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ABSTRACT
Binary neutron star (BNS) mergers are the leading model to explain the phenomenology of short gamma-ray
bursts (SGRBs), which are among the most luminous explosions in the universe. Recent observations of long-
lasting X-ray afterglows of SGRBs challenge standard paradigms and indicate that in a large fraction of events a
long-lived neutron star (NS) may be formed rather than a black hole. Understanding the mechanisms underlying
these afterglows is necessary in order to address the open questions concerning the nature of SGRB central
engines. However, recent theoretical progress has been hampered by the fact that the timescales of interest
for the afterglow emission are inaccessible to numerical relativity simulations. Here we present a detailed
model to bridge the gap between numerical simulations of the merger process and the relevant timescales
for the afterglows, assuming that the merger results in a long-lived NS. This model is formulated in terms
of a set of coupled differential equations that follow the evolution of the post-merger system and predict its
electromagnetic (EM) emission in a self-consistent way, starting from initial data that can be extracted from
BNS merger simulations and taking into account the most relevant radiative processes. Moreover, the model
can accomodate the collapse of the remnant NS at any time during the evolution as well as different scenarios
for the prompt SGRB emission. A second major reason of interest for BNS mergers is that they are considered
the most promising source of gravitational waves (GWs) for detection with the advanced ground-based detector
network LIGO/Virgo coming online this year. Multimessenger astronomy with joint EM and GW observations
of the merger and post-merger phase can greatly enhance the scientific output of either type of observation.
However, the actual benefit depends on whether a suitable EM counterpart signal to the GW emission can be
identified (ideally bright, isotropic, long-lasting, and associated with a high fraction of BNS merger events).
The model presented here allows us to search for such counterparts, which carry the signature of a long-lived
remnant NS. The present paper is devoted to a detailed discussion of the formulation and implementation of the
model. In a companion paper, we employ this model to predict the EM emission from ∼10−2 to ∼107 s after
a BNS merger, considering a wide range of physical parameters, and discuss the implications in the context of
SGRBs and multimessenger astronomy.
Keywords: gamma-ray burst: general — gravitational waves — pulsars: general — radiation mechanisms:

general — stars: magnetars — stars: neutron

1. INTRODUCTION

The coalescence of binary neutron stars (BNS) represents
the most promising source of gravitational waves (GWs)
for the detection with ground-based interferometric detectors
such as advanced LIGO and Virgo (Harry et al. 2010; Acca-
dia et al. 2011). At the same time, BNS mergers are respon-
sible for observable electromagnetic (EM) emission that car-
ries complementary information on the source and that can
be combined with the GW detection to significantly enlarge
the scientific output. As an independent observational chan-
nel, EM signals provide positional and temporal information
that can enhance the search sensitivity of the GW detectors
and lead to GW detections (e.g., Abadie et al. 2012b; Aasi
et al. 2014; Williamson et al. 2014; Clark et al. 2014). In-
versely, EM follow-up observations triggered by a GW de-
tection can confirm the astrophysical origin of the event (e.g.,
Evans et al. 2012; Abadie et al. 2012a; Singer et al. 2014),
provided a suitable, characteristic EM counterpart signal can
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be identified with the merger and/or post-merger phase of the
evolution of the BNS system. In addition, EM counterparts
can constrain physical properties of the BNS merger remnant
and its dynamics that cannot be probed by GW observations
(e.g., magnetic fields, mass ejection). In the case of a confi-
dent GW detection, important contraints on the source prop-
erties, the EM emission mechanisms, and the energetics in-
volved can be obtained even from a non-detection of an EM
counterpart. Moreover, detecting such EM signals could sig-
nificantly improve the sky localization of the source and thus
the identification of the host galaxy, allowing for two indepen-
dent measurements of the redshift and the Hubble constant
(e.g., Schutz 1986; Metzger & Berger 2012; Berger 2014).
Furthermore, joint EM and GW observations can reveal im-
portant information on when and how short gamma-ray bursts
(SGRBs) can be produced in BNS mergers. In particular, they
can verify or falsify the recently proposed ‘time-reversal’ sce-
nario for SGRBs and possibly provide a very accurate method
to determine the lifetime of a remnant NS and to place strong
constraints on the unknown equation of state of nuclear matter
at high densities (Ciolfi & Siegel 2015b,a). With the advanced
LIGO/Virgo detector network starting their first science runs
later this year, such multimessenger astronomy will become
reality in the very near future. The actual benefit of joint GW
and EM observations, however, depends on our knowledge of
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the expected EM signals associated with BNS mergers and
the underlying physical mechanisms, which are still poorly
understood. Therefore, a deeper understanding of these EM
signals is urgently needed.

BNS mergers are commonly considered the leading sce-
nario to explain the phenomenology of SGRBs (e.g., Paczyn-
ski 1986; Eichler et al. 1989; Narayan et al. 1992; Barthelmy
et al. 2005; Fox et al. 2005; Gehrels et al. 2005; Shibata et al.
2006; Rezzolla et al. 2011; Paschalidis et al. 2015). Currently,
very strong evidence for the association of SGRBs with BNS
or neutron star–black hole (NS–BH) mergers comes from the
recent detection of possible radioactively powered kilonova
events (e.g., Li & Paczyński 1998; Kulkarni 2005; Rosswog
2005; Metzger et al. 2010; Tanvir et al. 2013; Berger et al.
2013; Yang et al. 2015). While this is still a matter of de-
bate, joint EM and GW observations will provide a power-
ful tool to unambiguously confirm the association of SGRBs
with compact object coalescence. For this reason, the prompt
γ-ray emission of SGRBs lasting less than ≈ 2 s has so far
been the prime target of studies on joint EM and GW obser-
vations (e.g., Evans et al. 2012; Abadie et al. 2012a; Singer
et al. 2014; Abadie et al. 2012b; Aasi et al. 2014; Williamson
et al. 2014; Clark et al. 2014).

Nevertheless, the SGRB prompt emission is thought to be
collimated and will thus be beamed away from the observer
in most cases (see Berger 2014 for an overview of observa-
tions to date; see also Section 7 of Siegel & Ciolfi 2015a).
During many years of observations, including the 10 years
of operation of the Swift satellite (Gehrels et al. 2004), no
SGRB with known redshift has been detected within the sen-
sitivity volume of advanced LIGO/Virgo. Furthermore, joint
EM and GW observations are so far based on the assumption
that the EM and the GW signals are characterized by a rela-
tive time lag of at most a few seconds. However, the details of
how the prompt emission in SGRBs is generated still remain
unclear, and the burst could, e.g., be generated a long time
(∼ 102 − 104 s) after the merger (Ciolfi & Siegel 2015b,a).
In the latter case, joint observations focusing on a time win-
dow of a few seconds around the time of merger would miss
the SGRB. Likewise, focusing on a time lag of a few sec-
onds around a detected SGRB could lead to a non-detection
of GW emission. Hence, when assuming coincidence within
a short time window around the time of merger, one has to
be cautious when drawing astrophysical conclusions in either
case. Finally, even if a SGRB is observed in coincidence with
a GW signal, such an observation alone will unlikely be able
to distinguish between a BNS and a NS–BH merger, as the
SGRB emission is expected to be very similar for both pro-
genitor models (see below). It is therefore important to iden-
tify bright, long-lasting and highly isotropic EM counterparts
that are produced in a high fraction of events and that can dis-
tinguish between a BNS and a NS–BH progenitor system.

A standard model to explain the generation of the SGRB
prompt emission in BNS and NS–BH mergers is an accre-
tion powered relativistic jet from a BH–torus system that is
formed soon (. 10 − 100 ms) after merger (e.g., Narayan
et al. 1992; Shibata et al. 2006; Rezzolla et al. 2011; Pascha-
lidis et al. 2015). This accretion process and the resulting
energy release cease once the torus has been accreted on a
timescale of at most one second, which is consistent with
the typical timescale of the prompt SGRB emission (. 2 s).
However, recent observations by the Swift satellite have re-
vealed long-lasting X-ray afterglows in a large fraction of
SGRB events that are indicative of ongoing energy ejection

on much longer timescales up to ∼ 104 s (Rowlinson et al.
2013; Gompertz et al. 2013, 2014; Lü et al. 2015). Even
considering that the interaction of the jet with the interstellar
medium might produce an afterglow signal lasting longer than
the accretion timescale, persistent emission with a duration of
∼104 s remains difficult to explain within this BH–torus sce-
nario (Kumar & Zhang 2015 and referecnes therein). A pos-
sible alternative is that a large fraction of BNS mergers lead
to the formation of a stable or at least sufficiently long-lived
NS rather than a BH–torus system (e.g., Zhang & Mészáros
2001; Metzger et al. 2008; Rowlinson et al. 2010; Bucciantini
et al. 2012; Rowlinson et al. 2013; Gompertz et al. 2013; Lü
et al. 2015). Such a long-lived NS can power ongoing en-
ergy ejection on the relevant timescales via loss of rotational
energy. This is a clearly distinctive feature of BNS mergers
as opposed to NS–BH mergers, which cannot produce a rem-
nant NS. NS–BH mergers are thus challenged as a progenitor
model for at least a large class of SGRBs.

The formation of a long-lived NS is indeed a very likely
outcome of a BNS merger. The merger product depends on
the masses of the two progenitor NSs and the equation of state
of nuclear matter at high densities, which is unknown. Recent
observations of high-mass NSs (Demorest et al. 2010; Anto-
niadis et al. 2013) indicate a maximum gravitational mass for
stable NSs of MTOV & 2 M�. However, NSs with masses
M > MTOV can be centrifugally supported against gravita-
tional collapse by uniform rotation up to the mass-shedding
limit, which is known as the supramassive regime. This re-
sults in a maximum mass for uniformly rotating configura-
tions of Msupra ≈ 1.2MTOV & 2.4 M� (Lasota et al. 1996).
Furthermore, the distribution of NSs in binary systems is
sharply peaked around 1.3 − 1.4 M�, with the first born NS
slightly more massive than the second one; this leads to a typ-
ical remnant NS mass of≈2.3−2.4 M� when accounting for
neutrino losses and mass ejection (Belczynski et al. 2008).
Progenitors of lighter NSs are much more abundant than pro-
genitors for massive NSs, and population synthesis calcula-
tions show that 99% of all BNS mergers should lead to a rem-
nant mass between ≈ 2.2 − 2.5 M� (Belczynski et al. 2008).
Hence, the most likely product of a BNS merger should be
a supramassive NS. Depending on MTOV there might also be
a significant fraction of stable NSs. Furthermore, some BNS
mergers would lead to a slightly hypermassive NS (i.e., above
the maximum mass supported by uniform rotation), which,
however, could still migrate to a supramassive configuration
through subsequent mass loss (cf. Section 4.1). Only a small
fraction of BNS mergers should promptly form a BH–torus
system as assumed in the standard model.

EM emission from a long-lived remnant NS when applied
to a large class of X-ray afterglows of SGRBs has so far been
modeled in a simple way as dipole spin-down emission from
a uniformly rotating magnetar (e.g., Rowlinson et al. 2013;
Gompertz et al. 2013; Lü et al. 2015). This model assumes
an instantaneous and direct conversion of spin-down lumi-
nosity Lsd into observed X-ray luminosity LX by some un-
specified process, Lsd ∝ LX , and consists of a simple an-
alytically specified formula to fit the X-ray lightcurves. In
particular, it does not take into account baryon pollution due
to dynamical mass ejection and subsequent neutrino and mag-
netically driven winds (e.g., Hotokezaka et al. 2013; Oechslin
et al. 2007; Bauswein et al. 2013; Kastaun & Galeazzi 2015;
Dessart et al. 2009; Siegel et al. 2014; Metzger & Fernández
2014), which leads to a much more complex post-merger evo-
lution (see, however, Metzger et al. 2008; Bucciantini et al.
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2012). Based on a simple dynamical model, Yu et al. (2013)
and Gao et al. (2015) have investigated EM emission from a
long-lived millisecond magnetar surrounded by an envelope
of previously ejected matter, finding a late-time brightening
(termed “magnetar-driven macro-nova” ) consistent with the
optical and X-ray (re)brightening of GRB 080503. Based on
a refined physical model, Metzger & Piro (2014) have investi-
gated the evolution of a stable millisecond magnetar in a sim-
ilar setup and reported late-time brightenings of the luminos-
ity in the optical and X-ray band, compatible with features
observed in GRB 080503 and GRB 130603B (see Section 6
for a comparison of these previous models to ours). Accu-
rately modeling the EM emission from a long-lived remnant
NS is challenging because of the complex physics involved
(baryon pollution, thermal effects, neutrino emission, strong
magnetic fields with complex structure, strong differential ro-
tation) and the wide range of timescales involved (from ms
to days after the merger). While the early post-merger phase
and thus the generation of the prompt SGRB emission can
be probed by numerical relativity simulations, such typical
timescales for EM afterglows are inaccessible to those simu-
lations. On the other hand, semi-analytical modeling has so
far concentrated on computing EM emission in the late-time
regime (∼103 − 106 s after merger; Yu et al. 2013; Gao et al.
2013; Metzger & Piro 2014; Gao et al. 2015).

Here and in a companion Paper (Siegel & Ciolfi 2015a,
henceforth Paper II), we consider the likely case of a long-
lived NS remnant and provide a dynamical model to self-
consistently compute the EM emission of the post-merger sys-
tem based on some initial data that can be extracted from
a numerical relativity simulation tens of milliseconds after
the merger. This model thus bridges the gap between the
short timescales accessible to numerical relativity simulations
and the timescales of interest for EM afterglow radiation as
recorded by satellite missions like Swift. We note that our
model does not include the EM emission associated with the
formation of a relativistic jet, which can be added to the EM
signal predicted here. The model is very general and should
be applicable to any BNS merger that leads to the formation of
a long-lived NS. As we have argued above, this should cover
the vast majority of BNS merger events. Therefore, our model
represents an important tool to study and identify promising
EM counterparts of BNS mergers for coincident EM and GW
observations as discussed above and to investigate the nature
of long-lasting X-ray afterglows observed in a large fraction
of SGRB events. The present paper is devoted to a detailed
discussion of the physical model and its numerical implemen-
tation. In Paper II, we apply the model to a large number of
possible long-lived BNS merger remnants, employing a wide
range of physical input parameters. Our results and their as-
trophysical implications are discussed in Paper II.

This paper is organized as follows. Section 2 describes
the phenomenology underlying our evolution model. In Sec-
tion 3, we provide a brief summary of the model, which is
formulated in terms of sets of highly coupled ordinary differ-
ential equations. The subsequent section describes the ingre-
dients to these equations in detail. In Section 5, we discuss
some numerical aspects for integrating the model equations
and, in particular, present a scheme to reconstruct the observer
lightcurves and spectra including relativistic beaming, the rel-
ativistic Doppler effect and the time-of-flight effect. Section 6
is devoted to discussion and conclusions. Several appendices
are added to streamline the discussion in the main part of the
paper.

2. PHENOMENOLOGY

This section is intended to provide a conceptual outline of
the phenomenology our evolution model is built upon. We as-
sume that a BNS merger leads to the formation of a long-lived
NS and divide the post-merger evolution into three phases: an
early baryonic-wind phase (Phase I; t . 1 − 10 s), a pulsar
wind shock phase (Phase II; t ∼ 10 s), and a pulsar wind
nebula (PWN) phase (Phase III; ∼ 10 s . t . 107 s). These
evolution phases are depicted in Figure 1. Our model provides
a self-consistent dynamical evolution once the physical prop-
erties of the system in the early post-merger phase are speci-
fied. These properties can be extracted or estimated from BNS
merger simulations in general relativity. In particular, we start
the evolution at a few to tens of milliseconds after the BNS
merger, once a roughly axisymmetric state of the remnant NS
has been reached and the strong GW emission characterizing
the merger phase has been severely damped.

In our reference scenario, Phase I starts with a supramassive
NS, which is a very likely outcome of a BNS merger (see Sec-
tion 1). Nevertheless, the phenomenology described here also
applies if the NS is stable or if its mass is only slightly above
the hypermassive limit, provided that in the latter case the star
enters the supramassive regime through additional mass loss
before collapsing to a black hole (see below).

The newly-born NS is differentially rotating and endowed
with strong magnetic fields (up to magnetar field strengths)
due to compression of the two progenitor stars and magnetic
field amplification mechanisms acting during the merger, such
as the Kelvin-Helmholtz instability (e.g., Price & Rosswog
2006; Zrake & MacFadyen 2013; Giacomazzo et al. 2015).
Moreover, further amplification occurs during Phase I, i.e.,
as long as differential rotation is active, via magnetic wind-
ing and possibly the magnetorotational instability (e.g., Duez
et al. 2006; Siegel et al. 2013; Kiuchi et al. 2014). These latter
mechanisms are likely to dominate the removal of differential
rotation itself, which occurs on the timescale tdr. In this case,
tdr is roughly given by the Alfén timescale and can be as long
as tdr ∼ 1 − 10 s for the objects considered here, depending
on the initial magnetic field strength (Shapiro 2000).

At birth, the remnant star is already surrounded by material
dynamically ejected during or shortly after the merger, with a
total mass of up to Mej . 10−3 M� (e.g., Hotokezaka et al.
2013; Bauswein et al. 2013; Kastaun & Galeazzi 2015; see the
discussion in Section 4.1). However, additional mass ejection
is expected to take place during Phase I, which can even domi-
nate over this early dynamical outflow in terms of total ejected
mass. One main mass ejection mechanism results from mag-
netic field amplification in the stellar interior, which causes a
build-up of magnetic pressure in the outer layers of the star.
This pressure rapidly overcomes the gravitational binding at
the stellar surface, launching a strong baryon-loaded magne-
tized wind (Siegel et al. 2014; Siegel & Ciolfi 2015c). Fur-
thermore, substantial mass loss can be caused by neutrino-
induced winds over typical timescales for neutrino cooling of
tν . 1 s (Dessart et al. 2009). For both mechanisms, i.e.,
magnetically and neutrino-induced winds, we expect highly
isotropic mass ejection. The material ejected from the NS sur-
face is typically hot with temperatures of up to tens of MeV
(Siegel et al. 2014; Kastaun & Galeazzi 2015), while further
energy is carried by the wind in the form of a strong Poynt-
ing flux (Siegel et al. 2014). These winds transport material
outward at speeds of at most vej,in . 0.1c, creating a hot and
optically thick environment. EM emission from these radi-
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Figure 1. Evolution of the system according to the proposed scenario (with
increasing spatial scale). A BNS merger (top left) forms a differentially ro-
tating NS that emits a baryon-loaded wind (Phase I). The NS eventually set-
tles down to uniform rotation and inflates a pulsar wind nebula (or simply
‘nebula’) that sweeps up all the ejecta material into a thin shell (Phase II).
Spin-down emission from the NS continues while the nebula and the ejecta
shell keep expanding (Phase III).

ally expanding winds is expected to be predominantly ther-
mal, due to the very high optical depths at these early times.
However, because of the high optical depth, radiative energy
loss is still rather inefficient.

