
Bar-mode instability suppression in magnetized

relativistic stars

L. Franci1, R. De Pietri1, K. Dionysopoulou2 and L. Rezzolla2,3

1 Dipartimento di Fisica e Scienze della Terra, Università di Parma and INFN, Parma, Italy
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Abstract. We show that magnetic fields stronger than about 1015 G are able to suppress the
development of the hydrodynamical bar-mode instability in relativistic stars. The suppression
is due to a change in the rest-mass density and angular velocity profiles due to the formation
and to the linear growth of a toroidal component that rapidly overcomes the original poloidal
one, leading to an amplification of the total magnetic energy. The study is carried out
performing three-dimensional ideal-magnetohydrodynamics simulations in full general relativity,
superimposing to the initial (matter) equilibrium configurations a purely poloidal magnetic field
in the range 1014−1016 G. When the seed field is a few parts in 1015 G or above, all the evolved
models show the formation of a low-density envelope surrounding the star. For much weaker
fields, no effect on the matter evolution is observed, while magnetic fields which are just below
the suppression threshold are observed to slow down the growth-rate of the instability.

1. Introduction
Differentially rotating neutron stars (NSs) are subject to the so-called m = 2 dynamical bar-
mode instability for non-radial axial modes with azimuthal dependence eimφ (m = 1, 2, ...),
when the instability parameter β ≡ T/|W | (i.e. the ratio between the rotational kinetic energy
T and the gravitational binding energy W ) exceeds a critical value. The bar-mode instability
in differentially rotating magnetized NSs has already been studied in the Newtonian case by
Camarda et al. [1], suggesting that the effect of magnetic fields on the emergence of the instability
is not likely to be very signicant unless when NSs are born very highly magnetized.

In this work, we investigate if the presence of magnetic fields can affect the onset and
development of this kind of instability in full general relativity, as well as the role played by the
magnetic braking to possibly suppress the instability.

Our study is motivated by the potential implications that strong magnetic fields may have
for astrophysical scenarios and for gravitational wave astronomy. In particular, during the last
decade a general consensus has formed that long Gamma-Ray Bursts (GRBs) arise from the
collapse of massive stars while short GRBs, most likely, from neutron star mergers. A key
ingredient for both these categories of astrophysical phenomena is the formation of magnetic
structures that could power the high-speed particle jets associated with GRBs [2].

We choose to evolve different equilibrium relativistic stellar models that have already been
studied in the non-magnetized case by Baiotti et al. [3], so that their behavior against the
bar-mode instability is already known and fully understood when no magnetic fields are present.
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Figure 1. (Left panel): parameter space (β, βmag) with the initial values of these two quantities
for all the simulated models: the models inside the red shaded region turned out to be still
matter-unstable even when a magnetic field is present. (Central panel): time evolution of the
distortion parameter η for model U11 for four different values of the seed poloidal magnetic
field strength. We use blue lines for matter-unstable models and black lines for the stable ones.
(Right panel): growth-time τbar of the bar-mode instability versus the initial values of βmag.
The dashed lines represent the values in the non-magnetized cases while the dotted lines stand
as error bars.

2. Initial data
The initial data for our simulations are computed as stationary equilibrium solutions of
axisymmetric relativistic stars that are rapidly differentially rotating. In particular, we assume
the non-uniform j-law angular velocity distribution

Ωc − Ω =
1

Â2R2
e

[
(Ω− ω)r2 sin2 θe−2ν

1− (Ω− ω)2r2 sin2 θe−2ν

]
, (1)

where Re is the coordinate equatorial stellar radius, the coefficient Â is a measure of the degree
of differential rotation, while ω and ν are metric components in spherical coordinates.

A seed poloidal magnetic field is added to these initial equilibrium models as a perturbation
by introducing a purely toroidal vector potential Aφ = Ab (max(p− pcut, 0))2, where pcut is 4%
of the maximum initial pressure (pcut = 0.04 max(p(0))) and Ab is chosen in such a way so that
it corresponds to the maximum of the initial magnetic field on the (x, y) plane Bz

max|t,z=0.
The equilibrium models considered here have been calculated using a relativistic polytropic

equation of state p = KρΓ with K = 100 and Γ = 2, in analogy with previous works in the
literature. In particular, to better find out the changes to the bar-mode dynamics induced by
the presence of a magnetic field, we focused our attention on a sequence of models having a fixed
constant amount of differential rotation Â = 1 and a constant rest mass M0 ' 1.5 M�, which
were already studied in the non-magnetized case in [3]. All the features of these models are
then described in further detail in Tab. I of [3] and here we use the notation therein reported.
For the present study, we selected the three models which were better discussed therein, namely
models U3, U11 and U13, where U3 is the closest to the threshold for the onset of the bar-mode
instability and U13 is almost the fastest rotating equilibrium model which can be obtained for
this sequence at constant barionic mass (see the left panel of Fig. 1, where the threshold is
indicated with a red dotted line corresponding to β = 0.255).

