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We compute the gravitational waveform from a binary system in scalar-tensor gravity at 2PN
relative order. We restrict our calculation to non-spinning binary systems on quasi-circular orbits
and compute the spin-weighted spherical modes of the radiation. The evolution of the phase of the
waveform is computed in the time and frequency domains. The emission of dipolar radiation is
the lowest-order dissipative process in scalar-tensor gravity. However, stringent constraints set by
current astrophysical observations indicate that this effect is subdominant to quadrupolar radiation
for most prospective gravitational-wave sources. We compute the waveform for systems whose
inspiral is driven by: (a) dipolar radiation (e.g., binary pulsars or spontaneously scalarized systems)
and (b) quadrupolar radiation (e.g., typical sources for space-based and ground-based detectors).
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I. INTRODUCTION

The observation of gravitational-wave (GW) events
GW150914 and GW151226 by Advanced LIGO marks
the dawn of GW astronomy [1, 2]. We expect to ob-
serve several such events per year [3–6] with the up-
coming network of ground-based detectors comprised
of Advanced LIGO [7], Advanced VIRGO [8], KA-
GRA [9], and LIGO-India [10]. These ground-based de-
tectors can observe binary systems containing neutron
stars and/or stellar-mass black holes (with a total mass
M∼ 1− 100M⊙); future space-based detectors like the
proposed eLISA mission [11] will observe binary sys-
tems composed of intermediate-mass and/or supermas-
sive black holes (M ∼ 100 − 107M⊙). Gravitational-
wave observations allow us to not only measure the astro-
physical properties of these systems but can also be used
to test general relativity (GR). Because the coalescence
of a compact binary system produces extreme gravita-
tional fields that vary over short time scales, observations
of such events allow us to probe the highly-dynamical,
strong-field regime of gravity for the first time [6, 12].
The detection and analysis of GWs with ground-based

detectors require banks of very accurate template wave-
forms. The prospects of testing gravity with these detec-
tors hinge on our ability to model waveforms in both GR
and alternative theories of gravity. Given a GW detec-
tion, one can adopt either a theory-independent or theory-
dependent approach to testing GR. A theory-independent
test employs waveforms that deviate from a GR signal in
some generic, parameterized manner (for examples, see
Refs. [5, 13, 14]). One compares an observed GW signal
against these template waveforms to constrain the devi-
ations from GR. A theory-dependent test instead uses
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waveforms predicted in a particular alternative theory of
gravity, comparing them against the detected GW to esti-
mate the underlying physical parameters of that theory.
Each approach has its advantages: theory-independent
tests can constrain a wide range of alternative theories
while theory-dependent tests can directly constrain the
fundamental physics of an alternative theory. Both types
of tests were performed for GW150914 and GW151226 by
the LIGO and Virgo collaborations in Refs. [6, 12]. For
a comprehensive review of proposed theory-independent
and theory-dependent tests, see Refs. [15, 16] and refer-
ences therein.
In this paper, we present waveforms in scalar-tensor

theories of gravity suitable for theory-dependent tests
of GR. In particular, we construct ready-to-use wave-
forms for the inspiral of non-spinning binary systems ac-
curate up to second post-Newtonian (2PN) order, i.e.,
O
(

(v/c)4
)

beyond leading order.1 We restrict our at-
tention to systems on quasi-circular orbits, as binaries
formed in the field are expected to radiate away any ini-
tial eccentricity at frequencies too low to be observable
by GW detectors.
Scalar-tensor theories are amongst the most natural al-

ternatives to GR. Specifically, we focus on theories where
a single massless scalar φ non-minimally couples to the
metric gµν . Written in the Jordan frame, the action for
such theories is given by

S =

∫

d4x

√−g
2κ

[

φR − ω(φ)

φ
gµν∇µφ∇νφ

]

+ Sm[gµν ,Ξ],

(1)

where κ = 8πG∗/c
3 depends on the bare gravitational

coupling constant G∗. The action for the matter in the

1 We describe post-Newtonian (PN) corrections of order O(c−2n)
as “nPN,” which we also abbreviate with the notation O(2n).
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theory Sm is a function of only the metric and matter
degrees of freedom Ξ; the scalar field does not couple to
matter directly, only indirectly through its interactions
with the metric.

The restricted class of scalar-tensor theories described
by Eq. (1) has been studied extensively in the literature
because it is general enough to manifest many different
deviations from GR yet simple enough that its predic-
tions can be worked out completely. At 2PN order, the
Fokker Lagrangian for a system of point particles was
first computed in Ref. [17] using an effective field-theory
approach. The 2PN metric and equations of motion
were computed for bodies composed of perfect fluids in
Ref. [18]. The post-Minkowskian technique of direct in-
tegration of the relaxed Einstein equations (DIRE) was
used in a recent series of papers [19–21] to compute the
equations of motion for a system of compact objects at
2.5PN order, as well as the gravitational waveform and
energy flux at 2PN (relative) order for binaries on generic
orbits. For comparison, the entire waveform for non-
spinning systems in GR is known at 3PN order [22], and
its quadrupolar and octupolar parts are known at 3.5PN
order [23, 24] (see Ref. [25] for a review of existing results
in GR).

In this paper, we specialize the results of Refs. [19–21]
to binary systems on quasi-circular orbits and present
the waveform in a form that can be easily used to test
GR with GWs. This calculation serves as an extension
of Ref. [26], in which the leading-order behavior of the
GW signal produced by binary systems was computed
in Brans-Dicke theory [27–29], where the scalar coupling
ω(φ) = ωBD is constant. This work extends those earlier
findings to higher PN order in a larger class of scalar-
tensor theories.

The paper is organized as follows. In Sec. II, we re-
view some preliminary information regarding the pro-
duction and detection of GWs in scalar-tensor theories.
Section III presents the dynamics for binary systems on
quasi-circular orbits. In Sec. IV, we compute the hered-
itary contributions to the gravitational waveform from
such systems. We present the binding energy and energy
flux in Sec. V and compute the associated orbital phase
evolution. In Sec. VI, we decompose the waveform into
spin-weighted spherical modes, and in Sec. VII, we ex-
press these modes in Fourier space using the stationary
phase approximation. We provide some concluding re-
marks in Sec. VIII. Appendix A details the conversion of
our notation to that of Refs. [17, 30], which is commonly
found in the literature. Appendix B contains formulae
omitted from the main text for the sake of compactness.

All calculations are done both for systems whose in-
spiral is driven by dipolar radiation and for those driven
by quadrupolar radiation; this distinction is discussed in
detail in Sec. II B. Note that the complete 2PN (rel-
ative) order results are given for only the former case
(dipolar-radiation driven systems). The results for the
latter case depend on higher-order corrections to the en-
ergy flux that have not yet been computed, but we argue

in Sec. VB that the impact of these missing terms is very
small.

Henceforth, we work in units where G∗ = c = 1.

II. GRAVITATIONAL WAVES IN

SCALAR-TENSOR GRAVITY

This section contains information concerning the gen-
eration of GWs in scalar-tensor gravity that will prove
useful throughout the rest of the paper despite not di-
rectly contributing to the computation of the waveform.
We begin by discussing the behavior of binary systems,
tracing new phenomena not found in GR to violations of
the strong equivalence principle. We then review the cur-
rent experimental constraints set on these theories and
show that, in most cases, sources for ground- and space-
based GW detectors evolve similarly to as in GR. Finally,
we discuss the response of a detector to a GW in scalar-
tensor gravity and delineate the waveform computed in
the subsequent sections.

A. Binary systems of compact objects

Differences between the dynamics and GW emission of
binary systems in scalar-tensor gravity and those in GR
ultimately stem from the non-minimal coupling between
the metric and scalar field. As a result, the gravitational
“constant” experienced by massive bodies depends on the
value of the background scalar field in which they are sit-
uated. For test bodies, this dependence can be deduced
directly from Eq. (1): the strength of their gravitational
interaction scales as φ−1.

The gravitational interaction between compact, self-
gravitating bodies is more complex. Because the binding
energy of a single self-gravitating body depends on the
interactions between all of its constituents, the body’s
mass mA(φ) depends on the local scalar field. This phe-
nomenon is a manifestation of the violation of the strong
equivalence principle, as the self-interaction of a massive
body is dictated by its composition. As is done in the lit-
erature, we adopt an approach proposed by Eardley [31]
to handle the interplay between microphysics and grav-
ity that determines the connection between the body’s
composition and mA(φ). We treat compact objects as
point particles whose mass is given by mA(φ). Rather
than solve for this function outright, we parameterize it
by its expansion about a background field φ0

mA(φ) = m
(0)
A

[

1 + sAΨ+
1

2

(

s2A + s′A − sA
)

Ψ2 + · · ·
]

,

(2)
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TABLE I. Parameters that govern gravitational wave production in binary systems. Quantities listed with the subscript 0 are
evaluated at the value of the background scalar field φ0.

Parameter Defintion Parameter Definition
Weak-field parameters Binary parameters
G G∗φ

−1

0
(4 + 2ω0)/(3 + 2ω0) Newtonian

ζ 1/(4 + 2ω0) α 1− ζ + ζ(1− 2s1)(1− 2s2)
λ1 (dω/dφ)0φ0ζ

2/(1− ζ) post-Newtonian
λ2 (d2ω/dφ2)0φ

2

0ζ
3/(1− ζ) γ −2α−1ζ(1− 2s1)(1− 2s2)

β1 α−2ζ(1− 2s2)
2 (λ1(1− 2s1) + 2ζs′1)

Strong-field parameters β2 α−2ζ(1− 2s1)
2 (λ1(1− 2s2) + 2ζs′2)

sA [d lnmA(φ)/d lnφ]0 2nd post-Newtonian
s′A [d2 lnmA(φ)/d lnφ

2]0 δ1 α−2ζ(1− ζ)(1− 2s1)
2

s′′A [d3 lnmA(φ)/d lnφ
3]0 δ2 α−2ζ(1− ζ)(1− 2s2)

2

χ1 α−3ζ(1− 2s2)
3
[

(λ2 − 4λ2

1 + ζλ1)(1− 2s1)− 6ζλ1s
′

1 + 2ζ2s′′1
]

χ2 α−3ζ(1− 2s1)
3
[

(λ2 − 4λ2

1 + ζλ1)(1− 2s2)− 6ζλ1s
′

2 + 2ζ2s′′2
]

where we’ve defined

m
(0)
A ≡mA(φ0), (3)

sA ≡
(

d lnmA

d lnφ

)

φ=φ0

, (4)

s′A ≡
(

d2 lnmA

d(lnφ)2

)

φ=φ0

, (5)

Ψ ≡φ− φ0
φ0

. (6)

The parameter sA is known as the sensitivity of the body.
For test bodies, sA = 0, while for stationary black holes,
sA = 1/2 [32].2

The underlying parameters that govern the orbital dy-
namics and gravitational emission of binary systems up
to 2PN order are given on the left-hand side of Table I.
These parameters are classified as either weak-field or
strong-field : the former class influence behavior in all
gravitational contexts whereas the latter class only enter
in systems with strong gravitational fields, such as those
found in self-gravitating compact objects. The weak- and
strong-field parameters appear in only a small set of com-
binations, denoted as the binary parameters in Table I.
We have adopted the notation introduced in Refs. [19];
the mapping between these parameters and the notation
used in Refs. [17, 30] is given in Appendix A.
Novel behavior in scalar-tensor gravity stems from vi-

olations of the strong equivalence principle, and thus,
is dictated by the strong-field parameters. For exam-
ple, dipolar emission, the most prominent new effect not

2 The sensitivity of neutron stars is often estimated to be of the
order ∼ 0.2. While true in Brans-Dicke theory [31, 33] and some
slight variations [34], this result does not hold for generic choices
of ω(φ). One of the most popular classes of scalar-tensor theo-
ries, those that allow spontaneous [35] and dynamical scalariza-
tion [36, 37], are a striking counterexample. In these theories,
neutron-star sensitivities can be large and negative; the process
of spontaneous scalarization describes stars whose sensitivity di-
verges, i.e., sA → −∞.

found in GR, is tied to (s1−s2)2. Formally, dipolar radi-
ation is generated at one PN order lower than quadrupo-
lar radiation (the dominant dissipative channel in GR);
in keeping with the conventions of Refs. [19–21], we de-
marcate dipolar emission as a −1PN order effect.

