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The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized
shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel com-
puter simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic
mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbu-
lence is very small compared to the equilibrium scale set by the variation of the magnetic field, the
strongest fluctuations form narrow band-like structures on the magnetic surfaces. Thanks to this
localization, the average transport through the surface is significantly smaller than that predicted at
locations of peak turbulence. This feature results in a numerically observed upshift of the onset of
turbulence on the surface towards higher ion temperature gradients as compared with the prediction
from the most unstable regions. In a second regime lacking scale separation, the localization is lost
and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through
the suppression of the large eddies (relative to the equilibrium scale), leading to a reduced stiffness
for the heat flux dependence on the ion temperature gradient. These fundamental differences with
tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans.
Plasma Sci. 42, 489 (2014)].

Over the last several decades, magnetic confinement
fusion research has been dominated by two concepts,
the tokamak and the stellarator. Most of the effort has
gone into tokamaks, which employ axisymmetric mag-
netic fields to confine the plasma, but it has always been
recognized that stellarators enjoy certain advantages al-
though they use more complicated fields, and therefore
face a number of technical challenges [1]. Compared to
tokamaks, the physics of stellarator plasmas is less un-
derstood, and the greatest uncertainty concerns the na-
ture of the plasma turbulence. This topic is of particular
interest to the Wendelstein 7-X stellarator, which has re-
cently been commissioned and completed its first-plasma
milestone[2, 3]. Its performance is expected to depend
crucially on the turbulence present in the plasma, which
will be explored thoroughly in upcoming experimental
campaigns.

The great challenge for both tokamaks and stellarators
is to provide stable and robust plasma confinement with
minimal energy losses. The latter are caused by plasma
turbulence and by so-called neoclassical transport, which
results from the random walk taken by plasma parti-
cles moving along complicated orbits in the magnetic
field whilst colliding with each other [4]. Neoclassi-
cal losses are modest in tokamaks but tend to be pro-
hibitively large in stellarators, unless the magnetic field
geometry is optimized to reduce the neoclassical trans-
port [5], in which case the turbulent loss channel becomes
relatively more important. Both for W7-X and other
modern stellarators, such as QUASAR (based on the
NCSX quasi-axisymmetric design from Princeton Plasma
Physics Laboratory, which to date has not been assem-
bled) [6], the result of the optimization is a magnetic field
with quite complex geometry [7]. The geometric prop-
erties of the field lines vary greatly over the magnetic

surfaces, and the latter are pushed against each other
in some locations, resulting in locally large temperature
gradients and consequently strong drive for turbulence.
The natural question that arises is how this geometric
complexity affects the turbulent transport and how the
latter compares to that in tokamaks.

Turbulence in tokamaks and stellarators is generally
thought to be caused by low-frequency plasma instabil-
ities, such as the electrostatic, collisionless ion temper-
ature gradient (ITG) driven mode [8, 9]. A theoretical
method to understand and, ideally, predict the behavior
of turbulence is furnished by “gyrokinetics” [10], accord-
ing to which, the fully kinetic description of the plasma
is reduced by one dimension, owing to the fast gyra-
tion of the charged particles around the magnetic field
lines. Despite this simplification, the coupled system of
nonlinear partial differential equations is five-dimensional
(plus time) and can only be solved by numerical codes,
such as GKV-X[11], GS2[12] and GENE[13], with the
help of modern supercomputers. We employ the mas-
sively parallel GENE code, which is able to address both
tokamak (covering the entire plasma radius) [14] and
stellarator (covering the entire magnetic surface, while
radially local) [15] configurations. For all simulations
shown, the plasma ions are treated gyrokinetically while
the electrons are assumed to have a Boltzmann (adia-
batic) distribution (the inclusion of gyrokinetic electrons
is at present intractable due to the immense computa-
tional resources required). The dimensionless parame-
ter expressing the strength of the ITG turbulence drive
is 1/LTi

= −1/Ti dTi/ds (Ti is the ion temperature).
Here, s =

√
Φtor/Φlcfs ∈ [0, 1] is the radial coordinate

(Φtor is the toroidal magnetic flux, with Φlcfs its value
at the outermost surface); for all simulations we have se-
lected s = 0.5, which corresponds to a radius where tur-
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bulence is expected to be particularly active. Although
several physical mechanisms for ITG turbulence stabi-
lization have been reported in tokamak-related gyroki-
netic simulations, for instance involving electromagnetic
effects [16, 17] or geometric effects like triangularity [18],
here we address intrinsic stabilization effects that are
due solely to the nonaxisymmetric magnetic geometry.
Specifically, the pivotal point in the present work is that,
in a stellarator, the transport averaged over a magnetic
surface can be significantly lower than the transport pro-
duced locally at the most unstable regions on the surface.

