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I. EFFECTS OF HIGHER HARMONICS IN EQ. (2)

In this section, we discuss the effects of higher harmonics in Eq. (2) in the main text.

The probing current I oscillates at a frequency ωprobe, and it is coupled to phases ϕn ≡

ϕ(ωprobe +nωpump) for an arbitrary integer n. To calculate the conductivity and the effective

Josephson coupling, we need to know ϕ0 ≡ ϕ(ωprobe) by solving the set of equations

ω−2
Jp Knϕn = −ϕn −

A

2
(ϕn−1 + ϕn+1) + Ĩprobeδn0, (1)

with Kn = −(ωprobe + nωpump)2 − iγ(ωprobe + nωpump). Approximately we can solve these

linear equations by ignoring ϕm>|n| and ϕm<−|n| for a chosen integer n. Here we use n = ±1, 2

and 5, and the obtained Josephson coupling as a function of the driving frequency ωpump

is plotted in Fig. 1 for A = 0.4 and 0.9 with γ = 0.05. At A = 0.4, the basic features

around ωpump ∼ ωJp are well converged already at n = 1, while the higher harmonics create

structures at lower harmonics ωpump ∼ ωJp/2 for A = 0.9.

FIG. 1: (a) Jeff/J0 at A = 0.4 for cases including up to n = ±1, 2, and 5. (b) Jeff/J0 at A = 0.9.

Dynamically unstable regions are indicated by shaded regions.

II. FLOQUET STABILITY ANALYSIS

Here we briefly explain the Floquet stability analysis1,2. According to the Floquet theo-

rem, a first order, linear differential equation

#„
ż = A(t) #„z , (2)
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with a periodic coefficient matrix A(t) = A(t+ T ) has a solution in a form

zi(t) = e(lnλi)t/Tpi(t) (3)

with #„p (t) = #„p (t + T ). Here λi is an eigenvalue of the natural fundamental matrix X(T )

given by the solutions of

Ẋ = A(t)X (4)

with initial conditions X(0) = 1. If any absolute values of λ is bigger than 1, Eq. (3) is

diverging, indicating dynamical instability.

In our model, we numerically solved the linearized equation of motion

d

dt

ϕ
ϕ̇

 =

 ϕ̇

−γϕ̇− ω2
Jp [1 + A cos(ωpumpt)]ϕ

 , (5)

with initial conditions (ϕ, ϕ̇) = (1, 0) and (0, 1) from t = 0 to t = 2π/ωpump to find the

eigenvalues λ of the natural fundamental matrix.

III. NONLINEAR EFFECTS ON EQ. (1), AND LOSS FUNCTIONS

We consider the nonlinear effects in Eq. (1) in the main text. Its Fourier transformation

leads to

(−ω2 − iγω)ϕ(ω) =

∫
dω′

2π
M(ω − ω′) [sinϕ]ω′ + Ĩ(ω), (6)

where M(ω) is the Fourier transform of M(t) = −ω2
Jp[1 + A cos(ωpumpt)]. To see the non-

linear effect at the lowest order, we approximate sinϕ ' ϕ− ϕ3/3!, and use the mean-field

decompositions as [again, we limit ourselves to ϕ(ωprobe±ωpump) ≡ ϕ±1 and ϕ(ωpump) ≡ ϕ0]

[sinϕ]ωprobe
' ϕ0

[
1−

〈1

2
|ϕ0|2 + |ϕ−1|2 + |ϕ−1|2

〉]
, (7)

[sinϕ]ωprobe±ωpump
' ϕ±1

[
1−

〈1

2
|ϕ±1|2 + |ϕ0|2 + |ϕ∓1|2

〉]
. (8)

We then have a set of equations, which needs to be solved self-consistently,
K1 0 0

0 K0 0

0 0 K−1



ϕ1

ϕ0

ϕ−1

 = −ω2
Jp


1 A/2 0

A/2 1 A/2

0 A/2 1



ϕ̃1

ϕ̃0

ϕ̃−1

+


0

Ĩ

0

 , (9)
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where Kn = −(ωprobe + nωpump)2 − iγ(ωprobe + nωpump), ϕ̃n = ϕn(1 − Vn), and Vn is the

mean-field term expressed by angle brackets in Eqs. (3) and (4). We start from Vn = 0,

and solve the above equations to get ϕ. Then we use this value to get new value of Vn, and

then solve the equations again. We repeat the procedures until we get a converged result.