B. Generic constraints on scalar-tensor gravity

A hundred years of tests have confirmed that gravity
closely resembles GR [15]. Restricting our attention to
only those theories that satisfy these constraints, we must
study the regime in which new scalar-tensor effects are
small relative to those also found in GR. In this limit, the
structure of the PN expansion is modified; for example, in
the frequency band of interest, the dominant dissipative
process is the emission of Newtonian order quadrupolar
radiation rather than the −1PN dipolar energy flux. We
investigate which systems fall within this regime by first
mapping the current constraints on scalar-tensor theories
to the parameters given in Table I.
The best constraints on weak- and strong-field param-

eters come from a combination of solar-system experi-
ments and binary-pulsar observations. The weak-field
parameters G, ζ, λ1, λ2 are tied to the behavior of the
scalar coupling ω(φ) near the background value of the
scalar field φ0. These quantities can be expressed in
terms of the parametrized post-Newtonian (PPN) pa-
rameters γPPN and βPPN as well as the 2PN parameter ǫ
introduced in Ref. [17]

G =
2

(1 + γPPN)φ0
, (7)

ζ =
1− γPPN

2
, (8)

λ̄1 =
2
√
2(βPPN − 1)φ0√
1 + γPPN

, (9)

λ̄2 =
(ǫ(γPPN − 1) + 24(βPPN − 1)2)φ20

1 + γPPN
, (10)
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TABLE II. Constraints on the weak-field parameters in
Eqs. (7)–(10) set by solar-system and binary-pulsar obser-
vations. As discussed in the text, we set φ0 = 1 for simplicity.

Parameter Constraint Reference
γPPN − 1 2.3× 10−5 [38]
βPPN − 1 7.8× 10−5 [15, 39]

ǫ 7× 10−2 [17]
G− 1 1.2× 10−5

ζ 1.2× 10−5

λ̄1 1.6× 10−4

λ̄2 8.8× 10−7

where we have used the rescaled parameters λ̄1 ≡ λ1
√
ζ

and λ̄2 ≡ λ2ζ because λ1, λ2 are not well defined in the
GR limit.
The current constraints on these parameters are given

in Table II. The constant background field φ0 is unde-
tectable with weak-field measurements — at Newtonian
order, a redefinition of the field φ → φ/φ0 can be com-
pensated by the rescaling of the bare gravitational con-
stant G∗ → G∗/φ0 and the redefinition ω → φ0ω. For
simplicity, we set φ0 to unity in Table II. Note that
the constraint on ǫ was estimated in Ref. [17] with only
binary-pulsar measurements available at the time; this
constraint could be improved by including more recent
observations.
The current experimental constraints on the strong-

field parameters sA, s
′
A, s

′′
A are not as restrictive. The

best limits on neutron-star sensitivities come from tim-
ing measurements of pulsar-white-dwarf binaries [40–43];
white dwarfs are expected to have negligible sensitivity,
so the magnitude of dipolar emission is dictated entirely
by the sensitivity of the neutron star. Constraints are
typically given in terms of the scalar charge αA, related
to the sensitivity by

αA =
1− 2sA√
3 + 2ω0

. (11)

Amongst known pulsar-white-dwarf binaries used to
constrain scalar-tensor theories, PSR J0348+0432 hosts
the most massive neutron star [43]. The constraints on
the scalar dipole reported in Ref. [43] provide an estimate
for the maximum scalar charge that this neutron star can
have |αA| . 6× 10−3. Extending these data to an abso-
lute bound on the charge of any neutron star requires the
assumption of a particular choice of ω(φ) and equation of
state. Working within one of the most popular classes of
scalar-tensor theories [35] and selecting certain realistic
equations of state, one can produce a global constraint
of |αA| . 10−2 [43, 44]. However, it is conceivable that
other theories and/or equations of state allow neutron
stars to acquire large scalar charges of αA ∼ 1 via the
process of spontaneous scalarization [35] while satisfying
all current experimental constraints.
Because the weak-field constraints leave ω0 ∼ 1/(2ζ)

unbounded, no absolute bound can be placed on sA. To

our knowledge, no constraints have been placed on s′A
and s′′A either; for neutron stars, these higher derivatives
can be orders of magnitude larger than sA (for example,
see Fig. 3 of Ref. [45]).
Excluding the possibility of spontaneous scalarization,

the constraints on weak-field and strong-field parame-
ters ensure that dipole radiation is suppressed in viable
scalar-tensor theories, as can be shown by comparing the
relative size of the −1PN and Newtonian order flux, given
in Refs. [19, 30] and repeated in Eq. (48) below. Despite
entering at higher PN order, the next-to-leading order
term overpowers the leading-order term when

1 .

(

24

5ζS2
−

)

(GαMπf)
2/3

, (12)

where, for simplicity, we have dropped all terms that are
not of order O(ζ−1) and introduced the scalar dipole

S− ≡− α−1/2 (s1 − s2) . (13)

Given the experimental constraints on ζ and S−, this
threshold is reached at frequencies f . 100µHz in bi-
nary neutron star or neutron-star stellar-mass-black-hole
systems, and at frequencies f . 5µHz in neutron-star
intermediate-mass-black-hole systems. Following this ar-
gument, ground- and space-based GW detectors would
only observe binary systems whose inspiral is driven by
the next-to-leading order flux.3 On the other hand, the
evolution of binary pulsars could be dominated by dipo-
lar emission. Binary systems that undergo dynamical
scalarization may also be exempt from this verdict, as
these systems dynamically generate large scalar charges
that can substantially enhance dipolar emission [36, 37].
Because non-perturbative scalarization phenomena

have not been entirely ruled out, we compute below the
gravitational waveform both for systems in which dipolar
radiation is dominant and for those in which quadrupolar
radiation is dominant. For conciseness, we refer to the
former class of systems as dipole driven (DD) and the
latter class as quadrupole driven (QD).

C. Detector response

We consider the response of a laser interferometer
at spatial coordinates X generated to an incident GW
produced by a distant binary system of size d, where

3 Unlike the class of scalar-tensor theories considered here, there
are alternative theories in which binary black holes can emit dipo-
lar radiation (e.g., dilatonic Einstein-Gauss-Bonnet, dynamical
Chern-Simons, etc.). Given the relatively weak constraints on
dipolar radiation in vacuum spacetimes (compared to those from
binary pulsars observations), we note that space-based detectors
or pulsar timing arrays could, in principle, observe binary black
holes driven by dipolar flux. As discussed below, the GW signal
from such systems has a distinct structure from that in GR.
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R ≡ |X| ≫ d. We assume that far from the binary, the
metric and scalar field approach the Minkowski metric
ηµν and a constant background value φ0, respectively, at

a rate ∼ R−1. Let φ̂ ≡ φ/φ0 be the normalized scalar
field. We introduce the conformally transformed metric

g̃µν ≡ φ̂gµν , (14)

and the gravitational field4

hµν ≡ ηµν −
√

−g̃g̃µν . (15)

The metric at the detector takes the form

gµν =ηµν + hµν − 1

2
hηµν −Ψηµν +O

(

R−2
)

, (16)

where h ≡ ηµνh
µν is the trace of hµν and hµν ≡

ηµαηνβh
αβ is lowered using the Minkowski metric.

Gravitational-wave detectors use laser interferometry to
measure the separation between mirrors; we treat these
mirrors as test masses. Assuming that the distance be-
tween mirrors is smaller than the wavelength of the inci-
dent GWs and that the mirrors move slowly, the separa-
tion between the mirrors obeys

ξ̈i = −R0i0jξ
j , (17)

where i, j = 1, 2, 3 are spatial indices. Working at leading
order in hµν and Ψ, the Riemann tensor is calculated
from Eq. (16)

R0i0j = −1

2
ḧijTT − 1

2
Ψ̈
(

N̂ iN̂ j − δij
)

, (18)

where N̂ ≡ X/R and hijTT is the transverse-traceless com-
ponent of the gravitational field defined as

hijTT =

(

P ipP jq − 1

2
P ijP pq

)

hpq, (19)

where P pq = δpq − N̂pN̂ q is the transverse projection
operator.
From Eq. (18), we see that the GW signal contains a

transverse-tracelessmode (as in GR) characterized by the
field hµν . In scalar-tensor gravity, there is an additional
transverse breathing mode produced by Ψ. Extracting
this new GW polarization requires a network of detectors;
see Ref. [15] and references therein for a discussion of the
prospects of detecting GW polarizations absent in GR.
We focus exclusively on hµν for the remainder of this
work.

4 Note that in Ref. [25] and the references therein, the metric per-
turbation is defined with an overall minus sign relative to the
definition given here.

III. DYNAMICS FOR QUASI-CIRCULAR

ORBITS

In this section, we specialize the results of Ref. [19]
for the 2.5PN dynamics of binary systems to the case
of quasi-circular orbits. Before proceeding, we establish
some notation employed throughout this work. We de-
note the total mass of the system by M = m1 + m2

and the symmetric and antisymmetric mass ratio by
η = m1m2/M

2 and ψ = (m1 −m2)/M , respectively. We
signify the symmetric and antisymmetric combinations
of parameters given in Table I by

τ+ ≡1

2
(τ1 + τ2) , (20a)

τ− ≡1

2
(τ1 − τ2) , (20b)

and in addition to S− above, we also define

S+ ≡α−1/2 (1− s1 − s2) . (21a)

To describe the system’s dynamics, we denote the or-
bital separation by x = rn, the relative velocity by v = ẋ,
and the acceleration by a = v̇. We construct an or-
thonormal moving frame (n,λ) and define the orbital
frequency ω such that v = ṙn + rωλ. To avoid confu-
sion, we note that certain variables are used to denote
multiple quantities; for example, ω represents both the
frequency and scalar coupling, while φ,Ψ are used for the
phase and scalar field. The usage of each can be inferred
from context.
Our analysis of binary systems on quasi-circular orbits

begins with the 2.5PN equation of motion, given in the
center-of-mass frame by

a =− GMα

r2
n

+
GMα

r2
[n (A1PN +A2PN) + ṙv (B1PN +B2PN)]

+
8η

5

(GMα)2

r3
[ṙn (A1.5PN +A2.5PN)

−v (B1.5PN +B2.5PN)] . (22)

where the expressions for Ai, Bi can be found in
Eqs. (1.4)–(1.5) and (6.12)–(6.13) of Ref. [19]. It will
prove useful also to write the equations of motion in the
generic form

a = (r̈ − rω2)n+ (rω̇ + 2ṙω)λ . (23)

The restriction of the dynamics to quasi-circular orbits
follows the same procedure as in GR. For such orbits,
the only departure from circular motion is induced by
radiation reaction, which enters at 1.5PN order in scalar-
tensor theories rather than the usual 2.5PN order in GR.
Expressed symbolically, we have ṙ, ω̇ = O(3) [instead of
O(5)], while r̈ = O(6) [instead of O(10)].
The first term in Eq. (23) determines the conservative

sector of the dynamics at 1PN and 2PN order. The scalar
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product a ·n = −rω2+O(6) produces a relation between
the orbital separation and frequency that generalizes Ke-
pler’s law. We introduce the PN parameters (recall that

we work in units where c = 1)

γPN ≡ GMα

r
, (24a)

x ≡ (GMαω)2/3 , (24b)

which differ from their usual definition in GR by an ad-
ditional factor α.
At leading order, one obtains r3ω2 = Gmα+O(2), or

x = γPN(1 + O(2)). From there, solving order by order
yields

x = γPN

[

1 + γPN

(

2β−ψ

3
− 2β+

3
− γ

3
+
η

3
− 1

)

+ γ2PN

(

8β2
−η

γ
+

16β2
−η

9
− 4β2

−

9
+

8β−β+ψ

9
− 2β−γψ

9
+

11β−ψη

9

−4β−ψ

3
− 8β2

+η

γ
− 4β2

+

9
+

2β+γ

9
+

7β+η

9
+

4β+
3

− γ2η

6
+

11γ2

36
+

17γη

9
+ γ +

ψδ−
3

+
2ψχ−

3
− 2δ+η

3
+
δ+
3

+
2η2

9
+

4ηχ+

3
+

49η

12
− 2χ+

3
+ 1

)

+O(6)

]

, (25a)

γPN = x

[

1 + x

(

−2β−ψ

3
+

2β+
3

+
γ

3
− η

3
+ 1

)

+ x2
(

−8β2
−η

γ
− 16β2

−η

3
+

4β2
−

3
− 8β−β+ψ

3
− 2β−γψ

3
− β−ψη

3

−4β−ψ

3
+

8β2
+η

γ
+

4β2
+

3
+

2β+γ

3
− 5β+η

3
+

4β+
3

+
γ2η

6
− γ2

12
− 7γη

3
+
γ

3
− ψδ−

3
− 2ψχ−

3
+

2δ+η

3
− δ+

3

−4ηχ+

3
− 65η

12
+

2χ+

3
+ 1

)

+O(6)

]

. (25b)

Having derived the reduction to quasi-circular orbits
for the conservative dynamics up to 2PN order, we
now turn our attention to the dissipative sector. Al-
though only the leading-order radiation-reaction terms
are needed to compute the 2PN relative order dynamics,
we provide results up to 2.5PN for the sake of complete-
ness. Inserting Eq. (25) into the relation a ·λ = rω̇+2ṙω
gives the following expressions for ṙ and ω̇

ṙ = −8

3
ζηS2

−x
2 − 8

3
ηδRRx

3 +O(7) , (26a)

ω̇ =
4ζηS2

−x
9/2

G2M2α2
+

4ηδRRx
11/2

G2M2α2
+O(7) , (26b)

where we have introduced

δRR ≡24

5
+ 2γ − 4ζβ−ψS2

−

γ
+

8ζβ−ψS2
−

3
− 7ζηS2

−

6

+
4ζβ+S2

−

γ
− 8ζβ+S2

−

3
+

2ζγS2
−

3
− ζS2

−

2

+
4ζβ−S+S−

γ
− 4ζβ+ψS+S−

γ
. (27)

For dipole-driven systems, the second term in Eq. (26)
is much smaller than the first. Integrating this equation
at leading order gives the evolution of the orbital sepa-

ration and frequency

rDD(t) =
[

8ηζS2
−(GMα)2(tc − t)

]1/3
(1 +O(2)) , (28a)

ωDD(t) =
[

8ηζS2
−GMα(tc − t)

]−1/2
(1 +O(2)) , (28b)

where tc is the time of coalescence. In the quadrupole-
driven regime, the first term in Eq. (26) is overpowered
by the second. We delay a precise formulation of this
limit until Sec. V, but note that the evolution of the
inspiraling orbit will take the same form as in GR, given
at leading order by

rGR(t) =

[

256(GM)3η

5
(tc − t)

]1/4

(1 +O(2)) , (29a)

ωGR(t) =

[

256(GM)5/3η

5
(tc − t)

]−3/8

(1 +O(2)) .