As differential rotation is being removed on the timescale
tdr, the NS settles down to uniform rotation. Mass loss is
suppressed and while the ejected matter keeps moving out-
ward the density in the vicinity of the NS is expected to
drop on roughly the same timescale. In the resulting essen-
tially baryon-free environment the NS can set up a pulsar-like

magnetosphere. Via dipole spin-down, the NS starts power-
ing a highly relativistic, Poynting-flux dominated outflow of
charged particles (mainly electrons and positrons; see Sec-
tion 4.2.1) or ‘pulsar wind’ at the expense of rotational en-
ergy. This occurs at a time t = tpul,in and marks the beginning
of Phase II.

The pulsar wind inflates a PWN behind the less rapidly ex-
panding ejecta, a plasma of electrons, positrons and photons
(see Section 4.3.1 for a detailed discussion). As this PWN is
highly overpressured with respect to the confining ejecta en-
velope, it drives a strong hydrodynamical shock into the fluid,
which heats up the material upstream of the shock and moves
radially outward at relativistic speeds, thereby sweeping up all
the material behind the shock front into a thin shell. During
this phase the system is composed of a NS (henceforth “pul-
sar” in Phase II and III) surrounded by an essentially baryon-
free PWN and a layer of confining ejecta material. The prop-
agating shock front separates the ejecta material into an in-
ner shocked part and an outer unshocked part (cf. Figure 1
and 2). While the shock front is moving outward across the
ejecta, the unshocked matter layer still emits thermal radia-
tion with increasing luminosity as the optical depth decreases.
Initially, the expansion of the PWN nebula is highly rela-
tivistic and decelerates to non-relativistic speeds only when
the shock front encounters high-density material in the outer
ejecta layers. The total crossing time for the shock front is
typically ∆tshock = tshock,out − tpul,in � tpul,in, where tshock,out
denotes the time when the shock reaches the outer surface. At
this break-out time, a short burst-type non-thermal EM signal
could be emitted that encodes the signature of particle accel-
eration at the shock front.

Phase III starts at t = tshock,out. At this time, the entire ejecta
material has been swept up into a thin shell of thickness ∆ej
(which we assume to be constant during the following evo-
lution) that moves outward with speed vej (cf. Figure 2). In
general, this speed is higher than the expansion speed of the
baryon-loaded wind in Phase I (vej,in), as during shock prop-
agation kinetic energy is deposited into the shocked ejecta.
Rotational energy is extracted from the pulsar via dipole spin-
down and it is reprocessed in the PWN via various radiative
processes in analogy to pair plasmas in compact sources, such
as active galactic nuclei (see Section 4.3.1 for a detailed dis-
cussion). Radiation escaping from the PWN ionizes the ejecta
material, which thermalizes the radiation due to the optical
depth still being very high. Only at much later times the ejecta
layer eventually becomes transparent to radiation from the
nebula, which gives rise to a transition from predominantly
thermal to non-thermal emission spectra. We note that for
reasons discussed in Section 5.6, the total luminosity of the
system shows the characteristic ∝ t−2 behavior for dipole
spin-down at late times t � tsd, where tsd is the spin-down
timescale. However, when restricted to individual frequency
bands, the late time behavior of the luminosity can signifi-
cantly differ from a ∝ t−2 power law.

As the NS is most likely not indefinitely stable against grav-
itational collapse, it might collapse at any time during the evo-
lution outlined above (see Section 4.4). If the NS is supramas-
sive, the collapse is expected to occur within timescales of
the order of ∼ tsd, for the spin-down timescale represents the
time needed to remove a significant fraction of the rotational
energy from the NS and thus of its rotational support against
collapse. For typical parameters, the collapse occurs in Phase
III. However, if the NS is hypermassive at birth and does not
migrate to a supramassive configuration thereafter, it is ex-
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Figure 2. Left: Phase II of the evolution. The high pressure of the pulsar wind nebula (‘nebula’) powered by the spinning-down NS drives a strong shock through
the ejecta with speed vsh, thereby compressing, heating and accelerating the material. Right: Phase III of the evolution. The ejecta material of mass Mej has
been entirely swept up by the shock into a thin layer of thickness ∆ej moving outward at speed vej, while the spinning-down NS keeps injecting energy into the
optically thick pulsar wind nebula.

pected to collapse already in Phase I (i.e., on the timescale for
removal of differential rotation). Moreover, even a supramas-
sive NS can collapse on timescales shorter than ∼ tsd, if the
collapse is induced by a (magneto-)hydrodynamic instability.

Assuming that a SGRB and its afterglows are produced by
a BNS system merging into a long-lived NS, the prompt burst
can be associated either with the merger itself or with the de-
layed collapse of the remnant NS, as in the recently proposed
‘time-reversal’ scenario (Ciolfi & Siegel 2015b,a; see Rez-
zolla & Kumar 2015 for an alternative proposal). Both sce-
narios can be accommodated by the framework of our model.
In the former case, the lightcurves and spectra we predict after
the time of merger represent a model for the observed after-
glows. In the latter case, only the emission that follows the
collapse should be directly compared with the observed after-
glows. Predictions for both scenarios are discussed in detail
in the companion paper (Paper II).

3. EVOLUTION EQUATIONS

According to the three main evolution phases discussed in
Section 2, our model consists of three sets of coupled ordinary
differential equations (ODEs), which we think capture the
main physical ingredients to describe the dynamical evolution
and EM emission of the post-merger system. These ODEs
assume spherical symmetry and they are formulated in terms
of main evolution quantities, such as the extent of certain
dynamical structures (e.g., the bayon-loaded wind, the PWN
and the ejecta shell) and their associated energy budgets. In
summary, the evolution equations we consider are as follows
(see Table 1 and Figure 2 for definitions of variables):

Phase I: baryon-loaded wind

dRej

dt
= vw(Rej(t), t) (1)

dEth

dt
=LEM(t) +

dEth,NS

dt
− Lrad(t) (2)

Phase II: pulsar wind shock

dRej

dt
= vw(Rej(t), t) (3)

dRsh

dt
= vsh(t) (4)

dRn

dt
=

dRsh

dt
− d∆sh

dt
(5)

dEth,sh

dt
=

dEsh

dt
+

dEth,vol

dt
+

dEPWN

dt
− Lrad,in(t) (6)

dEth,ush

dt
=−dEth,vol

dt
− Lrad(t) (7)

dEth

dt
=

dEth,sh

dt
+

dEth,ush

dt
(8)

dEnth

dt
=−Enth

Rn

dRn

dt
− dEPWN

dt

+Lrad,in(t) + ηTS[Lsd(t) + Lrad,pul(t)] (9)
dEB
dt

= ηBn [Lsd(t) + Lrad,pul(t)] (10)

Phase III: pulsar wind nebula

dvej

dt
=aej(t) (11)

dRej

dt
= vej(t) +

1

2
aej(t)dt (12)

dRn

dt
=

dRej

dt
(13)

dEth

dt
= [1− fej(t)]

dEPWN

dt
− Lrad(t)− Lrad,in(t) (14)

dEB
dt

= ηBn [Lsd(t) + Lrad,pul(t)] (15)

Equations (1) and (2) are supplemented with a model to
describe the baryonic wind emitted from the NS during this
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Table 1
Definition of lab-frame quantities.

Quantity Description
t time
Rej outer radius of the ejected matter
Rn radius of the PWN (Phase II, III)
Rsh radial location of the pulsar wind shock front (Phase II)

vw(r, t) velocity profile of the baryon-loaded wind (Phase I, II;
cf. Section 4.1.1, Equation (30))

vej,in initial expansion speed of the baryonic ejecta material
(cf. Section 4.1.1, Equation (19))

vsh velocity of the pulsar wind shock front (Phase II; cf. Equa-
tion (58))

vej velocity of the ejecta shell in Phase III (cf. Equation (95))
aej acceleration of the ejecta shell in Phase III (cf. Equation (95))
∆sh radial thickness of the shocked ejecta shell in Phase II

(cf. Section 4.2.3)
∆ej radial thickness of the ejecta shell in Phase III (cf. Sec-

tion 4.3)
fej function to smoothly ‘switch on/off’ terms as the ejecta ma-

terial becomes optically thin (cf. Equation (102))
Eth internal energy stored in the ejecta material, available to be

emitted as thermal radiation
Eth,sh internal energy stored in the shocked ejecta matter (Phase II)
Eth,ush internal energy stored in the unshocked ejecta matter (Phase

II)
Enth internal energy of the PWN
EB magnetic energy of the PWN

dEth,NS/dt internal energy injected from the NS into the baryon-loaded
wind per unit time (Phase I; cf. Equation (33))

dEsh/dt energy deposited in the shocked ejecta material by shock
heating per unit time (cf. Equation (63))

dEth,vol/dt total internal energy of unshocked ejecta in the volume swept
up by the shock front per unit time (cf. Equation (62))

dEPWN/dt total energy emitted by the PWN per unit time (Phase II, III;
cf. Equations (57) and (92))

LEM EM energy deposited in the baryon-loaded wind per unit time
(Phase I; cf. Equation (32))

Lrad luminosity of thermal radiation from the outer surface of the
ejected material (cf. Equations (34), (74), and (100))

Lrad,in luminosity of thermal radiation from the ejected material ra-
diated toward the interior (Phase II,III; cf. Equations (73) and
(101))

Lrad,pul luminosity of thermal radiation from the NS surface (Phase
II,III; cf. Equation (51))

Lsd spin-down luminosity of the pulsar (Phase II, III; cf. Equa-
tion (48))

ηBn fraction of the total pulsar wind power injected as magnetic
energy per unit time into the PWN (cf. Sections 4.2.2 and
4.3.1)

ηTS efficiency of converting pulsar wind power into random ki-
netic energy of accelerated particles in the PWN (cf. Equa-
tions (9), (76) and Sections 4.2.2, 4.3.1)

phase (see Section 4.1.1). Furthermore, Equations (11)–(15)
are supplemented with Equations (78) and (79), which model
the radiative processes inside the PWN and which need to be
solved at every time step of the evolution equations to deter-
mine the source term dEPWN/dt and the emission spectrum
of the nebula.

The above evolution equations are formulated in the rest
frame of the merger remnant (henceforth the “lab frame”;
see also Appendix B). The various terms appearing in Equa-
tions (1)–(15) are motivated and discussed in detail in Sec-
tion 4.

4. INGREDIENTS

4.1. Phase I: baryon-loaded wind
Phase I starts with a differentially rotating NS that generates

a baryon-loaded wind, either due to a very strong magnetiza-
tion of the stellar interior (Siegel et al. 2014) and/or as the re-
sult of neutrino emission from the stellar interior (e.g., Dessart
et al. 2009). This wind can be treated as roughly spherically

symmetric at distances r & Rmin = 30 km (cf., e.g., Siegel
et al. 2014; Siegel & Ciolfi 2015c), which we define as our
inner spatial boundary of the evolution model.

Such a magnetically and/or neutrino-induced wind is likely
to dominate baryon pollution around the newly-formed NS on
the timescales of interest. Dynamical ejecta originating from
the tidal tails during the merger process will be ejected mostly
into the equatorial plane and move away from the merger site
with high (mildly relativistic) velocities (e.g., Davies et al.
1994; Rosswog et al. 2013; Oechslin et al. 2007; Hotokezaka
et al. 2013; Bauswein et al. 2013). They are thought to
undergo r-process nucleosynthesis and to possibly power a
macronova (aka a kilonova; e.g., Li & Paczyński 1998; Met-
zger et al. 2010; Barnes & Kasen 2013; Piran et al. 2013;
Tanaka & Hotokezaka 2013). The more isotropic dynami-
cal ejection originating from shock heating at the contact in-
terface during collision of the NSs and aided by radial oscil-
lations of the double-core structure of the newly-formed NS
immediately after merger (Hotokezaka et al. 2013; Bauswein
et al. 2013; Kastaun & Galeazzi 2015) only lasts for a few mil-
liseconds and is thus unlikely to dominate baryon pollution on
the much longer timescales relevant here. Such a component
can, however, be accounted for in our wind model by, e.g.,
tuning the mass ejection rate Ṁ (see below).

4.1.1. Wind model

In order to avoid performing expensive hydrodynamical
simulations, we describe the generation and evolution of
the baryon-loaded wind by a simple one-dimensional model.
In particular, we assume that there are no hydrodynamical
shocks being formed in the wind. The assumption of spherical
symmetry is motivated by recent three-dimensional magne-
tohydrodynamic simulations in general relativity, which have
shown that for the most realistic magnetic field configurations,
such a wind will be highly isotropic (Siegel et al. 2014; Siegel
& Ciolfi 2015c). Our simple approach is furthermore justified
by the fact that the exact details of modeling this wind only
have a minor influence on the final predictions of our model,
such as the lightcurves, as the pulsar nebula shock eventually
sweeps up all the material into a thin shell in Phase II.

It is conceivable to assume that a fluid element of the wind
ejected from the NS at time t moves outward with a constant
velocity v(r, t) = v(t), once it has climbed up the gravita-
tional potential of the NS after a few tens of kilometers. Mass
conservation requires v(r, t) = Ṁ(t)/4πr2ρ(r, t), where ρ
denotes the rest-mass density and Ṁ(t) the mass injection
rate into the wind. Hence, in order to satisfy v(r, t) = v(t),
ρ(r, t) = A(t)/r2 for matter ejected at time t. This assump-
tion is also supported by recent general-relativistic magneto-
hydrodynamic simulations of magnetically driven winds that
yielded a ρ ∝ r−2 density profile and constant ejection veloc-
ities for a constant Ṁ over the timescale of tens of millisec-
onds (Siegel et al. 2014; Siegel & Ciolfi 2015c).

While differential rotation is being removed on a timescale
tdr, i.e., the gradient of the angular frequency decays as

|∇Ω| ∝ exp(−t/tdr), (16)

we also expect that the mass ejection rate, therefore the den-
sity profile, and the ejection speed decay on roughly similar
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timescales:

Ṁ(t) = Ṁin exp(−σM t/tdr), (17)
A(t) =Ain exp(−σρt/tdr), (18)
v(t) = vej,in exp(−σvt/tdr), (19)

where σM , σρ, σv are of the order of one. This set of assump-
tions satisfies the ‘no-shocks-requirement’ and immediately
yields for the outer radius of the wind:

Rej(t) = Rmin + vej,int. (20)

Equations (17)–(19) only apply for a magnetically driven
wind (Siegel et al. 2014). However, typical values for tdr .
1 s agree well with typical neutrino cooling timescales, such
that a neutrino-driven wind can be additionally incorporated
in the model by tuning Ṁin. We note that even for mod-
erate magnetic field strengths and realistic rotation periods
of the NS the magnetically driven wind can easily exceed
mass loss rates of a few in 10−3 M� s−1 and thus dominate
over the other ejection mechanisms. If the neutrino cooling
timescale is very different from tdr the situation could be dif-
ferent. However, as the pulsar wind shock eventually sweeps
up all the ejecta material into a thin shell, the following evo-
lution will mostly depend on the total amount of emitted ma-
terial Mej ∝ Ṁintdr. Hence, by varying tdr and Ṁin the above
model for mass ejection can effectively also accommodate a
dominant neutrino-induced wind.

Simple scaling arguments can fix two of the free parame-
ters σM , σρ, σv that control the decay timescales relative to
tdr. Magnetic winding in the stellar interior converts rota-
tional energy into magnetic energy (mostly into toroidal field
strength) at a rate∝ |∇Ω|2 (e.g., Duez et al. 2006; Siegel et al.
2013). This magnetic energy is then available to be dissipated
into kinetic and EM energy of a wind driven by the built-up
of magnetic pressure in the stellar interior (Siegel et al. 2014).
Consequently,

1

2
Ṁv2 + LEM ∝ |∇Ω|2, (21)

where LEM denotes the EM luminosity corresponding to the
Poynting flux carried by the wind (cf. also Section 4.1.2).
From Equations (16) and (21) we conclude that LEM ∝
exp(−σLt/tdr), with σL = 2, and

σM + 2σv = 2. (22)

At r = Rmin, we also need to satisfy v(t) =

Ṁ(t)/4πρ(Rmin, t)R
2
min. Using Equations (17)–(19), this

yields
σM = σρ + σv (23)

and Ain = Ṁin/4πvej,in. According to Equations (22) and
(23), only one σ-parameter can be chosen independently. The
additional requirement of σM , σρ, σv all being non-negative
limits these parameters to the following ranges:

σM ∈ [1, 2] (24)
σρ ∈ [0.5, 2] (25)
σv ∈ [0, 0.5]. (26)

In order to compute the density profile ρ(r, t) of the wind
resulting from the mass ejection model (17)–(19), we first
compute the total mass contained in a volume of radius r at

time t,

mw(r, t) =

∫ t

t̄(r)

Ṁ(t′) dt′ (27)

=
tdr

σM
Ṁin

[
exp

(
−σM

t̄(r, t)

tdr

)
−exp

(
−σM

t

tdr

)]
,

where t̄(r, t) denotes the time a fluid element at r and t was
sent out from the inner boundary at r = Rmin, i.e., t̄ is deter-
mined by r = v(t̄)(t− t̄) +Rmin, or, equivalently,

(t− t̄) exp

(
−σv

t̄

tdr

)
− r −Rmin

vej,in
= 0. (28)

It is straightforward to show that Equation (28) has exactly
one root in [0, t], such that t̄(r, t) is well defined. At any time
t the density profile of the wind is then given by

ρw,t(r) =
1

4πr2

∂mw(r, t)

∂r
. (29)

The corresponding velocity profile is

vw(r, t) = vej,in exp

(
−σv

t̄(r, t)

tdr

)
(30)

and the total amount of ejected mass at time t is given by

Mej(t) =mw(Rej(t), t)

=
tdr

σM
Ṁin

[
1− exp

(
−σM

t

tdr

)]
. (31)

4.1.2. Properties of the ejected matter

Injection of electromagnetic energy — The wind will be en-
dowed with a Poynting flux of luminosity (see Siegel et al.
2014 and Section 4.1.1)

LEM(t) ' 1048

(
B̄

1015 G

)2(
Re

106 cm

)3(
Pc

10−4 s

)−1

× exp

(
−σL

t

tdr

)
erg s−1, (32)

where σL = 2. While tdr is a free parameter of our model, the
total magnetic field strength in the outer layers of the NS, B̄,
the equatorial radius Re, as well as the central spin period Pc
of the differentially rotating NS can be extracted from numer-
ical relativity simulations. The wind itself is highly turbulent
in the vicinity of the NS (Siegel et al. 2014) and magnetic dis-
sipation will therefore be very effective. We assume that this
Poynting flux is dissipated and thermalized in the ejecta mat-
ter (due to the very high optical depth) on the timescales of
interest, such that this energy is trapped and thus appears as a
source term in Equation (2).

