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Abstract In this article we consider prospects for detecting extreme mass ratio
inspirals (EMRIs) using gravitational wave (GW) observations by a future space
borne interferometric observatory eLISA. We start with a description of EMRI for-
mation channels. Different formation scenarios lead to variations in the expected
event rate and predict different distributions of the orbital parameters when the GW
signal enters the eLISA sensitivity band. Then we will briefly overview the available
theoretical models describing the GW signal from EMRIs and describe proposed
methods for their detection.

1 Introduction

Extreme mass ratio inspirals (EMRIs) arise following the capture of a small compact
object (CO)—a white dwarf, neutron star or stellar mass black hole—by a massive
black hole (MBH) in the centre of a galaxy. The astrophysical processes that lead
to the formation of EMRIs are described in detail in Sect. 2. The inspiralling CO
loses energy and angular momentum through emission of gravitational radiation,
and the initially wide and very eccentric orbit gradually shrinks and becomes more
circular. EMRIs are among the most interesting gravitational wave (GW) sources
that could be observed by the proposed eLISA detector. eLISA (evolving Laser
Space Interferometer Antenna) is a space-based gravitational wave detector which
is scheduled for launch in 2034. It will be sensitive to GWs in the frequency range
0.1–100mHz. Sources in this band include the mergers of massive black hole bina-
ries, which will be observable up to a redshift z = 20, and numerous white dwarf
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binaries in the Milky Way, in addition to EMRIs. We will discuss the event rate and
the expected precision of parameter estimation for EMRI sources in Sect. 2.

During an EMRI, the CO typically spends 105–106 orbital cycles in the eLISA
band before plunging into the central MBH. We need to model the phase of GW
signal from EMRIs with an accuracy of a fraction of a cycle in order to detect the
signal and correctly extract the parameters of the binary system. This is a challenging
problem, which has not yet been solved in full. Due to the extreme mass ratio,
m/M ∼ 10−4 − 10−6, we can treat the problem perturbatively, considering the field
of the CO and the emitted GWs as a small perturbation of the background spacetime
of the central MBH. At the leading orders in mass ratio the internal structure of a CO
is not important and so the CO is conventionally treated as a delta-function. As often
happens in such an approximation, the self-field is divergent at the position of the
CO, and requires proper treatment (regularization) [1]. The resulting perturbation
has the form of a tail expression, and depends on an integral over the entire past
history of the CO’s trajectory. In the limit that the mass ratio goes to zero, the motion
is described by a geodesic. However, the mass of a CO is small but not zero and due
to interaction of the self field of the particle with a background, the trajectory slowly
deviates from a geodesic path [2]. This can be described effectively as the action
of a force (self-force) on the inspiraling object. In practice, the geodesic trajectory
is used to compute the tail integral entering the self-force, and the resultant force
is used to update the geodesic trajectory accordingly. In Sect. 3, we will summarize
various ways to compute the GW signal from EMRIs and describe how the evolution
of the orbital motion can be described using an osculating elements approach. The
CO may also be spinning and this spin is coupled to the background curvature and
alters the trajectory of the CO, forcing it to deviate from the corresponding geodesic
of a non-spinning body. The trajectory of a spinning particle (in the limit of vanishing
mass ratio) is described by the Mathisson-Papapetrou equation. Attaching a spin to
a point particle is not uniquely defined, leaving a freedom to choose the dipole
moment of a body (see [3] for a description of spinning objects in the weak field
approximation). This freedom manifests itself through the need to specify a spin
supplementary condition (SSC) in order to obtain a unique solution to the equations
of motion. In order to understand these complications, we consider in Sect. 3.3 the
motion of a spinning particle in de Sitter space time. This space time possesses a
non-trivial curvature but is still fully symmetric. For more details on the computation
of the self-force and on the Matthisson-Papetrou equations we refer to other articles
in this issue.

Last, but not least we want to consider the question of detectability of GW sig-
nals from EMRIs. The GWs generated by an EMRI system are characterized by 14
parameters: two masses m, M , the dimensionless spin of the MBH, a, and its ori-
entation, θK ,φK ; six parameters describing the CO’s position and velocity at some
fiducial time or equivalently the instantaneous shape and phase of the orbit at that
time (eccentricity e, inclination of the orbital plane to the spin of MBH ι, semi-
latus rectum p and the initial phases φr ,φθ,ϕ corresponding to the three coordinate
degrees of freedom); the sky location of the source, θ,φ, and its luminosity distance,
DL . Many of these parameters are highly correlated. The GW signal comprises a
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superposition of orbital harmonics, with the number of harmonics and their relative
strength strongly dependent on the eccentricity and binary orientation. The strength
of the signal observed in the detector varies with time as eLISA moves around the
sun (amplitude modulation) and the relative motion of the detector and the source
induces a time-dependent Doppler modulation of the phase. The main challenge in
detecting EMRIs is the multi-modality of the likelihood. The likelihood can be seen
as a hyper-surface embedded in the 14-dimensional parameter space. It has multiple
strong maxima and the main challenge is to find the highest (global) maximum. In
Sect. 4 we describe algorithms to do this which were successfully demonstrated on
the Mock LISA data challenges [4].

Throughout this paper we use geometrical units G = c = 1.

2 Astrophysics of Extreme Mass Ratio Inspirals

In this section we will consider possible channels leading to EMRI formation, the
expected number of EMRI events that will be observed for eLISA and the likely
accuracy with which eLISA will constrain their parameters. Then we will briefly
summarize some of the potential impact of EMRI detections for astrophysics and
fundamental physics.

2.1 Formation of EMRIs

The “extreme mass ratio” refers to the fact that the mass of the CO is of order of
1–10M�, while themass of the central (capturing) object is in the range 105–107M�.
Current astrophysical observations indicate that massive compact objects of this kind
are present in the nuclei of all sufficiently massive galaxies for which the central part
can be resolved. The best example is the nucleus of the Milky Way, in which a few
dozen bright O-B stars (so called S-stars) have been observed in Keplerian orbits
around a central object with an estimated mass of ∼ 4 × 106M�. In addition, the
compactness of this object suggests that it must be a massive black hole.

These massive objects in the centres of galaxies are typically surrounded by clus-
ters of stars. In the “standard” picture of EMRI formation, the stars are spherically
distributed around the MBH (which should be approximately true for sufficiently
large distances) and dense enough for efficient 2-body relaxation, i.e., mutual grav-
itational deflection and contact collisions. The timescale for this process, the relax-
ation time trlx , is defined as the time required to change the angular momentum of a
star by an amount Jc, where Jc is the angular momentum of a star on a circular orbit
with the same semi-major axis. A smaller trlx implies that stars can be more easily
deflected on to very eccentric orbits with a small periapsis passage. If a CO object
on an initially wide orbit is perturbed onto such a trajectory, it will lose energy to
GW bursts emitted near periapsis (rp) and its orbit will gradually shrink. While the
semi-major axis is very large, the CO can still efficiently interact with other stars
at the apoapsis and could be either deflected onto a plunging orbit with rp < 8M
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or onto a wide orbit which does not emit appreciable GW radiation. To become an
observable EMRI, the CO must remain on the highly eccentric orbit until its period
becomes smaller than ∼ 103–104 s, at which point it is continually radiating GWs
in the eLISA sensitivity band. While we will be primarily interested in such EMRIs
here, the bursts of GWs produced during periapsis passages in the early stages of the
process could also be potentially detected by eLISA if the event is in the nucleus of
nearby galaxies [5].

When the stars interact gravitationally, they tend to divide the kinetic energy
equally and, while equipartition is not reached in practice, this process causes more
massive objects to sink deeper in the potential well of the MBH. This process is
called mass segregation. As a result we expect stellar mass black holes to form a
steep power-law density cusp around the MBH n(r) ∼ r−α with α � 1.7 − 2.0,
which dominates for r < 0.1pc. The lighter stellar species form shallower density
profiles with α � 1.3 − 1.5 [6]. The relaxation time is inverse proportional to the
density of the CO and it should therefore be smaller for the stellar mass black holes.

