have F > some
fiducial F0 by a factor of F /F0 for each order of magnitude
increase in F . We then apply a weight of F /F0 to the remain-
ing background triggers when finding F for the zero-lag. For
this study, F0 was chosen to be 10−5. Thus, between F = 10−4

and 10−5, 1 out of every 10 background triggers was kept, with
a weight of 10 applied to the remaining. Likewise, between
F = 10−3 and 10−2, 1 out of every 100 background triggers
was kept, with a weight of 100 applied to the remaining; etc.
This substantially reduces the number of background triggers
that need to be counted and stored; e.g., for λ1λ2 = 108, only
∼ 5000 background triggers are needed, a saving of about 5
orders of magnitude. The trade-off is our accuracy in mea-
suring the FAP is degraded for triggers with F > F0. This is
assumed to be acceptable in a real analysis, since triggers with
larger F are, by definition, less significant.5

C. The gstlal approach

The method to estimate the FAP of coincident events based
on the likelihood ratio ranking statistic described in [15] was
modified for this test to use a single parameter, ρc. The FAP
for a single coincident event can be found as

P0(ρc) =

∫
Σρc

∏
i

p(ρi) dρi, (33)

where p(ρi) dρi are the probability densities of getting an
event in detector i with SNR ρi, and Σρc is a surface of constant
coincident SNR. The distributions p(ρi) dρi are measured by
histogramming the single detector SNR values either with or
without the coincident events included. To get the cumulative
distribution for a single event we have

P0(ρc > ρ
∗
c |1) = 1 −

∫ ρ∗c

0
P0(ρc) dρc. (34)

The multiple event FAP is found in the same way as (22).
Notice that for this MDC, an artificial lower boundary of

10−6 is set, as the participant decided any estimation below it
is subject to excessive uncertainty and thus not reliable.

IV. RESULTS

To achieve our aims of comparing the estimation from the
‘coincidence removal’ and ‘all samples’ modes, we will ex-

5 In retrospect, this background degradation was not really necessary for this
study, since we were only interested in the FAP of the loudest zero-lag
event in each realisation. However, we wished to keep the analysis method
as similar as possible to what would be done in a real analysis.

amine multiple properties of the submitted challenge results.
We first examine the self-consistency of each set of results
for each simulation in Sec. IV A. For experiments in the ab-
sence of signals, the fraction of realisations with an estimated
FAP smaller than a certain threshold should be identical to
the value of that threshold; we denote this property as self-
consistency. In Sec. IV B we then investigate the accuracy
of the FAP estimates by direct comparison with the exact
calculated values for each realisation in each simulation. In
Sec. IV C we select certain range of data and compare the
median and mean of estimate with the exact value for both
modes. In Sec. IV D we then construct Receiver Operating
Characteristic (ROC) plots for each experiment as a way to
compare estimates via their detection efficiency at fixed false
positive rates. Finally in Sec. IV E we address the general
issue of FAP estimate precision and attempt to extrapolate
our findings to predict the likely uncertainties rephrased on
significance estimates for GW detection. The challenge was
attempted by 3 different teams using a similar but indepen-
dently implemented algorithms (see Sec. III). Each algorithm
was operated in 2 modes, one in which zero-lag triggers were
included in the background estimate and the other in which
they were removed. For each realisation of each experiment
this gives us 6 FAP estimates to compare. In the main text we
include only plots from selected simulations that highlight the
main features of the comparisons; all other plots can be found
in Appendix B.

A. Self consistency tests: p-p plots

In Fig. 2 we show the relationship between the estimated
FAP values and their cumulative frequency of occurrence.
When the zero-lag coincidences are drawn from the back-
ground distribution from which the FAP values are derived
then we expect the curves to trace the diagonal. The figure
shows results for the 4 experiments (1, 3, 12 and 14) for which
there were only background triggers. As we probe lower
FAP values (i.e., rarer events) we begin to see counting noise
due to the finite number of rare events. However, we see a
marked difference between the ‘coincidence removal’ and ‘all
samples’ modes and no discernible differences between algo-
rithms. In all cases the ‘all samples’ mode stays consistent
with the diagonal within the expected fluctuations due to the
finite number of samples. The ‘coincidence removal’ results,
however, always systematically overproduces very small nu-
merical values of FAP, with deviation from the expected be-
haviour for all values below ∼10−3.

Experiments 1 and 3 were both designed to have simple
background distributions: the logarithms of their CDF tails
are linear in SNR with each detector having the same distri-
bution, each experiment having a different slope. Experiment
14 was designed to have an extreme background distribution
with multiple CDF features. The behaviour of the p–p plots
in these 3 cases is very similar with the ‘coincidence removal’
mode deviating (by ∼1–2 standard deviations from the diag-
onal) for FAPs < 10−3. At exact FAP values of 10−4 the ‘co-
incidence removal’ mode tends to assign ∼3 times as many
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(a) Experiment 1 (b) Experiment 3

(c) Experiment 12 (d) Experiment 14

FIG. 2: Plots of estimated FAP value versus the fraction of events with that value or below (known as a p-p plot). If the
estimate is self-consistent we would expect the value to be representative of its frequency of occurrence; the diagonal line

indicates a perfectly self-consistent FAP estimate. We show results for the four experiments where the triggers were generated
from background only. The solid lines are the results obtained for our three algorithms in ‘all samples’ mode while the dashed

lines are for the ‘coincidence removal’ mode of operation. Shaded regions include the uncertainty due to Poisson counting
noise. Vertical dashed lines indicate the FAP associated with integer multiples of Gaussian standard deviations, i.e. the

equivalent of nσ confidence.

realisations with an estimated FAP at or below this value. By
contrast the ‘all samples’ mode remain consistent through-
out within the 1–σ counting uncertainties. For experiment
12, intended to have a ‘realistic’ background distribution, de-
viation from the diagonal occurs at approximately the same
point (FAP∼ 10−3) for ‘coincidence removal’; here, for an
estimated FAP of 10−4, there are ∼7 times the number of es-
timated values at or below this level. The discrepancy in this
case and the previous 3 experiments cannot be accounted for
by counting uncertainty over experiments.