Injection of thermal energy — The material ejected from the
NS surface as probed by numerical relativity simulations typ-
ically has a very high specific internal energy εej,NS,in that cor-
responds to a temperature Tej,NS,in of the order of tens of MeV
(e.g., Siegel et al. 2014; Kastaun & Galeazzi 2015). We there-
fore source the internal energy of the ejected material in Equa-
tion (2) by the corresponding injection rate

dEth,NS

dt
= εej,NS,inṀin exp

(
−σM

t

tdr
− t

tν

)
, (33)

where we have assumed that the NS matter cools down due to
neutrino cooling on a timescale tν .
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Thermal radiation from the wind — Due to the very high optical
depth of the wind material, the radiation originating from the
surface of the expanding wind will be predominantly thermal
in Phase I. This leads to radiative losses in Equation (2) with
a luminosity

Lrad(t) = 4πR2
ej(t)σT

4
eff(t), (34)

where σ denotes the Stefan-Boltzmann constant. The effec-
tive temperature of the wind, Teff, is given by

T 4
eff(t) '

16

3

T 4(t)

∆τ(t) + 1
. (35)

Here,

∆τ(t) = κ

∫ Rej(t)

Rin(t)

ρw,t(r) dr (36)

is the optical depth of the wind with associated diffusion
timescale

tdiff(t) =
Rej(t)−Rin(t)

c
[∆τ(t) + 1]. (37)

Adding unity here and in the definition of Teff takes a possible
transition to the optically thin regime into account. κ is the
opacity of the ejecta material and Rin(t) denotes the effective
inner radius of the ejected material, defined by the condition

κ

∫ Rin(t)

Rmin

ρw,t(r) dr = 1. (38)

We describe the wind material as a mixture of ideal gas with
adiabatic index Γej = 4/3 and radiation. The temperature
T (t) of the wind in Equation (35) at time t is thus obtained as
the root of the following equation:

T (t)4 +
1

Γej − 1

kB

mpa
ρ̄w(t)T (t)− Eth(t)

aVej(t)
= 0, (39)

where kB is the Boltzmann constant, mp denotes the proton
mass, a is the radiation constant, Vej(t) = (4/3)π[R3

ej(t) −
R3

in(t)] the volume of the ejecta material, and ρ̄w(t) =
[mw(Rej(t), t)−mw(Rin(t), t)]/Vej(t) its mean density.

4.2. Phase II: pulsar wind shock
4.2.1. Pulsar properties

‘Ignition’ — As differential rotation is being removed the
NS settles down to uniform rotation and mass ejection is
suppressed according to the wind model discussed in Sec-
tion 4.1.1. This eventually creates the conditions to build up a
pulsar magnetosphere. As a criterion to ‘switch on’ the pulsar,
we employ ρ(Rmin, t) = (Ain/R

2
min) exp(−σρt/tdr) < ρcrit,

which translates into a time

tpul,in = − tdr

σρ
ln

(
ρcritR

2
min

Ain

)
. (40)

For the critical density we typically choose the rest-mass
density for Iron ions corresponding to the Goldreich-Julian
charge density, ρcrit ∼ ρGJ[Fe] ∼ 6× 10−6 g cm−3, assuming
typical magnetic fields of 1015 G and rotational periods of the
pulsar of ∼ 1 ms (Goldreich & Julian 1969). We note, how-
ever, that as the density in the vicinity of the NS decreases
exponentially, varying the choice of ρcrit even by orders of
magnitude does not influence the model evolution noticeably,
as long as the value is sufficiently small.

Initial spin and magnetic field — Once the NS has settled down
to uniform rotation, it is expected to maintain roughly the
same level of magnetization on the timescales of interest. In
Phase I, strong toroidal fields have been built up through mag-
netic winding and possibly instabilities like the magnetorota-
tional instability (Duez et al. 2006; Siegel et al. 2013; Siegel
& Ciolfi 2015b; Kiuchi et al. 2014), such that the strength of
the dipolar component of the poloidal field at the pole Bp is
only a fraction ηBp of the total magnetic field strength in the
outer layers of the NS,

Bp = ηBpB̄. (41)

This dipole component is the relevant quantity for dipole spin-
down emission (see next paragraph). Knowing the initial ro-
tational energy Erot,NS,in of the differentially rotating NS from
numerical relativity simulations, we can infer the initial spin
period of the pulsar Ppul,in at tpul,in from its initial rotational
energy Erot,pul,in:

Erot,pul,in = Erot,NS,in − EEM − Ekin,w − Erot,ej. (42)

Here,

EEM =

∫ tpul,in

0

LEM(t) dt (43)

is the rotational energy dissipated into Poynting flux during
Phase I,

Ekin,w =
1

2
4π

∫ Rej(tpul,in)

Rmin

ρw,tpul,in(r)v
2
w(r, tpul,in)r2 dr (44)

is the rotational energy dissipated into kinetic energy of the
radially expanding wind in Phase I, and

Erot,ej ∼
Mej(tpul,in)

MNS,in
Erot,NS,in (45)

approximates the (subdominant) amount of initial rotational
energy carried away by the ejected matter. The initial mass
MNS,in of the NS at birth is known from numerical relativity
simulations. The initial spin period is then given by

Ppul,in = 2π

(
2Erot,pul,in

Ipul

)− 1
2

, (46)

where Ipul is the moment of inertia of the pulsar.

Spin-down luminosity — Due to unipolar induction charged
particles are continuously extracted from the pulsar surface
(Goldreich & Julian 1969). This primary particle current ini-
tiates copious pair production, which populates the magne-
tosphere with a nearly force-free plasma and drives a highly
relativistic, magnetized (Poynting-flux dominated) outflow of
particles (mostly electrons and positrons), referred to as a pul-
sar wind. The associated Poynting-flux luminosity is given by
(Spitkovsky 2006; Philippov et al. 2015)

Lsd,in =
(2π)4

4c3
B2

pR
6
pul

P 4
pul,in

(k0 + k1 sin2 χ), (47)

where k0 = 1.0 ± 0.1, k1 = 1.1 ± 0.1, χ is the inclination
angle of the dipole component of the magnetic field with re-
spect to the rotation axis of the pulsar, and Rpul ' Re denotes
the radius of the pulsar. This Poynting flux is extracted from
the pulsar via the magnetic field at the expense of rotational
energy Erot,pul. Observations of well studied objects like the
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Crab pulsar suggest that only ∼ 1% of the observed spin-
down energy is directly radiated away by the pulsar (Bühler
& Blandford 2014), such that essentially the entire spin-down
energy is carried by the pulsar wind leaving the light cylinder.
Hence, we can set Ėrot,pul = Lsd, which results in slowing
down the pulsar spin Ppul(t) ∝

√
1 + t/tsd and yields a spin-

down luminosity of

Lsd(t) = Lsd,in

(
1 +

t− tpul,in

tsd

)−2

, (48)

where

tsd =
Erot,pul,in

Lsd,in
(49)

is the spin-down timescale. In the following, we assume an
aligned rotator, i.e., χ = 0, as a non-zero inclination angle
would result in a change of Lsd of order unity, which can be
absorbed, e.g., in the parameter ηBp that sets the initial field
strength Bp (see Equation (41)).

Emission of thermal energy — Immediately after the BNS
merger the NS matter is very hot with temperatures of a
few tens of MeV. It cools down via neutrino emission on a
timescale tν . 1 s. This thermal energy reservoir can be
tapped via ejection of material in Phase I (cf. Equation (33))
and by thermal radiation from the pulsar surface in Phase
II and III. Thermal radiation from the pulsar can help initi-
ate secondary-particle cascades based on the primary charged
particles extracted from the pulsar surface. The associated en-
ergy is thus reprocessed in the magnetosphere and will be car-
ried away by the pulsar wind. However, given typical neutrino
cooling timescales, this thermal energy contribution will be-
come energetically negligible very soon with respect to, e.g.,
the spin-down luminosity. Therefore, we adopt a simple cool-
ing model for the pulsar surface,

TNS(t) = TNS,in exp

(
− t

tν

)
, (50)

with associated thermal radiation of luminosity

Lrad,pul(t) = 4πR2
pulσT

4
NS(t). (51)

Here, TNS,in is the initial typical surface temperature of the NS
corresponding to the specific internal energy εej,NS,in (cf. Sec-
tion 4.1.2). As the thermal energy is reprocessed in the mag-
netosphere, we add Lrad,pul as a source term to the evolu-
tion equation (9) and as an input for the nebula in Phase III
(cf. Section 4.3.1).

4.2.2. Simple model for the expanding pulsar wind nebula

The newly-formed pulsar wind (Section 4.2.1) leaves the
magnetosphere with relativistic velocities and inflates a PWN
behind the less rapidly expanding ejecta material (e.g., Ken-
nel & Coroniti 1984a; see Section 4.3.1 for more details). The
PWN is highly overpressured with respect to the surrounding
ejecta matter and thus drives a strong hydrodynamical shock
into the material (see Section 4.2.3), which, in turn, leads to a
rapid expansion of the PWN. The exact physical description
of such a highly dynamical PWN is complex. However, the
main energetical features that govern the overall dynamics of
the system (which is what we are interested in here) can be
captured using a simple approach inspired by recent dynami-
cal PWN models (e.g., Gelfand et al. 2009; Kotera et al. 2013;

Metzger et al. 2014; Metzger & Piro 2014): we formulate the
energetics of the PWN in terms of a balance equation for the
total internal energy Enth of the nebula (photons and random
kinetic energy of the particles; cf. Equation (9)). The internal
energy of the PWN is sourced by the spin-down luminosity
Lsd (Equation (48)), thermal radiation from the pulsar surface
Lrad,pul (Equation (51)) as discussed above (which can rep-
resent a significant contribution at early times), and thermal
radiation emitted by the hot ejecta matter toward the interior
with luminosity Lrad,in (Equation (73)). We assume that only
a fraction ηTS of the spin-down luminosity and the thermal
radiation from the pulsar surface are dissipated into random
kinetic energy of the particles in the nebula. This parameter
reflects our incomplete knowledge about the efficiency with
which the bulk energy of the pulsar wind is dissipated in the
nebula (see Section 4.3.1 for more details).

Rapid expansion of the PWN occurs at the expense of p dV
work,

dEpdV
dt

= −pn
dVn

dt
= −Enth

Rn

dRn

dt
, (52)

where

pn =
Enth

3Vn
+
B2

n

8π
(53)

is the pressure inside the nebula with volume Vn = (4/3)πR3
n

and radiusRn. Here we have assumed that the particles inside
the nebula are relativistic and collisionless (cf. Section 4.3.1),
such that they form an ideal gas with adiabatic index 4/3.
The second pressure contribution on the right hand side of
Equation (53) is caused by the uniform and isotropic magnetic
field that we assign to the nebula. Its field strength Bn at time
t is inferred from the total magnetic energy

EB =
B2

n

8π
Vn (54)

of the nebula, which we evolve according to Equation (10).
The parameter ηBn in Equation (10) controls the level of mag-
netization of the nebula (see also Section 4.3.1). We note that
the efficiency parameters have to satisfy ηTS + ηBn ≤ 1.

Furthermore, the nebula loses energy through irradiation of
the surrounding ejecta matter. The internal energy of the neb-
ula is radiated away on the diffusion timescale through various
radiative processes that we do not model in detail in Phase II
(see, however, Section 4.3.1). We may write the associated
luminosity as Lnth(t) = Enth(t)/tdiff,n(t), where

tdiff,n(t) =
Rn(t)

c
[1 + ∆τT(t)] (55)

is the photon diffusion timescale of the nebula due to Thom-
son scattering of photons off thermal electrons and positrons.
Here,

∆τT(t) =

√
4Y σTLsd(t)

πRn(t)mec3
(56)

is the optical depth to Thomson scattering, with σT the Thom-
son cross section, me the electron mass, and Y the pair yield
of the nebula (Lightman & Zdziarski 1987). Given the very
high electron compactness parameter le � 1 during Phase II
(see Section 4.3.1), the pair yield is given by Y ' 0.1 (Svens-
son 1987; Lightman & Zdziarski 1987). We have added the
light crossing time in Equation (55) to account for a possible
transition to the optically thin regime.
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Ionization of ejecta matter due to nebula radiation can cause
a non-zero albedo A, which, in turn, can be frequency de-
pendent, such that the radiative losses of the nebula may be
written as (cf. also Metzger et al. 2014; Metzger & Piro 2014)

dEPWN

dt
= fbeam(t)

∫
[1−A(t, ν)]Lnth(t, ν) dν, (57)

with
∫
Lnth(t, ν) dν = Lnth(t). Due to relativistic expansion

of the PWN with velocity vn = dRn/dt (cf. Equation (5)),
relativistic beaming will prevent a sizable fraction 1 − fbeam
of photons to escape from the nebula. Therefore, we have ad-
ditionally included a factor fbeam(t) = 1− v2

n (t)/c2 in Equa-
tion (57). As the radiative losses given by Equation (57) are
thermalized in the surrounding ejecta shell, the resulting light
curve neither depends on the exact spectral shape of nebula ra-
diation Lnth(t, ν) nor on the spectral shape of A(ν, t). There-
fore, we typically setA(t, ν) = A(t) and we need not assume
a spectral shape for Lnth(t).

4.2.3. Shock dynamics and ejecta properties

The high nebula pressure (53) drives a strong hydrodynamic
shock into the ejecta matter. The shock front (denoted by the
radial coordinate Rsh) divides the ejecta matter into shocked
ejecta with internal energy Eth,sh and unshocked ejecta with
internal energy Eth,ush (cf. Figure 2). The PWN with radius
Rn is separated from the shocked ejecta material by a contact
discontinuity. We denote the radial thickness of the shocked
ejecta layer by ∆sh = Rsh −Rn.

Shock propagation — In order to avoid performing hydrody-
namical simulations, we describe the shock dynamics by a
simple model (Equations (4) and (5)). According to the
special-relativistic Rankine-Hugoniot conditions, the shock
speed as measured in the lab frame is given by (see Ap-
pendix A)

vsh(t) =
vw(Rsh(t), t) + vsh,R(t)

1 + vw(Rsh(t), t)vsh,R(t)/c2
, (58)

where

vsh,R =

 pn

ρR

[
1− ρR

ρL

(
1 +

Γej

Γej−1
pn
ρLc2

)
+ pn

ρRc2

]


1
2

(59)

is the shock velocity in the frame comoving with the un-
shocked fluid. Here, ρR(t) = ρw,t(Rsh(t)) is the density of
the unshocked fluid at the shock front and

ρL =
Γej + 1

Γej − 1
ρR

1

2

{
1 +

[
1 + 4

pn

ρRc2
Γej

(Γej + 1)2

] 1
2

}
(60)

is the density of the shocked fluid at the shock front (see Ap-
pendix A). A special-relativistic framework for shock propa-
gation is required here due to the very low baryon densities in
the surrounding of the pulsar (cf. Equation (40)) and the very
high pressure of the pulsar nebula (Equation (53)), which re-
sult in highly relativistic initial shock propagation speeds. The
shock front decelerates as it propagates outward into higher
density regions further out from the pulsar and eventually
slows down to non-relativistic or mildly relativistic velocities
once it reaches the outer surface of the ejecta material. As the
shock front is evolved using Equation (4), the thickness ∆sh of
the shocked ejecta layer and thus Rn (cf. Equation (5)) is ad-
justed such that pressure equilibrium between the nebula and

the shocked ejecta layer is maintained. For a mixture of ideal
gas with Γej = 4/3 and radiation, this results in the following
constraint:

Rn = Rsh
Eth,sh

Enth
. (61)

This conditions defines d∆sh/dt and couples Equations (5)
and (9) to make them implicit evolution equations for Rn and
Enth.