In order for an object to become an EMRI, it should efficiently dissipate energy
through GW emission, and have a sufficiently low probability to be deflected onto
a different orbit. This condition implies that the time scale for orbital decay by GW
emission, tGW , should be smaller than (1 − e)trlx , where e is orbital eccentricity.
Once the orbital period reaches P < 104s, the CO completely decouples from the
cusp, which happens for orbits with semi-major axis aE M RI ∼ 0.05pc.

For typical orbits around an MBH, the number of stars enclosed by the orbit is
rather small and so the gravitational potential created by the “field” stars is not a
smooth symmetric function. This gives rise to a torque acting on a CO on an orbit
with semi-major axis aC O of τ ∼ √

Nm∗/aC O , where N is a number of field stars
with mass m∗ inside the CO orbit. If the precession of the CO orbit is slow compared
to the timescale over which the distribution of field stars changes significantly, the
CO experiences a nearly constant torque over some time. This mechanism, known
as resonant relaxation, changes the angular momentum of the CO, but not its energy.
The characteristic time scale associated with resonant relaxation, tR R , is significantly
smaller than trlx and so this process can significantly boost the EMRI event rate.
Resonant relaxation plays an important role for orbits with aC O ≤ aEMRI [7–10].
However, for COs on eccentric orbits with small perhaps radii, the relativistic (GR)
precession can be very high, which effectively destroys the resonant relaxation effect.
The point at which this occurs is known as the “Schwarzschild barrier” [11]. The
existence of this barrier means that resonant relaxation is not as effective at boosting
EMRI rates as onemight first think, although if theMBH has significant spin then the
impact of the “Schwarzschild barrier” is somewhat diminished due to the lower value
of the plunge periapsis for prograde orbits [12]. In this case, COs that would normally
be considered as plunging and hence undetectable around a Schwarzschild MBH
actually perform many cycles in the eLISA band and may contribute significantly to
the event rate [13].

In this picture, the critical thing for having a high EMRI rate is to have com-
pact objects in the “loss-cone” (orbits with impact parameter sufficiently small that
they can be captured or tidally disrupted by the MBH). Several channels have been
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suggested that can replenish the loss-cone and thereby significantly boost the EMRI
rate, including triaxiality of the potential (non-spherical galactic nuclei) [14] or the
presence of massive perturbers (such as intermediate mass BHs, and/or molecular
clouds) in the vicinity of the orbits [15].

The complex dynamics of this standard capture scenario for EMRI formation
means that the astrophysical event rates are very uncertain. To estimate event rates we
will use a current best guess of 400Gyr−1 forMilkyWay-like black holes, dominated
by EMRIs in which the CO is a black hole. This rate is taken from [16].

As well as this standard mechanism for EMRI formation, there are two other
plausible channels.

Tidal binary disruption. It is possible that within the radius of influence of aMBH
there is a binary fraction of at least a few percent [17]. If a binary approaches the
MBH it can be tidally disrupted and, if this happens, one star is ejected at very high
velocity while the other star becomes tightly bound to the MBH. The captured CO
is expected to end up on an orbit with a semi-major axis of a few hundred AU and
a pericentre distance of a few to tens of AU, implying that it will circularise by the
time it enters the eLISA frequency band [17, 18]. This is a distinct feature of this
formation channel, since in the standard scenario we expect the EMRIs to have a
significant residual eccentricity even at plunge [19], epl ∼ 0.1− 0.3. We observe in
the Milky Way so called “hyper-velocity” stars [20]. which are moving away from
the galactic centre with large velocities. The best current explanation for the presence
of short-lived S-stars in the vicinity of the Milky Way MBH is that they came there
following the tidal disruption of binaries, while the observed hyper-velocity stars are
the thrown away companions [21].

Formation of stellar remnants in a disk. Observation of active galactic nuclei
suggests the presence of a circum-nuclear gaseous disk accreting onto the MBH. If
the disk is thick and sufficiently massive, the outer part could fragment and form
stars. If migration through the disk is sufficiently slow, stars formed in this way
could evolve to form compact object remnants (neutron star or black hole) which
subsequently spiral into the MBH as an EMRI in the equatorial plane (the accretion
disk, at least its inner parts, is expected to be aligned with the MBH’s equatorial
plane [22]). The interaction with the gas is also likely to keep the orbit of a CO close
to circular, so the distinct feature of this channel of EMRI formation is a circular
orbit in the black hole equatorial plane.

By measuring the orbital parameters we will be able to say which of these three
channels provides the most likely explanation for how the EMRI was formed. For
more details on the dynamics of galactic nuclei we refer the reader to the compre-
hensive review [23].

2.2 Expected Event Rate Estimation

In this section we follow [24] and briefly outline how the expected event rate of
EMRIs observed by eLISA can be estimated. To make this estimation we require
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an intrinsic event rate R(M, a,μ), where M is the mass of the MBH, a its spin in
units of M and μ = m/M is the mass ratio. The intrinsic event rate tells us how
often EMRIs are formed (i.e., how often they enter the eLISA sensitivity band) per
galaxy hosting a MBH with parameters M, a. The mass ratio parameter tells us the
nature of a CO, i.e., whether it is a stellar mass BH, neutron star or white dwarf.
As discussed in the previous subsection, due to mass segregation we expect stellar
mass BHs to be the most likely candidate for EMRIs, so we choose a canonical value
for the CO mass of m = 10M�. We will normalize the mass of the MBH by the
mass expected for a Milky Way type galaxy MMW 3 × 106M�. So far we do not
have information about the distribution of the spin of MBHs of this mass. X-ray
observations of some active galactic nuclei provide information about the spin of
accreting MBHs in the centre, but those black holes are of higher mass > 107M�
and embedded in the gaseous circum-nuclear disk. In addition all present estimations
of the spin are heavily model dependent and could vary significantly depending on
the underlying assumptions [25]. Therefore, here we assume a uniform distribution
of the spin within its physical range a ∈ (−1, 1). The estimation of the intrinsic
event rate is a very challenging task, as described above and in more detail in [23],
which depends quite heavily on the underlying assumptions about the efficiency of
mass segregation, the relative importance of different EMRI formation channels and
the interplay between resonant relaxation and the “Schwarzschild barrier”. Here we
adopt the estimate derived in [16] which for stellar mass BHs is

R = 400Gyr−1
(

M

3 × 106M�

)β

(1)

where β ≈ 0.19.
If the duration of EMRI signals was significantly shorter than the observation

time, then the observed event rate would be determined by computing the distance
at which the signal-to-noise ratio (SNR) equals some detection threshold ρthr and
then multiplying the rate per unit volume by the volume contained by that distance,
assuming a uniformdistribution of EMRIs in the localUniverse.However, EMRIs are
long-lived, and the SNR can be accumulated for as much of the inspiral as coincides
with the eLISA observation. Fixing all the parameters of the EMRI, we can compute
the SNR as a function of the time left to plunge, tpl. As we increase tpl from zero,
the SNR first increases, then reaches a maximum before starting to decrease. There
is a decrease of SNR for large tpl because the finite observation time means that we
are ultimately only observing systems that are rather wide, with not very efficient
GW emission, and with emission primarily at low frequencies where acceleration
noise rises rather steeply. This means that if an EMRI is at all detectable, the SNR
as a function of tpl intersects the line SNR = ρthr at two times, tearly, tlate, and we
can define the EMRI observable lifetime as τ (λi ) = tlate(λi ) − tearly(λi ), where λi

corresponds to all the other parameters of theEMRI (besides tpl )whichwehavefixed.
If EMRIs plunge at a rateR per year in a particular galaxy, then τR gives the expected
number of events from that galaxy (after appropriate averaging over parameters λi ).
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Among all parameters describing the EMRI system the most important are M, a,
and we denote the remaining parameters as λ̂i . We define N (M, a, z)d Mda as
the number of MBHs per comoving volume with mass M ∈ [M, M + d M], spin
a ∈ [a, a + da], and at redshift z. We make two further assumptions (i) that the
mass and spin distributions are independent; and (ii) that the distribution of MBH
mass and spin are independent of redshift. The first assumption reflects our level of
ignorance, and the second assumption is reasonable given how far we can observe
EMRIs (with eLISA we will able to see EMRIs up to zmax ≈ 0.7). In this range
we can ignore the evolution of masses and spins with z. Under these assumptions
N (M, a, z)d Mda = (dn/d ln M)(M)d ln Mp(a)da, where p(a) is the probability
distribution function for the spin