The deviations seen for the ‘coincidence removal’ case do
not have direct implications for point estimates of FAP in spe-
cific realisations; they also do not indicate a bias in those es-
timates in the sense of a systematic mean deviation of the es-

timated FAP away from the exact value. The result does how-
ever indicate that for rare events in a background-only dataset,
using a ‘coincidence removal’ mode gives a greater than F
chance of obtaining an event of estimated FAP F . This result
is also expected to hold for experiments where the majority of
realisations do not contain foreground triggers, i.e. those with
‘low’ signal rates.

We may understand the onset of systematic discrepancies
between the two modes as follows. The change in estimated
significance due to removal of coincident triggers will only
have a major effect – comparable to the estimated value it-
self – when much of the estimated background (louder than
the loudest zero-lag event) is generated by the triggers that are
being removed. This is likely only to be the case when the
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loudest event itself contains one of the loudest single-detector
triggers. Thus, the probability of a substantial shift in the esti-
mate due to removal is approximately that of the loudest trig-
ger in a single detector forming a random coincidence; for the
parameters of this MDC this probability is 2λ1λ2δt/T ' 10−3.

B. Direct comparison with exact false alarm probability (FAP)

In this section, we show the direct comparison of estimated
FAP values with the exact FAP. In a parameter estimation
problem we may consider both the accuracy and precision of
the estimates as figures of merit: ideally the spread of esti-
mated values compared to the exact value should be small
and the estimated values should concentrate around the exact
value. The estimated values could be influenced by a num-
ber of factors including random fluctuations in the statistics of
triggers, structures like hidden tails could bias the estimates,
and there may be contamination from a population of fore-
ground triggers. Where possible we attempt to understand the
performance of the algorithms in terms of these factors, and
to quantify their influences.

Although the comparison shows obvious difference be-
tween the ‘all samples’ and ‘coincidence removal’ modes,
readers are reminded that the quantitative result does not nec-
essarily reflect the behaviour in an actual GW search. In
Figs. 3–7 the estimation shows a large scatter in estimated
FAP values below 10−3; this value is, though subject to the
design of the MDC, which does not attempt to model all as-
pects of a CBC search on real data.

1. Low foreground rate

To compare estimates of FAP we display them for each
realisation, plotting logF since the occurrence of very low
values is crucial for detection claims (either true or false).
In these figures, a perfect estimation would lie on the line
y = x; if an algorithm provides an underestimate by assigning
a smaller FAP, it will fall below the diagonal line; an overes-
timate would lie above the diagonal line.

For the experiments with no signal triggers or low fore-
ground rate, the triggers are at most slightly contaminated by
foreground signals, so the estimation of the FAP should be
correspondingly unaffected by their presence. Where there
are no foreground triggers present, even the extreme back-
grounds, e.g. experiment 14, shown in Fig. 3, don’t appear
to adversely affect the estimation and the spread is relatively
small around the diagonal line. However, in the ‘coincidence
removal’ mode, for all algorithms there is a tendency to un-
derestimate F for small values. This is not conservative, i.e. it
is over-optimistic, in the sense that underestimating F claims
that the experiment outcome is rarer than they are in reality
(in the absence of signal).

In Fig. 3 we also see that gstlal estimation is very close
to that of the IFAR approach. For other experiments (see
App. B 2), their results do show small discrepancies most no-
tably in their different lower limits for estimated FAP values.

For all APC results, the estimation method used was de-
signed such that only for rare events (those with low FAP val-
ues) were the results computed to the highest accuracy (hence
the large spread in FAP estimation seen in Fig. 3). This is
motivated by the fact that the astrophysical events that we are
ultimately interested in will necessarily have small FAP val-
ues, and by the computational load of the challenge itself.

2. Medium foreground rate

The experiments with “medium” foreground rate have an
average of ∼half the realisations containing a foreground co-
incidence. Foreground triggers are drawn from a long-tailed
astrophysical distribution in SNR and are likely to be loud if
present. In such realisations, any bias in the estimation of
FAP F due to this “contamination” would be in the direction
of overestimation. This kind of bias is considered to be con-
servative since it would underestimate the rarity of possible
astrophysical events under the null hypothesis.

We use results from experiments 9 and 6, shown in Figs. 4
and 5 resp., as examples of a medium foreground rate. We
see greater variance in the FAP estimates in the low FAP re-
gion, in comparison to experiments with zero or low fore-
ground rates. This increased variance is clearly caused by the
presence of foreground events since nearly all points below
10−5 on the x-axis are due to signals. We again see general
agreement between algorithms (with the exception of APC at
high F values) however there is now evidence of discrepan-
cies at the lowest values of estimated FAP. This is mostly
due to the different choices of lowest estimatable value be-
tween algorithms, and is independent of the MDC dataset.
There is now also stronger indication that ‘coincidence re-
moval’ shifts estimates to lower values compared to the ‘all
samples’ mode.6 Further investigation of this systematic dif-
ference between modes will be made in Sec. IV C.

The experiment shown in Fig. 5 has a background distribu-
tion with a shallow ‘platform’ (seen in Fig. 6), classed as an
‘extreme’ background. Here we see similar behaviour to ex-
periment 9, but with even greater variation in estimated FAP
values, spanning ∼4 orders of magnitude for all exact FAP
values below ∼10−3.

The platform feature ranging in SNR between approxi-
mately 8 − 11 contains on average less than 0.1 triggers per
realisation. Therefore in many cases the background at high
SNR is not well represented and could fool our algorithms to-
wards underestimation of F , while in other cases the contami-
nation due to foreground triggers could mimic the background
and lead to an overestimation of F .

6 Note that since these plots have logarithmic scales, a very small difference
in F may have a large apparent effect at low values.