Shock related energetics — The shocked and unshocked ejecta
material are assigned internal energies Eth,sh and Eth,ush, re-
spectively, which are evolved separately (cf. Equations (6)
and (7)). As the shock propagates across the ejecta matter in-
ternal energy is transferred from the unshocked to the shocked
fluid part, which amounts to

dEth,vol = Eth,ush
(Rsh + dRsh)3

R3
ej −R3

sh
(62)

during a time dt. Furthermore, as the fluid is swept up by the
shock it is heated at a rate

dEsh

dt
= ∆ε

dmsh

dt
, (63)

where

∆ε =
1

Γej + 1

pn

ρR

2

1 +
[
1 +

4Γej

(Γej+1)2
pn
ρRc2

] 1
2

(64)

is the jump in specific internal energy across the shock front
(see Appendix A) and

dmsh

dt
= 4πR2

shρR
1√

1− v2w(Rsh,·)
c2

[vsh − vw(Rsh, ·)] (65)

is the amount of material swept up by the shock per unit time.
The latter expression is obtained by noting that the amount of
material in a spherical volume changes by

dm =
4πr2ρ√
1− v2

c2

dr − 4πr2ρv√
1− v2

c2

dt (66)

if the radius of the volume r is altered by dr during a time
dt, assuming that the fluid is radially moving outward with
velocity v.

For further reference (see Section 4.3.2), we also note that
the shock deposits kinetic energy in the shocked ejecta ma-
terial. The jump ∆ekin in specific kinetic energy across the
shock front as measured in the lab frame is given by

∆ekin

c2
=

[
1−

(
vLab

L

c

)2
]− 1

2

−

[
1−

(
vLab

R

c

)2
]− 1

2

, (67)

where vLab
R (t) = vw(Rsh(t), t) is the velocity of the wind in

the unshocked fluid part at the shock front as measured in the
lab frame. Furthermore,

vLab
L (t) =

vL(t) + vsh(t)

1 + vL(t)vsh(t)/c2
(68)

is the velocity of the shocked fluid at the shock front as mea-
sured in the lab frame, with vL being the velocity of the
shocked fluid at the shock front in the frame comoving with
the shock front (see Appendix A).
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Thermal emission — As in Phase I, we assume that the ejecta
matter consists of a mixture of ideal gas and photons. The
corresponding fluid temperatures Tsh and Tush are given by

T 4
sh,ush +

1

Γej − 1

kB

mpa
ρ̄sh,ushTsh,ush −

Eth,sh,ush

aVsh,ush
= 0, (69)

where ρ̄sh(t) = mw(Rsh(t), t)/Vsh(t) and ρ̄ush(t) =
[mw(Rej(t), t) − mw(Rsh(t), t)]/Vush are the mean densities
of the shocked and unshocked ejecta, respectively, with asso-
ciated volumes Vsh = 4π(R3

sh − R3
n)/3 and Vush = 4π(R3

ej −
R3

sh)/3. The effective temperatures are then defined by

T 4
eff,sh,ush(t) ' 16

3

T 4
sh,ush(t)

∆τsh,ush(t) + 1
, (70)

with optical depths

∆τsh(t) = κρ̄sh(t)∆sh(t) (71)

and

∆τush(t) = κ

∫ Rej(t)

Rsh(t)

ρw,t(r) dr. (72)

These effective temperatures give rise to thermal radiation
emitted from the inner surface of the shocked ejecta toward
the interior with luminosity

Lrad,in(t) = 4πR2
n(t)σT 4

eff,sh(t) (73)

and from the outer surface of the ejected material with lumi-
nosity

Lrad(t) = 4πR2
ej(t)σT

4
eff,ush(t). (74)

While the radiation associated with Lrad leaves the system
(cf. Equation (7)), Lrad,in is reabsorbed by the nebula, its en-
ergy is reprocessed and eventually reemitted into the ejecta
material (cf. Equations (6) and (9)).

Shock break-out — At the time when the shock front reaches
the outer ejecta surface a short transient signal can be pro-
duced in addition to the thermal radiation from the ejecta.
This signal can carry the signature of particle acceleration at
the shock front and it can have a non-thermal spectrum reach-
ing higher maximum energies than the background thermal
emission; therefore, it could be observable in the hard X-
ray and gamma-ray bands. Within the time-reversal scenario
(Ciolfi & Siegel 2015b), this transient signal might provide a
convincing explanation for the early precursors observed up
to ∼ 102 s prior to some SGRBs (Troja et al. 2010).

4.3. Phase III: pulsar wind nebula
Phase III starts at tshock,out, when the shock front reaches

the outer surface of the ejecta material, Rsh(tshock,out) =
Rej(tshock,out). At this time the shock has swept up all the
ejecta material of mass Mej ≡ Mej(tpul,in) into a thin shell
of thickness ∆ej = ∆sh(tshock,out) (cf. Figure 2), which we
assume to be constant during the following evolution. There-
fore, we set dRn/dt = dRej/dt for the evolution of the PWN
radius Rn in Phase III (cf. Equation (13)). The following two
subsections detail the physical description of the PWN and
the ejecta shell in this phase.

4.3.1. Physics of the pulsar wind nebula

Basic picture and assumptions — PWNe are traditionally stud-
ied in the context of supernovae-born pulsars (see Gaensler &
Slane 2006, Kargaltsev et al. 2015, and Bühler & Blandford
2014 for reviews). Only very recently, PWNe have also been
considered in the BNS merger scenario (Bucciantini et al.
2012; Metzger & Piro 2014). We study such a system here
motivated by the fact that long-lived NSs turn out to be very
likely outcomes of BNS mergers (cf. Section 1) and by the
fact that the baryonic ejecta (cf. Section 4.1) naturally pro-
vide the conditions for such a nebula to form (such as pro-
viding the necessary confining envelope). Although the exact
physical conditions for a PWN in a BNS merger scenario are
different from those in a supernova event, it is conceivable
that qualitatively similar morphologies and dynamics emerge.
For Phase III, we develop a physical description for a PWN
in the context of BNS mergers inspired by studies of super-
novae and radiative processes in active galactic nuclei. While
spectra of ordinary PWNe from radio to gamma-ray energies
can be explained in terms of synchrotron and inverse Comp-
ton emission (for the best studied case, the Crab nebula, see,
e.g., Kennel & Coroniti 1984b; Atoyan & Aharonian 1996;
Volpi et al. 2008; Olmi et al. 2014; Porth et al. 2014), the BNS
merger scenario requires a more detailed treatment of radia-
tive processes due to the presence of the strong photon field
from the confining hot ejecta material. In order to achieve
this and in order to avoid performing expensive MHD simu-
lations, we neglect spatial variations and adopt a ‘one-zone’
model for the PWN, in which the nebula is considered to be
homogeneous and isotropic. The resulting description of a
PWN we propose for Phase III is much more detailed than in
Phase II for two reasons. First, Phase III is less dynamical and
a quasi-stationary description of the PWN can be adopted that
facilitates a detailed treatment of radiative processes. Second,
as the ejecta material surrounding the PWN becomes trans-
parent to the nebula radiation at some point, radiation from
the nebula itself is not reprocessed and thermalized anymore
and its spectrum becomes directly observable. We therefore
employ a formalism that predicts the nebula spectrum in a
self-consistent way.

The newly formed pulsar loses rotational energy at a rate
Lsd given by Equation (48) through a highly relativistic mag-
netized particle outflow, referred to as a pulsar wind (cf. Sec-
tion 4.2.1). As in Phase II (cf. Section 4.2.2), we also assume
that thermal radiation from the pulsar surface with luminos-
ity Lrad,pul (cf. Equation (51)) is deposited in this pulsar wind;
this can represent a significant energy contribution at early
times when the NS is still very hot. The pulsar wind inflates
a PWN behind the less rapidly expanding ejecta material, a
bubble of radiation and charged particles (mainly electrons
and positrons), which is separated from the pulsar wind by a
termination shock at a distance (Gaensler & Slane 2006)

RTS =

√
Lsd

4πξcpn
� Rn (75)

from the pulsar, where the ram pressure of the pulsar wind
equals the intrinsic pressure pn of the nebula; ξ denotes the
fraction of a sphere covered by the wind.

Magnetosphere models predict that the pulsar wind leaving
the magnetosphere at the light cylinder RLC = cPpul/2π is
highly magnetized, σm � 1 (e.g., Arons 2012). Here, σm
denotes the magnetization parameter, defined as the ratio of
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Poynting flux to particle energy flux (e.g., Kennel & Coro-
niti 1984a). One-dimensional and two-dimensional axisym-
metric MHD models only reproduce the observed properties
of the Crab nebula well if σm � 1 just upstream of the ter-
mination shock (e.g., Kennel & Coroniti 1984a,b; Atoyan &
Aharonian 1996; Volpi et al. 2008; Olmi et al. 2014). Dis-
sipating the Poynting flux into kinetic energy of the parti-
cle flow between the light cylinder and the wind termination
shock is known as the σ-problem. Recent three-dimensional
MHD simulations, however, suggest a solution the σ-problem
(Mizuno et al. 2011; Porth et al. 2014). The simulations by
Porth et al. (2014) are able to reproduce the morphology of
the Crab nebula even for stronger magnetizations of up to
σm ' few, thanks to magnetic dissipation inside the PWN.
Enhanced turbulence downstream of the termination shock
in the 3D simulations efficiently dissipates magnetic energy,
such that the magnetic energy of the nebula is only a very
small fraction of the internal energy despite a high magneti-
zation of the pulsar wind at the termination shock. This is in
agreement with previous observations and spectral modeling
that infer the magnetic energy of the Crab nebula to be less
than ≈ 3% of the total energy budget (Bühler & Blandford
2014, Porth et al. 2014, and references therein). In our model
of the PWN, we control the level of magnetization of the neb-
ula by introducing a factor ηBn , which specifies the amount of
inflowing magnetic energy per time in terms of the total power
of the pulsar wind: ĖB = ηBn [Lsd(t) + Lrad,pul(t)] (cf. Equa-
tions (10) and (15)). The magnetic energy EB then defines
an average magnetic field strength Bn of the nebula through
Equation (54).

At the wind termination shock the wind plasma is deceler-
ated and heated, and efficient conversion of flow energy into
particle acceleration is thought to take place. The acceler-
ated particles, which are characterized by non-thermal energy
spectra, are then advected with the flow while cooling down
due to synchrotron emission. Observations of the Crab nebula
synchrotron emission indicate that the conversion of pulsar
wind energy into accelerated particles is & 10% (Kennel &
Coroniti 1984a; Bühler & Blandford 2014; Olmi et al. 2015;
we henceforth denote this efficiency by ηTS). While diffusive
shock acceleration at the termination shock is now thought
to be rather unlikely to occur in the Crab nebula and other
PWNe (Arons 2012; Bühler & Blandford 2014), enhanced
turbulence and magnetic dissipation downstream of the ter-
mination shock (as found in recent 3D MHD simulations)
might provide the required non-thermal particle acceleration
site. While the processes of particle acceleration still remain
unclear, assuming that the pulsar wind consists of electrons
and positrons, and that these particles are reaccelerated into
a power-law spectrum at the termination shock, 1D, 2D, and
3D MHD models of the Crab nebula have been able to repro-
duce the observed photon spectra very well (Kennel & Coro-
niti 1984b; Atoyan & Aharonian 1996; Volpi et al. 2008; Ca-
mus et al. 2009; Olmi et al. 2014; Porth et al. 2014; Olmi et al.
2015).

Following this approach we consider a pulsar wind consist-
ing of electrons and positrons and assume that these particles
are injected into the nebula with a power-law spectrum, al-
though more complex injection spectra can easily be accom-
modated by our model. In view of our ‘one-zone’ descrip-
tion of the nebula, we assume that electrons and positrons
are continuously injected uniformly throughout the nebula,
instead of being injected at the termination shock and then

being advected with the flow. We specify the injection of par-
ticles by the following dimensionless compactness parameter
(in analogy to Guilbert et al. 1983; Svensson 1987; Lightman
& Zdziarski 1987):

le(t)≡
σT

mec3Rn(t)
ηTS[Lsd(t) + Lrad,pul(t)]

=
4πσTR

2
n(t)

3c

∫ γmax

1

Q(γ, t)(γ − 1) dγ, (76)

where Q(γ, t) = Q0(t)γ−Γe is the number of particles in-
jected per unit time per unit normalized energy γ = ε/mec

2,
where ε denotes the particle energy, and per unit volume of
the nebula. The parameter ηTS defines the aforementioned ef-
ficiency of converting pulsar wind power into random kinetic
energy of accelerated particles. The power-law injection pa-
rameters ηTS, γmax, and Γe are model input parameters, which,
in the case of observed PWNe such as the Crab, are usually
determined by comparing simulated emission with observa-
tional data.

In contrast to ordinary PWNe, where intrinsic photon
sources inherent to the pulsar-nebula system are absent and
only background photons from the cosmic microwave back-
ground (CMB) and potentially from local dust and starlight
are ‘injected’ into the nebula, we need to take additional pho-
ton sources into account in our description of the PWN that
generate a strong photon field. The hot shock-heated ejecta
matter confining the PWN injects thermal photons with lumi-
nosity Lrad,in (cf. Section 4.3.2, Equation (101)). For com-
pleteness, we also include a thermal input spectrum LCMB
from the CMB (see below), once the ejecta shell has become
optically thin. We specify the resulting photon injection into
the nebula in terms of the following dimensionless compact-
ness parameter (in analogy to Lightman & Zdziarski 1987):

lph(t)≡ σT

mec3Rn(t)
[Lrad,in(t) + fej(t)LCMB(t)]

=
4πσTR

2
n(t)

3c

∫ xmax

xmin

ṅ0(x, t)xdx, (77)

where ṅ0 denotes the combined number of photons injected
per unit time per unit dimensionless energy x = hν/mec

2

per unit volume of the PWN by the aforementioned sources
(cf. Equation (80)). Here, h denotes the Planck constant and
ν is the photon frequency. Photon energies are assumed to
range between xmin and xmax, which we define in Section 5.2.
The function fej is designed to ‘switch on’ the (subdominant)
CMB contribution once the ejecta material becomes optically
thin (cf. Equation (102)).

Radiative processes in the PWN reprocess the injected par-
ticles and photons and determine the radiative losses of the
nebula that are transferred to the surrounding ejecta (denoted
by dEPWN/dt in Equation (14)) and the associated emergent
spectrum. In particular, they determine how spin-down en-
ergy of the pulsar is transmitted to the ejecta material to be
radiated away from the system eventually. In contrast to or-
dinary PWNe, the photon field in our case is typically very
strong, such that, expressed in terms of the compactness pa-
rameters defined above, lph can become comparable to le or
even larger. The photon and particle spectra inside the neb-
ula thus become highly coupled and the computations become
intrinsically non-linear. In order to determine those spectra
in a self-consistent way under the combined effects of syn-
chrotron losses, (inverse) Compton scattering off thermal and



ELECTROMAGNETIC EMISSION FROM LONG-LIVED BNS MERGER REMNANTS I 13

non-thermal particles, pair production and annihilation, and
photon escape, we employ, extend and modify a formalism
developed for pair plasmas in compact sources such as active
galactic nuclei (Lightman & Zdziarski 1987).

Balance equations — Given the setup described above, the
physical processes determining the PWN properties and emer-
gent spectra are remarkably similar to those in pair plasmas of
active galactic nuclei. Theoretical models to compute detailed
emergent spectra for active galactic nuclei have been devel-
oped by many authors in the past (e.g., Lightman & Zdziarski
1987; Coppi 1992; Belmont et al. 2008). Consistent with our
assumptions, we adopt the approach of Lightman & Zdziarski
(1987) (henceforth LZ87), but extend and modify it to, e.g.,
include synchrotron losses. We shall briefly outline the for-
mulation of the equations here with emphasis on the modifi-
cations and refer the reader to LZ87 for more details on all
other aspects.

According to our ‘one-zone’ model we assume that parti-
cles and photons are uniformly injected throughout the spher-
ical volume of the PWN with radius Rn and associated com-
pactness parameters le and lph (Equations (76) and (77)). At
a time t and assuming quasi-stationarity, the number densi-
ties per unit energy of photons, n(x), and non-thermal par-
ticles, N(γ), are determined by the following set of highly
non-linear, coupled integro-differential equations:

0 = ṅ0 + ṅA + ṅNT
C + ṅT

C + ṅsyn

− c

Rn
n(∆τNT

C + ∆τγγ)− ṅesc, (78)

0 =Q(γ) + P (γ) + ṄC,syn(γ). (79)

Photons at energy x are produced at rates ṅ0, ṅA, ṅNT
C ,

ṅT
C, and ṅsyn via injection (cf. Equation (80)), e±-pair anni-

hilation, Compton scattering off non-thermal electrons and
positrons (cf. Equation (9) in LZ87), Compton scattering
off thermal electrons (cf. Equations (22) and (23) in LZ87;
see below), and synchrotron cooling of particles (cf. Equa-
tion (87)), respectively. For the pair annihilation term ṅA
we use Equations (7), (8), (11), (15)–(18) of Svensson (1983).
Photons at energy x are lost due to Compton scattering off
non-thermal particles with optical depth ∆τNT

C (cf. Equa-
tion (10) in LZ87), due to e±-pair creation with optical depth
∆τγγ (cf. Equation (11) in LZ87), and by escaping from the
nebula at a rate ṅesc (see Equation (21) of LZ87). Addition-
ally, photons at energy x are lost via Compton scattering off
thermal particles (see below), which is accounted for in ṅT

C.
Photons not ‘absorbed’ by one of these processes are still
impeded from escaping the nebula by Thomson scattering
off thermal particles (see below) with scattering depth ∆τT
(cf. Equation (20) in LZ87).

The rate of change of particles at Lorentz factor γ is given
by injection into the nebulaQ (cf. Equation (76)), e±-pair cre-
ation P (cf. Equation (13) in LZ87), and non-thermal Comp-
ton scattering and synchrotron losses, which are denoted by
ṄC,syn (see below). Particles do not escape from the neb-
ula, i.e., they are assumed to be trapped, e.g., by the mag-
netic field Bn of the nebula. Once cooled down to γ ∼ 1
and before annihilating, particles are assumed to thermal-
ize and to form a distinct thermal population described by a
Maxwell-Boltzmann distribution with dimensionless temper-
ature θe ≡ kBTe/mec

2 � 1. The number density of this
thermal population is determined in terms of the solution to

Equations (78) and (79) by the requirement that pairs must be
destroyed at the same rate as they are created in steady state
(cf. Equation (18) in LZ87). The temperature of this popula-
tion can be determined self-consistently by not allowing any
net energy transfer between particles and photons via thermal
Compton scattering (cf. Equations (27) and (28) in LZ87).