∫
p(a)da = 1. As described above, we assume this

is uniform in our calculations, but we keep it here in the equation for completeness.
The expected event rate is then

NeLISA =
〈∫ ∞

z=0
dz

∫ Mhigh

Mlow

d ln M
∫ 1

a=−1
daR(M, a)τ (M, a, z, λ̂i )

dn

d ln M
(M)p(a)

dVc

dz

〉
λ̂i

(2)

Here (dVc/dz)dz is the comoving volume in the redshift range [z, z + dz]. The tri-
angular brackets denote the averaging over other EMRI parameters λ̂i . We note that
in practice the intrinsic event rate could also depend on some parameters from the set
λ̂i (depending on the channel of EMRI formation). The mass function (dn/d ln M)
can be deduced from measured galaxy luminosity functions using the observed
L − σ, M − σ correlations. In the range of interest to eLISA, this functions approx-
imately flat [26], so we adopt

dn

d ln M
= n0

(
M

3 × 106M�

)α

(3)

with canonical values n0 = 0.002 Mpc−3, α = 0. If we assume these canonical
values, with β = 0.19, a mission duration of 2 years and a detection threshold
of ρthr = 20, we estimate that eLISA would observe 25–50 events in two years
[27, 28]. This spread in the predicted number of events comes from uncertainties in
the waveform model and system parameters, but a much larger uncertainty, which is
not taken into account here, arises from the uncertainty in the true value of R.

2.3 Science Return from Observing GW Signals from EMRIs

Detection of EMRIs and measurement of their parameters provides unique astro-
physical data which cannot be obtained by any other means. We expect to be able
to learn information about stellar populations in the centre of the Milky Way in the
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future by observing pulsars in the nuclear stellar cluster region using the SKA [29].
Inferring similar properties of other galaxies through observations of EMRIs will
also us to compare the nucleus of the Milky Way with nuclei of other galaxies. The
number of observed EMRI events and the mass distribution of the COs will tell us
about the physics of mass segregation, the masses and spins of stellar mass compact
objects and about the steepness of the stellar cusps in the centres of galaxies. In
addition, EMRI observations will provide precise measurements of MBH masses
and spins in a new mass range. EMRIs will probe galaxies containing black holes
with masses 105–107M�, and such galaxies tend to be of lower mass and not partic-
ularly luminous in the electromagnetic spectrum. Extracting information about the
nuclei of those galaxies is therefore very challenging, if not impossible, using elec-
tromagnetic observations and eLISA therefore has tremendous potential to inform
us about these systems. Observations show that the masses of black holes in galactic
nuclei correlate with the mass, luminosity and the stellar velocity dispersion of their
host galaxy [30]. These correlations imply that black holes evolve along with their
hosts throughout cosmic time, but it is not yet known if this coevolution extends
down to the lowest galaxy and black hole masses, since those systems may have
differences in the accretion properties [31], dynamical effects [32], or cosmic bias
[33]. eLISA observations of EMRIs will significantly improve our knowledge of the
MBH mass function (e.g., inferring the parameter α in eqn. [3]), as well as allowing
us to measure the intrinsic event rate (for example constraining the parameter β in
eqn. [1]), determine the relative importance of different channels of EMRI formation
and measure the spatial distribution (relative to the MBH) of different types of CO.
This is made possible by the ultra-precise determination of EMRI parameters with
GW observations. In Fig. 1 we show how accurately we expect to measure the most
important parameters: MBHmass (M) and spin (a), CO mass (m), orbital eccentric-
ity just before the plunge (end of inspiral) (epl ). The last parameter,�Q, is a possible
deviation in the MBH quadrupole moment away from the Kerr value, which will be
discussed at the end of this subsection.

In addition an observation of an EMRI will allow us to determine the luminosity
distance to the source (DL ) with an accuracy of ≤ 1% and to localize the source on
the sky to about 0.2 square degrees. Such a fantastic accuracy is achieved because
the source is long lived—the CO spends 104–106 cycles in the close vicinity of a
MBH. Using matched filtering we will be able to determine the phase of an EMRI
to an accuracy of half a cycle, a fractional phase accuracy of 10−6–10−4. All infor-
mation about the binary system is encoded in the GW phase and so we can expect
to make measurements of the intrinsic parameters to this same fractional accuracy.
Measurements of the extrinsic parameters, such as sky localisation, are not as precise
since these measurements come not from the phase but from the modulation of the
GW signal (in amplitude and in phase) caused by eLISA’s orbital motion.

These precise phase measurements mean we can also use EMRIs to test the
“no-hair” theorem: if the central massive compact object is indeed described by
the Kerr metric, as general relativity predicts. The spacetime outside a stationary,
axisymmetric object is fully determined by its mass, Ml , and current, Sl , multipole
moments. Since these moments fully characterise the spacetime, the orbits of the
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Fig. 1 Expected precision of parameter estimation from observed EMRI events, computed using
the Fisher information matrix: MBH mass (M , dashed line), CO mass (m, solid line), MBH spin
(a), orbital eccentricity before plunge (epl ) and deviation of the MBH quadrupole moment from
the Kerr value (Q)

smaller object and the gravitational waves it emits are determined by these multipole
moments. The emitted GWs therefore encode a map of the spacetime structure and
by observing these gravitational waves with eLISA we can precisely characterise
the multipole structure of the central object. Extracting the moments from the EMRI
waves is analogous to geodesy. If the central object is a Kerr black hole, then all
multipole moments are determined by its mass and spin (“no-hair” theorem):

Ml + i Sl = (ia)l Ml+1

If we can measure the first three moments we can therefore check whether the central
object is consistent with being a Kerr black hole. Figure1 shows that we should be
able tomeasure a deviation in themass quadrupolemoment from theKerr value, Q =
|M2 − M K err

2 |, to a precision of δQ ≈ (10−2 − 10−3)M3. EMRIs could therefore
also serve as laboratories for testing fundamental physics. For more discussion on
this topic we refer to [28, 34].
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3 Modelling the GW Signal from EMRIs

For detection of EMRIs we will utilize matched filtering, this technique assumes that
we can model the GW signal and then cross-correlate it with the data. The EMRI
signal depends on 14 parameters (actually on 17 if we take into account the spin
of CO), which we do not know a priori and need to infer from the measured data.
To do this, we must generate many signals from a given model (templates) across
the full, 14-D, parameter space to find the parameters that best fit the data (this
set of parameters, which maximize the likelihood, are called “maximum likelihood
estimators” of those parameters). We will describe the search procedure in detail in
the next section.

The presence of noise in the data stream causes the best-fit parameters to differ
from the true parameters of theGWsignal. The size of this difference can be estimated
using the Fisher information matrix, as shown in Fig. 1. If the data is analysed using
an inaccurate model there will also by systematic errors in the parameter estimates,
which could be larger than the statistical errors from detector noise. It is therefore
important to accurately model the GW signal coming from EMRIs, to ensure reliable
estimation of parameters and improve the detectability, since a mismatch between
the signal and template will cause a drop in the SNR and decrease in the observed
volume by (SNR/SNRoptimal)

3.
In this section we will describe currently available models for EMRI signal and

discuss their effectualness (if they are able to recover the optimal SNR) and faithful-
ness (if the systematic errors in parameter estimation is below the statistical errors
due to presence of the noise). Note that effectualness does not imply faithfulness: a
model could recover a significant fraction of the SNR with a large systematic bias in
the parameters. In other words, the shift in the parameters from the true values could
(partially) compensate for inaccuracies in the model.

3.1 Waveform Inventory

Unlike the inspiral of a comparable mass binary, the merger (here we call it plunge)
of a CO with MBH and subsequent ring-down are suppressed by a factor of the
mass-ratio and are therefore not observable by eLISA. We therefore only need to
model the inspiral part of the signal up to a plunge. However, for the whole of the
inspiral observable by eLISA, the CO is orbiting in the strong-field region close to
the MBH and moving at ultra-relativistic speeds. This makes modelling an EMRI
signal somewhat different from modelling GWs from a binary of two nearly-equal
mass MBHs. Here we briefly outline some of the currently available models for GW
signals from EMRIs. More detailed description can be found in other papers in this
volume.