(29b)

The difference in structure between Eqs. (28) and (29)
stems from radiation reaction entering at a different PN
order in the two regimes.
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IV. RADIATIVE COORDINATES AND

HEREDITARY CONTRIBUTIONS

Equipped with the leading-order evolution of the in-
spiral, we begin our computation of the 2PN order wave-
form. The waveform was derived for generic orbits in
Ref. [20]; schematically, these results are given by

hijTT =
2G(1− ζ)Mη

R

[

Qij + P 1/2Qij + PQij + P 3/2Qij
N

+P 3/2Qij
C−N + P 2Qij

N + P 2Qij
C−N

]

TT
, (30)

where TT stands for the transverse-traceless projec-
tion given in Eq. (19) and P denotes the PN order of
each term. The expressions for PnQij are presented in
Eq. (7.2) of Ref. [20]. These terms can be categorized as
either instantaneous or hereditary: instantaneous terms
depend only on the current state of the system, whereas
hereditary terms take the form of integrals extending over
the binary’s entire history. In Eq. (30), P 3/2Qij

C−N and

P 2Qij
C−N are hereditary, while the remaining terms are

all instantaneous.
This section details the computation of the hereditary

terms for systems on quasi-circular orbits. First, we re-
express the waveform in a radiative coordinate system,
in which the metric perturbation falls off as ∼ R−1. We
then compute separately the contributions from so-called

tail and memory terms.

A. Radiative coordinates

We begin by transforming the results of Ref. [20] into
radiative coordinates. This reference employed harmonic
coordinates X = (t,X), defined by the gauge condition
∂νh

µν = 0; however, these coordinates are known to give
rise to unwanted logarithms of R in the far-zone expan-
sion. As shown in Ref. [46], it is possible to build another
set of coordinates X̄ = (t̄, X̄), called radiative coordi-
nates, in which these logarithms are eliminated and the
metric perturbation hij admits an expansion in powers
of R̄−1. Here, we will follow the presentation of Ref. [47],
in which the construction of this coordinate system is
explicitly written at quadratic order in the multipolar
post-Minkowskian formalism [48]. Note that our defi-
nition hµν in Eq. (14) introduces a sign difference with
respect to Ref. [47].

Both hereditary pieces, P 3/2Qij
C−N and P 2Qij

C−N , con-
tain integrals with a logarithmic kernel, known as tail
terms. The logarithmic terms can be expressed as the
second time derivative of the leading-order, linearized
metric, as shown by Eq. (2.28) of Ref. [47]. Written in
terms of the retarded time u = t − R/c, these terms are
given by

(

P 3/2Qij
C−N (u)

)

ln
= 2G(1− ζ)M

∫ +∞

0

ds
d2

dt2
Qij(u− s) ln

(

s

2R+ s

)

, (31a)

(

P 2Qij
C−N (u)

)

ln
= 2G(1− ζ)M

∫ +∞

0

ds
d2

dt2
P 1/2Qij(u− s) ln

(

s

2R+ s

)

. (31b)

Because we are only interested in the R−1 piece of the
waveform, we expand the logarithms according to

ln

(

s

2R+ s

)

= ln
( s

2R

)

+O
(

1

R

)

. (32)

We define the radiative coordinates as X̄α = Xα + ξα,
with

ξα = 2G(1− ζ)Mδα0 ln

(

R

r0

)

, (33)

where we have introduced an arbitrary constant length

scale r0. The metric perturbation in these new coordi-
nates takes the form

h̄αβ =
[

hαβ − ∂αξβ − ∂βξα + ηαβ∂ρξ
ρ + ξµ∂µh

αβ
]

X=X̄
,

(34)
where we have kept only the relevant terms in Eqs. (2.36)
and (2.37) of Ref. [47]. The first three terms describe the
usual effect of a first order gauge transformation on the
harmonic perturbation; their contribution will be elimi-
nated by the TT projection. The last term combines with
the lower boundary term of the integrals in Eq. (31) to
replace R by the new constant r0:
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(

P 3/2Qij
C−N (ū)

)

ln
= 2G(1− ζ)M

∫ +∞

0

ds
d2

dt̄2
Qij(ū − s) ln

(

s

2r0

)

+O
(

1

R̄2

)

, (35a)

(

P 2Qij
C−N (ū)

)

ln
= 2G(1− ζ)M

∫ +∞

0

ds
d2

dt̄2
P 1/2Qij(ū− s) ln

(

s

2r0

)

+O
(

1

R̄2

)

. (35b)

Since the transformation to radiative coordinates affects
only the logarithmic terms, from here on, we drop the
notation X̄ , using instead the ordinary notation X to
signify these new coordinates.

B. Tail contributions

The tail terms in the waveform arise from back-
scattering of the waves on the curvature of spacetime.
In the multipolar post-Minkowskian wave generation for-
malism of Refs. [47, 48], they appear as interactions be-
tween each multipole moment and the mass monopole
of the system. In the DIRE formalism [49, 50] used in
Refs. [20, 21], tail terms arise from wave-zone contribu-
tions to the integrals over the past light-cone of the ob-
server. Recall that these terms take the form of an in-
tegral with a logarithmic kernel over the past history of
the source.

Since we are only interested in the R−1 part of the
waveform, we can expand the logarithms as in Eq. (32).
Using Eq. (25) to replace ω with r, the tail terms then
take the generic form

I =

∫ +∞

0

ds
einϕ(t−s)

rp(t− s)
ln

(

s

2r0

)

(36)

where n, p are integers and ϕ is the orbital phase of the
binary.

To evaluate Eq. (36), we make use of the fact that
the radiation-reaction timescale is much longer than the
orbital period. It was shown in Ref. [51] that ignoring
radiation reaction, i.e., approximating the binary orbit
as circular (with constant radius and frequency), intro-
duces an error in these integrals of order O(ln c/c5) in
GR. The same argument holds in scalar-tensor gravity,
with the only difference being that the error is of or-
der O(ln c/c3) for dipole-driven systems due to the dif-
ferent scaling of radiation reaction. Under this assump-
tion that the frequency does not evolve with s, we write
ϕ(t − s) ≃ ϕ(t) − sω(t). One can then compute the re-
sulting integrals by making use of the formula [51]

∫ +∞

0

dy eiλy ln y = − 1

λ

[π

2
sgn(λ) + i (γE + ln |λ|)

]

,

(37)
where γE is the Euler-Mascheroni constant.

C. Memory contributions

Memory terms arise in the waveform as integrals of the
product of multipoles without a logarithmic kernel over
the history of the source [47, 52]. They can be separated
into so-called DC terms, which are non-oscillatory and
accumulate over the entire lifetime of the system, and
AC, oscillatory terms that, by contrast, depend only on
the recent history of the source.
The computation of oscillatory memory terms is identi-

cal in GR and in scalar-tensor theories. On quasi-circular
orbits, these terms have the structure

J =

∫ +∞

0

ds
einϕ(t−s)

rp(t− s)
, (38)

with integers n, p. Thanks to the oscillatory factor einϕ in
the integrand, it can again be shown (see, e.g., Ref. [53])
that only the recent past contributes in the integral, so
that one can approximate r(t− s) ≃ r(t) and ϕ(t− s) ≃
ϕ(t)−sω(t) with a negligible relative error of the same PN
order as radiation reaction. For dipole-driven inspirals,
the result is

JDD =
1

in

(

r(t)3

GMα

)1/2
einϕ(t)

rp(t)
+O(3), (39)

whereas for quadrupole-driven inspirals, one obtains

JQD =
1

in

(

r(t)3

GMα

)1/2
einϕ(t)

rp(t)
+O(5). (40)

Note that the only difference between these two cases is
the order of the remainders.
The non-oscillatory (DC) memory terms take the form

K =

∫ +∞

0

ds
1

rp(t− s)
. (41)

Their computations in GR and scalar-tensor theory dif-
fer. Non-oscillatory terms are enhanced by the accumu-
lation of the integrand over the long radiation-reaction
timescale, an effect which formally decreases their PN
order. The result depends here on the rate of evolu-
tion of the quasi-circular inspiral under radiation reac-
tion. For dipole-driven systems, these DC memory terms
formally appear at the 1.5PN order in the expression
of the multipole moments, but the integration over the
radiation-reaction timescale (formally of −1.5PN order)
pushes this contribution back to Newtonian order. Using
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the leading-order evolution of the quasi-circular inspiral
given by Eq. (28), one obtains

KDD =
3r3−p(t)

8(p− 3)ζηS2
−(GMα)2

+O(−1), (42)

for p > 3.

The contribution from non-oscillatory memory terms
in quadrupole-driven systems is more difficult to com-
pute. Following Eq. (12), any system with non-zero
scalar dipole will have been dominated by dipolar radia-
tion at some point during its lifetime. The transition be-
tween the dipole-driven and quadrupole-driven regimes
needs to be accommodated in the integral in Eq. (41).
Such a calculation goes beyond the scope of this work.

V. BALANCE EQUATION AND PHASE

EVOLUTION

Having computed all of the hereditary terms for quasi-
circular orbits, one can use Eqs. (25) to express the wave-

form entirely in terms of the instantaneous orbital phase
ϕ and frequency ω of the binary. We now need the evo-
lution of these quantities at 2PN order to finish our cal-
culation of the waveform. This level of accuracy cannot
be achieved using only the dynamics of the binary pre-
sented in Sec. III. In place of the higher-order radiation-
reaction force, we use the total energy flux F and the
balance equation

dE

dt
= −F , (43)

which can be reformulated using ϕ̇ = ω as

dϕ

dx
= − 1

GMα
x3/2

dE/dx

F(x)
. (44)

We calculate the energy for systems restricted to quasi-
circular orbits by applying the results of Sec. III to those
of Ref. [19]. The energy measured in an arbitrary frame
is given by Eq. (6.4) of Ref. [19]. After shifting to
the center-of-mass frame with Eqs. (6.9) and (6.10) of
Ref. [19], we reduce this expression to the case of quasi-
circular orbits using Eqs. (25) and (26) and obtain

Ecirc = −1

2
Mηx

[

1 + x

(

−2β−ψ

3
+

2β+
3

− 2γ

3
− η

12
− 3

4

)

+ x2
(

−16β2
−η

γ
− 16β2

−η

3
+

4β2
−

3
− 8β−β+ψ

3
− 4β−γψ

3

+
β−ψη

3
− β−ψ +

16β2
+η

γ
+

4β2
+

3
+

4β+γ

3
− 19β+η

3
+ β+ +

γ2η

3
− 19γ2

12
+

11γη

3
− 14γ

3
+
ψδ−
3

− 4ψχ−

3

+
4δ+η

3
+
δ+
3

− η2

24
− 8ηχ+

3
+

19η

8
+

4χ+

3
− 27

8

)]

. (45)

The total emitted energy flux, including both tensor
and scalar contributions, was given for generic orbits in
Ref. [21] with the structure

F = F−1 + F0 + F0.5,C + F0.5,C−N + F1 +O(3), (46)

where the number in the index indicates the PN order
of each term. The −1PN term comes from dipolar,
scalar radiation and is responsible for the appearance
of radiation-reaction effects at 1.5PN order. Note that
while the flux we consider is given at 1PN (using the
order-counting scheme from GR), it corresponds to 2PN
relative order.
The individual terms in Eq. (46) are given in the

center-of-mass frame in Eq. (6.8) of Ref. [21]. The term
F0.5,C−N includes a logarithmic hereditary term coming
from the product of the leading-order term and a tail
term (at 1.5PN relative order) in the scalar waveform.
We calculate this tail contribution using the method de-
tailed in Sec. IVB. Then, as before, we use the results of
Sec. III to compute the total energy flux for quasi-circular
orbits F(x) that will be given in Eqs. (48) and (55) below.