The effects we consider encompass a wide range of val-
ues for the dimensionless parameter ρ∗ = ρ/a, where ρ is
the ion gyroradius and a the minor radius of the torus. In
the “small-ρ∗ regime” characterized here by ρ∗ = 1/250,
the turbulence scale is much smaller than the variation of
the equilibrium magnetic field. Turbulence thus appears
localized on the surface, in that the strongest fluctuations
accumulate along thin band-like structures, as shown in
Fig. 1 for the QUASAR configuration. This localization

FIG. 1. (Color) Root-mean-squared normalized density fluc-
tuations caused by ITG turbulence (1/LTi = 2) on the mag-
netic surface of the QUASAR stellarator in the small-ρ∗

regime. The strongest fluctuations appear localized around
the magnetic field line with α = π/3 (black), and sim-
ilarly for the line with α = −π/3 (not shown), due to
the symmetry of the configuration. The number of grid
points in the five-dimensional phase space (x, y, z, v‖, µ) is
128 × 128 × 128 × 64 × 10. The simulation box size for the
radial direction is Lx = 147ρ and for the binormal direction
Ly = 204ρ. Also, Lz = 2π for the parallel direction (param-
eterized by the poloidal angle). The simulation box size for
the parallel velocity is −3vt ≤ v‖ ≤ 3vt and for the magnetic

moment 0 ≤ µ ≤ 9Ti/B0. Here, vt =
√

2Ti/mi is the thermal
velocity and B0 = 2Φlcfs/a

2.

is responsible for a reduction of the transport through
the surface as compared with its local maximum, since
large relatively quiescent regions bring down the aver-
age level. Figure 2 presents ion heat flux timetraces in
gyroBohm units, QgB = csP (ρ∗)2 (cs =

√
Ti/mi is the

ion sound speed and P is the plasma pressure). The
timetraces for the most unstable magnetic field line with
α = π/3 and the surface average are displayed. [The
coordinate α = ζ − qθ labels a magnetic field line cover-

ing one poloidal turn; θ, ζ are the poloidal and toroidal
angles and q is the safety factor, defining the amount of
winding of the magnetic field line on the surface.] Also
shown in Fig. 2 is the timetrace from a location of weak
turbulence, at the magnetic line with α = 0. It is found
that the resulting transport on the surface lies between
the two field line levels, demonstrating the averaging ef-
fect. There is an important observation concerning the
small-ρ∗ regime, namely that, despite the deviation of
the surface-averaged transport from the strongest local
one, ITG turbulence still behaves locally with respect to
a field line. Indeed, if we use a slender computational
domain surrounding a single field line, a so-called “flux
tube” [20], then locality is to be understood in the sense
that the transport stemming from a magnetic field line
on the surface is equal to that produced separately, us-
ing a flux tube around this line. We stress, however, that
locality in the stellarator does not imply that the trans-
port calculated from a single flux tube can predict the
surface-averaged transport.
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FIG. 2. (Color) Ion heat flux (in gyroBohm units) caused by
ITG turbulence (1/LTi = 2) on the magnetic surface of the
QUASAR stellarator in the small-ρ∗ regime. The timetraces
correspond to the field line with α = π/3 (strong turbulence
region), the field line with α = 0 (weak turbulence region) and
the surface average, demonstrating the stabilization (averag-
ing) effect. Also shown is the timetrace from a separate flux
tube simulation surrounding the field line with α = π/3, sug-
gesting the local nature of stellarator turbulence in small-ρ∗

conditions.

To appreciate the critical role of nonaxisymmetry for
turbulence stabilization, we can compare Fig. 1 with Fig.
3, corresponding to a tokamak with similar aspect ratio
(3.87) as QUASAR (4.47). Evidently, in the small-ρ∗

regime, no localization of the ITG turbulence exists in
the tokamak, since the axisymmetric geometry induces
an almost even distribution of the fluctuations on the
outboard side of the surface. As a result, the surface-
averaged heat flux is essentially the same as the heat
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flux measured at various field lines, implying a lack of
this stabilization for the tokamak (see Fig. 4). The ben-