Post-newtonian expansion. The post-newtonian approach describes theGWsignal
as an expansion in velocity v. As mentioned above the CO in EMRI systems are fast
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moving and spend 104–106 cycles in a regime where v is large. The EOB approach
[35, 36] is the most suitable for modelling EMRIs by construction (the conservative
dynamics reduces to the test-mass in the limit m/M → 0), however the dissipative
part (fluxes) are needed to a very high post-newtonian order, which is not currently
known. In addition, the analytic expressions for the fluxes are known only for nearly
circular andnearly equatorial orbits,whilewe expectEMRIorbits to be both eccentric
and inclined [37].

Analytic “kludge” waveforms. This model was introduced primarily to study
detection rates and parameter estimation for EMRIs [38]. The main advantage of
these waveforms is that they are fast to generate, so they are suitable for largeMonte-
Carlo simulations, and they were extensively used to develop detection algorithms
(see Sect. 4). This model is an extension of the work by Peters and Mathew [39],
it represents emission from a CO in Keplerian orbit augmented by imposing (post-
newtonian) relativistic precession of the orbital plane and the direction to perihelion.
The dissipative evolution is taken from post-newtonian calculations. This model is
not particularly accurate but it captures the main physical processes occurring in
EMRIs.

Numerical “kludge” waveform, or semi-relativistic model.The idea of the numer-
ical kludge waveforms is to combine an exact particle trajectory (up to inaccuracies
in the phase space trajectory and conservative radiation reaction terms) with an
approximate expression for the GW emission. By including the particle dynamics
accurately, we hope to capture the main features of the waveform, even if we are
using an approximation for the waveform construction. The idea was introduced in
[40, 41] and was further evolved with some modifications in [42, 43].

The procedure to compute a numerical kludge waveform has two stages. Firstly,
a phase-space inspiral trajectory is constructed, i.e., the sequence of geodesics that
an inspiral passes through, by integrating prescriptions for the evolution of the six
constants of the motion (energy, angular momentum, Carter constant and three ini-
tial phases). Initial work has used post-newtonian expressions (augmented by some
consistency corrections and by fitting to solutions of the Teukolsky equations) to
evolve these constants. This inspiralling trajectory is computed numerically thus the
name “numerical kludge”. Once the trajectory has been constructed a waveform is
generated by identifying the Boyer Lindquist coordinates along the trajectory with
spherical-polar coordinates in a flat space time and applyingweak-fieldGWemission
formulae, in particular the quadrupole-octupole approximation:

h̄ jk = 2

DL

(
Ï jk − 2ni S̈i jk + ni

...
M

i jk
)

|t ′=t−DL , (4)

where I ik, Mi jk are the mass quadrupole and octupole moments and Si jk is the
current quadrupole moment of the binary system, ni is a unit vector pointing from
MBH to the position of a CO, and overdots denote time derivatives. Thesewaveforms
are somewhat slower to generate as compared with the analytic kludge due to the
numerical integration of the orbital trajectory, but it is far more faithful up to the last
month or less (semilatus rectum p ≈ 6M) before the plunge.
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Adiabatic inspirals based on Teukolsky formalism. The very first framework for
black hole perturbation theory in a Kerr background was the Teukolsky formalism
[44], which encapsulates all gravitational radiative degrees of freedom in a single
“master” wave equation (the “Teukolsky equation”) for theWeyl scalars,�0 and�4.
A key feature of this equation is that it admits separation of variables in the frequency
domain, which effectively reduces it to a pair of ordinary differential equations. The
Teukolsky equation has been solved in the frequency domain [45] and in the time
domain [46], but both approaches assume the orbit that acts as the source of the
perturbation is a geodesic. The rate of change in energy, angular momentum, Carter
constant (averaged over several orbits) are evaluated from the gravitational wave field
and then used to update the parameters of the geodesic in an adiabatic manner. This
procedure misses the evolution of the other constants of motion (initial positions) as
well as making the adiabatic assumption. As a result, the waveforms are not accurate
on a very long time scale, but they are themost faithfulmodel on time scales∼ M2/m.

Self-force waveforms. An accurate description of the self-force and its derivation
is given in other papers in this volume, so we only briefly mention it here. As men-
tioned above, the extreme mass ratio in an EMRI system allows the waveform to
be determined using perturbation theory. The inspiralling object can be regarded as
a small perturbation on the background spacetime of the central black hole, except
very close to the small object. In the vicinity of the small object, the spacetime can
be regarded as a Schwarzschild BH moving under the influence of an external tidal
field due to theMBH.Matching these two regimes allows one to obtain an expression
for the self-force acting on the CO. The self force can be seen to arise as a result
of the interaction of the self field of the CO with the non-flat background geometry,
which causes the lines of force to be bent and act back on the CO. The self-force
can be conventionally split into two parts: non-time symmetric (dissipative) and
time-symmetric (conservative). The former part causes the inspiral and dominates
while the latter part can be eliminated by a redefinition of the orbital frequencies at
each instance, which means it is effectively second-order in mass ratio. The adia-
batic Teukolsky based waveforms take into account only the dissipative part of the
self force, neglecting the conservative part, which defines the domain of its validity.
The self force is computed assuming the CO is moving on a geodesic, then it is
used to adjust the geodesic (inspiral) before the self-force is recomputed again. The
computation of the self force is somewhat complicated as it treats the CO as a delta
function in the background spacetime, which requires mathematical apparatus for
regularization of some divergent integrals. It is possible to subtract the singular part
from the field equations (by finding a singular solution valid in the vicinity of the
CO) and the resulting equations are manifestly regular and contain on the right hand
side a smooth effective source [47], which allows the field equations to be coupled
to the equations of motion and integrated. This procedure can be written for a scalar
field (representing a CO carrying a scalar charge and ignoring the gravitational part
of the self-force) as [48]

(�r );α;α = S(x; z(τ ), u(τ )) (5)
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Duα

dτ
= q

m(τ )
(gαβ + uαuβ) 
β �r (6)

dm

dτ
= −quβ 
β �r , (7)

where � is the scalar field, q is the scalar charge, m the mass of the CO, S is an
effective source term and uα is the CO four-velocity. Greek indices are being used
to indicate space-time components, and a semicolon denotes a covariant derivative
with respect to the background spacetime, gαβ . A similar procedure can be applied
to the gravitational field. So far only the self-force waveform for a Schwarzschild
background has been computed, but recent progress has been rapid and so we expect
the extension to Kerr to be completed within a few years.

Numerical relativity waveforms. The ultimate goal would be to compute EMRI
waveforms using numerical integration of the full GRfield equations. State-of-the-art
techniques have enabled the computation of waveforms for the last 20–50 cycles of
the inspiral, merger and ring-down of comparablemass ratio binaries. The simulation
of an EMRI requires the computation of a few orders of magnitude more cycles, plus
the resolution of two very different spatial scales. This is far beyond the capability of
current computational resources and techniques. In addition, the time step for explicit
numerical integration is set by the smallest characteristic scale in the problem, which
is the mass of the CO in this case. Numerical waveforms will be very useful for
the calibration of current calculations based on perturbation techniques, but new
numerical methods will have to be developed to handle EMRIs.