Equipped with expressions for the binding energy E(x)
and the total energy flux F(x) both at the 2PN relative
order, we proceed to evaluate the orbital phasing of the
binary using Eq. (44). Different approaches have been
proposed in the literature to integrate the balance equa-
tion, differing by the choice of integration variables (time
or frequency) and by the choice of either numerical in-
tegration or analytical integration of a re-expansion of
Eq. (44) (see, e.g., Ref. [54] for a definition and compar-
ison of these so-called Taylor approximants). Our pur-
pose here is not to compare these different approaches,
but to examine the new contributions in the phasing that
arise in scalar-tensor theories. We adopt a method (cor-
responding to the TaylorT2 approximant) that provides
a result in analytic form: the ratio −(dE/dx)/F(x) is
re-expanded in x, truncated at relative 2PN order, and
then integrated term by term. For this purpose, it will
be convenient to introduce the notation

ρ(x) ≡ − 1

GMα

1

F(x)

dE

dx
. (47)

Care must be taken before re-expanding this ratio
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in the PN parameter x: we distinguish between the
dipole-driven case in which the dipolar term F−1 [de-
fined in Eq. (46)] dominates the denominator and the
quadrupole-driven case wherein F0 dominates due to the
smallness of scalar-tensor parameters.

A. The dipole-driven regime

We first consider systems whose inspiral is driven by
dipolar radiation. As discussed in Sec. II B, this regime
is reached by binaries with large separations (binary
pulsars) or large scalar dipoles (spontaneously scalar-
ized systems). Dynamically scalarized systems begin in
the quadrupole-driven regime but then abruptly become
dipole-driven at some point during their evolution; in
principle, one must account for both stages when mod-
eling their inspiral, but we will not pursue such a treat-
ment here.5 Factoring out the leading order dipolar flux
in Eq. (46), we obtain

FDD(x) =
4S2

−ζη
2x4

3Gα

[

1 + fDD
2 x+ fDD

3 x3/2

+fDD
4 x2 +O(5)

]

, (48)

where explicit expressions for the coefficients fDD
n are

given in Eq. (B2). The leading order of the flux carries a
factor S2

− characteristic of dipolar radiation.
In this case, we simply re-expand the ratio ρ(x) in x

at 2PN relative order and obtain

ρDD(x) =
3

8S2
−ζηx

4

[

1 + ρDD
2 x + ρDD

3 x3/2

+ρDD
4 x2 +O(5)

]

, (49)

where the coefficients ρDD
n are given explicitly in

Eq. (B4). By integrating Eq. (44) term-by-term, the
phasing is then given by

ϕ(x) =− 1

4S2
−ζηx

3/2

[

1 + 3xρDD
2 − 3

2
x3/2 lnxρDD

3

−3x2ρDD
4 +O(5)

]

, (50)

where we have dropped an arbitrary additive constant
that can be fixed by specifying the value of the phase at
a given frequency.

B. The quadrupole-driven regime

For quadrupole-driven systems, the flux should be ex-
panded about the Newtonian-order term F0 in Eq. (46)

5 In Ref. [45], the authors argue that PN approximation breaks
down as dynamical scalarization occurs, but that a straightfor-
ward resummation of PN results can provide an accurate wave-
form model valid in this regime.

rather than the leading-order −1PN term. To accom-
plish this reordering of the PN approximation, we ex-
pand the flux in the PN parameter x and an additional
parameter that describes the smallness of non-GR effects.
There exists some flexibility in the choice of this second
small parameter; the weak-field parameters listed in Ta-
ble I describe the smallness of scalar-tensor corrections
in complementary ways, and these quantities appear in
the waveform in several combinations (e.g., the binary
parameters).
We adopt a prescription that generalizes the approach

of Ref. [26] to more generic scalar-tensor theories and to
higher PN order. In the present quadrupole-driven case,
we split the flux into pieces independent and dependent
on the scalar dipole

FQD = Fnon-dip + Fdip, (51)

where we have defined

Fnon-dip ≡ lim
S
−
→0

F , (52)

Fdip ≡F − Fnon-dip. (53)

We refer to Fdip and Fnon-dip as the “dipolar part” and
“non-dipolar part” of the flux, respectively. Note that
these labels do not correspond precisely to the multipolar
structure of the source; for example, Fdip contains con-
tributions from time derivatives of the scalar monopole
and quadrupole. Instead, Fdip represents the part of the
flux that vanishes when s1 = s2
We compute the phasing at first order in the small

quantity Fdip/Fnon-dip, employing the approximation

−dE/dx

F(x)
≃ − dE/dx

Fnon-dip(x)

(

1− Fdip(x)

Fnon-dip(x)

)

(54)

in Eq. (47). Evaluating the right-hand side of this equa-
tion requires knowledge of Fdip and Fnon-dip each at 2PN
relative order.
We obtain for the dipolar and non-dipolar parts

Fnon-dip(x) =
32η2ξx5

5Gα

[

1 + fnd
2 x +O(3)

]

, (55a)

Fdip(x) =
4S2

−ζη
2x4

3Gα

[

1 + fd
2 x + fd

3 x
3/2

+fd
4 x

2 +O(5)
]

, (55b)

where the coefficients fnd
n and fd

n can be found in
Eqs. (B6) and (B8) of Appendix B. The leading order
dipolar part of the flux (55b) is the same as in Eq. (48).
The leading order non-dipolar part (55a) is simply the
quadrupolar flux in GR with an additional factor of ξ/α,
where we have defined ξ ≡ 1 + γ/2 + ζS2

+/6.
Note that because it enters at Newtonian order (rather

than −1PN), the non-dipolar part of the flux is only
known to 1PN relative order. A complete calculation
of the phasing at 2PN relative order requires the 1.5PN
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and 2PN corrections to the non-dipolar flux. In place of
these unknown terms, we use

Fnon-dip =F (GR)
2PN + F (ST)

non-dip, (56)

with

F (ST)
non-dip =F (ST)1PN

non-dip

+
32η2x5

5Gα
ξ
[

fST
3 x3/2 + fST

4 x2 +O(5)
]

. (57)

In the above, F (GR)
2PN is the PN expanded flux in GR up to

2PN order, with the natural replacement G∗ → Gα. The
first term in Eq. (57) denotes the known contributions to
the non-dipolar flux that only arise in scalar-tensor theo-
ries, which can be obtained by subtracting the GR terms
from (55a). We introduce the unknown coefficients fST

3

and fST
4 to represent our ignorance of the new scalar-

tensor contributions at 1.5PN and 2PN order. In the
quadrupole-driven context, experimental constraints on
the weak-field parameters imply that these contributions
should be much smaller than the 2PN GR terms. More-
over, these terms are doubly suppressed in the second
term of Eq. (54) because Fdip is already of the first or-
der in the small scalar-tensor coefficients. We will keep
these unknown coefficients throughout our calculation for
completeness.

We repeat the computation of the phasing from
Sec. VA but using the approximation (54). We write
ρ(x) = ρnon-dip(x) + ρdip(x), where we have defined

ρnon-dip(x) ≡− 1

GMα

1

Fnon-dip(x)

dE

dx
, (58a)

ρdip(x) ≡
1

GMα

Fdip(x)

Fnon-dip(x)2
dE

dx
, (58b)

which can be expanded in the form

ρnon-dip(x) =
5

64x5ηξ

[

1 + ρnd2 x+ ρnd3 x3/2

+ρnd4 x2 +O(5)
]

, (59a)

ρdip(x) =− 25S2
−ζ

1536x6ηξ2

[

1 + ρd2x+ ρd3x
3/2

+ρd4x
2 +O(5)

]

. (59b)

The expressions for the coefficients ρndn , ρdn are given in
Eqs. (B10) and (B12) in Appendix B. Using the decom-
position in Eq. (58), we integrate Eq. (44) and obtain the
phase evolution

ϕ(x) = ϕnon-dip(x) + ϕdip(x), (60)

with

ϕnon-dip(x) =− 1

32x5/2ηξ

[

1 +
5

3
ρnd2 x+

5

2
ρnd3 x3/2

+5ρnd4 x2 +O(5)

]

, (61a)

ϕdip(x) =
25S2

−ζ

5376x7/2ηξ2

[

1 +
7

5
ρd2x+

7

4
ρd3x

3/2

+
7

3
ρd4x

2 +O(5)

]

, (61b)

where we have ignored an arbitrary additive constant
phase.

VI. SPIN-WEIGHTED SPHERICAL MODES OF

THE WAVEFORM

Combining the results of the previous sections, we
present the gravitational waveform in a convenient form
for use with GW detectors. First, we decompose the
waveform hTT

ij as given in Eq. (30) into its plus and
cross polarizations. We introduce the spherical coordi-
nates (R,Θ,Φ) in the center-of-mass frame and define

the usual orthonormal triad {N̂, P̂, Q̂} where N̂ = eR,

and P̂ and Q̂ lie along the major and minor axes, re-
spectively, of the projection of the orbital plane onto the
plane of the sky. The plus and cross polarizations of the
waveform are defined as the projections

h+ =
1

2

(

P̂iP̂j − Q̂iQ̂j

)

hTT
ij , (62a)

h× =
1

2

(

P̂iQ̂j + Q̂iP̂j

)

hTT
ij . (62b)

We then decompose the waveform into spin-weighted
spherical harmonics according to [55]

h+ − ih× =
∑

ℓ≥2

ℓ
∑

m=−ℓ

−2Yℓm(Θ,Φ)hℓm, (63)

where the coefficients hℓm are the spin-weighted spherical
modes that we wish to compute.
We introduce, as in GR, a convenient new orbital phase

variable that allows us to formally absorb the logarithms
appearing in the polarizations h+, h×:

φ ≡ ϕ− 2(1− ζ)

α
x3/2

[

ln (4r0ω) + γE − 11

12

]

, (64)

where r0 is the length scale associated with the transfor-
mation to radiative coordinates introduced in Sec. IVA.
This definition differs from its GR counterpart6 [56] by

6 Note that in the notation of Ref. [25] and references therein,
this redefined phase is denoted by ψ. We instead use φ to avoid
confusion with our ψ = (m1 −m2)/M .
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only a factor of (1 − ζ)/α. Note that the difference be-
tween φ and ϕ is of at least 3PN relative order because
the leading-order term in the phase is formally O(−3) in
dipole-driven systems and O(−5) in quadrupole-driven
systems. Given that we control the phasing of the binary
only at 2PN relative order, we can ignore this correction.
For the mode amplitudes, we adopt the notation

hℓm ≡ 2GM(1− ζ)ηx

R

√

16π

5
Ĥℓme

−imφ, (65)

where the appropriate phase factor is scaled out for each

mode as well as the leading order amplitude of the 22
mode, which differs from its value in GR by only a factor
of 1− ζ.
Because we consider only non-spinning binaries, and

consequently, those on planar orbits, the modes obey the
symmetry relation

hℓm = (−1)ℓh∗ℓ,−m . (66)

Thus, one needs only the modes with m ≥ 0 to spec-
ify the waveform. Combining the results of the previous
sections, we obtain at 2PN order for the quantities Ĥℓm

7:

Ĥ2,2 = 1 + x

(

4β−ψ

3
− 4β+

3
− 2γ

3
+

55η

42
− 107

42

)

+ x3/2
(

−2πζ

α
+

2π

α
− 3

2
iζηS2

− − 1

3
iζS2

− +
1

3
iζS2

+

)

+ x2
(

16β2
−η

γ
+

16β2
−η

3
− 4β2

−

3
+

8β−β+ψ

3
+

19β−ψη

7
− 113β−ψ

63
− 16β2

+η

γ
− 4β2

+

3
+

23β+η

7

+
113β+
63

− γ2η

3
+

5γ2

12
− 74γη

21
− γ

21
+
ψδ−
3

+
4ψχ−

3
− 4δ+η

3
+
δ+
3

+
2047η2

1512
+

8ηχ+

3
− 1069η

216
− 4χ+

3
− 2173

1512

)

(67a)

Ĥ2,1 =
1

3
iψ

√
x

[

1 + x

(

2β−ψ − 2β+ +
γ

2
+

5η

7
− 17

28

)

+x3/2
(

−πζ
α

+
iζ

2α
+
iζ ln(16)

2α
+
π

α
− i

2α
− i ln(16)

2α
− 4

3
iζηS2

− − 4iζηS−S+

3ψ

)]

(67b)

Ĥ3,3 = −3

4
i

√

15

14
ψ
√
x

[

1 + x (2β−ψ − 2β+ − γ + 2η − 4)

+x3/2

(

−3πζ

α
+

21iζ

5α
− 6iζ ln

(

3
2

)

α
+

3π

α
− 21i

5α
+

6i ln
(

3
2

)

α
− 8

9
iζηS2

− − 3

10
iζS2

− +
8iζηS−S+

9ψ
+

3

10
iζS2

+

)]

(67c)

Ĥ3,2 =
x

54
√
35

[

90− 270η + x
(

−720β−ψη + 240β−ψ + 720β+η − 240β+ − 365η2 + 725η − 193
)]

(67d)

Ĥ3,1 =
iψ

√
x

12
√
14

[

1 + x

(

2β−ψ − 2β+ − γ − 2η

3
− 8

3

)