12

(a) Direct comparison with ‘coincident removal’ (b) Direct comparison with ‘all samples’

FIG. 3: Direct comparisons of FAP estimates with the exact FAP for experiment 14 (containing no signal events). In both plots
the majority of blue points are masked by the green points since these methods provide closely matching results. The estimates
are concentrated on the diagonal in both ‘coincidence removal’ and ‘all samples’ cases. However, in the ‘coincidence removal’

mode, all algorithms place the majority of points under the diagonal for exact FAP values (<10−3), indicating a
non-conservative estimate.

(a) Direct comparison with ‘coincidence removal’ (b) Direct comparison with ‘all samples’

FIG. 4: Direct comparisons of FAP estimates with the exact FAP for experiment 9. The medium level foreground rate in this
case leads to a number of realisations containing signals, resulting in a larger vertical spread. Different algorithms fix different

lower boundary values for the estimated FAP, visible in the sharp lower edge in estimated F of gstlal results. The shaded
region represents the expected uncertainty from Eq. 19.

3. High foreground rate

Experiments with “high” foreground rate have, on average,
> 1 foreground event per realisation. Results from experi-
ment 11 are shown in Fig. 7 where, as is generally the case,
there is good agreement between algorithms but clear varia-
tion between ‘coincidence removal’ and ‘all samples’ modes.
Compared with experiments with lower foreground rates, the
presence of many contaminating foreground signals shifts es-
timates to higher values. For ‘coincidence removal’ mode,
this shift reaches the point where, in this experiment, the bulk

of the distribution now appears consistent with the exact FAP
with relatively narrow spread.7 For the ‘all samples’ mode
the contamination due to signals is greater and so is the corre-
sponding shift to higher values of FAP (i.e. to the conservative
side); in fact, underestimates of F are extremely rare. For all
algorithms and for both ‘coincidence removal’ and ‘all sam-
ples’, as the foreground rate increases, a horizontal feature

7 We again remind the reader again that the comparison is presented on log-
arithmic axes.
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(a) Direct comparison with ‘coincidence removal’ (b) Direct comparison with ‘all samples’

FIG. 5: Direct comparisons of FAP for experiment 6. The presence of a platform feature in the tail of the distribution causes the
spread in estimates values to be wider than for experiment 9. The shaded region represents the expected uncertainty from

Eq. 19.

FIG. 6: Reverse CDF of trigger SNRs for experiment 6. The
red and green curves represent the two individual detectors,

while the blue curve represents the astronomical signals. The
black lines represent the combined distribution of both

background and foreground triggers.

appears in these comparison plots, which we discuss in the
following section.

4. Horizontal bar feature

In all high foreground rate scenarios, horizontal features ap-
pear at ∼10−3 in estimated FAP, which are also marginally
visible in medium rate experiments. The process of FAP esti-
mation for the loudest coincident event is based on collecting
the fraction of all possible unphysical coincidences which are
louder. The estimation will be strongly biased when there ex-
ists a foreground trigger in one detector that is extremely loud
and either not found in coincidence in zero-lag, or coincident
with a trigger with very low SNR. In such cases it is highly

likely that when performing background estimation it would
result in background coincidences which are louder than the
loudest zero-lag event (the details of this process are specific
to each algorithm). Assuming a method that makes use of all
possible unphysical trigger combinations between detectors,
this corresponds to ∼104 louder background coincidences out
of a possible ∼108 in total. Considering an expected ∼10 zero-
lag coincidences this gives an estimated FAP of these asym-
metric events as ∼10−3.

In experiment 11 (Fig. 7), there are ∼ 650 such realisations.
For ∼ 500 of them, the cause is a single astrophysical signal
appearing as an extremely loud trigger in one detector, while
for the other detector the combination of antenna pattern and
non-central χ2 random fluctuations results in a sub-threshold
SNR and is hence not recorded as a trigger. The remaining
∼ 150 events also have very loud SNRs in one detector, but in
these cases the counterpart in the second detector appears only
as a relatively weak trigger. When foreground events appear
with asymmetrical SNRs between the two detectors, remov-
ing coincident triggers from the background estimate could
mitigate overestimation occurring in such cases; while for the
∼500 realisations that contain a single loud foreground trigger
which does not form a coincidence, overestimation will occur
regardless of the method used.

5. Uncertainty estimate

Throughout figure 3 - 7, a shaded region was plotted which
represents the uncertainty predicted from Eq. 19. In the
derivation of Eq. 19 several simplifying assumptions were
used, thus some discrepancy between the theoretical expec-
tation and the actual spread is not surprising. However, this
expression does capture the order of magnitude of the uncer-
tainty, so as a “rule of thumb” it serves as a guide in the esti-
mation of uncertainty for the FAP.
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(a) Direct comparison with ‘coincidence removal’ (b) Direct comparison with ‘all samples’

FIG. 7: Direct comparisons of FAP for experiment 11. The high foreground rate in this case causes general shifts towards larger
estimates for the FAP. The horizontal bar feature visible in both plots is also most prominent in this high rate case. The shaded

region represents the expected uncertainty from Eq. 19.

C. Box plots

In this section we characterise the estimated FAP values in
more detail by conditioning them on the value of exact FAP.
We take decade-width slices in exact FAP and for each sum-
marise the distributions of estimated values. For a given ex-
periment, algorithm, and mode, we isolate those results cor-
responding to the chosen FAP decade and take the ratio of
estimated to exact FAP value. We then calculate and plot a
central box, median point, mean value, whiskers and individ-
ual outliers.

The central box contains the central half of all estimated
values, covering from 25% to 75% of the total sorted values,
i.e. between the first and the third quartile, also known as the
inter-quartile range (IQR). The box is divided by a vertical
line identifying the 50% (median) quartile. When the distribu-
tion is relatively concentrated, and the most extreme samples
lie within 1.5× the IQR, then the whisker ends at the most ex-
treme samples. Otherwise the whisker is drawn to be 1.5× the
IQR, and outliers beyond the whisker are drawn as individual
points. We also indicate on these plots the mean value of ratio
for each distribution.