3.2 Evolving Perturbed Geodesic Motion

In this subsection we will focus on how we can compute the evolution of the orbit.
The orbital evolution is the key ingredient for creating numerical kludge waveforms
and waveforms based on the self force. In fact this is the same problem, the main
difference is in how thewaveform is computed from the orbital trajectory. To compute
the orbital evolution we must solve the forced geodesic equation:

uβuβ
;α = aα, (8)

where aα is the 4-acceleration. The acceleration is essentially the self-force, but the
method we will describe here for solving this equation is also applicable to the case
where aα represents someother kind of external perturbation. This perturbation could
be caused by a second (intermediate) MBH (if the CO in the EMRI is inspiralling
into an MBH that is in a wide MBH binary), a molecular cloud or disc, another star
or compact objector basically anything that can cause a slow modification of the
geodesic orbit. Here we assume that the acceleration has been derived in some other
way and are only interested in the effect it has on the inspiral trajectory.
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The rest of this subsection summarizes results described in more detail in [49].
We use an osculating elements approach to evolve Eq. (8). If the perturbing force is
small,1 we can represent the perturbed trajectory at each instant by the unique geo-
desic passing through the same position with the same velocity and see the orbital
evolution as a slowvariation of the constants of these instantaneously-tangent geodes-
ics. A general geodesic in Kerr spacetime is described by eight constants of motion:
J = {m, E, Lz, Q,ψ0,χ0,φ0, t0}, however two of them (CO mass and initial time
m, t0) are not truly dynamical, so we will work with the remaining 6: orbital energy
(E), orbital angular momentum projected onto the spin of the MBH (Jz), Carter con-
stant (Q) and three initial phases (ψ0,χ0,φ0) describing the initial position of the
CO on the orbit in r, θ and φ respectively. The osculating element for of the equation
of motion r̈ = fgeo + δf , is

zα(τ ) = zα
g (J A(τ ), τ ), → ∂zα

g

∂ J A

∂ J A

∂τ
= 0 (9)

∂zα

∂τ
= ∂zα

g

∂τ
(J A(τ ), τ ), → ∂ żα

g

∂ J A

∂ J A

∂τ
= δ f α. (10)

The first set of equations describes a “geodesic” motion with slowly changing orbital
“constants”, and the second set gives us the evolution of the orbital “constants” as a
function of the perturbing force.

The advantage of using the osculating elements approach is that we can use an
adiabatic approximation (or, more generally, a two-time-scale expansion [50]) to
evolve EMRIs, for which the radiation reaction time scale is much longer than the
orbital time scale, allowing us to more easily study secular effects.

The osculating elements approach was first used in [51] to study Eq.8 in Schwarz-
schild background, and was extended to Kerr in [49]. The authors in [49] wrote the
osculating element equations on two different forms, using the Kinnersley tetrad or
“Hughes” variables (i.e., in terms of the orbital constants and the total phase vari-
ables [45]). In both cases, the appearance of an apparent divergence in the osculating
equations of motion at turning points is avoided. The techniques were applied to a
toy problem in which an EMRI was evolving under the influence of a perturbing
force due to drag from surrounding material. This “gas-drag” force was taken to
be proportional to the velocity of the inspiralling compact object. The two different
approaches were shown to give identical results, and the comparison of the exact and
adiabatic solutions to the problem identified the domain of validity of the adiabatic
approach. Although the gas-drag problemwas considered only to illustrate the meth-
ods, it yielded interesting results. In particular, it was found that the influence of the
drag force was to drive the inspiral of the object, but also to increase the eccentricity

1In fact this formalism does not assume the force is small—there is a unique geodesic passing
through any given point with a particular velocity and so any trajectory can be described as an
osculating geodesic. However, the approach is most useful when the force is small since then the
trajectory remains almost geodesic and parameterising it in terms of instantaneous geodesic motion
is useful.
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of the orbit and decrease the orbital inclination. A gravitational wave driven inspiral
would tend to show a decreasing eccentricity and so these two types of perturbing
force would be distinguishable in an EMRI observation.

Osculating elements were also used to generate inspirals in a Schwarzschild back-
ground under the influence of the gravitational self-force in [52]. The formalism
developed for Kerr inspirals in [49] has not been used for any other studies so far, but
this will be done once suitable models for perturbing forces are available. Another
type of orbital perturbation, which can also be interpreted in terms of a perturbing
force acting on a geodesic, is the influence of the spin of the CO on the trajectory.
This will be discussed in detail in the next subsection.

3.3 Spinning Particle in de Sitter Space-Time

In this subsection we will consider a spinning CO. There are several contributions to
this proceedings which describe themotion of a spinning body in a given background
in great detail. Here we will give only a brief summary, then show how we can
formulate the motion in terms of the osculating elements approach described in the
last subsection. To understand the motion of a spinning CO in the MBH spacetime,
we will first consider a simpler problem. We will describe analytically the motion of
a spinning test body in de Sitter spacetime.

The motion of a test mass in an arbitrary spacetime is governed by the Mathisson-
Papapetrou equations

Dτ pα = −1

2
Rμνβ

αuβ Sμν (11)

Dτ Sαβ = 2p[αuβ]. (12)

The first complication is that the 4-momentum pμ and 4-velocity uμ are not parallel

pα = muα + uβ Dτ Sαβ . (13)

Here Dτ denotes a covariant derivative with respect to the proper time, square brack-
ets denote the anti-symmetric part, Rμνβ

α is the Riemann tensor of the background
space time and Sμν = −Sνμ is the spin tensor. The difference between pα and uα

means that there is an ambiguity in what we call the mass—we can define this as
m = pαuα or M2 = pα pα. The second complication is that there is not a sufficient
number of equations to determine all of the unknowns. In order to close the system
we need to introduce an additional “spin supplementary condition” (SSC). There is
an arbitrariness in choosing the SSC, which is usually attributed to how we choose
the representative word line of a test mass (this is equivalent to choosing a dipole
moment of a spinning CO). The main reason that the SSC is needed is that there is
an ambiguity in the definition of the spin tensor for a point mass. The point mass
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is an approximation of an extended body (for which the spin tensor is well defined)
when the size is much less than the radius of curvature of the background spacetime.
The most common SSCs are

(i) pαSαβ = 0, (i i) uαSαβ = 0, (i i i) wαSαβ = 0 (14)

SSC (i) is usually referred to as the Tulczyjew condition [53], (ii) is the Frenkel-
Pirani condition [54, 55] and (iii) was first introduced in [56] and is referred to as
the w-condition.

As mentioned above we want to write the Mathisson-Pappetrou equations as a set
of first order equations using the osculating elements approach. To achieve this, we
must first write the equations of motion in the form of a forced geodesic equation
for a non-spinning particle:

u̇α = d2xα

ds2
+ �ρσ

α dxρ

ds

dxσ

ds
= f α, (15)

which we want to rewrite later in the form (10). We denote the SSCs (i), (ii) and (iii)
as “T” and “F” and “w”, and consider first the “T” condition, Sab pb = 0. In that
case, we have M = const , but ṁ (uα, u̇α) = Ṡαβ u̇αuβ . We can introduce a new
time variable, λ, with dλ = mdτ and use ũα to denote the coordinate velocity in the
new coordinates ũα := dxα/dλ = uα/m. The equations then become

dpα

dλ
+ �ρσ

α pρũσ = −1

2
Sρσ ũμ Rρσμ

α,

dSαβ

dλ
+ �ρσ

αSβσ ũρ + �ρσ
β Sασ ũρ = 2p[αũβ],

ũα = dxα

dλ
= 1

M2

(
pα + 2Sαβ Sρσ Rβερσ pε

4M2 + Sμβ Sρσ Rμβρσ

)
, (16)

which now have no explicit dependence on m and so we can proceed to write them
in osculating element form. In particular, we can differentiate the third equation with
respect to λ and then use the first equation to get an equation for dũα

dλ + �ρσ
αũβ ũγ

that depends only on position and velocity, and not on derivatives of ũα. The explicit
expression for the covariant total derivative of ũa is given by:

Dũα

dλ
= m2

(
ũμ + ũβ

DSμβ

dλ

)
d

dλ
Hα

μ + �ρσ
αũρũσ

−�ρσ
μũρm2

(
ũσ + ũν

DSσν

dλ

) (
Hα

μ − 1

M2 δα
μ

)

− 1

2
Sρσ ũβ Rρσβ

μ

(
Hα

μ − 1

M2 δα
μ

)
, (17)
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where we made use of the following abbreviation:

Hα
μ := 2Sαβ Sρσ Rρσβμ

4M4 + M2SελSκν Rκνελ
.

The third equation in (16) gives an implicit dependence of pα on the spin tensor and
velocity (pα = pα(uβ, Sβγ)) which we can use to integrate the (second) equation
for the spin tensor.