+x3/2
(

−πζ
α

+
7iζ

5α
+

2iζ ln(2)

α
+
π

α
− 7i

5α
− 2i ln(2)

α
− 40

3
iζηS2

− − 1

10
iζS2

− +
8iζηS−S+

3ψ
+

1

10
iζS2

+

)]

(67e)

Ĥ4,4 =
4x

297
√
35

[

990η − 330 + x
(

2640β−ψη − 880β−ψ − 2640β+η + 880β+ − 1320γη+ 440γ + 2625η2 − 6365η + 1779
)]

(67f)

Ĥ4,3 =
9iψ(2η − 1)x3/2

4
√
70

(67g)

Ĥ4,2 = − 1

63

√
5x

[

3η − 1 + x

(

8β−ψη −
8β−ψ

3
− 8β+η +

8β+
3

− 4γη +
4γ

3
+

19η2

22
− 805η

66
+

437

110

)]

(67h)

(67i)

7 Recall that our definition for hµν (14) introduces a sign difference relative to the results summarized in Ref. [25].
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Ĥ4,1 = − iψ(2η − 1)x3/2

84
√
10

(67j)

Ĥ5,5 = −625iψ(2η− 1)x3/2

96
√
66

(67k)

Ĥ5,4 = −32
(

5η2 − 5η + 1
)

x2

9
√
165

(67l)

Ĥ5,3 =
9

32
i

√

3

110
ψ(2η − 1)x3/2 (67m)

Ĥ5,2 =
2
(

5η2 − 5η + 1
)

x2

27
√
55

(67n)

Ĥ5,1 = − iψ(2η − 1)x3/2

288
√
385

(67o)

Ĥ6,6 =
54
(

5η2 − 5η + 1
)

x2

5
√
143

(67p)

Ĥ6,5 = 0 (67q)

Ĥ6,4 = −128

495

√

2

39

(

5η2 − 5η + 1
)

x2 (67r)

Ĥ6,3 = 0 (67s)

Ĥ6,2 =
2
(

5η2 − 5η + 1
)

x2

297
√
65

(67t)

Ĥ6,1 = 0, (67u)

where we omit the common remainderO(5) for all modes.
The hℓm modes with m = 0 correspond to non-

oscillatory memory terms. As discussed in Sec. IVC,
even systems presently driven by quadrupolar radiation
will have undergone a dipole-driven phase in the distant
past, which complicates the calculation of these DC mem-
ory terms. Hence, we limit ourselves to the dipole-driven
case and use Eq. (42). Working at Newtonian order, the
only non-zero mode is h20, which reads

ĤDD
2,0 =

1

4
√
6
+O(2). (68)

VII. STATIONARY PHASE APPROXIMATION

In this section, we compute the Fourier transform of
the gravitational waveform using the stationary phase
approximation (SPA). This technique is only applicable
to oscillatory modes; we do not consider them = 0 modes
here.
We adopt the following convention for the Fourier

transform of a function g:

g̃(f) ≡
∫ +∞

−∞

dt e+2iπftg(t). (69)

Note that this convention differs from the standard one,
in which the argument of the exponential has a minus
sign. Our convention ensures that modes proportional

to e−imϕ with positive mode number m and increasing
orbital phase ϕ have power in positive frequencies in the
Fourier domain. Our results can be converted to the more
common convention by taking f → −f .
Combining the terms in Eq. (65), the hℓm modes can

be written as

hℓm(t) = Aℓm(t)e−imϕ(t), (70)

where Aℓm is the (complex) amplitude. Note that we use
ϕ to describe the phase rather than φ defined in Eq. (64)
— we ignore the 3PN correction φ − ϕ, which can be
thought of as a small phase correction to the amplitude
at higher order than we work.
The hℓm modes for m 6= 0 are rapidly oscillatory,

slowly chirping signals. Put more precisely, during the
inspiral, the modes satisfy |Ȧℓm/Aℓm| ≪ ω and |ω̇| ≪
ω2, which indicates that the SPA is applicable to the
waveform [57]. Applying the Fourier transform (69) to
Eq. (70) gives

hSPAℓm (f) = Aℓm(f)e−iΨℓm(f)−iπ/4 , (71a)

Ψℓm(f) = mϕ(t
(m)
f )− 2πft

(m)
f , (71b)

Aℓm(f) = Aℓm(t
(m)
f )

√

2π

mω̇(t
(m)
f )

, (71c)

where ω = ϕ̇ and t
(m)
f is defined implicitly as the time at

which mω(t
(m)
f ) = 2πf . Note the m-dependence of this

time-to-frequency correspondence; at a given time, the
different harmonics in the signal correspond to gravita-
tional wave emission at different frequencies.
In keeping with the notation common in the literature,

we introduce the new PN tracking parameter v = x1/2 =
(GMαω)1/3, tied to the orbital frequency ω. It is cus-
tomary to introduce a similar notation for the frequency

f as vf = (πGMαf)1/3. Since v(t
(m)
f ) = (2/m)1/3vf ,

Eq. (71b) can be rewritten as

Ψℓm(f) = m

(

ϕ(v) − 1

GMα
v3t(v)

)
∣

∣

∣

∣

v=(2/m)1/3vf

. (72)

We compute the functions ϕ(v) and t(v) using a similar
method to the phasing as in Eq. (44). From the balance
equation (44) we deduce

ϕ(v) = ϕ(v0)−
1

GMα

∫ v

v0

dv v3
dE/dv

F(v)
, (73a)

t(v) = t(v0)−
∫ v

v0

dv
dE/dv

F(v)
, (73b)

where v0 is related to the orbital frequency at some refer-
ence point in the evolution. Likewise, the factor entering
the Fourier-domain amplitude (71c) is computed using

1

ω̇
= −GMα

3v2
1

F(v)

dE

dv
. (74)
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We evaluate Eqs. (73) and (74) using a prescription
akin to that in Sec. V (corresponding now to the Tay-
lorF2 approximant [54]): the expressions are re-expanded
in v, truncated at relative 2PN order, and then integrated
term by term. For the sake of compactness, we write
ϕ(v), t(v), and 1/ω̇ in terms of the expansion of the di-
mensionless ratio ρ(x) introduced in Eq. (47), using

− 1

GMα

1

F(v)

dE

dv
= 2vρ(v2). (75)

A. The dipole-driven regime

For the dipole-driven regime, we insert Eq. (75) into
Eq. (73) using the expansion (49) and integrate, yielding

ϕDD(v) =
−1

4S2
−ζηv

3

[

1 + 3ρDD
2 v2 − 3ρDD

3 v3 ln v − 3ρDD
4 v4

]

,

(76a)

tDD(v)

GMα
=

−1

8S2
−ζηv

6

[

1 +
3

2
ρDD
2 v2 + 2ρDD

3 v3 + 3ρDD
4 v4

]

,

(76b)

where we have dropped the integration constants for now.

Combining these two expressions gives the SPA phase (72)

ΨDD
ℓm (f) =− m

8S2
−ζηv

3

[

1 +
9

2
ρDD
2 v2 − 2ρDD

3 v3(1 + 3 ln v)− 9ρDD
4 v4

]

+mϕ0 − 2πft0 , (77)

where v is evaluated at v = (2/m)1/3vf , and where we restored constants t0 and ϕ0 which are the sums of ϕ(v0), t(v0)
with the terms from the lower boundary of the integrals. The coefficients ρDD

n are given in Eq. (B4).
Similarly, the complex amplitude is given by

ADD
ℓm (f) =

2G2(1 − ζ)M2απη1/2

Rζ1/2|S−|

√

4

5

√

2

m

Ĥℓm(v)

v5/2

[

1 +
1

2
v2ρDD

2 +
1

2
v3ρDD

3 +
1

2
v4
(

ρDD
4 − 1

4
(ρDD

2 )2
)]

, (78)

where Ĥℓm(v) is given by Eq. (67) with the replacement
x = v2 and, as before, v is evaluated at v = (2/m)1/3vf .

Note that because Ĥℓm are complex they can affect the
phase of the waveform. In particular, they can carry an
overall minus sign or factor ±i, which should be included
in the phase of the mode. In addition, higher-order terms
can have a factor ±i differing from the one entering at
leading order, which induce corrective phases. However,
those phases turn out to be negligible, entering at higher
PN order than the 2PN relative order we consider.

B. The quadrupole-driven regime

We follow the same treatment for the quadrupole-
driven systems as laid out in Sec. VB: we split the
flux into dipolar and non-dipolar parts, and expand ρ(v)
to first order in the ratio Fdip/Fnon-dip according to
Eq. (54). The first and second terms in Eq. (54) produce
a non-dipolar and dipolar contribution, respectively, to
the phase and amplitude of the SPA waveform.
The non-dipolar contribution to the phasing is con-

structed by inserting Eq. (75) into the integrals in
Eq. (73) and using the expansion (59a). Ignoring the
integration constants for now, we find

ϕnon-dip(v) =− 1

32v5ηξ

[

1 +
5

3
ρnd2 v2 +

5

2
ρnd3 v3 + 5ρnd4 v4 +O(5)

]

, (79a)

tnon-dip(v)

GMα
=− 5

256v8ηξ

[

1 +
4

3
ρnd2 v2 +

8

5
ρnd3 v3 + 2ρnd4 v4 +O(5)

]

, (79b)

and thus, the corresponding contribution to the Fourier-domain phase for the hℓm mode is given by

Ψnon-dip
ℓm (f) = m

[

− 3

256v5ηξ

(

1 +
20

9
ρnd2 v2 + 4ρnd3 v3 + 10ρnd4 v4

)]∣

∣

∣

∣

v=(2/m)1/3vf

. (80)



15

Similarly, we use Eq. (59b) to compute the contribution to the phasing from the dipolar energy flux

ϕdip(v) =
25S2

−ζ

5376v7ηξ2

[

1 +
7

5
ρd2v

2 +
7

4
ρd3v

3 +
7

3
ρd4v

4 +O(5)

]

, (81a)

tdip(v)

GMα
=

5S2
−ζ

1536v10ηξ2

[

1 +
5

4
ρd2v

2 +
10

7
ρd3v

3 +
5

3
ρd4v

4 +O(5)

]

, (81b)

Ψdip
ℓm(f) =m

[

5S2
−ζ

3584v7ηξ2

(

1 +
7

4
ρd2v

2 +
5

2
ρd3v

3 +
35

9
ρd4v

4

)]∣

∣

∣

∣

v=(2/m)1/3vf

. (81c)

Combining these two pieces and restoring the constants
ϕ0 and t0, the Fourier-domain phase is then simply

ΨQD
ℓm (f) = Ψnon-dip

ℓm (f) + Ψdip
ℓm(f) +mϕ0 − 2πft0. (82)

The coefficients ρndn and ρdn are given in Eqs. (B10)
and (B12). When restricted to Brans-Dicke theory,
Eq. (82) reproduces the leading order deviation in the
phase from GR derived in Ref. [26] at order O(1/ωBD),
which is equivalent to first order in Fdip/Fnon-dip. For
systems containing a very massive black hole, i.e.,
s1 = 1/2, s′1 = s′′1 = 0 and m1 ≫ m2, we recover the
phase up to 2PN relative order derived in Ref. [58].
The computation of the Fourier-domain amplitude

closely follows that of the dipole-driven regime. In place
of
√

ρ(v), one instead uses

√

ρ(v) ≃
√

ρnon-dip(v)

[

1 +
1

2

ρdip(v)

ρnon-dip(v)

]

. (83)

Finally, one re-expands this expression using Eqs. (59a)
and (59b) and inserts the result in to Eq. (71c).

VIII. CONCLUSIONS

We have computed the gravitational waveform at 2PN
relative order for a compact binary system on quasi-
circular orbits in scalar-tensor theories with a single
massless scalar. The phase and amplitude are presented
in ready-to-use form for all hlm modes. We used the
stationary phase approximation to express the waveform
in Fourier space. We performed these calculations for
systems whose inspiral is driven by the emission of dipo-
lar radiation and those driven by quadrupolar flux. Be-
cause of the tight constraints on scalar-tensor gravity,
only very low-frequency systems (e.g., binary pulsars) or
those that host non-perturbative scalarization phenom-
ena (e.g., spontaneous or dynamical scalarization) fall
within this first regime — most prospective GW sources
will be quadrupolar-driven.
We conclude with a brief discussion of the potential

utility of our results for testing GR with GWs. The
early inspiral offers the best prospects for detecting the
emission of dipolar radiation by compact binary systems,
as radiation reaction enters at lower PN order in scalar-
tensor theories than in GR. Thus, the best constraints

would come from observation of neutron star-black hole
binaries with space-based detectors.8 Current estimates
on the detectability of scalar-tensor effects have predom-
inantly been made using the leading-order correction to
the GW phase [26, 59–62] (although Ref. [58] used 3.5PN
scalar-tensor waveforms in studying extreme mass ratio
inspirals).
Using Eq. (82), we estimate the upper bound on the

contribution of each PN correction to the phase. We
consider the phase accumulated by a 100 − 1.4M⊙ sys-
tem during an observation period of one year, spanning
the frequency range f ∈ (0.065Hz, 1Hz), subject to the
experimental constraints discussed in Sec. II B. Relative
to the 7.7× 106 cycles produced by the Newtonian-order
GR term, the leading-order scalar-tensor correction de-
creases the phase by up to ∼ 600 GW cycles.9 The 1PN
relative order correction increases the total phase by an-
other ∼ 2 cycles, although this piece would be difficult to
detect, as it takes the same form as the leading-order GR
term. The 1.5PN relative order correction adds ∼ 3 GW
cycles to the inspiral, and the 2PN order effect is below
the limit of eLISA detectability, only contributing ∼ 0.1
cycles over the year. We emphasize that these values
are only an order-of-magnitude estimate of the possible
impact of higher-order scalar-tensor corrections; a more
extensive parameter estimation study is needed to truly
determine the detectability of these effects.
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Appendix A: Translating notation

This appendix contains the conversion between nota-
tion introduced in Table I and that employed by Damour
and Esposito-Farèse [17, 30]. Note that these authors de-
fined αA with a relative minus sign compared to Eq. (11)
and defined G∗ as the bare gravitational constant in the
Einstein frame.