We compare the effective Josephson coupling in Fig. 2 for linear and nonlinear models. For

a linear model, we find unphysical regions where Jeff becomes negative, which disappear in

the nonlinear model. The enhancement of Josephson coupling above ωJp is bigger in the

linear model than the nonlinear model. These observations comes from the fact that the

diverging behavior ϕ ∼ (ω2
pump−ω2

Jp)−1 is less pronounced in the nonlinear model, since the

mean-field terms in Eqs. (3) and (4) reduce the amplitude of ϕ’s once they become large.

The loss function is measured similarly by the probing current, and is defined as

L(ωprobe) ≡ − Im[ωprobe/4πiσ(ωprobe)] ∝ Im[ϕ(ωprobe)/Ĩprobe]. (10)

In Fig. 3, we compare the loss functions for linear and nonlinear models. L(ωprobe) shows a

normal absorption peak around ωprobe ' ωJp. We also find a trough/peak around ωpump '

ωprobe±ωJp, since, at these conditions, the parametric driving amplifies ϕ(ωprobe) through the

mode ϕ(ωprobe − ωpump). The sign of the loss function is determined by the phase difference

between ϕ(ωprobe) and Ĩprobe. It is usually less than π as in a forced harmonic oscillator, and

L(ω) is positive. However, for ωpump ' ωprobe + ωJp, the phase difference becomes greater

than π leading to negative values of L(ω). We note that a negative loss function near

ωpump ' 2ωJp was observed in a LaBaCuO material in Ref. 3. In the linear model, we find

an extra resonance around ωpump = −ωprobe + ωJp, which disappears for the nonlinear case.

Another nonlinear effect is the shift of resonance peak near ωpump ∼ ωJp; as the amplitude

A becomes larger, the resonance frequency is pushed to lower frequencies [Fig. 3(d)]. We

also find that the minimum of loss function near the dynamical instability is shifted to lower

ωpump in the nonlinear case as the amplitude gets larger.

IV. EFFECT OF γ FOR EQS. (10) AND (11)

Here we give detailed expressions including the effect of damping γ for Eqs. (10) and (11)

in the main text. Expanding the lengthy analytical solutions (obtained by considering three
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FIG. 2: Superfluid density without nonlinear effects (a) and with nonlinear effects (b). Dynamically

unstable regions are excluded.

FIG. 3: (a), (b): Loss functions for a linear model at A = 0.5 and A = 0.8. (c), (d): Loss functions

for a nonlinear model at A = 0.5 and A = 0.8. Dynamically unstable regions are excluded.

harmonics) by A1,2 ∼ 0 and γ ' 0, near the lower resonance, ωpump ' ωJp1, we have

δJ/J0 '
A2

1ω
2
Jp1

2(ω2
pump − ω2

Jp1)

[
(1 + 2α1 + 2α2) +

ω2
Jp1(2α2 + 1)2

(ω2
pump − ω2

Jp1)2
γ2

]
+O(ωJp1/ωJp2). (11)
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This still diverges at ωpump = ωJp1 since we treat γ perturbatively. Near the higher resonance

ωpump ' ωJp2, we have

δJ/J0 '
−2α2

2A
2
1 + α1(1 + 2α2)A2

2 + 4α1α2A1A2

2α2(ω2
pump − ω2

Jp2)
Ω2

1

− α1 (2α2 + 1)A2
2 + 4α1α2A1A2 + 4α2

2 [α1 (1− 2α2)− 2α2
2]A2

1

2α2(ω2
pump − ω2

Jp2)3
Ω2

1Ω2
2γ

2 +O(ωJp1/ωJp2).