We note, however, that the standard osculating element formulation of the equa-
tions implicitly imposes the condition that ũαũα = 1 and hence ũα fα = 0. This is no
longer true after this change of variables. However, there is a way to put the equations
into this standard osculating element form when there is an arbitrary force on the
right hand side. To tackle this problem we can again make a change of integration
variable to a new variable, q say. We then have

dxα

dλ
= dq

dλ

dxα

dq

d2xα

dλ2 =
(
dq

dλ

)2 d2xα

dq2 + d2q

dλ2

dxα

dq
(18)

and the equations become

d2xα

dλ2 + �ρσ
α dxρ

dλ

dxσ

dλ
= f ′α = 1

(dq/dλ)2

(
f α − d2q

dλ2

dxα

dq

)
. (19)

We can impose the orthogonality condition be solving

d2q

dλ2 = fαdxα/dq

gαβ(dxα/dq)(dxβ/dq)
(20)

and the force becomes

f ′α = 1

(dq/dλ)2

(
f α − fγdxγ/dq

gμν(dxμ/dq)(dxν/dq)

dxα

dq

)
. (21)

So, to compute the new force we need to know the value of dq/dλ. We can set this
to one initially and then simultaneously integrate the equation

d

dq

(
dq

dλ

)
= 1

dq/dλ

fαdxα/dq

gμν(dxμ/dq)(dxν/dq)
. (22)

This is a somewhat complicated procedure, but the right hand sides of the new
equations now do not depend on derivatives of velocity and so the problems identified
above no longer apply.
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The (iii) SSC (w-condition) is the most suitable for the osculating elements
approach. In this case, we use an arbitrary normalized time-like vector wαwα = 1
and impose the following conditions

wαSαβ = 0, Dτw
α = 0. (23)

The vector field wα is parallel propagated along the world line of the test mass and
these conditions imply pα = muα and m is conserved. This SSC is the most suited
for the osculating elements approach.

Alternatively one can linearize the equations with respect to the spin Sμν In this
case the relation between the velocity and the 4-momentum takes the simple form

pα L= muα, (24)

and the supplementary conditions “T” and “F” coincide. The equations of motion
are now given by:

u̇α L= − 1

2m
Sρσuβ Rρσβ

α, (25)

Ṡαβ L= 0. (26)

As is apparent from (26), this form of the equations of motion is suitable for the
osculating orbits method, yielding a perturbing force of the form

f α L= f α
(

uα, Sαβ
)

. (27)

We will now stop considering a general background space time and focus on a
particular choice: de Sitter. This is a spacetime with a constant curvature which is
at the same time fully symmetric. This allows us to solve the equations of motion
analytically and to gain better understanding of the trajectories and the role of the
SSC.

The motion of spinning test particles in de Sitter spacetime has previously been
investigated by [57] where it was found that under the Tulczyjew SSC, the trajectory
is a geodesic with the parallel transport of an appropriately defined spin vector. In
addition, under the Frenkel-Pirani SSC, it was found that the trajectory is perturbed
about a geodesic by an oscillatory motion but the final solution for the trajectory was
left as a numerical integration. We focus on this oscillatory motion in more detail
and relate it to motion under the w-condition.

The first Mathisson-Papapetrou equation (11) simplifies in de Sitter spacetime to

Dτ pα = 1

l2
Sαβuβ, (28)
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where l is a real constant, related to the Ricci scalar via R = 12/ l2. At first glance,
it might appear that the Frenkel-Pirani SSC will lead to the simplest trajectories,
as Dτ pα is identically zero in this case. However, due to the difference between
4-momentum and 4-velocity in (13), this generically leads to non-geodesic motion.

We can write the equation of motion under both the Frenkel-Pirani and the
w-condition in the same functional form, given by

Dτ uα = ± ωηαβμν FβuμSν√
(Fσ Sσ)2 + (Fσ Fσ) S2

, Dτ Fα = 0, Dτ Sα = 0,

uαuα = 1, FαSα = uαSα, FαFα = uαFα, SαSα = −S2, (29)

where Sα is a spin 4-vector constructed from the spin tensor such that the SSC is satis-
fied, S and ω are real constants, and ηαβμν is the permutation symbol. Differentiating
the equation for Dτ uα, results in

D2
τ uα = −ω2 (

uα − Fα
)
, (30)

demonstrating that Fα can be viewed as a forcing term for the oscillations.
The frequency of oscillation ω and the forcing term Fα are different for the two

SSCs: for the Frenkel-Pirani case, we find

Fα F= m

M2 pα, (31)

ω
F= 2M

S
; (32)

while under the w-condition,

Fα w= (
uσwσ

)
wα − uσ Sσ

S2 Sα, (33)

ω
w= S

2Ml2
. (34)

As we have an explicit equation for Dτ uα, we could now numerically integrate,
using the method of osculating elements, to find the trajectory. Instead, it is possible
to find a general analytic solution to (29) for the motion of spinning test particles
in de Sitter spacetime. As a starting point, we note that the solution in Minkowski
spacetime has been determined previously (see [56, 58, 59], for example). Under
both the Tulczyjew and w-conditions, the particle follows a geodesic whilst under
the Frenkel-Pirani condition, the particle undergoes purely circular motion, boosted
along a central geodesic.

Since the de Sitter and Minkowski geometries are both maximally symmetric, it
might be expected that a similar solution representing circular motion will be found
in de Sitter spacetime. We are interested in the 16 components of the position xα,
velocity uα, forcing term Fα, and spin Sα 4-vectors, using spherically symmetric
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static coordinates. Using the 10 isometries of the de Sitter spacetime and the four
constraints in (29), it is possible to show that a completely general solution to the
equations of motion is given by

xμ(τ ) =
{

t = utτ , r, θ = π

2
, φ = uφτ

}
, (35)

uμ(τ ) =
⎧⎨
⎩ut =

√
1 − r2/ l2 + ω2r2

1 − 2r2/ l2
, ur = 0, uθ = 0,

uφ =
√

r2/ l2 + ω2
(
l2 − r2

)
l2 − 2r2

⎫⎬
⎭ , (36)

Fμ(τ ) =
{

Ft = −uφ

ut
l2Fφ, Fr = 0, Fθ = 0, Fφ = −uφ

(
ut

)2
ω2l2

}
, (37)

Sμ(τ ) =
⎧⎨
⎩St = −uφ

ut
l2Sφ, Sr = 0, Sθ = ±1

r

√
S2 + ω2l4(Sφ)2

(ut )2
, Sφ

⎫⎬
⎭ , (38)

where r and Sφ are free constants. This solution explicitly corresponds to circular
motion about the origin at a frequency that tends to ω in the limit that l → ∞,
consistent with the Minkowski result.

In spacetimes with fewer symmetries than de Sitter, we do not anticipate that such
an exact analytic solution for the trajectory can be found, although progress can still
be made. Different classes of pole-dipole orbits have been identified in the equatorial
plane of Kerr [60] and it has been shown numerically that the motion of spinning
test particles in Schwarzschild is of a helical nature [61]. The existence of the exact
de Sitter solution can be used to further our understanding of spinning test particle
trajectories in these more physical spacetimes.

In addition, the similarity of the solutions in de Sitter under the w-condition and
the Frenkel-Pirani SSC will hopefully lead to a better understanding of these SSCs.
Particularly, we note here that the product of covariant frequencies, ωP ωw = 1/ l2

is dependent only on the curvature of de Sitter and not on the multipole moments of
the test particle. If a similar fundamental link between the two SSCs exists in other
spacetimes, it might allow us to infer properties of the Frenkel-Pirani trajectory by
numerically integrating the simpler equation of motion under the w-condition.

4 Detecting GW Signals from EMRIs

In the previous two sections we have described the formation of EMRI systems and
how the gravitational waves they generate can be modelled. Both those problems
are very hard and not yet solved in full, and those astrophysical and theoretical
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uncertainties in EMRI rates and in models of the GW signal are coupled to the
data analysis challenges. Before we describe specific data analysis algorithms for
extractingEMRIGWsignals from the detector datawewill give a general description
of the signal and the problems we face in data analysis.