Weak-field parameters :

G→ G̃ = G∗A
2
0

(

1 + α2
0

)

, (A1)

ζ → α2
0

1 + α2
0

, (A2)

λ1 → − α0β0
(1 + α2

0)A
2
0

, (A3)

λ2 → −α
2
0

(

α0β
′
0 − 3β2

0

)

(1 + α2
0)

2
A4

0

. (A4)

Strong-field parameters :

sA → 1

2
− αA

2α0
, (A5)

s′A → β0αA

2α2
0A

2
0

+
βA
4α2

0

, (A6)

s′′A → αAβ
′
0

2α2
0A

4
0

+
β′
A

8α3
0

− β2
0αA

α3
0A

4
0

+
β0αA

2α2
0A

2
0

− 3β0βA
4α3

0A
2
0

. (A7)

Binary parameters :

α → 1 + α1α2

1 + α2
0

, (A8)

γ → γ12 = − 2α1α2

1 + α1α2
, (A9)

β1 → β1
22 =

β1α
2
2

2(1 + α1α2)2
, (A10)

β2 → β2
11 =

β2α
2
1

2(1 + α1α2)2
, (A11)

δ1 → α2
1

(1 + α1α2)2
, (A12)

δ2 → α2
2

(1 + α1α2)2
, (A13)

χ1 → −1

4
ǫ1222 = − β′

1α
3
2

4(1 + α1α2)3
, (A14)

χ2 → −1

4
ǫ2111 = − β′

2α
3
1

4(1 + α1α2)3
. (A15)

Our conversions agree with those presented in Table II of
Ref. [19] with one exception: we find Gα = G̃12 rather
than Gα = G12.

Appendix B: Explicit formulas for the Fourier-domain phasing

This appendix gathers explicit formulae for the coefficients entering our results that were too voluminous to be kept
in the main text.
In the dipole-driven case of Section VA, we obtained for the flux

FDD(x) =
4S2

−ζη
2x4

3Gα

[

1 + fDD
2 x + fDD

3 x3/2 + fDD
4 x2 +O(5)

]

(B1)

with the coefficients

fDD
2 = − 14

5
+

4S2
+

5S2
−

− 4

3
β+ +

4S+β−
S−γ

+
4β+
γ

− 2

3
γ +

24

5S2
−ζ

+
12γ

5S2
−ζ

− 4

3
η +

4

3
β−ψ − 4β−ψ

γ
− 4S+β+ψ

S−γ
, (B2a)

fDD
3 = 2π + πγ, (B2b)

fDD
4 = − 29

28
− 97S2

+

28S2
−

− 4S+β−
3S−

− 4

3
β2
− +

2

15
β+ − 32S2

+β+

15S2
−

− 4

3
β2
+ +

4β2
−

γ2
+

4S2
+β

2
−

S2
−γ

2
+

16S+β−β+
S−γ2

+
4β2

+

γ2

+
4S2

+β
2
+

S2
−γ

2
− 4S+β−

S−γ
− 8β2

−

3γ
− 36β+

5γ
+

16S2
+β+

5S2
−γ

− 16S+β−β+
3S−γ

− 8β2
+

3γ
+

2

5
γ − 16S2

+γ

15S2
−

+
1

2
γ2 +

2

3
δ+

− 1247

70S2
−ζ

− 64β+
5S2

−ζ
− 2143γ

140S2
−ζ

− 32β+γ

5S2
−ζ

− 16γ2

5S2
−ζ

+
55

6
η − 7S2

+η

3S2
−

+
16

3
β2
−η +

40

3
β+η −

48β2
−η

γ2

− 32S+β−β+η

S−γ2
+

32β2
+η

γ2
− 16S2

+β
2
+η

S2
−γ

2
− 56S+β−η

3S−γ
+

80β2
−η

3γ
− 56β+η

3γ
+

32S+β−β+η

3S−γ
− 16β2

+η

γ
− 4

3
γη

− 1

3
γ2η − 4

3
δ+η −

14η

S2
−ζ

− 7γη

S2
−ζ

+
2

3
η2 +

4S+χ−

S−γ
− 8S+ηχ−

S−γ
− 4

3
χ+ +

4χ+

γ
+

8

3
ηχ+ − 8ηχ+

γ
+

11S+ψ

2S−
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− 2

15
β−ψ +

32S2
+β−ψ

15S2
−

+
4S+β+ψ

3S−
+

8

3
β−β+ψ − 8S+β

2
−ψ

S−γ2
− 8β−β+ψ

γ2
− 8S2

+β−β+ψ

S2
−γ

2
− 8S+β

2
+ψ

S−γ2

+
36β−ψ

5γ
− 16S2

+β−ψ

5S2
−γ

+
8S+β

2
−ψ

3S−γ
+

4S+β+ψ

S−γ
+

16β−β+ψ

3γ
+

8S+β
2
+ψ

3S−γ
+

3S+γψ

S−
+

2

3
δ−ψ +

64β−ψ

5S2
−ζ

+
32β−γψ

5S2
−ζ

− 16

3
β−ηψ +

20β−ηψ

3γ
+

20S+β+ηψ

3S−γ
+

4

3
χ−ψ − 4χ−ψ

γ
− 4S+χ+ψ

S−γ
. (B2c)

For the ratio ρ(x), we obtained

ρDD(x) =
3

8S2
−ζηx

4

[

1 + ρDD
2 x + ρDD

3 x3/2 + ρDD
4 x2 +O(5)

]

(B3)

with the coefficients

ρDD
2 =

13

10
− 4S2

+

5S2
−

+
8

3
β+ − 4S+β−

S−γ
− 4β+

γ
− 2

3
γ − 24

5S2
−ζ

− 12γ

5S2
−ζ

+
7

6
η − 8

3
β−ψ +

4β−ψ

γ
+

4S+β+ψ

S−γ
, (B4a)

ρDD
3 = − 2π − πγ, (B4b)

ρDD
4 = − 7629

1400
+

129S2
+

700S2
−

+
16S4

+

25S4
−

+
4S+β−
3S−

+
80

9
β2
− +

181

15
β+ − 16S2

+β+

15S2
−

+
80

9
β2
+ +

12β2
−

γ2
+

12S2
+β

2
−

S2
−γ

2

+
48S+β−β+

S−γ2
+

12β2
+

γ2
+

12S2
+β

2
+

S2
−γ

2
− 62S+β−

5S−γ
+

32S3
+β−

5S3
−γ

− 40β2
−

3γ
− 46β+

5γ
+

16S2
+β+

5S2
−γ

− 80S+β−β+
3S−γ

− 40β2
+

3γ
− 77

5
γ +

16S2
+γ

15S2
−

+
44

9
β+γ − 205

36
γ2 +

1

3
δ+ +

576

25S4
−ζ

2
+

576γ

25S4
−ζ

2
+

144γ2

25S4
−ζ

2
− 653

350S2
−ζ

+
192S2

+

25S4
−ζ

+
96S+β−
5S3

−ζ
+

64β+
5S2

−ζ
+

192S+β−
5S3

−γζ
+

192β+
5S2

−γζ
+

3827γ

700S2
−ζ

+
96S2

+γ

25S4
−ζ

− 16β+γ

5S2
−ζ

+
16γ2

5S2
−ζ

+
71

24
η +

S2
+η

3S2
−

− 320

9
β2
−η −

245

9
β+η −

16β2
−η

γ2
− 96S+β−β+η

S−γ2
− 32β2

+η

γ2
− 48S2

+β
2
+η

S2
−γ

2
+

26S+β−η

3S−γ
− 32β2

−η

3γ
+

26β+η

3γ

+
160S+β−β+η

3S−γ
+

64β2
+η

γ
+

110

9
γη +

4

3
γ2η +

16

3
δ+η +

2η

S2
−ζ

+
γη

S2
−ζ

+
55

72
η2 − 4S+χ−

S−γ
+

8S+ηχ−

S−γ

+
16

3
χ+ − 4χ+

γ
− 32

3
ηχ+ +

8ηχ+

γ
− 11S+ψ

2S−
− 181

15
β−ψ +

16S2
+β−ψ

15S2
−

− 4S+β+ψ

3S−
− 160

9
β−β+ψ

− 24S+β
2
−ψ

S−γ2
− 24β−β+ψ

γ2
− 24S2

+β−β+ψ

S2
−γ

2
− 24S+β

2
+ψ

S−γ2
+

46β−ψ

5γ
− 16S2

+β−ψ

5S2
−γ

+
40S+β

2
−ψ

3S−γ

+
62S+β+ψ

5S−γ
− 32S3

+β+ψ

5S3
−γ

+
80β−β+ψ

3γ
+

40S+β
2
+ψ

3S−γ
− 3S+γψ

S−
− 44

9
β−γψ +

1

3
δ−ψ − 64β−ψ

5S2
−ζ

− 96S+β+ψ

5S3
−ζ

− 192β−ψ

5S2
−γζ

− 192S+β+ψ

5S3
−γζ

+
16β−γψ

5S2
−ζ

+
11

9
β−ηψ +

10β−ηψ

3γ
+

10S+β+ηψ

3S−γ
− 16

3
χ−ψ

+
4χ−ψ

γ
+

4S+χ+ψ

S−γ
. (B4c)

In the quadrupole-driven case of Section VB, we obtained for the dipolar part of the flux

Fdip(x) =
4S2

−ζη
2x4

3Gα

[

1 + fd
2 x + fd

3 x
3/2 + fd

4 x
2 +O(5)

]

(B5)

with coefficients given by

fd
2 = − 14

5
− 4

3
β+ +

4S+β−
S−γ

+
4β+
γ

− 2

3
γ − 4

3
η +

4

3
β−ψ − 4β−ψ

γ
− 4S+β+ψ

S−γ
, (B6a)

fd
3 = 2π + πγ, (B6b)

fd
4 = − 29

28
− 4S+β−

3S−
− 4

3
β2
− +

2

15
β+ − 4

3
β2
+ +

4β2
−

γ2
+

16S+β−β+
S−γ2

+
4β2

+

γ2
− 4S+β−

S−γ
− 8β2

−

3γ
− 36β+

5γ
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− 16S+β−β+
3S−γ

− 8β2
+

3γ
+

2

5
γ +

1

2
γ2 +

2

3
δ+ +

55

6
η +

16

3
β2
−η +

40

3
β+η −

48β2
−η

γ2
− 32S+β−β+η

S−γ2
+

32β2
+η

γ2

− 56S+β−η

3S−γ
+

80β2
−η

3γ
− 56β+η

3γ
+

32S+β−β+η

3S−γ
− 16β2

+η

γ
− 4

3
γη − 1

3
γ2η − 4

3
δ+η +

2

3
η2 +

4S+χ−

S−γ

− 8S+ηχ−

S−γ
− 4

3
χ+ +

4χ+

γ
+

8

3
ηχ+ − 8ηχ+

γ
+

11S+ψ

2S−
− 2

15
β−ψ +

4S+β+ψ

3S−
+

8

3
β−β+ψ − 8S+β

2
−ψ

S−γ2

− 8β−β+ψ

γ2
− 8S+β

2
+ψ

S−γ2
+

36β−ψ

5γ
+

8S+β
2
−ψ

3S−γ
+

4S+β+ψ

S−γ
+

16β−β+ψ

3γ
+

8S+β
2
+ψ

3S−γ
+

3S+γψ

S−
+

2

3
δ−ψ

− 16

3
β−ηψ +

20β−ηψ

3γ
+

20S+β+ηψ

3S−γ
+

4

3
χ−ψ − 4χ−ψ

γ
− 4S+χ+ψ

S−γ
. (B6c)

For the non-dipolar part, we obtained

Fnon-dip(x) =
32η2ξx5

5Gα

[

1 + fnd
2 x +O(3)

]