(12)

V. COUPLED SINE-GORDON EQUATIONS WITH LANGEVIN NOISES

Here we show the details of the coupled sine-Gordon equation used for our simulations.

The starting Hamilton equations, based on the Hamiltonian in Eq. (6) in the main text,

are12 (
~
e∗

)
θ̇m =

∑
n

1

2Cav

(
−|xm − xn|

d
+ 2κδmn

)
Qn,(

~
e∗

)
Q̇m =

~W
e∗
[
jm+1
m sinϕm+1,m − jmm−1 sinϕm,m−1

]
,

(13)

where we introduced a phase difference between the mth and (m+1)th SC layers as ϕm+1,m =

θm+1− θm. Eliminating {Qm} leads to the coupled sine-Gordon equations derived in Refs. 4

and 5

#̈„ϕ ≡


ϕ̈10

ϕ̈21

ϕ̈32

...

 =


−(1 + 2α1)Ω2

1 α2Ω2
2

α1Ω2
1 −(1 + 2α2)Ω2

2 α1Ω2
1

α2Ω2
2 −(1 + 2α1)Ω2

1 α2Ω2
2

. . .




sinϕ10

sinϕ21

sinϕ32

...

 ≡M
#„

Js

(14)

where αi is the capacitive coupling constant

αi = εiµ
2/sdi, (15)

and Ωi is the bare plasma frequency of a junction,

Ωi =

√
4πe∗diji

~εi
. (16)
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We further add the damping term γ, Langevin thermal noises
#„

ξ , a total external current

I(t),

#̈„ϕ + γ #̇„ϕ = M
#„

Js +
#„

I0 +
#„

ξ , (17)

where
#„

I0 = 4πe∗µ2I/s~(α−1
1 , α−1

2 , α−1
1 , . . . ). The Langevin noises are correlated as

〈ξi(t)ξj(t′)〉 = δ(t− t′)2γc2kBTBij where Bij is the (i, j) component of a matrix B,

B =
16π3µ2

φ2
0Ws


2 + α−1

1 −1

−1 2 + α−1
2 −1

−1 2 + α−1
1 −1

. . .

 , (18)

kB is the Boltzman constant and φ0 = hc/e∗ is the flux quantum. For the simulations, we

normalize the temperature by ~j1W/α1Ω2
1e
∗.

Response functions can be calculated using an external current I(t) = I0 cos(ωpumpt),

and the voltage response V (t) as discussed in Ref. 6. The voltage is related to the phase

differences by generalized Josephson relations:(
~
e∗

)
#̇„ϕ = Λ

#„

V (19)

with

Λ =


1 + 2α1 −α2

−α1 1 + 2α2 −α1

−α2 1 + 2α1 −α2

. . .

 . (20)

The average electric field for the whole junctions is Eav(t) = V (t)/(dN). The numerically

obtained response functions are plotted in Fig. 4. For an unperturbed case, the conductivity

of a linear model can be calculated analytically at T = 0,

σ(ω) =
εav

4πi

(
ω2 + iγω − ω2

Jp1

) (
ω2 + iγω − ω2

Jp2

)
ω (ω2 + iγω − ω2

t )
, (21)

where ωJp1, Jp2 are two longitudinal plasma modes

ω2
Jp1, Jp2 =

(
1

2
+ α1

)
Ω2

1 +

(
1

2
+ α2

)
Ω2

2

∓

√[(
1

2
+ α1

)
Ω2

1 −
(

1

2
+ α2

)
Ω2

2

]2

+ 4α1α2Ω2
1Ω2

2, (22)
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FIG. 4: (a) Imaginary part of conductivity, (b) A closer look of (a) near ωJp1 = 1.58, (c) loss

function, and (d) reflectivity. εav ≈ 0.25 in our unit.