FIG. 3. (Color) Root-mean-squared normalized density fluc-
tuations caused by ITG turbulence (1/LTi = 2) on the mag-
netic surface of a tokamak in the small-ρ∗ regime. For these
parameters, ρ∗ = 4/250 is found to be adequate to obtain
the small-ρ∗ limit. Unlike the stellarator in the same regime,
strong fluctuations cover the entire outboard side of the sur-
face, where the excitation of the ITG turbulence is favored.
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FIG. 4. (Color) Ion heat flux (in gyroBohm units) caused
by ITG turbulence (1/LTi = 2) on the magnetic surface of a
tokamak in the small-ρ∗ regime. The timetraces correspond
to two different magnetic field lines and the surface average,
all exhibiting almost the same transport level.

eficial turbulence localization in QUASAR could be lost,
however, in the “large-ρ∗ regime” characterized here by
ρ∗ = 1/125, where the ITG density fluctuations occupy
the entire outboard domain of the configuration (see Fig.
5). In this regime, the distribution of turbulent intensity
resembles that of a tokamak. Be that as it may, ITG tur-
bulence still enjoys stabilization, as another mechanism
applies, once ρ∗ increases, via interaction of turbulent
eddies with the rapidly-varying magnetic field in a 3D
configuration. A theoretical explanation of this mecha-
nism can be obtained in the fluid limit, by examining the
linear drive of the electrostatic fluctuations φ(α) of the

FIG. 5. (Color) Root-mean-squared normalized density fluc-
tuations caused by ITG turbulence on the magnetic surface of
the QUASAR stellarator in the large-ρ∗ regime (1/LTi = 2).
The localization pattern is lost and the fluctuations appear
spread out on the surface, as in the tokamak case. Shown in
black is the magnetic field line with α = π/3.

ITG mode with frequency ω,

Ti
Te
ω2φ = ωdω

T
∗
∂2φ

∂α2
, (1)

where Te is the temperature of the electrons, ωT
∗ =

(qTi/e) d lnTi/dΦtor, and the magnetic drift frequency
ωd = ∇α · (b×∇ lnB)2Ti/(eB) introduces nonaxisym-
metry via its field line dependence (b is the magnetic field
unit vector and B the magnetic field intensity). Due to
3D magnetic shaping, geometric features such as mag-
netic shear and curvature cause the magnetic drift to
vary in α (unlike in a tokamak), so that it exhibits ar-
eas both favoring (ωd < 0) and suppressing (ωd > 0)
local instability. To model this effect, we can consider
an analytically tractable form of ωd(α) given by a pe-
riodic, piecewise constant function, alternating between
regions of positive and negative values, with the extent
of these regions representing the equilibrium scale asso-
ciated with the variation of ωd. The solutions of Eq. 1
are in this case waves (∂α → ikα), but since ωd multi-
plies the derivative term, finiteness of ∂2φ/∂2α requires
that zeros in the ITG eigenmode φ(α) occur where ze-
ros of ωd exist. Thus, in analogy to a standing wave on a
string, a minimum allowable wave number kα is imposed,
here determined by the equilibrium scale of the magnetic
drift. In short, the size of the mode is limited by the
size of the unstable region where it resides. At small ρ∗

this is of no consequence, since the length scale of the
turbulence is much smaller than the equilibrium scale.
At sufficiently large ρ∗ though, this scale separation is
lost, and the lower bound on kα implies that large ed-
dies, that would carry most of the fluctuation energy, are
suppressed. In a tokamak, turbulence stabilization due
to ρ∗ is expected to be much weaker compared to the
stellarator (radial effects that can additionally influence
the tokamak transport are not taken into account[21]):
although axisymmetric configurations formally also im-
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pose a geometric constraint on the scale of turbulence
(kα), this is merely set by toroidal periodicity, rather
than smaller-scale 3D magnetic shaping via ωd(α). As a
consequence, significant turbulence stabilization for the
tokamak requires much larger gradients and ρ∗ values
compared to the stellarator. This is evidenced by Fig.

− 1 Ti  dTi ds

Q
i 
/ 
Q

g
B

2 2.5 3 3.51.851.65
1

10

20

30

40

Upshift

QUASARQUASAR

α = π / 3

ρ
∗

 = 1 / 250

ρ
∗

 = 1 / 125

TOKAMAKTOKAMAK

ρ
∗

 = 4 / 250

ρ
∗

 = 4 / 125

FIG. 6. (Color) Scaling of the ion heat flux (in gyroBohm
units) caused by ITG turbulence on the magnetic surface
of the QUASAR stellarator and the tokamak in the two ρ∗

regimes. Also shown is the curve corresponding to the local
turbulence at the most unstable field line on the magnetic
surface of QUASAR. The established upshift (∼ 15%) is due
to the turbulence averaging on the surface.