Indeed, all the simulated initial models are represented in the left panel of Fig. 1, where
they are identified in terms of the initial values of the two parameters (β, βmag), defined as
β ≡ T/|W | and βmag ≡ Emag/(T + |W |), respectively. Here, T is the rotational kinetic energy,
W the gravitational binding energy and Emag the total magnetic energy. Hereafter, we will refer



Figure 2. (Top panels): snapshots of the rest-mass density ρ on the (x, y) plane at t = 22.5 and
30.0 ms for model U11 with two different seed magnetic field strengths: Bz

max|t,z=0 = 1.0×1014 G
for model U11-1.0e14 (left panels) and Bz

max|t,z=0 = 4.0×1015 G for U11-4.0e15 (right panels).
The color code is defined in terms of log10(ρ) where ρ is in cgs units (g/cm3). Additionally,
isodensity contours are shown for ρ = 1011, 1012, 5 × 1012, 1013, 5 × 1013 and 1014 g/cm3;
(Bottom panels): snapshots of the local magnetic energy T 00

EM on a horizontal plane at z ' 1.5
km for the same two models at the same steps during the evolution. Additionally, magnetic field
lines are drawn in white. The color code is defined in terms of log10(T 00

EM/c
2) where T 00

EM/c
2 is

in cgs units (g/cm3).

to a particular evolved stellar model by using the notation Uxx-yy, where xx is the initial model
and yy denotes the maximum initial magnetic field strength (U11-1.0e14 refers to a U11 model
with a super-imposed purely poloidal magnetic field such that Bz

max|t,z=0 = 1.0× 1014 G).

3. Computational setup
The simulations reported here have been performed using the general-relativistic magnetohy-
drodynamics (GRMHD) code WhiskyMHD described in [5] and which is based on the Cactus

computational toolkit. The gravitational fields are evolved using the BSSNOK formulation with
the same gauge conditions and parameters as in [3], while the GRMHD equations are solved
using a high-resolution shock-capturing scheme based on the piecewise parabolic (PPM) recon-
struction and the Harten-Lax-van Leer-Einfeldt (HLLE) approximate Riemann solver. For all
the simulations discussed here we have used a grid structure with four refinement levels, an
outer boundary located at L ' 100 M� (' 150 km) and finest resolution of ∆x = 0.375 M�
(' 0.5 km). With this setting the outer boundary is far enough to have all the dynamics hap-
pening inside the computational domain, while the used resolution is already able to capture
the dynamics of the magnetic field (see [4]).

4. Results
For each unstable model (U3, U11 and U13) we have performed a number of simulations adding
an initial purely poloidal magnetic field around the typical value of the field strengths expected
for magnetars (that is of the order of 1015 G) and, indeed, in the range from 1.0 × 1014 G to
1.0×1016 G. Much stronger initial magnetic fields are quite unlikely to be realistic, while weaker
fields seems to have no effects at all on the dynamics of the bar-mode instability.



Figure 3. Evolution of the rest-mass density ρ (top row) and the angular velocity Ω (bottom
row) along the x axis for models U11-1.0e14 (left panels), U11-4.0e15 (central panels) and
U11-1.0e16 (right panels). The panels show the color-coded quantities embedded in a space-
time diagram with the coordinate time t on the vertical axis. Additionally, on top of all diagrams
isodensity contours are shown for ρ = 106, 1011, 1012, 5× 1012, 1013, 5× 1013 and 1014 g/cm3.

The dynamics of the bar-mode instability (m = 2 mode) is studied following the evolution
of the distorsion parameter η = (η2

+ + η2
×)1/2, which is defined in terms of the matter

quadrupole moment in the xy directions through the quantities η× = 2 Ixy/(Ixx + Iyy) and
η+ = (Ixx − Iyy)/(Ixx + Iyy). In the central panel of Fig. 1 we show how the dynamics of η
is affected by different choices of the initial magnetic field strength: in unstable models, like
model U11-1.0e14, this parameter shows an exponential growth (whose growth time, τbar, can
be easly measured).

In particular, regarding the bar-mode instability, we draw the conclusion that there are three
distinct behaviors corresponding to different seed magnetic fields.

Indeed, we observe no effects at all on the dynamics of the instability up to a certain magnetic
field strength (namely, Bz

max|t,z=0 . 2.0× 1014 G for model U3, 4.0× 1014 G for model U11 and
8.0× 1014 G for model U13), since both the growth time and the frequency of the m=2 matter
mode do not vary within the accuracy they can be computed with (see the left panels of Fig. 2
and Fig. 3 and the right panel of Fig. 1). For higher field strengths we observe a gradual
slowdown in the development of the instability, since the magnetic field lines are frozen into
the fluid and the differential rotation has to drag them together with the matter implying that
the instability growth time τbar is higher for higher initial values of βmag (see the right panel of
Fig. 1). The models that are still matter-unstable, even when a magnetic field is present, are
represented with squares in the left panel of Fig. 1 showing the parameter space (β, βmag).