In our implementation, the photon injection term is written
as

ṅ0 = ṅ0,ej + fejṅ0,CMB, (80)

where

ṅ0,ej(x, t) =
6π

Rn(t)

m3
e c

4

h3

x2

exp
(
xmec2

kBTeff(t)

)
− 1

(81)

represents the injection of thermal photons from the ejecta
material with effective temperature Teff = Teff,com/(ζγej)

1/4

(cf. Section 4.3.2). The thermal spectrum ṅ0,CMB of the CMB
is defined in the same way with an effective temperature of
Teff,CMB = 2.725 K and it is ‘switched on’ by the function
fej once the ejecta material becomes optically thin (cf. Equa-
tion (102)).

In contrast to LZ87, we additionally include effects of syn-
chrotron radiation (as do Coppi 1992 and Belmont et al.
2008). Here, we briefly outline the way we include those ef-
fects via the terms ṄC,syn and ṅsyn. In deriving Equation (79),
we assumed that the particle distribution N(γ) can be de-
scribed by the continuity equation

∂N

∂t
+

∂

∂γ
(γ̇N) = P (γ) +Q(γ), (82)

with ∂N/∂t = 0 in steady state and thus ṄC,syn =
−∂(γ̇N)/∂γ. Equation (82) is an accurate description in the
case of synchrotron emission and Compton scattering exclud-
ing the Klein-Nishina limit (as assumed here for simplicity;
Blumenthal & Gould 1970). Assuming steady state, Equa-
tion (82) can be integrated to give

N(γ) = −γ̇−1
C,syn(γ)

∫ γmax

γ

[P (γ′) +Q(γ′)] dγ′, (83)

where
γ̇C,syn(γ) = γ̇C(γ) + γ̇syn(γ) (84)

is the combined particle cooling rate due to Compton scatter-
ing (excluding the Klein-Nishina limit) and synchrotron emis-
sion, with

γ̇C(γ) = −σTc

(
4

3
γ2 − 1

)∫ 3/4γ

0

n(x)x dx (85)

(cf. Equation (7) in LZ87) and

γ̇syn(γ) = −
√

3e3Bn

hmec2

∫ xmax

xmin

R(x/xc) dx (86)

(cf. Appendix C, Equation (C4)). The synchrotron losses (86)
result in a photon source term

ṅsyn(x) =

√
3e3Bn

hmec2
1

x

∫ γmax

1

N(γ)R(x/xc) dγ (87)

(cf. Appendix C, Equation (C5)). We note that for the station-
arity assumption leading to Equation (83) to hold in our evo-
lution scheme (Equations (11)–(15)), the timescale for equi-
libration of the particle distribution given by the total cooling
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timescale |γ/γ̇C,syn| has to be much smaller than any other
evolution timescale for all energies γ. We therefore monitor
this quantity to check the validity of the stationarity assump-
tion during the numerical evolution (see Section 5.4). Finally,
we note that effects of synchrotron self-absorption have not
been considered so far and that they can be neglected for our
purposes. In order to check the validity of this assumption,
we monitor the optical depth to synchrotron self-absorption,
which can be approximated by

∆τsyn(x) =

√
3e3h2BnRn

8πm4
e c

6

1

x2
(88)

×
∫ γmax

1

N(γ)

[
∂

∂γ
R(x/xc) + f(γ)R(x/xc)

]
dγ

(cf. Appendix C, Equation (C7)). Typically, the nebula is opti-
cally thin to synchrotron self-absorption at energies of interest
(see Section 5.5).

Solving the coupled set of Equations (78) and (79) numer-
ically at time t yields a self-consistent set of spectra {n(x),
N(γ), ṅA(x), ṅNT

C (x), ṅT
C(x), ṅsyn(x), ∆τNT

C (x), ∆τγγ(x),
∆τT, ṅesc(x), P (γ), ṄC,syn(γ)}. It is important to point out
that with the modifications described above, these equations
still conserve energy (see Appendix D).

The internal energy Enth of the nebula in terms of the solu-
tion to Equations (78) and (79) can be written as

Enth(t) =
4

3
πRn(t)3mec

2

[∫ xmax

xmin

n(x, t)x dx

+

∫ γmax

1

N(γ)(γ − 1) dγ

]
, (89)

which is typically dominated by the photon contribution (first
term on the right-hand side). The pressure of the nebula is
then given by (cf. also Equation (53))

pn(t) =
Enth(t)

4πR3
n(t)

+
B2

n

8π
. (90)

Moreover, the luminosity of escaping radiation from the neb-
ula is given by

LPWN(x, t) =
4

3
πRn(t)3mec

2ṅesc(x, t)x, (91)

and thus we arrive at the desired expression for the PWN
source term in Equation (14):

dEPWN

dt
≡ LPWN(t) =

∫ xmax

xmin

LPWN(x, t) dx. (92)

4.3.2. Ejecta properties and emergent radiation

Shell kinematics — The initial speed vej(tshock,out) of the ejecta
shell in Phase III is inferred from its kinetic energy Ekin at
tshock,out:

vej(tshock,out) = c

[
1−

(
1 +

Ekin(tshock,out)

Mejc2

)−2
] 1

2

. (93)

The total kinetic energyEkin(tshock,out) = Ekin,w+Esh,tot of the
ejecta matter is the sum of the kinetic energy of the original
wind material Ekin,w (cf. Equation (44)) and the total amount

of kinetic energy deposited into the shocked material by the
shock,

Esh,tot =

∫ tshock,out

tpul,in

∆ekin
dmsh

dt
dt (94)

(cf. Equations (65) and (67)). For typical sub-relativistic or at
most mildly relativistic speeds vej,in of the outer ejecta front
in Phase I and II (cf. Equation (20)), the initial speed of the
ejecta shell in Phase III is also at most mildly relativistic.

However, further acceleration according to (cf. Ap-
pendix B; Equation (11))

dvej

dt
= γ−3

ej (t)αej(t) ≡ aej(t) (95)

can be significant if the nebula pressure pn (Equation (90)) is
high. Here, γej = (1− v2

ej/c
2)−1/2 denotes the Lorentz factor

of the ejecta shell and αej = 4πR2
npn/Mej is the acceleration

of the ejecta shell in the frame comoving with the shell. In
order to define a comoving frame we employ the fact that such
a freely expanding, spherically symmetric shell at a time t can
be described as a thin ring of finite extent in a Milne universe.
The transformation between comoving and lab frame is thus
achieved via the Milne universe metric. For further details,
we refer to Appendix B.

Thermal emission — As in Phase I and II, the ejecta matter
consists of a mixture of photons and ideal gas with adiabatic
index Γej = 4/3, the temperature of which in the comoving
frame, Tcom, can be found by solving

T 4
com +

1

Γej − 1

kB

mpa
ρejTcom −

Eth

aVej
= 0. (96)

Henceforth qcom refers to the value of a quantity q as measured
in the frame comoving with the ejecta shell. In Equation (96)
we have used the fact that Eth/Vej = Eth,com/Vej,com (cf. Ap-
pendix B). Furthermore, ρej = Mej/Vej,com = Mej/ζVej is the
density of the ejecta shell, where Vej = (4/3)π(R3

ej − R3
n) is

its volume in the lab frame and

ζ =
3

2

γ2
ejβej − arctanhβej

γ3
ejβ

3
ej

, (97)

with βej = vej/c (cf. Appendix B). The associated effective
temperature in the comoving frame is given by

T 4
eff,com(t) ' 16

3

T 4
com(t)

∆τej,com(t) + 1
, (98)

where
∆τej,com(t) = κρej(t)∆ej(t)γej(t), (99)

which gives rise to thermal emission from the outer and inner
surface of the ejecta shell with luminosities

Lrad(t) = 4πR2
ej(t)

fbeam(t)

ζ(t)γej(t)
σT 4

eff,com(t) (100)

and

Lrad,in(t) = 4πR2
n(t)

1

ζ(t)γej(t)
σT 4

eff,com(t), (101)

respectively (cf. Appendix B; Equation (14)). In Equa-
tion (100), we have again included a factor fbeam = 1−v2

ej/c
2

to account for relativistic beaming (cf. also Section 4.3.1).



ELECTROMAGNETIC EMISSION FROM LONG-LIVED BNS MERGER REMNANTS I 15

This concludes the discussion of source terms in the main evo-
lution equations (1)–(15) of our model.

4.3.3. Transition to the optically thin regime

Once ∆τej,com (cf. Equation (99)) approaches unity, the
ejecta material becomes transparent to radiation from the neb-
ula. This non-thermal radiation is not absorbed by the ejecta
material anymore and becomes directly observable. In order
to ensure a smooth transition between the optically thick and
thin regimes, we employ an auxiliary function

fej(t) =

{
0 if ∆τej(t) > ∆τej,thres

1−
(

∆τej(t)
∆τej,thres

)b
if ∆τej(t) ≤ ∆τej,thres

(102)

to gradually ‘switch on or off’ terms in the evolution equa-
tions during this transition. Here,

∆τej = ∆τej,com

√
1− vej/c

1 + vej/c
(103)

approximates the optical depth of the ejecta material as seen
from the lab frame (cf. Abramowicz et al. 1991), with ∆τej,com
defined in Equation (99). We note that this transition function
and its parameters b and ∆τej,thres are somewhat arbitrary and
chosen in such a way that they do not influence the numeri-
cal evolution significantly other than guaranteeing a smooth
transition from the optically thick to the optically thin regime.
Typically, ∆τej,thres ' few and b > 1.

In particular, as the ejecta material does not absorb neb-
ula radiation anymore, the source term dEPWN/dt (cf. Equa-
tion (92)) needs to be removed from the corresponding evo-
lution equation (cf. Equation (14)). Instead, the non-thermal
emission from the nebula

Lrad,nth(t) = fej(t)
dEPWN

dt
(104)

and its associated spectrum given by Equation (91) become
directly observable. Consequently, the ejecta matter also be-
comes optically thin to photons form the CMB, which are now
able to diffuse into the nebula (cf. Equations (77) and (80)).

4.4. Collapse to a black hole
Our model applies to hypermassive, supramassive, and sta-

ble remnant NSs. If the NS is hypermassive at birth, the ex-
pected lifetime is of the order of tdr . 1 s, unless it migrates to
the supramassive regime through substantial mass ejection on
shorter timescales. If the NS is supramassive, it can survive
on much longer spin-down timescales, although (magneto-
)hydrodynamic instabilities can cause an earlier collapse to
a black hole. In our model, the time of collapse t = tcoll to a
black hole is an input parameter that can be adjusted to cover
all possible scenarios.

If the NS collapses to a black hole during Phase I, we keep
evolving Equations (1) and (2), setting LEM and dEth,NS/dt to
zero. As the collapse proceeds on the dynamical timescale,
which is of the order of milliseconds, we consider the NS
collapse at t ∼ tdr . 1 s to be instantaneous as far as the
numerical evolution is concerned. The time of collapse is
parametrized by fcoll,PI in units of tdr, tcoll = fcoll,PItdr. We
also note that the wind model (cf. Section 4.1.1) has to be ad-
justed by setting Ṁ(t′) to zero for t′ > tcoll in Equation (27).
The resulting EM emission from the system will be predom-
inantly thermal and it will reflect the gradual depletion of the

energy reservoir of the ejecta material acquired up to the time
of collapse (see also Paper II).

In what follows, we consider a collapse occurring in Phase
III.4 In the case that the observed prompt γ-ray emission of a
SGRB is associated to this collapse as in the recently proposed
time-reversal scenario (Ciolfi & Siegel 2015b,a), the resulting
lightcurves and spectra of our model after t = tcoll correspond
to the observed afterglow radiation of the SGRB.

We parametrize tcoll in terms of the spin-down timescale
tcoll = fcolltsd. Scenarios for a wide range of values for fcoll
are explored in the companion paper (Paper II). The collapse
of the NS proceeds on the dynamical timescale, which is of
the order of milliseconds and it can thus be considered in-
stantaneous at times tcoll > tpul,in & 1s. At times t .
few× tsd, the typical cooling timescales |γ/γ̇C,syn| of the non-
thermal particles in the nebula (cf. Equation (84)) are orders of
magnitude smaller than any other evolution timescale of our
model thanks to the relatively strong magnetic field (cf. Equa-
tion (86); see also Section 5.4 and Section 4.2 of Paper II).
Furthermore, due to this efficient cooling their total number
density Ntot =

∫
N(γ, t) dγ � Nth,tot is orders of magnitude

smaller than the total number density Nth,tot of thermalized
particles in the nebula. We can therefore assume that the non-
thermal particle population is instantaneously thermalized at
t = tcoll. Furthermore, noting that the optical depth to Thom-
son scattering ∆τT is given by ∆τT = σTRnNth,tot, we can
conclude that ∆τT is not affected by this instantaneous ther-
malization. Pair annihilation becomes increasingly unlikely
as the nebula further expands, and can partially be compen-
sated by pair creation induced by photons in the high energy
tail of the photon spectrum above the pair creation threshold.
As a consequence, the total number of particles is roughly
conserved, and the evolution of the Thomson scattering depth
for t > tcoll is approximately given by

∆τT(t) = ∆τT(tcoll)

[
Rn(tcoll)

Rn(t)

]2

. (105)

Due to efficient particle cooling prior to t = tcoll (see above),
the energy budget of those photons above the pair creation
threshold is typically orders of magnitude smaller than the
combined photon energy below the pair creation threshold at
tcoll. Furthermore, we expect photons to interact with par-
ticles mostly via Thomson scattering, as photons that could
Compton-scatter off thermal particles are small in number.
Noting that Thomson scattering is elastic, we can deduce that
for our purposes, the spectral shape of the non-thermal pho-
ton spectrum at t = tcoll remains frozen thereafter as photons
diffuse out of the nebula on the diffusion timescale

tdiff,n(t) =
Rn

c
[1 + ∆τT(t)]. (106)

Here, we have again added the light crossing time of the neb-
ula to account for a transition to the optically thin regime.
The luminosity of the photons diffusing out of the nebula is
approximately given by

dEPWN

dt
=LPWN(t) (107)

={1− [1− fej(t)]A(t)}fbeam(t)
Enth(t)

tdiff,n(t)
,

4 Here we do not discuss the possibility of a collapse during shock prop-
agation (Phase II), as this phase is typically very short compared to Phase I
and III, and a collapse is thus unlikely to occur.
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where, in analogy to Equation (57) the prefactor takes into
account the combined effects of relativistic beaming and a
non-zero albedo of the surrounding ejecta material.5 The total
energy budget of the nebula thus evolves according to

dEnth

dt
= −LPWN(t) + Lrad,in(t), (108)

where Lrad,in is the thermal radiation from the surrounding
ejecta shell (see Equation (101)), and we can write the non-
thermal radiation leaving the system as

Lrad,nth(x, t) = fej(t)LPWN(x, tcoll)
LPWN(t)

LPWN(tcoll)
. (109)

In conclusion, after a collapse to a black hole, we evolve the
system of evolution equations in Phase III assuming conser-
vation of magnetic energy (dEB/dt = 0), employing Equa-
tion (107) in Equation (14), and extending the set of Equa-
tions (11)–(15) by Equation (108) to evolve the nebula prop-
erties instead of solving Equations (78) and (79).

5. NUMERICAL PROCEDURE

In this section, we discuss several aspects related to the
numerical evolution of the model presented in the previous
sections. After briefly outlining the overall numerical pro-
cedure to integrate the evolution equations (1)–(15) in Sec-
tions 5.1, 5.2, and 5.3, we identify and define important
timescales to be monitored during the numerical evolution
(Section 5.4), discuss how to monitor the validity of neglect-
ing synchrotron self-absorption (Section 5.5), discuss how to
overcome problems related to stiffness in Equations (1)–(15)
(Section 5.6), and finally discuss how to numerically compute
the lightcurves as seen by a distant observer including rela-
tivistic effects such as relativistic beaming, the time-of-flight
effect, and the relativistic Doppler effect (Section 5.7).

5.1. Hydrodynamic wind evolution
Prior to evolving the main evolution equations (1)–(15), the

evolution of the background fluid (the baryonic wind emit-
ted during Phase I; see Section 4.1.1) has to be computed
numerically. First, at any given time t the function t̄(r, t) is
constructed solving Equation (28) numerically for every ra-
dius r. Knowing t̄(r, t) immediately yields the velocity pro-
file vw(r, t) via Equation (30) and the mass profile mw(r, t)
via Equation (27). By finite differencing the mass func-
tion mw(r, t) the corresponding density profile ρw,t(r) is ob-
tained (cf. Equation (29)). We typically employ a spatial grid
ranging between r = Rmin = 30 km and Rej(t) (cf. Equa-
tion (20)), which is logarithmically spaced with a fixed num-
ber of points per decade. Automatic mesh refinement (where
needed) is used to resolve the profiles, which become increas-
ingly ‘sharp’ as the material moves outward to larger length
scales. By employing this wind model the hydrodynamic evo-
lution of the wind material has essentially been reduced to a
numerical root finding problem.

The free parameters of the model, Ṁin, tdr, σM , and vej,in
are listed in Table 2. We note that numerical relativity simu-
lations can be employed to directly determine Ṁin and vej,in.
Furthermore, they can provide estimates on tdr. The only un-
constrained parameter is σM , which controls the shape of the

5 Prior to collapse in Phase III, the quasi-stationarity assumption in the
present implementation of the radiative processes of the PWN (Section 4.3.1)
prevent us from introducing these effects (see also Section 6).

wind density profiles at later times. However, as the shock
sweeps up all the material into a thin shell in Phase II, the
exact distribution of matter is not important and does not in-
fluence the lightcurves and spectra of our model significantly.