(B7)

with the coefficient

fnd
2 = − 1247

336ξ
− 8β+

3ξ
− 2143γ

672ξ
− 4β+γ

3ξ
− 2γ2

3ξ
− 485S2

+ζ

672ξ
− 4S2

+β+ζ

9ξ
+

5S2
+β

2
−ζ

6γ2ξ
+

5S2
+β

2
+ζ

6γ2ξ
+

2S2
+β+ζ

3γξ

− 2S2
+γζ

9ξ
− 35η

12ξ
− 35γη

24ξ
− 35S2

+ζη

72ξ
− 10S2

+β
2
+ζη

3γ2ξ
+

8β−ψ

3ξ
+

4β−γψ

3ξ
+

4S2
+β−ζψ

9ξ
− 5S2

+β−β+ζψ

3γ2ξ

− 2S2
+β−ζψ

3γξ
. (B8a)

For the non-dipolar ratio ρnon-dip(x), we obtain

ρnon-dip(x) =
5

64ηξx5

[

1 + ρnd2 x + ρnd3 x3/2 + ρnd4 x2 +O(5)
]

(B9)

with the coefficients

ρnd2 =
743

336ξ
+

4β+
ξ

+
743γ

672ξ
+

2β+γ

ξ
+

317S2
+ζ

672ξ
+

2S2
+β+ζ

3ξ
− 5S2

+β
2
−ζ

6γ2ξ
− 5S2

+β
2
+ζ

6γ2ξ
− 2S2

+β+ζ

3γξ
+

11η

4ξ
+

11γη

8ξ

+
11S2

+ζη

24ξ
+

10S2
+β

2
+ζη

3γ2ξ
− 4β−ψ

ξ
− 2β−γψ

ξ
− 2S2

+β−ζψ

3ξ
+

5S2
+β−β+ζψ

3γ2ξ
+

2S2
+β−ζψ

3γξ
, (B10a)

ρnd3 = − fST
3 − 4π

ξ
, (B10b)

ρnd4 = − 81

8
− fST

4 + 4β2
− + 3β+ + 4β2

+ − 14γ + 4β+γ − 19

4
γ2 + δ+ +

57

8
η − 16β2

−η − 19β+η −
48β2

−η

γ

+
48β2

+η

γ
+ 11γη + γ2η + 4δ+η −

1

8
η2 +

1555009

112896ξ2
+

64β2
−

9ξ2
+

1247β+
63ξ2

+
64β2

+

9ξ2
+

2672321γ

112896ξ2
+

64β2
−γ

9ξ2

+
565β+γ

21ξ2
+

64β2
+γ

9ξ2
+

2275691γ2

150528ξ2
+

16β2
−γ

2

9ξ2
+

1013β+γ
2

84ξ2
+

16β2
+γ

2

9ξ2
+

2143γ3

504ξ2
+

16β+γ
3

9ξ2
+

4γ4

9ξ2

+
604795S2

+ζ

112896ξ2
− 14S2

+β
2
−ζ

27ξ2
+

4379S2
+β+ζ

1512ξ2
− 14S2

+β
2
+ζ

27ξ2
− 6235S2

+β
2
−ζ

1008γ2ξ2
− 40S2

+β
2
−β+ζ

3γ2ξ2
− 6235S2

+β
2
+ζ

1008γ2ξ2

− 40S2
+β

3
+ζ

9γ2ξ2
− 1987S2

+β
2
−ζ

224γξ2
− 1247S2

+β+ζ

252γξ2
− 20S2

+β
2
−β+ζ

3γξ2
− 1987S2

+β
2
+ζ

224γξ2
− 20S2

+β
3
+ζ

9γξ2
+

4235377S2
+γζ

677376ξ2

+
32S2

+β
2
−γζ

27ξ2
+

91S2
+β+γζ

18ξ2
+

32S2
+β

2
+γζ

27ξ2
+

257S2
+γ

2ζ

108ξ2
+

32S2
+β+γ

2ζ

27ξ2
+

8S2
+γ

3ζ

27ξ2
+

235225S4
+ζ

2

451584ξ2

+
16S4

+β
2
−ζ

2

81ξ2
+

29S4
+β+ζ

2

84ξ2
+

16S4
+β

2
+ζ

2

81ξ2
+

25S4
+β

4
−ζ

2

36γ4ξ2
+

25S4
+β

2
−β

2
+ζ

2

6γ4ξ2
+

25S4
+β

4
+ζ

2

36γ4ξ2
+

10S4
+β

2
−β+ζ

2

3γ3ξ2

+
10S4

+β
3
+ζ

2

9γ3ξ2
− 1529S4

+β
2
−ζ

2

2016γ2ξ2
− 20S4

+β
2
−β+ζ

2

9γ2ξ2
− 1529S4

+β
2
+ζ

2

2016γ2ξ2
− 20S4

+β
3
+ζ

2

27γ2ξ2
− 26S4

+β
2
−ζ

2

27γξ2
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− 485S4
+β+ζ

2

504γξ2
− 26S4

+β
2
+ζ

2

27γξ2
+

485S4
+γζ

2

1512ξ2
+

16S4
+β+γζ

2

81ξ2
+

4S4
+γ

2ζ2

81ξ2
+

6235η

288ξ2
− 256β2

−η

9ξ2
+

140β+η

9ξ2

+
2825γη

96ξ2
− 256β2

−γη

9ξ2
+

140β+γη

9ξ2
+

5065γ2η

384ξ2
− 64β2

−γ
2η

9ξ2
+

35β+γ
2η

9ξ2
+

35γ3η

18ξ2
+

6755S2
+ζη

864ξ2

− 64S2
+β

2
−ζη

27ξ2
+

175S2
+β+ζη

54ξ2
+

40S2
+β

2
+ζη

9ξ2
− 175S2

+β
2
−ζη

36γ2ξ2
+

320S2
+β

2
−β+ζη

9γ2ξ2
+

835S2
+β

2
+ζη

42γ2ξ2

+
160S2

+β
3
+ζη

9γ2ξ2
+

283S2
+β

2
−ζη

24γξ2
− 35S2

+β+ζη

9γξ2
+

160S2
+β

2
−β+ζη

9γξ2
+

4745S2
+β

2
+ζη

252γξ2
+

80S2
+β

3
+ζη

9γξ2

+
3745S2

+γζη

576ξ2
− 128S2

+β
2
−γζη

27ξ2
+

70S2
+β+γζη

27ξ2
+

35S2
+γ

2ζη

27ξ2
+

2425S4
+ζ

2η

3456ξ2
− 64S4

+β
2
−ζ

2η

81ξ2

+
35S4

+β+ζ
2η

81ξ2
− 50S4

+β
2
−β

2
+ζ

2η

3γ4ξ2
− 50S4

+β
4
+ζ

2η

9γ4ξ2
− 80S4

+β
2
−β+ζ

2η

9γ3ξ2
− 40S4

+β
3
+ζ

2η

9γ3ξ2
− 559S4

+β
2
−ζ

2η

216γ2ξ2

+
160S4

+β
2
−β+ζ

2η

27γ2ξ2
+

3025S4
+β

2
+ζ

2η

756γ2ξ2
+

80S4
+β

3
+ζ

2η

27γ2ξ2
+

64S4
+β

2
−ζ

2η

27γξ2
− 35S4

+β+ζ
2η

54γξ2
+

40S4
+β

2
+ζ

2η

27γξ2

+
35S4

+γζ
2η

162ξ2
+

1225η2

144ξ2
+

1225γη2

144ξ2
+

1225γ2η2

576ξ2
+

1225S2
+ζη

2

432ξ2
+

175S2
+β

2
+ζη

2

9γ2ξ2
+

175S2
+β

2
+ζη

2

18γξ2

+
1225S2

+γζη
2

864ξ2
+

1225S4
+ζ

2η2

5184ξ2
+

100S4
+β

4
+ζ

2η2

9γ4ξ2
+

175S4
+β

2
+ζ

2η2

54γ2ξ2
− 1655

2592ξ
+

32β2
−

9ξ
+

239β+
252ξ

+
32β2

+

9ξ

− 39239γ

4032ξ
+

16β2
−γ

9ξ
− 73β+γ

56ξ
+

16β2
+γ

9ξ
− 2647γ2

504ξ
− 8β+γ

2

9ξ
− 8γ3

9ξ
− 485S2

+ζ

448ξ
+

16S2
+β

2
−ζ

27ξ

+
199S2

+β+ζ

168ξ
+

16S2
+β

2
+ζ

27ξ
+

5S2
+β

2
−ζ

4γ2ξ
− 10S2

+β
2
−β+ζ

3γ2ξ
+

5S2
+β

2
+ζ

4γ2ξ
− 10S2

+β
3
+ζ

9γ2ξ
+

2S2
+β

2
−ζ

9γξ
+

S2
+β+ζ

γξ

+
2S2

+β
2
+ζ

9γξ
− 653S2

+γζ

504ξ
− 8S2

+β+γζ

27ξ
− 8S2

+γ
2ζ

27ξ
− 5239η

224ξ
− 128β2

−η

9ξ
+

31β+η

9ξ
− 8881γη

1344ξ
− 64β2

−γη

9ξ

+
31β+γη

18ξ
− 37γ2η

18ξ
− 3425S2

+ζη

4032ξ
− 64S2

+β
2
−ζη

27ξ
+

31S2
+β+ζη

54ξ
+

5S2
+β

2
−ζη

36γ2ξ
+

80S2
+β

2
−β+ζη

9γ2ξ

− 175S2
+β

2
+ζη

36γ2ξ
+

40S2
+β

3
+ζη

9γ2ξ
+

32S2
+β

2
−ζη

9γξ
+

S2
+β+ζη

9γξ
− 40S2

+β
2
+ζη

9γξ
− 37S2

+γζη

54ξ
− 295η2

72ξ
− 35γη2

144ξ

− 35S2
+ζη

2

432ξ
− 5S2

+β
2
+ζη

2

9γ2ξ
+ 4χ+ − 8ηχ+ − 3β−ψ − 8β−β+ψ − 4β−γψ + δ−ψ + β−ηψ − 1247β−ψ

63ξ2

− 128β−β+ψ

9ξ2
− 565β−γψ

21ξ2
− 128β−β+γψ

9ξ2
− 1013β−γ

2ψ

84ξ2
− 32β−β+γ

2ψ

9ξ2
− 16β−γ

3ψ

9ξ2
− 4379S2

+β−ζψ

1512ξ2

+
28S2

+β−β+ζψ

27ξ2
+

40S2
+β

3
−ζψ

9γ2ξ2
+

6235S2
+β−β+ζψ

504γ2ξ2
+

40S2
+β−β

2
+ζψ

3γ2ξ2
+

1247S2
+β−ζψ

252γξ2
+

20S2
+β

3
−ζψ

9γξ2

+
1987S2

+β−β+ζψ

112γξ2
+

20S2
+β−β

2
+ζψ

3γξ2
− 91S2

+β−γζψ

18ξ2
− 64S2

+β−β+γζψ

27ξ2
− 32S2

+β−γ
2ζψ

27ξ2
− 29S4

+β−ζ
2ψ

84ξ2

− 32S4
+β−β+ζ

2ψ

81ξ2
− 25S4

+β
3
−β+ζ

2ψ

9γ4ξ2
− 25S4

+β−β
3
+ζ

2ψ

9γ4ξ2
− 10S4

+β
3
−ζ

2ψ

9γ3ξ2
− 10S4

+β−β
2
+ζ

2ψ

3γ3ξ2
+

20S4
+β

3
−ζ

2ψ

27γ2ξ2

+
1529S4

+β−β+ζ
2ψ

1008γ2ξ2
+

20S4
+β−β

2
+ζ

2ψ

9γ2ξ2
+

485S4
+β−ζ

2ψ

504γξ2
+

52S4
+β−β+ζ

2ψ

27γξ2
− 16S4

+β−γζ
2ψ

81ξ2
− 140β−ηψ

9ξ2

− 140β−γηψ

9ξ2
− 35β−γ

2ηψ

9ξ2
− 175S2

+β−ζηψ

54ξ2
+

175S2
+β−β+ζηψ

18γ2ξ2
− 160S2

+β−β
2
+ζηψ

9γ2ξ2
+

35S2
+β−ζηψ

9γξ2

+
175S2

+β−β+ζηψ

36γξ2
− 80S2

+β−β
2
+ζηψ

9γξ2
− 70S2

+β−γζηψ

27ξ2
− 35S4

+β−ζ
2ηψ

81ξ2
+

100S4
+β−β

3
+ζ

2ηψ

9γ4ξ2

+
40S4

+β−β
2
+ζ

2ηψ

9γ3ξ2
+

175S4
+β−β+ζ

2ηψ

108γ2ξ2
− 80S4

+β−β
2
+ζ

2ηψ

27γ2ξ2
+

35S4
+β−ζ

2ηψ

54γξ2
− 239β−ψ

252ξ
− 64β−β+ψ

9ξ

+
73β−γψ

56ξ
− 32β−β+γψ

9ξ
+

8β−γ
2ψ

9ξ
− 199S2

+β−ζψ

168ξ
− 32S2

+β−β+ζψ

27ξ
+

10S2
+β

3
−ζψ

9γ2ξ
− 5S2

+β−β+ζψ

2γ2ξ
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+
10S2

+β−β
2
+ζψ

3γ2ξ
− S2

+β−ζψ

γξ
− 4S2

+β−β+ζψ

9γξ
+

8S2
+β−γζψ

27ξ
− 31β−ηψ

9ξ
− 31β−γηψ

18ξ
− 31S2

+β−ζηψ

54ξ

− 5S2
+β−β+ζηψ

18γ2ξ
− 40S2

+β−β
2
+ζηψ

9γ2ξ
− S2

+β−ζηψ

9γξ
− 4χ−ψ. (B10c)