As mentioned earlier, an EMRI generates 105–106 gravitational waveform cycles
in the eLISA band. We therefore need to model it very accurately if we want to avoid
systematic biases in the inferred parameter estimates. The expected signal-to-noise
ratio (SNR) from those systems is not very high (probably less than 50), but during
the Mock LISA Data Challenges (MLDCs) successful extraction of EMRI signals
with SNRs as low as 19 was demonstrated, using the same approximate EMRImodel
(the analytic kludge described earlier) for both injection and recovery. As described
in Sect. 1, the EMRI signal depends on 14 parameters, if the spin of the CO is ignored,
which is justifiable for mass ratios less than ∼10−4. It is convenient to describe the
EMRI’s dynamics in the frame fixed relative to the spin axis of the MBH. The spin
direction is usually taken to be the z-axis, but we have full freedom in choosing the
orientation of the x, y-axes, and this choice is degenerate with the initial azimuthal
position of the CO. Since the signal is long lived (stays in band for the entire duration
of observation) there is a significant modulation of the amplitude and the phase of the
waveform caused by the orbital motion of the detector. This allows us to measure the
source sky position with a precision of a few degrees for signals with SNR ∼20 [4].

EMRIs are primarily GW sources for a future space-based detector like eLISA
[28], and the data analysis discussion presented in this section is based on analysing
data from such an instrument. Here we will always assume that the instrumental
noise is Gaussian (but not white) and that EMRIs are the only GW sources in the
data. These are not realistic assumptions for eLISA like data, but make the problem
more tractable and the resulting algorithms are still likely to be effective when the
assumptions are relaxed. For the purpose of developing data analysis algorithms and
EMRI detection strategies we use somewhat simplified models of GW signal (in
particular the analytic “kludge” model described in the Sect. 3.1), which capture the
mainphysical features present in the expected signal (periapsis andorbital precession,
slow inspiral, Doppler modulation, multiple harmonics) and are also fast to generate
numerically and so can be used for computationally expensive parameter estimation.
The need to quickly evaluate hundreds of thousands of waveforms to perform data
analysis is the main factor which prevents us from using more realistic models. If the
data analysis algorithms do not use any model specific features, they can be easily
ported to use the best GW signal model available at the time the data is analysed.

There are two data analysis challenges associated with the search for EMRI sig-
nals. The first one is to find a signal in the noise, in other words to test the null
hypothesis that the observed data is consistent with noise only. This could be a prob-
lem for signals with SNR below 20, however we do expect to see a few dozen signals
from EMRIs with SNR above 20, which should be detected with high statistical
significance. Therefore we will concentrate on such reliably detectable signals. The
situation will become more complex when other GW signals are present in the data
(especially the foreground from Galactic white dwarf binaries) and/or with realistic
instrumental noise. We do expect some environmental and instrumental artefacts to
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be present in the data and the LISA Pathfinder [62] measurements (scheduled for
launch in July 2015) will allow us to simulate a more realistic eLISA data stream in
the near future.

The second problem is what we will focus on in the rest of the current section.
The large dimensionality of the parameter space of possible signals makes a grid-
type search completely infeasible, so instead we will rely on (pseudo)-stochastic
searchmethods, primarily based onMarkov chainMonte-Carlo (MCMC) techniques.
Various implementations of MCMC for searches for EMRIs signals are described in
[4, 63, 64], but the basic idea is to construct a chain which moves predominantly in
the direction of increasing likelihood. The complication is that the EMRI likelihood
hyper-surface has numerous local maxima some of which could be as much as 70–
80% of the global maximum and these local maxima are widely separated in the
parameter space. The problem is similar to finding the tallest tree in a forest. A
standard MCMC based search will reach a local maximum and get stuck there for
a significant number of steps. Theoretically MCMC has a non-zero probability of
exploring thewhole parameter space and finding the global maximum, but in practice
it can get stuck on a strong local maximum for a very long time. Since we consider
here only clearly detectable signals, when we refer to a detection we will mean
successfully finding the global maximum of the likelihood (which is near the true
parameters of a simulated signal and by “near” we mean comparable to the expected
statistical deviations due to the presence of detector noise).

In order to detect a GW signal from an EMRI we need an algorithm which can
explore efficiently a large part of the parameter space and at the same time concentrate
more on regions of high likelihood. Parallel temperingMCMC is one such algorithm
and it was used in the MLDCs by N. Cornish [65]. Here we describe two other
methods which share the same core principle, based on understanding and exploiting
the reason for the presence of local maxima. To understand this reason, we need to
look carefully at the GW signal. The GW signal from an EMRI is a superposition
of harmonics of three fundamental frequencies, which slowly evolve as the CO
inspirals.

h(t) =
∑
l,m,n

hlmn(t) = �
⎛
⎝ ∑

l,m,n

Almn(t)ei(l�r +m�θ+n�φ)

⎞
⎠ (39)

These fundamental frequencies (instantaneously or for a geodesic motion) are
associated with three degrees of freedom: the radial frequency is associated with
eccentricmotion fromperiapsis to apoapsis andback; the polar frequency (θ−motion)
is associated with spin-orbital coupling and the resulting precession of the orbital
plane around the spin axis of the MBH; and finally the frequency of azimuthal
motion [45, 66]. The frequencies evolve under radiation reaction (self-force) on
a time scale associated with the mass ratio, which is for EMRIs significantly
longer than the orbital time scale. As the CO spirals toward the MBH the over-
all amplitude of the signal is slightly increasing but the amplitude of individ-
ual harmonic depends on the instantaneous orbital parameters like eccentricity
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Fig. 2 The time-frequency
plot of a typical GW signal
from an EMRI, there are 30
clearly identifiable
harmonics slowly evolving
in time. The amplitude is
colour coded. The time is in
seconds

and inclination. Due to orbital circularisation under radiation reaction [39] the
amplitude of some harmonics (high l) will decrease while that of some other
(low l) harmonics will increase, but in all cases the amplitude of each harmonic
is a smooth and slowly varying function of time. We can construct a periodogram of
the EMRI signal, and it looks like a comb in the time-frequency plane, see Fig. 2 as
an example.

The global maximum corresponds to the case when two combs representing a
signal and a search template coincide exactly in amplitude everywhere in the time-
frequency plane. The reason for the local maxima is a partial overlap between the
signal harmonics and the harmonics of a template. These might not be the same
harmonics (the same set of l, m, n) and the strength of a given local maximum will
depend on how long (in frequency and in time) the harmonics of the signal and
template coincide.

In the search for a GW signal we use matched filtering which is an optimal detec-
tion technique in the presence of Gaussian noise and can be seen as an inner product
of the data x(t) = n(t) + s(t) with a template h(t). Here n(t) is the instrumental
noise and the signal s(t) = s(t; �λ) depends on the parameters of the source (�λ),
which we are trying to estimate. The inner product is defined as

(x, h) = 2�
∫ ∞

0

x̃∗( f )h̃( f )

Sn( f )
d f, (40)

where tilde denotes a Fourier transformed quantity and Sn( f ) is the one-sided power
spectral density of the noise in the detector. If the signal is confined within a narrow
frequency band around f0, so that we can treat Sn( f0) as almost constant, the inner
product can also be written in the time domain in a simple form:
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(x, h) ≈ 1

Sn( f0)

∫ T

0
x(t)h(t)dt, (41)

where T is the observation time (or duration of a template). The assumption that
Sn( f ) is approximately constant over the signal evolution is valid for signals of
duration up to 2–5 months (dependent on the parameters). Since the amplitude of an
EMRI signal is a slowly growing function of time, one can see from Eq. (41) that
the SNR (SN R2 = (s, s)) roughly grows as the square root of the observation time.
We can use a maximum likelihood estimator to determine the GW parameters. The
likelihood ratio is given by

�(�λ) = P(x |h(�λ))

P(x |0) = e(x,h(�λ))− 1
2 (h(�λ),h(�λ)), (42)

where P(x |h(�λ) is the probability that the data x would be observed when a signal
corresponding to the specified set of parameters is present in the data and P(x |0) is
the probability that the data would be observed when no signal was present. Usually
the likelihood (or log-likelihood) can be maximised over some parameters of the
signal analytically, whereasmaximisation over other parameters requires a numerical
search. The analyticallymaximised likelihood is quite often referred as the F-statistic
[63, 64, 67].