5.2. PWN balance equations
At any time t in Phase III, the balance equations (78) and

(79) for the photon and non-thermal particle distribution in
the PWN have to be solved. These distributions then spec-
ify, e.g., the source term dEPWN/dt (cf. Equation (92)) re-
quired in Equation (14). We solve the coupled set of highly
non-linear, integro-differential equations (78)–(79) in analogy
to the multi-step, iterative method outlined in Appendix B of
LZ87. Only Step 1 of their method differs slightly from our
Step 1 due to the modifications we introduced to the physi-
cal description of the pair plasma (cf. Section 4.3.1). There-
fore, we rediscuss this step here for completeness and refer
the reader to LZ87 for the other Steps.

Step 1 in solving Equations (78)–(79) consists of neglect-
ing thermal Comptonization (i.e., setting ṅT

C = 0 in Equa-
tion (78)) and proceeds as follows.

(i) Given an approximate photon spectrum n(x) com-
pute the corresponding particle distributionN(γ) using
Equation (83), where the integral over P (γ) is com-
puted using Equation (13) of LZ87.

(ii) Compute

A(x) ≡ Rn

c
(ṅ0 + ṅA + ṅNT

C + ṅsyn)

using N(γ) from (i), Equation (80), Equa-
tions (7), (8), (11), (15)–(18) of Svensson (1983),
Equation (9) of LZ87, and Equation (87),

B(x) ≡ 1

1 + 1
3τKN(x)f(x)

+ ∆τNT
C

using Equations (21) and (10) of LZ87 together with
N(γ) from (i). Furthermore, compute

C(x) ≡ 0.2RnσT
1

x

as well as D(x) ≡ A(1/x), E(x) ≡ B(1/x), and
F (x) ≡ C(1/x). We note that, with these defi-
nitions, all coefficient functions A,B,C,D,E, F are
non-negative.

(iii) Writing Equation (78) as n(x) = A(x)/[B(x) +
C(x)n(1/x)] and n(1/x) = D(x)/[E(x)+F (x)n(x)]
leads to a quadratic equation for n(x),

BFn2(x) + (BE + CD −AF )n(x)−AE = 0,

which has only one physical root,

n(x) =− (BE + CD −AF )

2BF

+

√
(BE + CD −AF )2 + 4BFAE

2BF
. (110)

Equation (110) is now used to update n(x).

Initializing n(x) by (Rn/c)[ṅ0,ej + fejṅ0,CMB], we iterate
on Steps (i)–(iii) until for successive iterations j− 1 and j we
have

ε ≡ ‖n(x)j − n(x)j−1‖max < εtol. (111)
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Here ‖u(x)‖max = maxx∈X |u(x)| for a function u(x) on the
dimensionless photon energy domain X = [xmin, xmax] and
typically εtol ≤ 0.01. As γmax (cf. Equation (76)) is the max-
imum attainable photon energy, we set xmax = γmax. In order
to cover the frequency range down to the radio band, we typi-
cally set xmin = 10−18. Both the particle energy and the pho-
ton energy domains are logarithmically spaced with typically
15 points per decade.

5.3. Evolving the main model
After having computed the hydrodynamic evolution of the

baryonic wind (Section 5.1), its density profile ρw,t(r) at any
point in time and space is known and the main equations of
our model (1)–(15) can be integrated. The time grid T =
[tmin, tmax] for this evolution is logarithmically spaced with
typically 50 points per decade. Additional mesh refinement is
used in order to properly resolve the propagation of the rela-
tivistic shock front through the ejecta material in Phase II. In
our model, we associate the time of merger of the BNS system
with t = 0, but start the numerical evolution from an appropri-
ate final checkpoint of a numerical relativity simulation, cor-
responding to tens of milliseconds after merger, and evolve
it over the timescales of interest until, e.g., tmax ∼ 107s. It
is important to point out that numerical relativity simulations
of BNS mergers can be employed to determine most of the
input parameters of our model, which are listed in Table 2.
Given those initial parameters read off or estimated from a
simulation, the following evolution according to our model is
a self-consistent prediction based on these initial conditions.

5.3.1. Phase I

In order to evolve Equations (1) and (2) from time t to t+∆t
we need to compute the source terms on the right-hand sides.
This can be done in the following way:

(i) Compute vw(Rej(t), t) using the precomputed baryonic
wind model (Section 5.1) or Equation (20).

(ii) Employ the previously generated wind profiles
mw(r, t) and ρw(t) to compute the optical depth of
the ejecta material (Equation (36)) and to numerically
solve for the temperature of the ejecta material using
Equation (39). This yields the source term Lrad(t)
(cf. Equations (34) and (35)).

(iii) Compute the remaining two source terms using Equa-
tions (32) and (33).

This phase ends when t = tpul,in (Equation (40)) and Phase
II starts. If the NS collapses to a black hole during Phase
I, we keep evolving Equations (1) and (2), setting LEM and
dEth,NS/dt to zero (cf. Section 4.4).

5.3.2. Phase II

At t = tpul,in, the initial rotational energy of the pulsar is
computed using Equation (42) and its initial spin period is
then inferred from Equation (46). This allows us to com-
pute the initial spin-down luminosity (Equation (47)) and the
spin-down timescale (Equation (49)), which together define
the spin-down luminosity at later times (Equation (48)).

In order to evolve the evolution equations (3)–(10) from
time t to t+ ∆t, one can proceed as follows:

(i) Compute vw(Rej(t), t) using the precomputed baryonic
wind model (Section 5.1) or Equation (20).

Table 2
Model input parameters. Most of these parameters can be extracted from (or

at least estimated/constrained using) numerical relativity simulations of
BNS mergers.

Parameter Description
Ṁin initial mass-loss rate of the NS (cf. Section 4.1.1)
tdr timescale for removal of differential rotation from the NS

(cf. Section 4.1.1)
σM ratio of tdr to the timescale for decrease of the mass-loss rate

(cf. Section 4.1.1)
vej,in initial expansion speed of the baryonic ejecta material

(cf. Section 4.1.1)
B̄ magnetic field strength in the outer layers of the NS (cf. Equa-

tion (32))
ηBp dipolar magnetic field strength of the pulsar in units of B̄

(cf. Equation (41))
Erot,NS,in initial rotational energy of the NS (cf. Equation (42))
Pc initial central spin period of the NS (cf. Equation (32))
Re equatorial radius of the NS (cf. Equation (32))

MNS,in initial mass of the NS (cf. Equation (45))
Ipul moment of inertia of the pulsar (cf. Equation (46))

εej,NS,in initial specific internal energy of the material ejected from the
NS surface (cf. Equation (33))

κ opacity of the ejecta material (cf. Equations (36), (71), (72),
and (99))

A(ν, t) frequency and time-dependent albedo of the ejecta shell in
Phase II and III (cf. Sections 4.2.2 and 4.4)

tν neutrino-cooling timescale (cf. Equation (33))
ηBn fraction of the total pulsar wind power injected as magnetic

energy per unit time into the PWN (cf. Equations (10), (15),
and Sections 4.2.2, 4.3.1).

ηTS efficiency of converting pulsar wind power into random ki-
netic energy of accelerated particles in the PWN (cf. Equa-
tions (9), (76) and Sections 4.2.2, 4.3.1)

γmax maximum Lorentz factor for non-thermal particle injection
into the PWN (cf. Section 4.3.1, Equation (76))

Γe power-law index of the non-thermal spectrum for particle in-
jection into the PWN (cf. Section 4.3.1, Equation (76))

fcoll (only in the collapse scenario, Section 4.4) parameter spec-
ifying the time of collapse of the NS in units of the spin-
down timescale (collapse during Phase III) or in units of tdr
(“fcoll,PI”, collapse during Phase I)

(ii) Compute dEth,vol and vsh(t) from Equations (62) and
(58), respectively. Use vsh(t) and the wind profiles to
evaluate shock heating according to Equation (63).

(iii) Compute the source terms Lsd(t), Lrad,pul, and
dEPWN/dt using Equations (48), (51), and (57).

(iv) Find the temperatures of the shocked and unshocked
ejecta parts by using the precomputed wind profiles
mw(r, t), ρw(t) and solving Equation (69). This yields
the optical depths (Equations (71), (72)) and luminosi-
ties (73) and (74).

(v) Evolve all quantities to t+ ∆t, except for Rn and Enth.

(vi) Define

Enth(t+ ∆t) = Enth(t) +
dEnth

dt
∆t (112)

Rn(t+ ∆t) = Rsh(t+ ∆t)
Eth,sh(t+ ∆t)

Enth(t+ ∆t)
(113)

and iterate until both quantities have converged to some
desired accuracy. The second condition ensures pres-
sure equilibrium between the nebula and the shocked
ejecta layer (cf. Equation (61)).

Phase II ends when Rsh(t+ ∆t) > Rej(t+ ∆t).
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5.3.3. Phase III

Once the shock has reached the outer ejecta layers, Phase
III begins. The initial speed of the shocked ejecta layer is
calculated from Equation (93). Evolving Equations (11)–(15)
from time t to t + ∆t can be accomplished by the following
steps:

(i) Compute Lsd and Lrad,pul using Equations (48) and (51).

(ii) Compute the acceleration of the ejecta shell according
to Equation (95).

(iii) Find the temperature of the ejecta shell by solving
Equation (96). This yields the optical depth (Equa-
tions (99)) and the luminosities Lrad and Lrad,in (Equa-
tions (100) and (101)).

(iv) Solve Equations (78) and (79) as described in Sec-
tion 5.2 to find the source term dEPWN/dt.

In the case the NS collapses to a black hole (see Sec-
tion 4.4), Step (i) is omitted and Equation (108) is added as
another evolution equation to Equations (11)–(15). Further-
more, Step (iv) is replaced by

(iv)’ Find the source term dEPWN/dt using Equation (107).

This concludes our discussion of the overall procedure to
evolve Equations (1)–(15).

5.4. Timescales
As our evolution model in Phase III is built upon the as-

sumption of quasi-stationarity as far as radiative processes
in the PWN are concerned, we need to monitor several
timescales during the numerical evolution in order to assess
the validity of this assumption. For these diagnostic purposes,
we define the following timescales in Phase III:

τe(t) =
le

l̇e
, (114)

τph(t) =
lph

l̇ph
, (115)

τc(γ, t) =

∣∣∣∣ γ

γ̇C,syn

∣∣∣∣ , (116)

τl(t) =
Rn

c
, (117)

where γ denotes the Lorentz factor of a particle in the PWN
and le, lph, and γ̇C,syn are defined by Equations (76), (77), and
(84), respectively.

In order for the stationarity assumption regarding the parti-
cle distribution to hold, which allowed us to integrate Equa-
tion (82) to obtain Equation (83), the timescale for equilibra-
tion of the particle distribution given by the cooling timescale
τc has to be much smaller than any other timescale involved
in the problem. In particular, it has to be smaller than the
timescale for change of the photon distribution. Thus we have
the requirements that

τc(γ, t)� τph(t) ∀ t, γ, (118)
τc(γ, t) � τe(t) ∀ t, γ. (119)

Here, we have assumed that the timescales for change of the
photon and particle distributions inside the nebula are approx-
imately given by the timescales τph and τe for change of the

injected spectra. As we shall discuss in the companion pa-
per (Paper II), we typically find that these conditions are very
well satisfied across the entire parameter space in absence of
significant acceleration of the ejecta shell after t = tshock,out
and except for very late times t & 107 s when the nebula has
grown in size, the magnetic field strength has decreased, and
synchrotron cooling has become less efficient. However, we
are not interested in the evolution at these late times.

For the stationarity assumption regarding the photon spec-
trum to hold (i.e., for Equation (78) to hold), the timescale for
the photon spectrum to change has to be much larger than the
timescale for equilibration inside the nebula. As the positronic
plasma inside the PWN is relativistic, its sound speed is close
to the speed of light. We can thus assume that the nebula
plasma adjusts to changing exterior conditions essentially on
the timescale τl. Therefore, one also has the requirement that

τl(t)� τph(t) ∀ t. (120)

As long as further acceleration of the ejecta shell after t =
tshock,out is not significant, we typically find that this condition
is well satisfied during the numerical evolution as we shall
discuss in more detail in the companion paper (Paper II).

5.5. Synchrotron self-absorption
In our model of the PWN in Phase III, we have neglected

synchrotron self-absorption. In order to check the validity of
this assumption during the numerical evolution of our model,
we monitor the dimensionless photon energy x∆τsyn=1(t) de-
fined by

∆τsyn(x∆τsyn=1(t), t) = 1, (121)

where ∆τsyn(x, t) is the approximate optical depth of the
nebula to synchrotron self-absorption at time t (cf. Equa-
tion (88)). This dimensionless energy separates the optically
thick and thin regimes of the photon spectrum and lies well
below X-ray frequencies (typically by many orders of magni-
tude) as we shall discuss in the companion paper (Paper II).
Therefore, the part of the spectrum that we are mostly inter-
ested in, i.e., at X-ray and γ-ray energies, is unaffected by
effects of synchrotron self-absorption.

5.6. Stiffness problem
At some point in the evolution (in Phase III), the photon

diffusion timescale of the ejecta shell

tdiff,ej =
Rej −Rn

c
(∆τej + 1) (122)

becomes comparable to the temporal resolution ∆t and Equa-
tion (14) becomes stiff. Here, ∆τej denotes the optical depth
as seen from the lab frame (cf. Equation (103)). This problem
can be noticed in the following way. Assuming ∆τej,com �
1, a radiation dominated gas, such that Tcom ' Eth/aVej
(cf. Equation (96)), and using Equations (98) and (100) it is
straightforward to show that the thermal emission from the
ejecta shell scales as Lrad ∝ Eth/tdiff,ej. The photon diffusion
timescale itself scales as tdiff,ej ∝ R−2

ej (cf. Equation (99)).
Hence, as Rej is monotonically increasing with time, at some
point tdiff,ej ≈ ∆t and Equation (14) becomes stiff.

Fortunately, there is an easy way to bypass this problem.
As Lrad ∝ Eth/tdiff,ej, this term will eventually deplete the
energy reservoir Eth of the ejecta shell until the shell enters
an asymptotic regime in which the amount of injected energy
equals the amount of emitted energy on the photon diffusion
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Figure 3. Evolution of the internal energy Eth of the ejecta shell in Phase
III according to a run using the evolution scheme described in this section
(Run 1) and a run using additional mesh refinement to evolve Equation (14)
up to late times (Run 2). The dashed red line indicates the time of transition
t = tres to the modified evolution scheme for Run 1.

timescale. In other words, this regime is defined by setting
dEth/dt = 0 in Equation (14) on a timescale t ∼ tdiff,ej. At
any time in this asymptotic regime, the total internal energy
Eth of the ejecta shell is then given by

Eth(t) = [1− fej(t)]
dEPWN

dt
tdiff,ej(t) (123)

and a separate evolution equation for Eth is not needed any-
more.

In practice, the grid spacing ∆t has to be adjusted such that
this asymptotic regime is reached well before ∆t ≈ tdiff,ej.
Once this is achieved, we typically switch to the asymp-
totic regime during the numerical evolution at tres, defined
by tdiff,ej(tres) = 2∆t. By definition of this regime, Lrad and
Lrad,in scale as dEPWN/dt. Therefore, assuming that the ther-
mal photons from the ejecta shell dominate the photon injec-
tion lph of the PWN (cf. Equation (77)), lph is expected to
scale as le. As the PWN conserves energy (total luminosity of
injection equals the luminosity of emitted radiation; see Ap-
pendix D) we hence conclude that

dEPWN

dt
∝ (Lsd + Lrad,pul). (124)

In order to avoid numerical runaway instabilities due to the
fact that dEPWN/dt in Equation (123) depends on the solu-
tion to Equations (78) and (79), which, in turn, depends on
the injected photons, i.e., on dEPWN/dt, we employ Equa-
tion (124) in Equation (123) and calibrate the prefactor at tres
to ensure continuity over t = tres. This calibration, however,
is only valid for t > tres if also the dynamics of the shell have
reached an asymptotic regime, i.e., if no further acceleration
occurs such that, e.g., the beaming factor does not depend on
time. In practice, a grid spacing can always be set up to satisfy
this constraint as well.

Figure 3 compares the internal energy Eth of a typical
model case evolved using the scheme outlined above (Run
1) with the corresponding result for a simulation in which
a power-law refinement ∆t ∝ tdiff,ej ∝ R−2

ej was imple-
mented (Run 2). For the latter run, the refinement guaranteed

∆t� tdiff,ej at all times and thus allowed us to integrate Equa-
tion (14) for all times. The agreement between the two runs
is remarkably good and indicates that the scheme described
above well captures the evolution of the system at later times
than tres. Remaining discrepancies at late times t ∼ 105 s are
due to numerical errors as the ever decreasing time step in
Run 2 results in increasing accuracy for the time integrations
of Equations (11)–(15). Finally, we note that runs with power-
law refinement are computationally very expensive, such that
comparisons like the one presented here cannot be carried out
routinely and we will thus not add this comparison to the set
of routine checks (see Sections 5.4 and 5.5) that we shall dis-
cuss in more detail in the companion paper (Paper II).

5.7. Observer lightcurve reconstruction
This section is devoted to a discussion of how the lightcurve

and spectra as seen by a distant observer can be reconstructed,
including relativistic effects such as the relativistic Doppler
effect, the time-of-flight effect, and relativistic beaming. As
the effective temperature of blackbody radiation is altered by
the relativistic Doppler factor and enters the luminosity to the
fourth power, even mildly relativistic ejecta shell velocities of
vej ∼ 0.1c can have a significant influence on the lightcurve.
Furthermore, as the PWN and the ejecta shell expand to large
radii, radiation reaching the observer from different locations
on the surface of the expanding sphere can have appreciable
delays. These delays are particularly important in dynamical
situations, in which the ejecta shell is accelerated or in which
the NS collapses to a black hole and induces an abrupt change
in the radiation escaping from the system. Finally, relativis-
tic beaming is influential in the sense that it normalizes the
total luminosity by selecting an effective surface area of the
expanding sphere that emits in the direction of the observer.
In so doing, it also affects the maximum delay concerning the
time-of-flight effect and must therefore be taken into account.
Consequently, it is important to consider these relativistic ef-
fects when predicting observer lightcurves and spectra with
our model.