6, which serves as a summary of the effect of the tur-
bulence stabilization mechanisms in QUASAR and the
tokamak. For the stellarator, ion heat flux scaling curves
are shown as a function of the ion temperature gradi-
ent, for the two values of ρ∗, together with the curve
corresponding to the most unstable magnetic field line
(α = π/3) on the surface. We note that stabilization in
the large-ρ∗ regime primarily causes a favorable reduction
of the transport stiffness (the rate at which the transport
increases), while in the small-ρ∗ regime, stabilization is
mainly responsible for the upshift observed by comparing
the threshold of the surface-averaged transport to that of
the most active field line. We emphasize that this effect
is solely related to the nonaxisymmetric geometry, and
note, as Fig. 4 suggests, that no such upshift should be
reported in tokamak gyrokinetic simulations, as the heat
flux levels for the surface and any magnetic field line are
practically identical (these data points do not appear in
Fig. 6 to avoid clutter).

The newly observed upshift is comparable in magni-
tude but otherwise unrelated to the well-known Dimits
shift [22, 23] in the context of ITG turbulence, which
refers to the difference between the linear and nonlinear
thresholds; the upshift in Fig. 6 instead involves two
nonlinear scalings. In fact, a typical Dimits shift is also
found in QUASAR, by comparing the local linear stabil-
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FIG. 7. (Color) Linear growth rates for QUASAR correspond-
ing to the surface (for the two ρ∗ regimes) and a magnetic line.

ity threshold (≈ 1.5 in Fig. 7) with the nonlinear thresh-
old (≈ 1.65 in Fig. 6) measured on the corresponding field
line. As the nonlinear scaling is derived from the surface
simulation, we conclude that zonal flow activity should
be also present on the entire magnetic surface. Interest-
ingly, however, the linear threshold of the surface mode
(≈ 1.85 in Fig. 7) appears to coincide with the small-ρ∗

nonlinear threshold of the surface transport. This appar-
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FIG. 8. (Color) Heat flux spectra for QUASAR in the two ρ∗

regimes (1/LTi = 3) compared to a linear fluctuation spec-
trum (rescaled; ρ∗ = 1/250), showing the difference between
dominant scales.

ent contradiction is resolved by noting that the global lin-
ear mode stabilization should not be related to nonlinear
stabilization (heat flux reduction), as the global linear
mode involves communication across the entire flux sur-
face, contrary to the local behavior of turbulence in the
small-ρ∗ regime. In this context, we also warn against
inferring a direct connection between the upshift of the
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nonlinear threshold and the corresponding linear one. As
demonstrated in Fig. 8, even in the large-ρ∗ regime, the
scale of the corresponding linear mode is very different
from the turbulence scale. For that matter, one can ob-
serve that the heat flux reduction is disproportionately
large relative to the growth rate reduction.

Summarizing, we have highlighted two different
mechanisms by which a stellarator is able to stabilize
ITG-driven turbulence on the surface, solely thanks to
nonaxisymmetry. The first mechanism applies in the
small-ρ∗ regime, where ITG fluctuations are localized
in the vicinity of certain magnetic field lines on the
surface, whereas the second is relevant in the large-ρ∗

regime, where the fluctuations are distributed more
evenly on the surface. The first stabilization mechanism
is due to the averaging between regions of strong and
weaker turbulence and, relative to the threshold of the
most turbulent field line, additionally involves a newly
observed upshift. The transport difference stemming
from the surface and the most unstable location might
serve as an additional figure-of-merit for the character-
ization of turbulence optimization in a stellarator [24].
In addition, due to the very small electron gyroradius,
it is highly likely that turbulence caused by the electron
temperature gradient will also experience stabilization
in the small-ρ∗ regime. The other type of stabilization
occurs due to the suppression of large energy-containing
eddies by the fast variation of the equilibrium magnetic
field, and leads to a reduction of the transport stiffness.
Because underlying mechanisms are quite generic, both
stabilization mechanisms are expected to act also in
other types of stellarators, where the “poloidal” local-
ization of turbulence is either theoretically predicted
[15] or experimentally verified [25]. Finally, we note that
3D geometrical turbulence stabilization could also be
introduced in a tokamak if magnetic perturbations break
the axisymmetry, thereby enhancing the local shear [26],
and confining turbulence structures in a stellarator-like
fashion.

The GENE simulations were performed on the Helios
(Japan) and Hydra (Germany) supercomputers. We ap-
preciate technical support by J. Geiger and Y. Turkin
with the magnetic equilibria.
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