Since we are more interested in the region of low FAP val-
ues, where detection of foreground signals will likely occur,
we take bins corresponding to values of exact FAP between
(10−5–10−4), (10−4–10−3), and (10−3–10−2). For each bin, we
draw box plots on the ratio between the estimated and exact
FAP value, using a logarithmic x-axis scale. The vertical pur-
ple line corresponds to where the log of the ratio is zero, mean-
ing that the estimation and exact FAP are identical; left hand
side means the estimated FAP value is smaller than the ac-
tual value, which translates to an underestimation of FAP. In
all plots the vertical axis gives the experiment index ranging
from the lowest foreground rates to the highest. For each in-
dex there are 3 coloured boxes associated with each algorithm.
Figures are divided into 2 plots, one for the ‘coincidence re-

moval’ mode and the other for ‘all samples’.

1. False alarm probability range 10−3–10−2

In Fig. 8 we see relatively tight and symmetric distribu-
tions for all algorithms when considering the IQR with strong
agreement specifically between the gstlal and IFAR algo-
rithms. We remind the reader that the APC algorithm was not
optimised at high FAP values and hence shows very slightly
broader distributions. We note that the extrema of the FAP ra-
tios in most experiments range symmetrically over .±1 order
of magnitude. However, for some experiments, most notably
12, 10, 2, 8, 6 and 4 there are large deviations in the extrema
towards underestimates of FAP. Such deviations would be
classed as non-conservative, i.e. events are estimated as more
rare than indicated by the exact calculation. This effect is
somewhat reduced for the ‘all samples’ mode, most evidently
for experiments 2 and 10.

The points identified with star symbols in Fig. 8 show the
means of the distribution of ratios. In general, the means for
the ‘coincidence removal’ mode are slightly more consistent
with the expected vertical line than for the ‘all samples’ mode.
This trend will be amplified in subsequent sections as we in-
vestigate lower values of exact FAP. For this (10−3–10−2) re-
gion we note that, for reasons discussed earlier, the means
computed from APC tend to overestimate the expected value.

2. False alarm probability range 10−4–10−3

As we move to lower FAP ranges, shown in Fig. 9, we start
to see the effects of having lower numbers of results. By def-
inition, for experiments with no foreground we expect to see
a factor of ≈10 fewer results in the decade (10−4–10−3) than
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(a) Box plots based on ‘coincidence removal’.

(b) Box plots based on ‘all samples’

FIG. 8: Box plots of the ratio of estimated to exact FAP
value, for exact FAPs between 10−3 and 10−2. The shaded

region represents the expected uncertainty from Eq. 19.

in the decade (10−3–10−2), implying larger statistical fluctu-
ations due to the reduced number of samples. We also see
intrinsically broader distributions, as the estimation methods
themselves are constrained by the infrequency of loud, low-
FAP events. As seen in previous figures of merit, results differ
only slightly between algorithms with the largest differences
coming from the issue of inclusion or removal of coincident
triggers.

Overall, we see ranges in the extrema spanning ±1 order of
magnitude for both ‘coincidence removal’ and ‘all samples’
modes. However, for experiments 10, 2, 6, and 8 the lower
extrema extend to ∼ 4 order of magnitude below the expected
ratio for the ‘coincidence removal’ mode. This behaviour is
mitigated for the ‘all samples’ mode: note that for experiment
10 the extrema are reduced to be consistent with the major-
ity of other experiments. In general it is clear that the IQRs
for the ‘coincidence removal’ mode are broader in logarithmic
space than for ‘all samples’. This increase in width is always

(a) Box plots based on ‘coincidence removal’

(b) Box plots based on ‘all samples’

FIG. 9: Box plots of the ratio of estimated to exact FAP
value, for exact FAPs between 10−4 and 10−3. The shaded

region represents the expected uncertainty from Eq. 19.

to lower values of the ratio, implying underestimation of the
FAP. This trend is also exemplified by the locations of the
median values: for the ‘coincidence removal’ mode, low fore-
ground rates yield medians skewed to lower values by factors
of ∼2–200. For the 3 high foreground rate experiments the
IQRs and corresponding medians appear consistent with the
exact FAP. For the ‘all samples’ mode the IQRs and medians
are relatively symmetric about the exact FAP and the IQRs are
in all cases narrower than for the ‘coincidence removal’ mode.

In this FAP range the difference in distribution means be-
tween the ‘coincidence removal’ and ‘all samples’ modes be-
comes more obvious. The removal mode results consistently
return mean estimates well within factors of 2 for all no, low
and medium foreground rates. For high foreground rates they
consistently overestimate the means by up to a factor of ∼ 3.
For the ‘all samples’ mode there is a clear overestimate of the
ratio (implying a conservative overestimate of the FAP) for
all experiments irrespective of foreground rate or background
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complexity. This overestimate is in general a factor of ∼2.
Note though that the estimates from both modes for the three
high foreground rate experiments are very similar in their dis-
tributions and means.

3. False alarm probability range 10−5–10−4

In this FAP range the uncertainties and variation in the
results are strongly influenced by the low number of events
present at such low FAP values. Among all the experiments
with no foreground rate suffer the most. Nonetheless, in
Fig. 10 we see similarities between algorithms and striking
differences between ‘coincidence removal’ and ‘all samples’
modes. Firstly, in all cases the variation in extrema is com-
parable, in this case spanning ∼ ±3 orders of magnitude. The
IQRs are broadly scattered and in many cases do not intersect
with the exact FAP. This is not indicative of poor estimation
but indicative of highly non-symmetric distributions.