We numerically compute the lightcurves and spectra as
seen by a distant observer including the relativistic effects de-
scribed above by decomposing the radiation originating from
the surface area of the half-sphere facing the observer into in-
dividual energy packages released at time t during a time ∆t
from ring-shaped portions of surface area of equal distance to
the observer. These packages are emitted at time t and then
recollected by the observer according to their time of flight
and their Doppler-shifted frequency. To this end, we define
a coordinate system centered about the NS, with its z-axis in
direction of the remote observer and θ denoting the polar an-
gle. At any time t let us consider two half spheres facing the
observer, defined by θ ∈ [0, π/2] and radii Rej(t) and Rn(t),
respectively. Due to relativistic beaming, only radiation orig-
inating from the regions θ ∈ [0, θmax(t)] will eventually reach
the observer (Rees 1966), where

θmax(t) = arccos

(
vej(t)

c

)
. (125)

This area is then further decomposed into rings of constant
θ, defined by a grid Θ = [0, . . . , θk, . . . , θmax(t)], with nθ
points and spacing ∆θk that is equidistant in the limb angle
µ = cos θ.

Moreover, given a time grid T = [tmin, . . . , ti, . . . , tmax] for
the evolution of Equations (1)–(15) appropriate to properly
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resolve the shock dynamics during Phase II and to overcome
the stiffness problem (cf. Section 5.6), we define a time grid
for the observer T ′ = [t′min = tmin, . . . , t

′
j , . . . , t

′
max = tmax]

by

t′0 = t′min, (126)

t′j+1 = t′j +Nt′
vej,int

′
j

cnθ
, (127)

where Nt′ < 1. In order for the observer to resolve the time-
of-flight effect, i.e., to distinguish between the various energy
contributions from different locations on the emitting surface
area, the grid spacing ∆t′ at time t′ has to be smaller than the
light crossing time of the half sphere divided by the number
of individual rings. Since

∆t′j = Nt′
vej,int

′
j

cnθ
<
Rej(t

′
j)

cnθ
, (128)

the grid spacing defined by Equation (127) guarantees that the
time-of-flight effect is properly resolved.

We also define a receiver energy grid E′(T ′, X ′) for the
remote observer, where X ′ denotes the grid in dimensionless
energy x′ = hν′/mec

2, which is typically similarly spaced as
the corresponding one used in the evolution of the main model
(cf. Section 5.2). The energy contribution of a ring of width
dθ at θ to the total energy emission during a time dt per unit
frequency as measured by the distant observer is given by

dE′

dν′
= 4πI ′(ν′)dσ cos θcomdt, (129)

where I ′(ν′) is the specific intensity as seen by the observer,
dσ = 2πR2

ej/n sin θdθ is the surface area of the ring, and θcom

given by

tan θcom =
√

1− v2
ej/c

2
sin θ

cos θ − vej/c
(130)

defines the direction of the observer as seen in the local co-
moving frame of the expanding surface. We note that the ef-
fective emitting surface area dσ cos θcom approaches zero as
θ reaches θmax. We have already multiplied by 4π in Equa-
tion (129) to account for an isotropic source.

According to the relativistic Doppler effect applied to a
photon of frequency ν emitted from the surface at a point
specified by an angle θ in direction of the remote observer,

D ≡ ν′

ν
=
x′

x
=

√
1− v2

ej/c
2

1− (vej/c) cos θ
. (131)

Noting that I/ν3 is Lorentz invariant, where I is the specific
intensity, we have I ′ = D3I . Therefore, for the blackbody
emission of the ejecta material,

I ′th(ν′) =
2hν′3

c2

[
exp

(
hν′

DkBTeff,com

)
− 1

]−1

, (132)

where Teff,com is given by Equation (98). We note that the
effective temperature as seen by the distant observer is thus
T ′eff = DTeff,com. Since the associated luminosity scales as
L′ ∝ D4T 4

eff,com, small deviations ofD from unity can already
have an appreciable influence on the observer lightcurve. Fur-
thermore, as long as the nebula is optically thick, i.e., ∆τT >

1, the escaping photons originate from the outer surface layer
at r = Rn and we can set

I ′nth(x′) = D3Lrad,nth(x′/D, t)

4πR2
n

(133)

for the non-thermal radiation, withLrad,nth(x, t) being the non-
thermal luminosity of the nebula (cf. Equations (104) and
(109)). When beaming is already encoded in Lrad,nth(x, t) it-
self (cf. Section 4.4), the right-hand side of Equation (133)
has to be divided by fbeam to solely take the geometric time-
of-flight effect into account (through the subdivision into in-
dividual rings up to θ = θmax).

When the nebula is optically thin, i.e., ∆τT < 1, the escap-
ing photons are emitted uniformly and isotropically through-
out the volume of the nebula. In this case, we slice the nebula
volume Vn into spherical shells of radius r ∈ R = [Rmin, Rn]
and thickness dr and subdivide each shell into rings of con-
stant θvol ∈ Θvol = [0, π] and width dθvol. The contribution of
such volume elements dV = dσdr = 2πr2 sin θvoldθvoldr to
the total energy emission during a time dt per unit frequency
as measured by the distant observer can then be written as

dE′

dx′
= D3Lrad,nth(x′/D, t)

dV

Vn
dt. (134)

Here, D is defined as in Equation (131) in terms of the local
velocity v(r) = vejr/Rn.

With these definitions and expressions at hand, we compute
the radiation emitted at time t during a time ∆t as received by
the remote observer according to the following steps:

(i) First, compute the arrival times of the energy packages
for all emitting rings and spherical segments, i.e., for
all θ ∈ Θ, θvol ∈ Θvol, and r ∈ R:

t′arr,th(θ) =
Rmin

c
+ t−

Rej(t)

c
cos θ (135)

t′arr,nth,surf(θ) =
Rmin

c
+ t− Rn(t)

c
cos θ (136)

t′arr,nth,vol(θvol, r) =
Rmin

c
+ t− r

c
cos θvol (137)

This definition of arrival times ensures that a photon
emitted at t = tmin from the outer surface of the bary-
onic wind at Rej(tmin) = Rmin and θ = 0 reaches the
observer at t′ = tmin.

(ii) Second, compute the energy spectrum ∆E′th(Θ, X ′)
that is generated by thermal radiation from the surface
of the ejecta matter using Equations (129) and (132):

∆E′th(θk, ν
′
l) = 8π2R2

ejI
′
th(ν′l)

× sin θk cos[θcom(θk)]∆θk∆t.

(iii) In analogy to the thermal radiation in Step (ii), use
Equations (129), (133), and (134) to compute the en-
ergy contributions generated by the non-thermal radi-
ation from the PWN once the ejecta shell has become
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optically thin:

∆E′nth,surf(θk, x
′
l) = (1− fn)8π2R2

nI
′
nth(x′l)

× sin θk cos[θcom(θk)]∆θk∆t,

∆E′nth,vol(θvol,k, x
′
l, rm) = fn

3

2
D3Lrad,nth(x′l/D)

×r
2
m

R3
n

sin θvol,k∆θvol,k∆rm∆t.

The function fn(t) is defined in terms of ∆τT in anal-
ogy to fej in Equation (102). It is used here to guaran-
tee a smooth transition between the optically thick and
thin regimes of the nebula, corresponding to surface and
volume nebula emission, respectively.

(iv) Use the mapping of angles to arrival times from Step
(i) to put the energy packages from Steps (ii) and (iii)
into the correct time and frequency bins of the observer
energy grid E′(T ′, X ′).

Once the evolution of Equations (1)–(15) has been accom-
plished up to t = tmax and all energy packages have been sent
and received, the energy array of the observer, E′(T ′, X ′),
may be divided by the time steps ∆t′j to obtain the corre-
sponding observer luminosity

Lobs(t
′
j , x
′
l) = E′(t′j , x

′
l)/∆t

′
j . (138)

This quantity can then be used to compute detailed predictions
for the luminosity as seen by a remote observer in specific
wavelength bands, such as in the γ-ray, X-ray, UV, optical,
and radio bands (see Paper II).

6. DISCUSSION AND CONCLUSION

In this paper, we have presented a dynamical model to de-
scribe the post-merger evolution of a BNS system and its
EM emission. Our model assumes that the merger of two
NSs leads to the formation of a (hypermassive, supramas-
sive, or stable) NS which does not collapse to a black hole
on timescales of at least tens of milliseconds after merger. As
we have argued (cf. Section 1), such a long-lived NS is a very
likely possibility, such that the model should be applicable to
a large fraction of BNS merger events. In contrast to a black
hole promptly formed after merger and surrounded by a short-
lived accretion disk, such long-lived objects can power long-
lasting EM emission from γ-ray to radio energies that might
be responsible for at least part of the observed long-lasting
afterglow emission observed in many SGRBs. We refer to
Paper II for a detailed account on modeling X-ray afterglow
lightcurves with our model in the context of SGRBs. More-
over, this model also represents an important tool to identify
EM counterparts associated with the GW signal of the inspi-
ral and merger of a BNS system (see Paper II for a detailed
discussion). The identification of such EM counterparts is es-
sential for performing joint EM and GW observations. Joint
observations involving EM counterparts of the kind discussed
here (long-lasting and highly isotropic) can confirm the as-
sociation of the GW signal with a BNS merger (i.e., distin-
guish form the NS–BH binary merger). With the advanced
LIGO/Virgo detector network starting its first science run later
this year, such multimessenger astronomy will turn into excit-
ing reality in the very near future.

Our model is formulated in terms of a set of highly coupled
differential equations, which provide a self-consistent evolu-
tion of the post-merger system and its EM emission given

some initial data. Such initial data can be extracted from a
numerical relativity simulation of the merger and early post-
merger phase at a few to tens of milliseconds after the merger,
once a roughly axisymmetric state has been reached. Our
model allows us to evolve the post-merger system over time
and lengthscales inaccessible to numerical relativity simula-
tions, typically up to ∼ 107 s after merger. It thus bridges the
gap between numerical relativity simulations of the merger
process and the timescales of interest for SGRB afterglow ra-
diation. The model evolves the system through three main
evolutionary phases: an early baryonic wind phase (Phase
I), a pulsar wind shock phase (Phase II), and a PWN phase
(Phase III). Furthermore, the possibility of collapse to a black
hole during any of the three phases is accounted for. Our
model links the evolution of the central engine directly to
the observed afterglow radiation, taking into account relativis-
tic dynamics as well as an accurate reconstruction of the ob-
server lightcurve including relativistic beaming, the relativis-
tic Doppler and the time-of-flight effect.

Prompt SGRB emission and time-reversal scenario — Our model
makes no assumption on how and when the prompt γ-ray
emission of the SGRB itself is produced. It can accommodate
both the standard scenario (SGRB at the time of merger) and
the recently proposed time-reversal scenario (SGRB at the
time of collapse of the remnant NS; Ciolfi & Siegel 2015b,a).
It can obviously also accommodate the case in which no rela-
tivistic jet and thus no SGRB is produced at all.

In the context of magnetar models for SGRBs, the prompt
emission is assumed to be generated by an accretion pow-
ered relativistic jet emerging from a NS–torus system shortly
(∼ ms) after the time of merger (e.g., Metzger et al. 2008;
Bucciantini et al. 2012; Gompertz et al. 2014; Metzger &
Piro 2014; Gao et al. 2015). However, a generic feature of a
newly-born NS after a BNS merger will be strong baryon pol-
lution in its vicinity due to dynamical ejecta from the merger
process and neutrino and magnetically driven winds from its
surface or possibly from an accretion disk (Hotokezaka et al.
2013; Oechslin et al. 2007; Bauswein et al. 2013; Kastaun &
Galeazzi 2015; Dessart et al. 2009; Siegel et al. 2014; Met-
zger & Fernández 2014; see Section 4.1). Such baryon pollu-
tion can not only choke jets (Nagakura et al. 2014; Murguia-
Berthier et al. 2014), but it is likely to even prevent the gener-
ation of any relativistic outflow at all. We note that numerical
simulations of BNS mergers that lead to the formation of a
remnant NS have not found indications for the generation of
a relativistic jet (Giacomazzo & Perna 2013).

In the time-reversal scenario, the SGRB is generated at the
time of collapse of the supramassive remnant NS. In this case,
the baryon-free PWN surrounding the collapsing NS does not
threaten the formation of an accretion powered jet from the
remaining BH–torus system. Margalit et al. (2015) have re-
cently argued that the formation of an accretion disk following
the collapse of the supramassive NS is rather unlikely. How-
ever, numerical simulations will be needed to further investi-
gate this issue.

As there are still many open questions related to the for-
mation of the SGRB prompt emission in BNS mergers, our
model is designed to be general in the sense that it does not
make assumptions on the generation of the prompt emission.
In either scenario, it provides detailed predictions for the in-
trinsic afterglow emission emerging from the post-merger sys-
tem that can be compared to observations (see Paper II). In the
time-reversal scenario, it additionally predicts the EM emis-
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sion prior to the SGRB itself (see Paper II). If such emission
is found, it would represent strong evidence in favor of the
time-reversal scenario (see Section 7 of Paper II for a more
detailed discussion and implications for joint GW and EM
observations).

Comparison to earlier work — Other authors, e.g., Yu et al.
(2013) and Metzger & Piro (2014), have previously consid-
ered radiation from a similar physical setup.6 During the time
of writing also Gao et al. (2015) have investigated EM emis-
sion in a similar context. All of the aforementioned authors
considered a setup that is qualitatively similar to the phe-
nomenology in Phase III of our model: a remnant NS (pre-
viously born in a BNS merger), surrounded by a PWN that is
confined by a shell of matter. They present different models
to evolve such a setup and to predict thermal and non-thermal
radiation emerging from such a system. Based on a simple dy-
namical model, Yu et al. (2013) find thermal emission peak-
ing around ∼ 104− 105 s after merger with luminosities of
∼1044−1045 erg s−1, which they term “merger-nova”. Build-
ing on this model, Gao et al. (2015) argue that such a merger-
nova is consistent with the late-time rebrightening observed
at optical and X-ray wavelengths in GRB 080503. Metzger &
Piro (2014) consider a more detailed physical model, in par-
ticular, regarding the PWN physics, but without relativistic
dynamics. Furthermore, they implement a detailed formalism
to compute the ejecta opacities, the degree of ionization, and
the resulting albedo in a self-consistent way. As a result of a
more detailed physical description of the PWN and its inter-
action with the ejecta layer, Metzger & Piro (2014) obtain a
dimmer thermal optical/UV transient peaking at a luminosity
of ∼ 1043−1044 erg s−1 on a timescale of ∼ 104−105 s af-
ter merger and argue that the late-time X-ray excess of GRB
130603B (Fong et al. 2014) as well as the late-time optical re-
brightening and X-ray emission of GRB 080503 is consistent
with their model.

In contrast to previous work, we start the evolution shortly
after the BNS merger and introduce a first baryonic wind
phase that we expect to be generic of BNS mergers leading
to the formation of a long-lived remnant NS. Furthermore,
we introduce the pulsar ignition and pulsar wind shock phase
(qualitatively similar to the initial phase of Metzger et al.
2014). As the pulsar wind shock is propagating at relativis-
tic speeds in our setup, we implement a relativistic scheme to
describe the propagation across the ejecta and a detailed de-
scription of the energy transfer between the PWN, the shock
heated, and unshocked ejecta during this phase. In Phase III,
we implement a self-consistent model for the radiative pro-
cesses occurring in the PWN, including pair creation and an-
nihilation, Compton scattering, Thomson scattering, and syn-
chrotron cooling. Moreover, we employ a relativistic descrip-
tion of the dynamics in terms of a Milne-universe model and
develop a reconstruction of the observer lightcurve and spec-
tra taking into account the combined effects of relativistic
beaming, the relativistic Doppler effect, and the time-of-flight
effect. As a result of baryon pollution being a general feature
and the level of detail reached here, we expect our model to
be applicable to a much larger class of SGRBs than previously
thought. We explore this possibility in Paper II. In particular,
we point out that previous magnetar models, which are ap-

6 Gao et al. (2013) have also considered a similar scenario, but focus on
computing afterglow radiation from the interaction of ejected mass with the
ambient medium.

plied to large classes of SGRB events (e.g., Rowlinson et al.
2013; Gompertz et al. 2013, 2014; Lü et al. 2015) neglect the
effects of surrounding ejecta material on the magnetar emis-
sion and instead assume a direct and instantaneous conver-
sion of spin-down energy Lsd into observed X-ray luminosity
LX by some unspecified process, Lsd ∝ LX. This typically
leads to very simple analytical fitting formulae for the X-ray
lightcurves, which is in sharp contrast to the self-consistent
dynamical evolution considered here.

Rayleigh-Taylor instability, kick velocities, and PWN jet — Our
model is one dimensional and highly idealized. As noted by
Metzger & Piro (2014), at early times the high pressure of the
PWN pushing against the ejecta shell can trigger a Rayleigh-
Taylor instability. This would presumably cause some poros-
ity in the ejecta envelope thanks to which non-thermal radi-
ation from the PWN could escape from the system already
at much earlier times. Such effects, however, are difficult to
take into account in a one dimensional model like ours and
are neglected here.

Another deviation from spherical symmetry not accounted
for by our one-dimensional model could arise from the pos-
sible presence of a kick velocity of the newly-formed NS. A
large kick velocity could qualitatively alter the evolutionary
scenario considered here.

Furthermore, based on axisymmetric magnetohydrody-
namic simulations, Bucciantini et al. (2012) show that for
sufficiently high spin-down energies, the built-up of strong
toroidal magnetic field in the PWN interior can drive a bipolar
jet through the ejecta shell and might even disrupt it entirely.
Such jet breakouts were employed by Bucciantini et al. (2012)
to model SGRBs with extended emission. However, recent
three-dimensional simulations indicate that such jet breakouts
are an intrinsic effect of two-dimensional simulations, and
that the kink instability in three dimensions destroys the po-
lar jets and dissolves them into the PWN (Porth et al. 2014).
Therefore, we exclude such catastrophic events for our model.