Going to much higher fields we reach a threshold value above which the instability is
completely suppressed and the deformation no longer develops. This threshold on the magnetic
field still depends on the initial model adopted, being higher than about 6.0 × 1014 for model
U3, 2.0× 1015 for model U11 and 2.4× 1015 for model U13 (see Fig. 1).

Besides, for very strong seed magnetic fields, we also observe changes on the density and



Figure 4. Time evolution of the total magnetic energy Emag normalized to its initial value for
the three models which are unstable in the non-magnetized case (U3, U11 and U13) corresponding
to a wide range of seed magnetic fields from Bz

max|t,z=0 = 1.0× 1014 G to 1.0× 1016 G. We use
a black solid line to depict the less magnetized case, a blue solid line to indicate the most
magnetized case and a red solid line for the last unstable model just before the suppression of
the bar-mode instability due to the presence of the magnetic field.

angular velocity profiles of the stellar models, so in the end of the evolution we obtain a much
more compact configuration that is nearly uniformly rotating and surrounded by a very low
density envelope which is still differentially rotating (see the right panels in Fig. 2 for model
U11). This is consistent with the expectation that magnetic braking is transferring angular
momentum from the core to the outer layers. Models that are matter-stable are indicated by
circles in Fig. 1, while the ones that also exhibit the above-mentioned expansion of the outer
layers due to the presence of the magnetic field are represented with triangles.

Taking a closer look at the magnetic field evolution for all seed magnetic fields, we observe
that magnetic field lines wind due to differential rotation, and hence a development and linear
growth of a toroidal component take place, with a consequent amplification of the total magnetic
energy of about two orders of magnitude or even more (see Fig. 4). Moreover, we observe a
further exponential growth of both poloidal and toroidal components during the matter-unstable
phase, whose nature still needs to be investigated.

After having studied how the magnetic field affects the onset and development of the bar-
mode instability, we turned to investigate whether there are effects on the dynamics of models
which are known to be stable in the non-magnetized case. Once again, this was achieved by
superimposing a purely poloidal seed magnetic field allowing the magnetic field strength to take
two values; Bz

max|t,z=0 = 1.0× 1015 G and Bz
max|t,z=0 = 1.0× 1016 G.

Regarding the distribution of matter we observe negligible effects when Bz
max|t,z=0 = 1.0×1015

G. Only for model S1, which is very close to the threshold for the onset of the dynamical
instability (see the left panel of Fig. 1), we observe some minor changes. More specifically,
the density profile turns from a toroidal initial configuration to a nearly standard one with its
maximum quite close to the z-axis. In stable models with Bz

max|t,z=0 = 1.0×1016 G, instead, we
observe the same behavior already described for highly magnetized models, namely the outer
layers expand forming an envelope of much lower density around the initial stellar model.

5. Conclusions
We have analyzed how the presence of magnetic fields can affect the development of the bar-
mode (m = 2) instability in relativistic differentially rotating stellar models with a seed poloidal
magnetic field in the range 1014 − 1016 G. In order to do that we have performed 3D magneto-
hydrodynamical simulations coupled to the Einstein equations.



For all the models studied we have found, as expected, a sudden formation and linear growth
of a toroidal component of the magnetic field (in a twisted configuration) that rapidly overcomes
the original poloidal one and an amplification of the total magnetic energy to up to almost three
orders of magnitude.

For relativistic stellar models that are bar-mode unstable, we have observed almost no effects
on the bar-mode dynamics due to magnetic fields of the order of 1015 G or below. For stronger
magnetic fields the growth time of the instability increases and the bar deformation appears
to partially stall. Moreover, magnetic fields stronger than about 1015 G are able to completely
suppress the instability and to change the density and angular velocity profiles of the stellar
models, eventually leading to a final configuration where the star has almost uniform rotation
and is surrounded by a very low density envelope.

he same evolution is realized also for relativistic stellar models that are stable against bar-
mode deformations for seed magnetic fields of the order of 1016 G. Moreover, we note that the
presence of magnetic fields does not alter the dynamics in stable models up to field strengths of
the order of about 1015 G.

The overall conclusion is that only magnetic fields of the order of 1015 G or above seem to be
able to suppress the purely hydrodynamical instability and so it is quite unlikely that in realistic
astrophysical situations such a suppression due to the presence of magnetic fields might occur.
Indeed, the general picture discussed in [1] applies also in the non Newtonian regime.

This research has been possible thanks to the HPC resources of the INFN “Theophys” cluster
and to the PRACE allocation (6th-call) “3dMagRoI” on CINECA’s Fermi supercomputer.
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