For no and low foreground rates there is a marked difference
between results from ‘coincidence removal’ and ‘all samples’
modes. For ‘coincidence removal’ all distributions are skewed
to low values which is also a characteristic for the medium
foreground rate experiments. For example, in experiment 12
there are no estimates in any of the realisations in this range
that overestimate the FAP. Removal methods in general in this
range of very low FAP for low and medium foreground rates
provide IQRs of width ∼1 order of magnitude with medians
shifted by between ∼1–2 orders of magnitude below the ex-
act values. For ‘all samples’ mode, all no and low foreground
experiments (with the exception of experiment 2) provide con-
servative (over)estimates of the FAP ratio with IQRs and ex-
trema ranges spanning <1 and ∼1 order of magnitude respec-
tively. We see that for experiment 10 there are no ‘all samples’
estimates in any realisation that underestimate the FAP. With
‘all samples’ there is then a marked change as we move to
medium level foreground rates and the distributions become
relatively symmetric in log-space with all medians lower than,
but mostly within a factor of 2 of, the exact FAP. Experiments
6 and 8 both have medium level foreground rates and give rise
to results that are very similar between ‘coincidence removal’
and ‘all samples’ results and that exhibit highly skewed distri-
butions to low values with long distribution tails extending to
high values. This trend of similarity is then continued for high
foreground rates where there is little distinction between ei-
ther algorithm of ‘coincidence removal’ mode. In these cases
however, the distributions appear relatively symmetric in log-
space with reasonably well constrained IQRs.

Considering the means of the distributions, we see similar
behaviour but with more variation than in the previous FAP
ranges. Starting with ‘all samples’ mode there is consistent
conservative bias in the mean of the ratio of estimated to ex-
act FAP. For low/no and high foreground rates this bias is ∼1
order of magnitude which reduces to a factor of ∼3 overesti-
mate for medium level foregrounds. For the ‘coincidence re-
moval’ mode, no and low foreground rates return distribution
means that are scattered symmetrically about the exact FAP
with a variation of ∼1 order of magnitude. For all medium

(a) Box plots based on ‘coincidence removal’

(b) Box plots based on ‘all samples’

FIG. 10: Box plots for the ratio between estimated and exact
FAP values for FAPs between 10−5 and 10−4. The shaded
region represents the expected uncertainty from Eq. 19.

level foregrounds including experiments with low, medium
and high background complexity, the mean estimates are very
tightly localised around the exact FAPs with variations of 10’s
of percent. For high foreground rates the means obtained from
both ‘coincidence removal’ and ‘all samples’ modes are all
consistently overestimates of the exact FAP by up to ∼1 order
of magnitude.

By looking at the bulk distribution in the box plots, it seems
that ‘coincidence removal’ will generally underestimate the
FAP, while ‘all samples’ is systematically unbiased over all
14 experiments. However, note that if we only look at the
mean values, then ‘all samples’ modes almost always over-
estimate the FAP, while ‘coincidence removal’ is generally
consistent with the exact FAP. This indirectly proves that ‘co-
incidence removal’ mode is a mean-unbiased estimator. For
a significant event, the exact FAP is very close to zero, thus
any difference due to underestimation may be very small in
linear space though not necessarily small in log space, while
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FIG. 11: ROC plot for experiment 2. The error bars in both
horizontal and vertical directions are calculated with a

binomial likelihood under a 68% credible interval. Solid
lines correspond to ‘all samples’, while dashed lines

corresponds to ‘coincidence removal’. The dotted line
represents the expected performance of random guess, no

rational analysis would perform worse than it.

overestimation could bias the value with a large relative devi-
ation. When the FAP is very small, the estimation uncertainty
(variance) is large relative to the exact value; then, since esti-
mated values are bounded below by zero, in order to achieve
a mean-unbiased estimate a large majority of estimated values
are necessarily below the exact value, i.e. underestimates. In
other words, the distribution is highly skewed.

D. ROC analyses

The FAP value is a measure of the rarity of observed events,
but in this section we treat the estimated FAP as a test statis-
tic. This allows us to use ROC plots to compare the ability to
distinguish signal from noise for each method. In practice this
involves taking one of our experiments containing 105 reali-
sations and, as a function of a variable threshold on our test
statistic (the FAP), computing the following. The false posi-
tive rate (FPR) is the fraction of loudest events due to back-
ground that had estimated FAP values below the threshold.
The true positive rate (TPR) is computed as the fraction of
loudest events due to the foreground that had estimated FAPs
below the threshold. For each choice of threshold a point can
be placed in the FPR-TPR plane creating an ROC curve for a
given test-statistic. Better performing statistics have a higher
TPR at a given FPR. A perfect method would recover 100% of
the signals while incurring no false alarms, corresponding to
a ROC curve that passes through the upper left corner. A ran-
dom classifier assigning uniformly distributed random num-
bers to the FAP would lead to identical FPR and TPR, yielding
a diagonal ROC curve.

Error regions for the FPR and TPR are computed using a
binomial likelihood function. In general, as can be seen in our

ROC plots, as the foreground rate goes up, the more events are
available to compute the TPR, reducing the vertical uncertain-
ties. Conversely, the more background events are available,
the smaller the horizontal uncertainties.

In the following subsections we focus on the experiments
where there are clear discrepancies, leaving cases where there
is agreement between methods to Appendix B 3. We stress
that ROC curves allow us to assess the ability of a test-statistic
to distinguish between realisations where the loudest event
is foreground vs. background; however they make no direct
statement on the accuracy or precision of FAP estimation.

1. Low foreground rate

There are 3 experiments, 2, 7 and 10, that have low fore-
ground rates. The ROC curve for experiment 2 in Fig. 11 ex-
hibits a number of interesting features. Firstly, there is general
agreement between algorithms; deviations are only visible be-
tween ‘coincidence removal’ and ‘all samples’ modes of op-
eration. At a FPR of ∼10−3 and below, the ‘all samples’ mode
appear to achieve higher TPRs, when accounting for their re-
spective uncertainties, by ∼ 10%. This indicates that in this
low-rate case, where ≈ 1 in 1000 loudest events were actual
foreground signals, the ‘all samples’ mode is more efficient at
detecting signals at low FPRs. We can identify all experiments
that show such deviations, and all have tail features or obvious
asymmetry between the two detectors’ background distribu-
tions, combined with a low to medium foreground rate.