Future improvements — Our model already reflects a certain
degree of detail and sophistication, but many aspects can be
improved in future work. A more accurate description of ra-
diative transfer through the ejecta shell and the PWN is re-
quired to predict more accurate lightcurves and spectra, which
would be desirable for a more detailed comparison with ob-
servational data. Furthermore, the present implementation of
a self-consistent modeling of the radiative processes occurring
in the PWN requires the assumption of quasi-stationarity (as
far as those processes are concerned). In the future, it would
be desirable to develop a time-dependent formalism, which
would then allow us to include a self-consistent computation
of a time and frequency-dependent albedo of the ejecta mate-
rial (similar to Metzger & Piro 2014). Moreover, such a time-
dependent formalism would more accurately describe further
acceleration of the ejecta shell in Phase III, it would allow us
to include the associated pdV work done by the nebula, and
it would provide a more accurate model of the PWN emis-
sion during the transient phase following the collapse of the
remnant NS. Finally, we note that with different initial data
and some modifications, our model could also be employed
to investigate EM afterglows of long GRBs.
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APPENDIX

RELATIVISTIC RANKINE-HUGONIOT CONDITIONS

This appendix is devoted to deriving Equations (58), (59), (60), and (64) from the special-relativistic Rankine-Hugoniot condi-
tions (e.g., Taub 1948; Marti et al. 1994), thereby also rederiving some of the expressions in Taub (1948) using our notation and
conventions. The Rankine-Hugoniot conditions were obtained in the special-relativistic case by Taub (1948) and relate the fluid
properties across a shock wave imposing continuity of the mass and energy-momentum flux:

[ρuµ]nµ = 0, (A1)
[Tµν ]nµ = 0. (A2)

Here, [f ] = fR−fL relates the values of a quantity f on one side and the other side of the discontinuity surface with normal vector
nµ. We choose a frame in which the shock is at rest and adopt Cartesian coordinates such that nµ = (0, 1, 0, 0). Furthermore,
we assume an ideal fluid with rest-mass density ρ, pressure p, specific internal energy ε, four-velocity uµ = (γ, γu, 0, 0), where
γ = (1 − u2)−1/2, and energy-momentum tensor Tµν = ρ(c2 + ε + p/ρ)uµuν + pηµν , where ηµν = diag(−1, 1, 1, 1) is the
Minkowski metric. Finally, we assume an ideal gas equation of state, p = (Γ− 1)ρε, where Γ denotes the adiabatic index. Under
these assumptions, the Rankine-Hugoniot conditions (Equations (A1) and (A2)) are written as (cf. also Taub 1948)

ρLuL√
1− u2

L

=
ρLuR√
1− u2

L

≡ m, (A3)

ρL

(
c2 +

Γ

Γ− 1

pL

ρL

)
uL

1− u2
L

=ρR

(
c2 +

Γ

Γ− 1

pR

ρR

)
uR

1− u2
R
, (A4)

pR − pL =m2c2
[

1

ρL

(
1 +

Γ

Γ− 1

pL

ρLc2

)
− 1

ρR

(
1 +

Γ

Γ− 1

pR

ρRc2

)]
. (A5)

We note that for a mixture of radiation and ideal gas with Γ = 4/3 (i.e., the ejecta matter considered in our model), the Rankine-
Hugoniot conditions take exactly the same form, with pL and pR being replaced by the respective sums of the radiation and fluid
pressures.

Squaring Equation (A4) and subtracting Equation (A5) multiplied by m2[. . .+ . . .] yields (where [. . .+ . . .] denotes the square
bracket on the right hand side of Equation (A5) with a + sign separating the two terms; cf. also Equation (7.8) in Taub 1948):

c2

[(
1 +

Γ

Γ− 1

pL

ρLc2

)2

−
(

1 +
Γ

Γ− 1

pR

ρRc2

)2
]

= (pL − pR)

[
1

ρL

(
1 +

Γ

Γ− 1

pL

ρLc2

)
− 1

ρR

(
1 +

Γ

Γ− 1

pR

ρRc2

)]
. (A6)

This equation can be read as a quadratic equation for ρL in terms of ρR, pL, and pR. In the following, we assume a strong shock,
i.e.,

pL � pR, (A7)

and a non-relativistic fluid ahead of the shock, i.e.,

pR/(ρRc
2)� 1. (A8)

These assumptions are very well satisfied for the pulsar wind shock in Phase II (see Section 4.2.3), given the non-relativistic
unshocked ejecta ahead of the shock front and the very high nebula pressure pn (Equation 53) that equals the pressure pL of
the shocked ejecta according to the pressure balance condition (61). With these assumptions, we obtain Equation (60) from
Equation (A6):

ρL =
Γ + 1

Γ− 1
ρR

1

2

{
1 +

[
1 + 4

pL

ρRc2
Γ

(Γ + 1)2

] 1
2

}
. (A9)

With the help of Equation (A3), Equation (A5) can be written as

u2
R

1− u2
R

=

pL
ρRc2

(
1− pR

pL

)
1− ρR

ρL
+ Γ

Γ−1

(
pR
ρRc2
− ρR

ρL

pL
ρLc2

) =
ρ2

R

ρ2
L

u2
L

1− u2
L
, (A10)
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from which using Equations (A7) and (A8) we obtain:

|uR|=

{
pL

ρRc2

[
1− ρR

ρL

(
1 +

Γ

Γ− 1

pL

ρLc2

)
+

pL

ρRc2

]−1
} 1

2

, (A11)

|uL|=

{
pL

ρLc2

[
ρL

ρR
− 1− 1

Γ− 1

pL

ρLc2

]−1
} 1

2

. (A12)

In our setup, uR < 0, i.e., the fluid ahead of the shock is moving toward the shock in the rest frame of the shock front. As seen
from the frame comoving with the fluid ahead of the shock, the shock velocity vsh,R is then given by vsh,R = |uR|c (Equation (59)).
In order to obtain the shock speed in the lab frame, we apply a Lorentz transformation and arrive at Equation (58). Accordingly,
we have uL > 0 and the velocity of the fluid behind the shock as seen from the frame comoving with the shock front is given by
vL = uLc (this quantity is needed in Equation (68)).

For the jump in specific internal energy across the shock, we have

∆ε

c2
=
εL − εR

c2
=

1

Γ− 1

(
pL

ρLc2
− pR

ρRc2

)
. (A13)

Using Equations (A7), (A8), and (A9) this results in

∆ε =
1

Γ + 1

pL

ρR

2

1 +
[
1 + 4Γ

(Γ+1)2
pL
ρRc2

] 1
2

, (A14)

which is the desired expression in Equation (64).

TRANSFORMATION BETWEEN COMOVING AND LAB FRAME

This appendix defines the lab and comoving frames used in Phase III of our evolution model to describe the expansion of the
ejecta shell (cf. Section 4.3.2) and it provides transformations for some quantities required by our model. The Milne universe
metric has recently been employed to describe an expanding homogeneous GRB fireball (Li 2007, 2013). We follow this approach
and apply it to the expansion of a thin ejecta shell. Some of the expressions that we derive here are based on expressions discussed
by Li (2007) and Li (2013), some of which we shall rederive here for completeness.

Let Xµ = (ct, r, θ, φ) denote the rest frame of the NS (or the “lab frame”) with spherical coordinates and Minkowski metric
gµν = diag(−1, 1, r2, r2 sin2 θ). Now consider the following coordinate transformation Xµ 7→ X ′µ = (cη, ξ, θ, φ), defined by

t = η cosh ξ, r = cη sinh ξ, (B1)

which transforms the Minkowski metric into g′µν = diag(−1, a2(η), a2(η) sinh2 ξ, a2(η) sinh2 ξ sin2 θ), with scale factor a(η) =
cη, which is known as the metric of the Milne universe (cf., e.g., Equation (16.15) of Rindler 2006). For a test particle with
constant radial velocity v, we have r = cβt, where β = v/c. Using Equation (B1) this yields

ξ = arctanhβ, η = γ−1t, (B2)

where γ = 1/
√

1− β2 is the Lorentz factor. Hence, η is the proper time of the particle and ξ its rapidity. At any time t, the ejecta
shell can be assigned a Milne universe with velocity v = vej at r = Rej by appropriately rescaling the lab frame time coordinate.
For the ejecta shell thickness is typically sufficiently small, i.e., ∆ej � Rej, at any given time we can describe the ejecta as a thin
shell in this Milne universe, which is what we call the comoving frame at time t.

First, we determine the three-acceleration a in the lab frame in terms of the corresponding quantity α in the comoving
frame (cf. Equation (95)). The four-acceleration of a particle in the comoving frame is given by A′µ = d2X ′µ/dη2 =

(γ′4αv′/c, γ′2(γ′2αv′v′i/c2 + αi)), where v′i = (v′ξ, v′θ, v′φ) is the three-velocity, αi = dv′i/dη, v′ =
√
g′ijv

′iv′j , and

α = dv′/dη. For the fluid in the ejecta shell, v′ = v′i = αθ = αφ = 0. Hence,

A′µ= (0, αξ, 0, 0), (B3)

v′= cηv′ξ, (B4)
α= cηαξ. (B5)

Analogously, in the lab frame the four-acceleration is given by Aµ = (γ4av/c, γ2(γ2avvi/c2 + ai)), where vi = (vr, vθ, vφ) is
the three-velocity, ai = dvi/dt, v =

√
gijvivj , and a = dv/dt. Using vθ = vφ = aθ = aφ = 0, we obtain

Aµ = (γ4av/c, γ4a, 0, 0). (B6)

Moreover, using Equations (B3), (B5), (B1), and (B2), we have Ar = (∂Xr/∂X ′ξ)A′ξ = (∂r/∂ξ)αξ = γα and thus we obtain
the desired expression (cf. Equation (95))

a =
dv

dt
= γ−3α. (B7)
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Second, we determine the transformation of area, volume, and internal energy. Henceforth, “com” refers to the comoving
frame. The surface area of spheres of radius r and corresponding rapidity ξ centered around r = ξ = 0 are invariant under the
transformation between lab and comoving frames:

Sξ = c2η2 sinh2 ξ

∫
sin θdθdφ = 4πc2η2 sinh2 ξ = 4πr2 = Sr. (B8)

The corresponding spherical volumes transform as follows:

Vcom(ξ) = c3η3

∫
sin θ dθdφ

∫ ξ

0

sinh2 ξ dξ (B9a)

=πc3η3

∫ 2ξ

0

(cosh z − 1) dz = πc3η3(sinh 2ξ − 2ξ) (B9b)

=
4

3
πr3ζ = ζV (r), (B9c)

where

ζ =
3

4

sinh 2ξ − 2ξ

sinh3 ξ
=

3

2

γ2β − arctanhβ

γ3β3
. (B10)

Note that our definition of ζ differs from ζ(β) defined in Li (2013) by a factor γ−1 = (cosh ξ)−1. For the volume of the ejecta
shell we thus find:

Vej,com = Vcom(ξej)− Vcom(ξn) = ζV (Rej)− ζV (Rn) = ζVej. (B11)

In order to compute the transformation of total energy of a fluid, let Tµν = (e + p)uµuν/c2 + pgµν denote the part of the
energy momentum tensor excluding kinetic and rest-mass energy, with e being the internal energy density, p being the pressure,
uµ being the four-velocity, and gµν being the metric of flat spacetime. The total energy density as seen by a normal (Eulerian)
observer with four-velocity nµ perpendicular to the hypersurfaces of constant time t in the Minkowski spacetime is given by
etot = Tµνn

µnν = γ2e+ (γ2 − 1)p. For a mixture of ideal gas and radiation, we can rewrite etot as

etot =
1

3
(4γ2 − 1)er + [γ2 + (γ2 − 1)(Γ− 1)]ef =

1

3
(4γ2 − 1)e, (B12)

where er and ef refer to the internal energy density of the radiation field and the gas, respectively. In the second equality in Equa-
tion (B12) we have assumed an ideal gas with adiabatic index Γ = 4/3 (as for the ejecta material we consider). Consequently,
the total energy of the fluid (apart from kinetic end rest-mass energy) in a spherical volume as measured in the comoving frame
is given by (cf. Equation (B9b))

Ecom = etot,comVcom = πc3η3(sinh 2ξ − 2ξ)e, (B13)

whereas in the lab frame it is given by E = 4π
∫
etotr

2 dr, which after some manipulations can be rewritten as

E =
4

3
πη3c3 sinh3 ξ e. (B14)

Hence (cf. Equations (B10) and (B9)),
Ecom

E
= ζ =

Vcom

V
. (B15)

Thanks to Equation (B11), this transformation also holds for shell volumes.
Finally, we discuss how luminosities transform between the lab and the comoving frame. LetL denote the luminosity of thermal

radiation originating from the surface of the ejecta shell. Then using Equation (B8), Lcom = SξejσT
4
eff,com = 4πR2

ejσT
4
eff,com, where

Teff,com ' (16/3)T 4
com/(∆τcom + 1) is the effective temperature at optical depth ∆τcom in the comoving frame. The energy loss

∆Ecom associated with this luminosity as measured in the comoving frame during a time ∆η is given by ∆Ecom = Lcom∆η =
Lcomγ

−1∆t, where we have used Equation (B2) and γ denotes the Lorentz factor of the ejecta shell. The corresponding energy
loss as measured in the lab frame is then obtained as (cf. Equation (B15)) L∆t = ∆E = ζ−1∆Ecom = ζ−1γ−1Lcom∆t. Hence,
we arrive at

L = ζ−1γ−1Lcom, (B16)

which is the desired result to motivate Equations (100) and (101).

SYNCHROTRON EMISSION

This appendix derives the relevant expressions needed to include effects of synchrotron emission into our model of the PWN in
Phase III (Equations (86), (87), and (88)). The spontaneously emitted spectral power at frequency ν of a single particle of charge
q, mass m, and Lorentz factor γ, accelerated by a magnetic field of strength B, is given by (Rybicki & Lightman 2004; Crusius
& Schlickeiser 1986)

p(ν, θ, γ) =

√
3q3B

mc2
sin θ

ν

ν̃c

∫ ∞
ν/ν̃c

K 5
3
(z) dz, (C1)
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where c is the speed of light, θ is the angle between the magnetic field and the direction of particle motion, K 5
3

denotes the
modified Bessel function of order 5/3, and ν̃c = νc sin θ = (3/4π)(qBγ2/mc) sin θ. Assuming an isotropic distribution of
particle velocities, we can average over all possible angles for a given speed γ to obtain the average energy loss rate for a particle
(cf. Crusius & Schlickeiser 1986):

p(ν, γ) =
1

4π

∫ 2π

0

dφ

∫ 4π

0

dθ sin θ p(ν, θ, γ) =

√
3q3B

mc2
R(ν/νc), (C2)

where
R(z) =

π

2
z[W0, 43

(z)W0, 13
(z)−W 1

2 ,
5
6
(z)W− 1

2 ,
5
6
(z)]. (C3)

Here, Wλ,µ(z) = e−
1
2 zz

1
2 +µU(0.5 + µ − λ, 1 + 2µ, z) is the Whittaker function and U denotes the confluent hypergeometric

function of second kind (Abramowitz & Stegun 1972, Section 13.1). Substituting ν with the dimensionless energy x = hν/mc2,
with h being the Planck constant, one has the relation p(x, γ) = (mc2/h)p(ν, γ); accordingly, we define xc = hνc/mc

2.
Therefore we can write the total cooling rate γ̇ of a single particle as

γ̇(γ) = − 1

mc2

∫
p(x, γ) dx = −

√
3q3B

hmc2

∫
R(x/xc) dx. (C4)

Furthermore, the number density of photons emitted per unit time and per unit normalized energy x is given by

ṅ(x) =
1

mc2x

∫
N(γ)p(x, γ) dγ =

√
3q3B

hmc2
1

x

∫
N(γ)R(x/xc) dγ, (C5)

where N(γ) is the particle density per normalized energy γ. Finally, assuming a uniform opacity coefficient the optical depth ∆τ
to synchrotron self-absorption for a spherical volume of radius R is given by (Ghisellini et al. 1988; Ghisellini & Svensson 1991)

∆τ(ν) =
R

8πmν2

∫
N(γ)

γα

∂

∂t
[γαp(ν, γ)] dγ, (C6)

where α =
√
γ2 − 1. Using the information from above, Equation (C6) can be rearranged to give

∆τ(x) =

√
3q3h2BR

8πm4c6
1

x2

∫
N(γ)

[
∂

∂γ
R(x/xc) + f(γ)R(x/xc)

]
dγ, (C7)

where f(γ) = (2γ2 − 1)/[γ(γ2 − 1)], with limγ→1 f(γ) = 2.

ENERGY CONSERVATION IN THE NEBULA

This appendix demonstrates that Equations (78) and (79) conserve energy. Integrating Equation (78) the total energy balance
per unit volume per unit time is given by∫

ṅescx dx =

∫
ṅ0x dx+

∫
ṅAxdx+

∫
ṅNT

C xdx+

∫
ṅT

Cx dx+

∫
ṅsynxdx− c

Rn

∫
n∆τNT

C xdx− c

Rn

∫
n∆τγγx dx. (D1)

From Equation (83) we have

−
∫ γmax

1

γ̇C,syn(γ)N(γ) dγ=

√
3e3B

hmc2

∫ γmax

1

dγ

∫
dxN(γ)R(x/xc)−

∫ γmax

1

γ̇CN(γ) dγ (D2)

=

∫
ṅsynx dx−

∫ γmax

1

γ̇CN(γ) dγ, (D3)

and hence ∫
ṅsynxdx =

∫ γmax

1

[Q(γ) + P (γ)](γ − 1) dγ +

∫ γmax

1

γ̇CN(γ) dγ. (D4)

Plugging this into Equation (D1) and noting that the second term on the right hand side of Equation (D4) cancels the third and
sixth term on the right hand side of Equation (D1) (see LZ87, Appendix A), we can proceed as in Appendix A of LZ87 to
conclude that ∫

ṅescxdx =

∫
ṅ0x dx+

∫ γmax

1

Q(γ)(γ − 1) dγ. (D5)

Therefore, the total injected power equals the total power output, which shows that energy is conserved in steady state.
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