and ωt is the transverse plasma mode,

ω2
t =

1 + 2α1 + 2α2

α1 + α2

(
α1Ω2

1 + α2Ω2
2

)
. (23)

Fig. 4 (a) and (b) reproduce the basic features of this analytical solution such as the diverging

behavior near ωt, and 1/ω divergence as ω � ωJp1. As the temperature increases, the latter

divergence, the signature of superconducting states, disappears around T = 1.0. Fig. 4 (c)

shows the loss function, and the two peaks correspond to the absorption peaks of two plasma

frequencies ωJp1, Jp2. Fig. 4 (d) is the reflectivity. While BCS type superconductors show

perfect reflection R ∼ 1 below the gap energy, in a layered compound R gets nearly 1 only

at very low frequencies since the screening is not perfect.

8



VI. POWER SPECTRUM FOR A LINEARIZED MODEL: GREEN’S FUNCTION

METHOD

Here we outline an approach to obtain power spectrum for a linearized model; Green’s

function method1,7,8. We consider 2N coupled parametrically driven Brownian oscillators

that obeys the linearized equations of Eq. (17).

#̈„ϕ + γ #̇„ϕ −M(t, φ) #„ϕ =
#„

ξ , (24)

where 〈ξi(t)ξj(s)〉 = 2γc2kBTBijδ(t − s), and the driving depends on the initial phase φ.

Introducing a new variable #„ϕ = #„y e−
γ
2
t, we get

#„
ÿ −M(t, φ) #„y − γ2

4
1n

#„y =
#„

ξ e
γ
2
t ≡ #„η . (25)

Now we make this second order differential equation into a first order equation by using

#„z = ( #„y ,
#„
ẏ )t. The equation of motion is found to be

#„
ż =

 0 1n

M(t, φ) + 1n
γ2

4
0

 #„z +

 0

#„η

 ≡ A(t, φ) #„z +
#„

f (t). (26)

The natural fundamental matrix Φ(t, φ) is numerically obtained by solving the equation

with the initial condition Φ(0) = 12n without the inhomogeneous term, i.e., Φ̇ = A(t, φ)Φ.

The Green’s matrix is defined as

G(t, s, φ) = Φ(t, φ)Φ−1(s, φ). (27)

Then the solution is given by1

#„z (t, φ) = Φ(t, φ) #„z (0) +

∫ t

0

G(t, s, φ)
#„

f (s)ds (28)

Going back to the original basis #„ϕ , we need to be careful that
#„
ẏ (0) =

#„
ϕ̇(0) + γ

2
#„ϕ(0).

We focus on the homogeneous case, ϕ1 = ϕ3 = ϕ5 = · · · and ϕ2 = ϕ4 = ϕ6 = · · · . The

correlation function of the 1st junction is (for t > t′)

〈ϕ1(t, φ)ϕ1(t′, φ)〉 =
4∑

i′,j′=1

[
Φ1i′(t, φ)zi′(0)Φ1j′(t

′, φ)zj′(0)

+ 2γkBT

∫ t′

0

G1i′(t, s, φ)G1j′(t
′, s, φ)B̃i′j′e

γsds
]
e−

γ
2

(t+t′), (29)
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where #„z (0) = (ϕ1(0), ϕ2(0), ϕ̇1(0) + γ
2
ϕ1(0), ϕ̇2(0) + γ

2
ϕ2(0)) and 〈fi(s)fj(s′)〉 =

2γc2kBTB̃ijδ(s− s′)eγs with

B̃ =

0 0

0 B

 . (30)

The upper limit of the integral is t′ since we now consider t > t′. In the long-time limit,

the steady state is expected to be independent of the initial condition, so we will focus on

the second term. The time translation invariance will be recovered after averaging over the

phase φ. The power spectrum at ω = 26, T = 0.6, A1 = 1.0, and A2 = 0.3 is given in Fig. 5.