2. Medium foreground rate

Experiments 6, 8, 9 and 13 contain medium foreground
rates and collectively show two types of behaviour. Ex-
periments 9 and 13 show general agreement between algo-
rithms and ‘coincidence removal’ and ‘all samples’ modes
(see Figs. 37 and 40). Experiments 6 and 8 show similar de-
viations to those seen in the p–p plots in Section IV A. This
similarity is not surprising since the vertical axes of the p-p
plots are identical to horizontal axes of the ROC plots, with
the distinction that they are computed on background-only
and background-foreground experiments respectively.

Here we focus on Experiment 8 shown in Fig. 12 which
contained realistic but slightly different background distribu-
tions in each detector. As seen in the low-foreground example
there is good agreement between algorithms but differences
between ‘coincidence removal’ and ‘all samples’ modes. In
this case, due to the increased number of foreground events,
this difference is more clearly visible and the disscrepan-
cies are inconsistent with the estimated uncertainties. So
for medium foreground rates we conclude that as a detection
statistic, the ‘all samples’ mode obtains higher TPRs at fixed
FPR for low values of FAP. We remind the reader that de-
tection claims will be made at low FAP values, although the
absolute values appearing in our MDC may not be represen-
tative of those obtained by algorithms in a realistic analysis.
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FIG. 12: ROC plot for experiment 8. The error bars in both
horizontal and vertical direction are calculated with a

binomial likelihood under a 68% credible interval. Solid
lines correspond to ‘all samples’, while dashed lines

corresponds to ‘coincidence removal’. The dotted line
represents the expected performance of random guess, no

rational analysis would perform worse than it.

3. High foreground rate

The high rate experiments 4, 5 and 11 all show similar
behaviour. Here we show Fig. 13 as an example where we
see general agreement (within our estimated uncertainties) be-
tween algorithms and between the ‘coincidence removal’ and
‘all samples’ modes. The high rates used result in >90% of re-
alisations containing a loudest coincident event from the fore-
ground. The 3 experiments were examples of all 3 levels of
background complexity respectively and the results indicate
that in terms of detection efficiency, all algorithms and ap-
proaches perform equally well at any fixed FPR. This high
rate scenario is most likely to be relevant in the epochs fol-
lowing the first direct detection.

E. Uncertainty in estimation

From the results presented in the previous sections we can
conclude that the relative uncertainty in the estimation of FAP
increases as FAP decreases. As shown in Figs. 3, 4, 5, and 7,
with the exception of APC results, which are designed to be
accurate only at low FAP values, both other estimation algo-
rithms show larger spread as the FAP value goes lower. Spe-
cific features in the background distributions would vary the
actual spread, but the trend is consistent. When the value of
the exact FAP is as small as 10−4, the relative uncertainty can
exceed 100%; since the estimated FAP can’t be negative, the
errors in estimated FAP are not symmetrically distributed.

Any claims of GW detection will necessarily be made at
low values of FAP and most likely at low or medium level
foreground rate. Using Fig. 10 and focusing on the low and
medium foreground rate experiments 10, 2, 7, 13, and 9 it

FIG. 13: ROC plot for experiment 4. The error bars in both
horizontal and vertical direction are calculated with a

binomial likelihood under a 68% credible interval. Solid
lines correspond to ‘all samples’, while dashed lines
correspond to ‘coincidence removal’. The dotted line

represents the expected performance of random guess, no
rational analysis would perform worse than it.

is clear from both ‘coincidence removal’ and ‘all samples’
modes that a single loudest event measurement of FAP will be
drawn from a very broad distribution. For ‘all samples’ mode,
in all but experiment 10 for medium or low foregrounds, the
IQR looks symmetric mostly consistent with the true value
within ±1 order of magnitude. For the equivalent ‘coincidence
removal’ mode results, the IQR is much smaller than its coun-
terpart in the ‘all sample’ mode in log-space, and hence more
precise. The extrema between approaches are comparable but
the bulk of the distribution is more concentrated in the ‘co-
incidence removal’ case. Note however that the median and
IQR for the ‘coincidence removal’ mode are both uniformly
below the exact value, in some cases by orders of magnitude.

Our results show that the uncertainty in the FAP value
can be predicted by the “rule of thumb” Eq. 19, derived in
Sec. II D. The scope of the MDC described in this work was
designed to probe multiple background types and foreground
levels with large numbers of realisations. The number of trig-
gers simulated for each realisation does not match the number
that would be present in a realistic GW search; nor does the
coincidence test correspond to a real search in which many
thousands of distinct, but nontrivially correlated templates are
used. Hence, the FAP value at which the uncertainty in our es-
timates approaches 100% can be very different in reality than
the 10−3 value seen in our simulations. We expect that Eq. 19
will serve as a guide in estimating uncertainties due to differ-
ent realisations of noise in the FAP values produced within
realistic GW searches.

V. DISCUSSION

We have designed and generated an MDC to evaluate the
performance of methods to determine the significance of tran-
sient GW candidate events, simulating wide ranges of qualita-
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tively different background distributions and of possible sig-
nal rates. We compared the results obtained via three different
algorithms, each operating in two different modes: estimating
the distribution and rate of background events by considering
either ‘coincidence removal’: excluding single-detector trig-
gers found to be coincident in the search from the background
estimate; or ‘all samples’: including all single-detector trig-
gers in the background estimate. These background estimates
were then used to assign a false alarm probability (FAP) to
the loudest coincident event in each realisation of each exper-
iment in the MDC. Our methods for comparison of these re-
sults include self-consistency checks via the use of p-p plots,
for those experiments not containing any foreground signals;
direct comparison of estimates with the exact value of FAP re-
sulting from the generating background distributions; a box-
plot comparison of the result distributions from each experi-
ment; and finally an ROC analysis to identify detection effi-
ciency at fixed FPR.