Based on the Eqs. (40) and (41) we can introduce a cumulative likelihood (or
cumulative F-statistic) in the time and/or in the frequency domain by varying the
upper limit of integration. If the template matches the signal exactly we expect to
have steady growth of the cumulative F-statistic as a function of time or frequency
(in other words it should be amonotonic and not decreasing function). In the case of a
local maxima we will observe “bursts” of increase in the F-statistic around instances
of time (or frequency) where one or more harmonics of the template and signal
match. This is illustrated in Fig. 3, the left panel shows schematically a harmonic of
a template successively intersecting and overlapping with two different harmonics
of the signal, one of which (in black) if stronger than the other.

In the right panel of the same Figure, we show the corresponding accumulation of
the F-statistic, and the instances of two intersections are clearly seen here as a rapid
increase in the F-statistic. This illustrates nicely the reason for the presence of strong
local maxima in the parameter space which we hit while constructing the Markov
chain: harmonics of a signal can reproduce (overlap) one or a few strong harmonics of
a signal for a span of time sufficient to accumulate a significant value of the detection
statistic. This makes a “curse” into a “blessing”: we can use the information of the
locations of the local maxima to guide the search to find the global maximum of
the likelihood. This is a key part of the search for EMRIs and the main basis for
the two specific methods described in the following subsections. We find many local
maxima by running multiple MCMC chains with different seeds, and then analyse
the accumulation of the F-statistic to identify the parts (harmonics) of the signal that
were found at each of those local maxima. Then we use this information to run a
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Fig. 3 Cartoon showing two harmonics of a signal in green and black (black being stronger) and
a harmonic of the template intersecting the signal at two instances (left plot). In the right plot we
give the corresponding accumulation of the F-statistic in time. The two significant positive slopes
(in pink) corresponds to two instances of overlaps between a signal and a template

constrained MCMC (as described in Sect. 4.1) or place them on the time-frequency
plane and fit them with the harmonic tracks of a template by varying the source
parameters (as described in Sect. 4.2).

4.1 Constrained Markov Chain Monte Carlo Search

In this subsection we will summarize the method which was successfully used to
analyse the Mock LISA data challenge [4] and described in greater detail in [63]. In
this method we split the data into 6-month long subsets and start by analysing each
of them separately, before joining them together once we have started to lock onto
the signal.

In the first step we perform a stochastic search: we randomly draw parameters
from the prior range and evaluate their likelihoods. This is continued until multiple
statistically significant points have been identified in the parameter space. Those
points are then refined by running small MCMC chains seeded at those points. The
local maxima are then analysed to find common harmonics (in time and frequency).
These are identified as sections of harmonics of the true signal, although usually we
do not know the associated harmonic indices.

In the second step we run a constrained MCMC. The sections of harmonics found
in the first stage serve as constraints. We do realise that those constraints might
not be exact, so we first run the MCMC with the frequency constraints and adjust
the other parameters then we release the constraint and allow the code to adjust the
constrained frequencies before fixing these again and repeating. This works verywell
in practice, even if the frequency of some of the (especially weak) harmonics was
not determined very accurately initially. We also run several chains simultaneously
to check for convergence to a global maximum.
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In the third stepwe join the 6-month-long subsets of data together and let the chains
adjust tomatch together the best found solutions in each subset. Thismethodwas used
to analyse simulated data with a single relatively strong (SNR between 50 and 130)
EMRI signal [63]. The identification of a signal was remarkably good with an ultra-
precise recovery of the system parameters. The technique was also used to analyse
the third Mock LISA data challenge data set, for which there was a single data set
with five weak (SNR about 20) EMRI signals. The technique successfully identified
two signals, while for the other three signals we identified that they were present
but did not determine reliable estimates of their parameters before the challenge
deadline.

4.2 Detection of EMRIs Using a Phenomenological
Template Family

In this subsection we summarise the method described in [64]. The main idea of this
approach was to detect GW signals from EMRIs in a model independent way using a
minimal set of assumptions about the signal: (1) the orbital motion can be described
by six slowly (on the radiation reaction time scale) changing quantities; and (2) the
signal is represented by a set of harmonics of those (three) orbital frequencies with
slowly changing amplitude. Those are rather mild constraints and should describe
also “dirty” EMRIs where the orbital motion is perturbed either by the astrophysical
environment or by a deviation in the spacetime geometry of the central BH [34, 68].

We can use the assumption of slow frequency and amplitude evolution to decom-
pose the phase and amplitude of each harmonic as a Taylor series and perform the
search over the coefficients of the Taylor expansion. We call this a phenomenologi-
cal EMRI template—the relationship between the Taylor series coefficients and the
physical parameters depends on the specific model for the GW signal from an EMRI
system. By searching over phenomenological parameters (Taylor coefficients) we do
not restrict ourselves to any specific model within the framework of our assumptions
above. The truncation of the Taylor series and the number of harmonics included
depends mainly on the SNR of the signal: for weak signals we have to use a higher
order expansion in order to match the signal for a longer time. Detection of EMRI
signals in this model independent way allows us to relax stringent requirements on
the accuracy of the theoretical model and to test alternatives to the assumption of a
CO inspiral occurring in a pure vacuum Kerr spacetime.

Here we describe the simulations performed in [64]. Three month long data sets
were simulated containing an EMRI signal (SN R = 50) using the numerical kludge
as a model. Multiple MCMC searches using the phenomenological templates were
carried out with different starting seeds. The results were collected and analysed for
the presence of local maxima. For each identified maximum a patch of the signal
harmonic which was found was extracted and placed on the time-frequency plane.
The resulting map looks as presented in Fig. 4. In this example the injected source
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Fig. 4 Recovered patches of
the signal corresponding to a
strong accumulation of the
F-statistic

was a strong signal and the method recovered 13 harmonics. In more realistic cases
we would expect to recover 3–5 harmonics only. We note that the strong harmonics
(at low frequency) are better recovered (through the full duration of the observation).
Notice also that the last month of the data is recovered less well than the first two,
which is due to the orbital motion of the detector—the antenna beam pattern during
the last month is pointing away from the source.

In the second stage it is necessary to assume a certain EMRI model, so that
the found harmonics can be identified and the physical parameters of the system
recovered. In particular it is here that we can assume several alternatives: a CO
spiralling toward a Kerr MBH, a CO spiralling into a massive boson star, a “dirty”
Kerr black hole (a bumpy BH or a complex astrophysical environment). Once the
model is assumed, we can find the set of parameters which give the best fit to the
found set of harmonics (in amplitude and in their evolution). One can use a simple
chi-square test of goodness of fit to estimate how well the assumed model describes
the observed harmonic tracks and hence make a statement about the model. Results
for the recovery of orbital parameters if the same model is used for recovery and
signal generation were presented in [64].

5 Conclusion

In this article we have described one of themost interestingGWsources for the future
space based gravitational wave observatory eLISA. We have briefly described the
various channels forEMRI formation and expected event rates. Thenwewent through
an inventory of available models for the GW signal generated by EMRIs. We also
briefly discussed the osculating element approach for integration of the forced (under
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radiation reaction) motion of a CO in Kerr spacetime, and its application to the case
of a spinning CO. One non-trivial question is the influence of the spin supplementary
condition on the computed motion of a spinning CO and we have addressed this by
looking at a simplified case: the motion of a spinning test mass in de Sitter spacetime.
This should provide guidance on how to proceed in the case of a Schwarzschild
or Kerr spacetime. Finally we have described the challenges which we will face in
extractingGWsignals generated by EMRIs from eLISA data. Themain problem is to
search for a global maximum of likelihood in the multidimensional parameter space,
when multiple strong local maxima are also present. We have described how one can
extract useful information about the signal from the locations of those local maxima
in order to direct the search to the correct solution. In addition we have outlined the
possibility that these methods can be used to verify that the central massive compact
object is indeed described by the Kerr metric, as predicted by general relativity.
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