We see that the spectral weights are reduced for low frequencies, while the total weights,

i.e., the sum of weights over all frequencies, are increased. This basically agrees with the

power spectrum obtained from Langevin simulations in the main text.

FIG. 5: Power spectrum of static and driven (ωpump = 26.0) cases at T = 0.6 with A1 = 1.0 and

A2 = 0.3. (a) a wide view (b) a closer view near ωJp1 = 1.58.

VII. LINEAR RESPONSE THEORY

We summarize the linear response theory for bilayer Josephson junctions that obey the

stochastic equations of motion in Eq. (17). The corresponding Fokker-Plank equation for a

probability density p( #„ϕ, #̇„ϕ, t) is

ṗ = (L0 + L1)p, (31)
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where L0 is the unperturbed part

L0 = γc2kBT
∑
ij

(
Bij

∂2

∂ϕ̇i∂ϕ̇j

)

+
∑
i

[
−ϕ̇i

∂

∂ϕi
+

∂

∂ϕ̇i

(
γϕ̇i +

c2~W
e∗

∑
j

Bijjj sinϕj

)]
,

(32)

and L1 is the perturbation by the probing current

L1(t) = −
∑
i

I0,i(t)
∂

∂ϕ̇i
. (33)

The deviation of a phase velocity from the equilibrium distributions is related to correlation

functions9

δ〈ϕ̇i〉(t) =
∑
j

∫ ∞
−∞

dsRij(t− s)I0,j(s),

Rij(t) =
1

c2kBT

∑
k

B−1
jk 〈ϕ̇i(t)ϕ̇k(0)〉,

(34)

or equivalently δ〈ϕ̇i〉(ω) =
∑

j R
ij(ω)I0,j(ω). Defining the velocity susceptibility as χij(t) =

〈ϕ̇i(t)ϕ̇j(0)〉, the total voltage difference is

#„

V (ω) =
~

e∗c2kBT
Λ−1χ(ω)B−1 #„

I0(ω). (35)

Now for the sake of simplicity we consider spatially homogeneous case. The largest contri-

bution to the voltage is from the weak junctions, so we can approximate the total voltage

across the two junctions is

V (ω) ' ~2

e∗2WkBT
χ11(ω)I(ω). (36)

Since the velocity susceptibility is connected to the coordinate susceptibility by the sim-

ple time derivative9, this formula indicates that the lower power spectrum of the current

fluctuations at low frequencies leads to a larger conductivity.

∗ Electronic address: ojunichi@physnet.uni-hamburg.de

1 A. Coddington and R. Carlson, Linear Ordinary Differential Equations (Society for Industrial

and Applied Mathematics, 1997).

11

mailto:ojunichi@physnet.uni-hamburg.de


2 L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations,

Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge (Springer Berlin Heidelberg, 2012).

3 S. Rajasekaran, E. Casandruc, Y. Laplace, D. Nicoletti, G. D. Gu, and S. R. Clark,

arXiv:1511.08378.

4 T. Koyama, J. Phys. Soc. Jpn. 71, 2986 (2002).

5 M. Machida and S. Sakai, Phys. Rev. B 70, 144520 (2004).

6 T. Koyama, J. Phys. Soc. Jpn. 70, 2114 (2001).

7 C. Zerbe, P. Jung, and P. Hänggi, Phys. Rev. E 49, 3626 (1994).

8 R. M. Mazo, J. Stat. Phys. 24, 39 (1981).

9 H. Risken and T. Frank, The Fokker-Planck Equation: Methods of Solution and Applications,

Springer Series in Synergetics (Springer Berlin Heidelberg, 1996).

10 D. van der Marel and A. A. Tsvetkov, Phys. Rev. B 64, 024530 (2001).
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