Based on these comparison analyses we find the following
key conclusions:

a. The results of all experiments indicate a good consistency
among all three algorithms; disagreements only occur be-
tween the modes of ‘coincidence removal’ and ‘all sam-
ples’ for low values of false alarm probability (FAP).

b. For all except high foreground rates, the ‘coincidence re-
moval’ mode is more likely to underestimate the FAP than
overestimate, though producing an unbiased mean value;
while the ‘all samples’ mode tends to overestimate, espe-
cially for smaller FAPs.

c. For high foreground rates, both the ‘coincidence removal’
and ‘all samples’ modes overestimate FAP as indicated by
the mean over realisations, while the ‘coincidence removal’
mode has a larger fraction of underestimated FAP.

d. We only observe extreme underestimation of FAP from ei-
ther complex or realistic background distributions. When
the foreground rate is not high, or the background distribu-
tions have no tail or asymmetry between detectors there is
evidence that the ‘coincidence removal’ mode can under-
estimate the FAP.

e. Due to different detector responses and random noise fluc-
tuations, an astrophysical event may induce a very loud
trigger in one detector and a sub-threshold trigger in the
other. This would lead to a systematic overestimation of
FAP for all algorithms and modes, as shown as Fig. 7.

f. The evaluation of FAP is found to be entirely self-
consistent only for the ‘all samples’ mode. In this MDC,
the ‘coincidence removal’ mode would claim a fraction of
10−4 realisations containing only noise events to have FAP
10−5, hence the estimated FAP for this mode does not have
a frequentist interpretation at low values. Such a deviation,

however, is expected to occur at far lower FAP values for a
real analysis of GW data.

g. In general, FAP estimates computed using ‘all samples’
were found to be more effective at distinguishing fore-
ground events from background at fixed FPR. This was
most notable in experiment 8 which contained a medium
level foreground and a realistic background.

h. For all but high foreground rates, coincidence removal
methods have the merit of appearing to be unbiased estima-
tors concerning the mean of FAP estimates. However, the
distributions of these estimates are highly asymmetric, es-
pecially for low FAP values. Single realisations from ‘co-
incidence removal’ mode are consequently highly likely to
have underestimated values of FAP. By contrast, estimates
from the ‘all samples’ mode show a conservative bias (i.e.
towards overestimation) concerning the mean over realisa-
tions; but for low FAP events, these estimates more likely
to lie around the exact value or above it.

i. The relative uncertainty in the estimation is larger when
the FAP is smaller. The relative uncertainty reaches 100%
when the FAP is about 10−4, for the experiment parameters
chosen in this MDC. This value depends on the expected
number of coincident events and the number of single de-
tector triggers.

At the time of writing this we eagerly await results from the
Advanced detector era. While we are aiming to make several
detections over the lifespan of the upgraded Advanced facili-
ties, we should bear in mind that the first detection(s) may be
relatively quiet and belong to a distribution with a low astro-
physical event rate. In this case, we recommend a sacrifice
in possible accuracy of FAP estimation in favour of conser-
vatism. Considering also the self-consistency and relative effi-
cacy of the methods in distinguishing signal realisations from
noise, we recommend the use of the ‘all samples’ mode of any
of our 3 algorithms, anticipating that false alarms will likely
be (conservatively) overestimated rather than underestimated
for the first GW detections.
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Background parameters
Expt a0 a1 a2 a3 a4 a5 a6

1 -10.0000 -5 0 0 0 0 0
-10.0000 -5 0 0 0 0 0

2 -7.2240 -0.32 0.53 -0.73 0.12 0.067 -0.018
-7.2240 -0.32 0.53 -0.73 0.12 0.067 -0.018

3 -7.8000 -3.9 0 0 0 0 0
-7.8000 -3.9 0 0 0 0 0

4 -6.2800 -0.3 0.5 -0.7 0.1 0.07 -0.02
-4.8800 -1 0 -0.6 0 -0.04 -0.05

5 -8.4000 -4.2 0 0 0 0 0
-8.0000 -4 0 0 0 0 0

6 -8.0704 -3 0.8 0.01 -0.05 0.007 -0.0004
-8.0704 -3 0.8 0.01 -0.05 0.007 -0.0004

7 -9.1072 -4 0.7 0.09 -0.05 0.005 -0.0002
-9.6200 -5.55 -0.37 0 0 0 0

8 -3.5040 -1.4 0 -0.16 0 -0.034 -0.026
-4.6400 -2 0 -0.2 0 -0.03 -0.03

9 -7.0000 -3.5 0 0 0 0 0
-6.6000 -3.3 0 0 0 0 0

10 -2.4800 -1 0 -0.1 0 -0.03 -0.02
-5.8400 -3 0 -0.1 0 -0.03 -0.03

11 -4.0800 -1 0 -0.3 0 -0.05 -0.03
-8.3200 -4 0 -0.1 0 -0.035 -0.025

12 -3.5040 -1.4 0 -0.16 0 -0.034 -0.026
-4.6400 -2 0 -0.2 0 -0.03 -0.03

13 -7.8000 -3.9 0 0 0 0 0
-7.8000 -3.9 0 0 0 0 0

14 -6.2800 -0.3 0.5 -0.7 0.1 0.07 -0.02
-4.8800 -1 0 -0.6 0 -0.04 -0.05

TABLE II: Parameters of our background model
distributions.

Appendix A: Parameters of simulated trigger distributions

In this section, we list the parameters used to define the
background distributions. Recall that we adopt a form of SNR
distribution for the background triggers given by Eq. 1 using
input polynomial coefficients ai as listed in Table II for all 14
experiments.

For the tails of the CDFs, the form is changed to a simpler
representation as defined in Eq. 1 in order to make sure that
the background distribution is well behaved as the SNR rises.
The corresponding parameters b, CSP, and ρSP are listed in
Table III. Notice that here the actual control parameter is CSP,
while b and ρSP are derived values which could be subject to
round-off error.

