Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cilia-based flow network in the brain ventricles

MPG-Autoren
/persons/resource/persons127439

Faubel,  R.
Department of Genes and Behavior, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons173707

Westendorf,  C.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  E.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons15030

Eichele,  G.
Department of Genes and Behavior, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Faubel, R., Westendorf, C., Bodenschatz, E., & Eichele, G. (2016). Cilia-based flow network in the brain ventricles. Science, 353(6295), 176-178. doi:10.1126/science.aae0450.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002A-FF74-F
Zusammenfassung
Cerebrospinal fluid conveys many physiologically important signaling factors through the ventricular cavities of the brain. We investigated the transport of cerebrospinal fluid in the third ventricle of the mouse brain and discovered a highly organized pattern of cilia modules, which collectively give rise to a network of fluid flows that allows for precise transport within this ventricle. We also discovered a cilia-based switch that reliably and periodically alters the flow pattern so as to create a dynamic subdivision that may control substance distribution in the third ventricle. Complex flow patterns were also present in the third ventricles of rats and pigs. Our work suggests that ciliated epithelia can generate and maintain complex, spatiotemporally regulated flow networks.