The rate of both background triggers and foreground trig-
gers are controlled by parameters listed in Table IV. Here n
is the predicted average coincidence number in one realisa-
tion, while the measured n is the actual value concluded from
the data, their consistency reflect our confidence in the gen-
eration of the mock data. The AstroRate (all) is the expected
rate for astrophysical foreground events in each realisation,
but as only a fraction of them have large enough SNR to be de-
tectable, thus the AstroRate (loud) represents such detectable
event rate.

Expt IFO CSP b ρSP

1 1 1e-10 -5.0000 10.1052
1 2 1e-10 -5.0000 10.1052
2 1 1e-4 -1.2690 9.9447
2 2 1e-4 -1.2690 9.9447
3 1 1e-10 -3.9000 11.4041
3 2 1e-10 -3.9000 11.4041
4 1 1e-4 -3.0350 10.0791
4 2 5e-4 -5.1906 8.7474
5 1 1e-10 -4.2000 10.9823
5 2 1e-10 -4.0000 11.2565
6 1 1e-9 -6.8668 13.0625
6 2 1e-9 -6.8668 13.0625
7 1 1e-9 -4.3611 12.9193
7 2 1e-9 -6.8728 9.2876
8 1 2e-2 -1.4415 7.7886
8 2 5e-3 -2.0660 7.8256
9 1 1e-9 -3.5000 11.4209
9 2 1e-9 -3.3000 11.7798
10 1 5e-2 -1.0889 8.0018
10 2 1e-3 -3.0410 7.8544
11 1 3e-4 -7.1603 9.1251
11 2 1e-5 -4.2931 8.2823
12 1 2e-2 -1.4415 7.7886
12 2 5e-3 -2.0660 7.8256
13 1 1e-9 -3.9000 10.8137
13 2 1e-9 -3.9000 10.8137
14 1 1e-4 -3.0350 10.0791
14 2 5e-4 -5.1906 8.7474

TABLE III: Parameters of background distributions (tail).

Expt λ1 λ2 n measured n AstroRate (loud) AstroRate (all)
1 10500 10500 11.025 11.0098 0 0
2 11500 11500 13.225 13.2453 0.001 0.0022
3 9900 9900 9.801 9.7874 0 0
4 12000 9000 10.8 10.8023 2.96 6.41
5 9800 10100 9.898 9.8857 2.74 5.94
6 8000 15000 12 12.0195 0.548 1.19
7 10300 9900 10.197 10.2206 0.0011 0.0024
8 10100 11100 11.211 11.2202 0.438 0.95
9 9700 10600 10.282 10.2785 0.11 0.24
10 12000 10800 12.96 12.9552 0.0001 0.0003
11 9800 10700 10.486 10.4938 3.07 6.65
12 10100 11100 11.211 11.2047 0 0
13 9900 9900 9.801 9.7814 0.022 0.048
14 12000 9000 10.8 10.7857 0 0

TABLE IV: Parameters for rates of both background and
foreground triggers?
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Appendix B: Additional results

1. CDF distribution of SNR

In this section, we show the reverse CDF distribution of the
triggers’ SNR. For one experiment, two detectors could have
different background distributions, but they share the same as-
tronomical foreground distribution. In figure 14 to 23, two de-
tectors’ background SNR distribution is demonstrated. Back-
ground for two detectors are represented by red and green line,
while the foreground distribution is shown as the blue line,
and combined distribution is the black line.

FIG. 14: Reverse CDF distribution of the triggers’ SNR for
experiment 1. The red and green curves represent the two
individual detectors, while the blue curve represents the

astronomical signals. The black lines represent the combined
distribution of both background and foreground triggers.

FIG. 15: Reverse CDF of the triggers’ SNR for experiment 2:
colours assigned as in Fig. 14.

FIG. 16: Reverse CDF of the triggers’ SNR for experiment 4:
colours assigned as in Fig. 14.

FIG. 17: Reverse CDF of the triggers’ SNR for experiment 5:
colours assigned as in Fig. 14.

FIG. 18: Reverse CDF of the triggers’ SNR for experiment 7:
colours assigned as in Fig. 14.
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FIG. 19: Reverse CDF of the triggers’ SNR for experiment 8:
colours assigned as in Fig. 14.

FIG. 20: Reverse CDF of the triggers’ SNR for experiment 9:
colours assigned as in Fig. 14.

FIG. 21: Reverse CDF of the triggers’ SNR for experiment
10: colours assigned as in Fig. 14.

FIG. 22: Reverse CDF of the triggers’ SNR for experiment
11: colours assigned as in Fig. 14.

FIG. 23: Reverse CDF of the triggers’ SNR for experiment
13: colours assigned as in Fig. 14.
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2. Direct comparison

In Figs. 24, 25, 26, 27, 28, 29, 30, 31, 32, and 33 we present
plots of the direct comparison between actual FAP and the
FAP estimations from all methods.
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(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 24: Direct comparisons on experiment 1.

(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 25: Direct comparisons on experiment 2.

(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 26: Direct comparisons on experiment 3.
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(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 27: Direct comparisons on experiment 4.

(a) direct comparison with removal (b) direct comparison with ‘all samples’

FIG. 28: Direct comparisons on experiment 5.

(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 29: Direct comparisons on experiment 7.
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(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 30: Direct comparisons on experiment 8.

(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 31: Direct comparisons on experiment 10.

(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 32: Direct comparisons on experiment 12.
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(a) direct comparison with ‘coincidence removal’ (b) direct comparison with ‘all samples’

FIG. 33: Direct comparisons on experiment 13.
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3. ROC plots

In this section we include all remaining ROC plots. Note
that it is only possible to create a ROC plot when there are
foreground events in the data, so we only show 7 ROC plots,
Figs. 34, 35, 36, 37, 38, 39, and 40, complementing those al-
ready shown in Sec. IV D.

FIG. 34: ROC plot for experiment 5.

FIG. 35: ROC plot for experiment 6.

FIG. 36: ROC plot for experiment 7.

FIG. 37: ROC plot for experiment 9.

FIG. 38: ROC plot for experiment 10.
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FIG. 39: ROC plot for experiment 11.

FIG. 40: ROC plot for experiment 13.
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