The result for the dipolar ratio ρdip(x) is

ρdip(x) = − 25S2
−ζ

1536ηξ2x6

[

1 + ρd2x + ρd3x
3/2 + ρd4x

2 +O(5)
]

(B11)

with the coefficients

ρd2 =
2623

840ξ
+

2S+β−
S−ξ

+
22β+
3ξ

+
4S+β−
S−γξ

+
4β+
γξ

+
3743γ

1680ξ
+

8β+γ

3ξ
+
γ2

3ξ
+

407S2
+ζ

560ξ
+

8S2
+β+ζ

9ξ
− 5S2

+β
2
−ζ

3γ2ξ

− 5S2
+β

2
+ζ

3γ2ξ
+

2S3
+β−ζ

3S−γξ
− 2S2

+β+ζ

3γξ
+

S2
+γζ

9ξ
+

13η

3ξ
+

13γη

6ξ
+

13S2
+ζη

18ξ
+

20S2
+β

2
+ζη

3γ2ξ
− 22β−ψ

3ξ

− 2S+β+ψ

S−ξ
− 4β−ψ

γξ
− 4S+β+ψ

S−γξ
− 8β−γψ

3ξ
− 8S2

+β−ζψ

9ξ
+

10S2
+β−β+ζψ

3γ2ξ
+

2S2
+β−ζψ

3γξ
− 2S3

+β+ζψ

3S−γξ
, (B12a)

ρd3 = − 2fST
3 + 2π + πγ − 8π

ξ
, (B12b)

ρd4 = − 1949

280
− 2fST

4 − 20S+β−
3S−

+
8

9
β2
− − 59

15
β+ +

8

9
β2
+ +

4β2
−

γ2
+

16S+β−β+
S−γ2

+
4β2

+

γ2
− 10S+β−

S−γ
+

8β2
−

3γ

− 66β+
5γ

+
16S+β−β+

3S−γ
+

8β2
+

3γ
− 133

15
γ +

44

9
β+γ − 121

36
γ2 +

5

3
δ+ +

2251

120
η − 32

9
β2
−η −

65

9
β+η −

48β2
−η

γ2

− 32S+β−β+η

S−γ2
+

32β2
+η

γ2
− 58S+β−η

3S−γ
− 128β2

−η

3γ
− 58β+η

3γ
− 32S+β−β+η

3S−γ
+

32β2
+η

γ
+

104

9
γη +

2

3
γ2η

+
8

3
δ+η +

55

72
η2 +

1555009

37632ξ2
+

64β2
−

3ξ2
+

1247β+
21ξ2

+
64β2

+

3ξ2
+

2672321γ

37632ξ2
+

64β2
−γ

3ξ2
+

565β+γ

7ξ2
+

64β2
+γ

3ξ2

+
2275691γ2

50176ξ2
+

16β2
−γ

2

3ξ2
+

1013β+γ
2

28ξ2
+

16β2
+γ

2

3ξ2
+

2143γ3

168ξ2
+

16β+γ
3

3ξ2
+

4γ4

3ξ2
+

604795S2
+ζ

37632ξ2

− 14S2
+β

2
−ζ

9ξ2
+

4379S2
+β+ζ

504ξ2
− 14S2

+β
2
+ζ

9ξ2
− 6235S2

+β
2
−ζ

336γ2ξ2
− 40S2

+β
2
−β+ζ

γ2ξ2
− 6235S2

+β
2
+ζ

336γ2ξ2
− 40S2

+β
3
+ζ

3γ2ξ2

− 5961S2
+β

2
−ζ

224γξ2
− 1247S2

+β+ζ

84γξ2
− 20S2

+β
2
−β+ζ

γξ2
− 5961S2

+β
2
+ζ

224γξ2
− 20S2

+β
3
+ζ

3γξ2
+

4235377S2
+γζ

225792ξ2

+
32S2

+β
2
−γζ

9ξ2
+

91S2
+β+γζ

6ξ2
+

32S2
+β

2
+γζ

9ξ2
+

257S2
+γ

2ζ

36ξ2
+

32S2
+β+γ

2ζ

9ξ2
+

8S2
+γ

3ζ

9ξ2
+

235225S4
+ζ

2

150528ξ2

+
16S4

+β
2
−ζ

2

27ξ2
+

29S4
+β+ζ

2

28ξ2
+

16S4
+β

2
+ζ

2

27ξ2
+

25S4
+β

4
−ζ

2

12γ4ξ2
+

25S4
+β

2
−β

2
+ζ

2

2γ4ξ2
+

25S4
+β

4
+ζ

2

12γ4ξ2
+

10S4
+β

2
−β+ζ

2

γ3ξ2

+
10S4

+β
3
+ζ

2

3γ3ξ2
− 1529S4

+β
2
−ζ

2

672γ2ξ2
− 20S4

+β
2
−β+ζ

2

3γ2ξ2
− 1529S4

+β
2
+ζ

2

672γ2ξ2
− 20S4

+β
3
+ζ

2

9γ2ξ2
− 26S4

+β
2
−ζ

2

9γξ2

− 485S4
+β+ζ

2

168γξ2
− 26S4

+β
2
+ζ

2

9γξ2
+

485S4
+γζ

2

504ξ2
+

16S4
+β+γζ

2

27ξ2
+

4S4
+γ

2ζ2

27ξ2
+

6235η

96ξ2
− 256β2

−η

3ξ2
+

140β+η

3ξ2

+
2825γη

32ξ2
− 256β2

−γη

3ξ2
+

140β+γη

3ξ2
+

5065γ2η

128ξ2
− 64β2

−γ
2η

3ξ2
+

35β+γ
2η

3ξ2
+

35γ3η

6ξ2
+

6755S2
+ζη

288ξ2

− 64S2
+β

2
−ζη

9ξ2
+

175S2
+β+ζη

18ξ2
+

40S2
+β

2
+ζη

3ξ2
− 175S2

+β
2
−ζη

12γ2ξ2
+

320S2
+β

2
−β+ζη

3γ2ξ2
+

835S2
+β

2
+ζη

14γ2ξ2

+
160S2

+β
3
+ζη

3γ2ξ2
+

283S2
+β

2
−ζη

8γξ2
− 35S2

+β+ζη

3γξ2
+

160S2
+β

2
−β+ζη

3γξ2
+

4745S2
+β

2
+ζη

84γξ2
+

80S2
+β

3
+ζη

3γξ2

+
3745S2

+γζη

192ξ2
− 128S2

+β
2
−γζη

9ξ2
+

70S2
+β+γζη

9ξ2
+

35S2
+γ

2ζη

9ξ2
+

2425S4
+ζ

2η

1152ξ2
− 64S4

+β
2
−ζ

2η

27ξ2



21

+
35S4

+β+ζ
2η

27ξ2
− 50S4

+β
2
−β

2
+ζ

2η

γ4ξ2
− 50S4

+β
4
+ζ

2η

3γ4ξ2
− 80S4

+β
2
−β+ζ

2η

3γ3ξ2
− 40S4

+β
3
+ζ

2η

3γ3ξ2
− 559S4

+β
2
−ζ

2η

72γ2ξ2

+
160S4

+β
2
−β+ζ

2η

9γ2ξ2
+

3025S4
+β

2
+ζ

2η

252γ2ξ2
+

80S4
+β

3
+ζ

2η

9γ2ξ2
+

64S4
+β

2
−ζ

2η

9γξ2
− 35S4

+β+ζ
2η

18γξ2
+

40S4
+β

2
+ζ

2η

9γξ2

+
35S4

+γζ
2η

54ξ2
+

1225η2

48ξ2
+

1225γη2

48ξ2
+

1225γ2η2

192ξ2
+

1225S2
+ζη

2

144ξ2
+

175S2
+β

2
+ζη

2

3γ2ξ2
+

175S2
+β

2
+ζη

2

6γξ2

+
1225S2

+γζη
2

288ξ2
+

1225S4
+ζ

2η2

1728ξ2
+

100S4
+β

4
+ζ

2η2

3γ4ξ2
+

175S4
+β

2
+ζ

2η2

18γ2ξ2
− 142951

6480ξ
+

2143S+β−
84S−ξ

+
32β2

−

3ξ

+
361β+
140ξ

+
64S+β−β+

3S−ξ
+

32β2
+

3ξ
+

1247S+β−
42S−γξ

+
64β2

−

3γξ
+

1247β+
42γξ

+
128S+β−β+

3S−γξ
+

64β2
+

3γξ
− 47343γ

1120ξ

+
16S+β−γ

3S−ξ
− 84β+γ

5ξ
− 5177γ2

280ξ
− 16β+γ

2

3ξ
− 8γ3

3ξ
− 4171S2

+ζ

672ξ
+

16S3
+β−ζ

9S−ξ
+

28S2
+β+ζ

45ξ
− 20S3

+β
3
−ζ

3S−γ3ξ

− 20S2
+β

2
−β+ζ

γ3ξ
− 20S3

+β−β
2
+ζ

S−γ3ξ
− 20S2

+β
3
+ζ

3γ3ξ
+

11S2
+β

2
−ζ

6γ2ξ
− 32S3

+β−β+ζ

3S−γ2ξ
+

11S2
+β

2
+ζ

6γ2ξ
+

485S3
+β−ζ

84S−γξ

+
62S2

+β
2
−ζ

9γξ
+

1611S2
+β+ζ

140γξ
+

64S3
+β−β+ζ

9S−γξ
+

62S2
+β

2
+ζ

9γξ
− 12091S2

+γζ

2520ξ
− 16S2

+β+γζ

9ξ
− 8S2

+γ
2ζ

9ξ

− 10513η

144ξ
+

35S+β−η

3S−ξ
− 128β2

−η

3ξ
+

11β+η

3ξ
− 128S+β−β+η

3S−ξ
+

70S+β−η

3S−γξ
− 256β2

−η

3γξ
+

70β+η

3γξ

− 256S+β−β+η

3S−γξ
− 22697γη

672ξ
− 4β+γη

ξ
− 47γ2η

6ξ
− 12793S2

+ζη

2016ξ
− 4S2

+β+ζη

3ξ
+

160S2
+β

2
−β+ζη

3γ3ξ

+
80S3

+β−β
2
+ζη

S−γ3ξ
+

80S2
+β

3
+ζη

3γ3ξ
+

143S2
+β

2
−ζη

6γ2ξ
+

64S3
+β−β+ζη

3S−γ2ξ
− 157S2

+β
2
+ζη

6γ2ξ
+

35S3
+β−ζη

9S−γξ

− 128S2
+β

2
−ζη

9γξ
+

53S2
+β+ζη

9γξ
− 128S3

+β−β+ζη

9S−γξ
− 40S2

+β
2
+ζη

3γξ
− 47S2

+γζη

18ξ
− 575η2

36ξ
− 35γη2

8ξ

− 35S2
+ζη

2

24ξ
− 10S2

+β
2
+ζη

2

γ2ξ
+

4S+χ−

S−γ
− 8S+ηχ−

S−γ
+

8

3
χ+ +

4χ+

γ
− 16

3
ηχ+ − 8ηχ+

γ
+

11S+ψ

2S−
+

59

15
β−ψ

+
20S+β+ψ

3S−
− 16

9
β−β+ψ − 8S+β

2
−ψ

S−γ2
− 8β−β+ψ

γ2
− 8S+β

2
+ψ

S−γ2
+

66β−ψ

5γ
− 8S+β

2
−ψ

3S−γ
+

10S+β+ψ

S−γ

− 16β−β+ψ

3γ
− 8S+β

2
+ψ

3S−γ
+

3S+γψ

S−
− 44

9
β−γψ +

5

3
δ−ψ − 25

9
β−ηψ +

22β−ηψ

3γ
+

22S+β+ηψ

3S−γ

− 1247β−ψ

21ξ2
− 128β−β+ψ

3ξ2
− 565β−γψ

7ξ2
− 128β−β+γψ

3ξ2
− 1013β−γ

2ψ

28ξ2
− 32β−β+γ

2ψ

3ξ2
− 16β−γ

3ψ

3ξ2

− 4379S2
+β−ζψ

504ξ2
+

28S2
+β−β+ζψ

9ξ2
+

40S2
+β

3
−ζψ

3γ2ξ2
+

6235S2
+β−β+ζψ

168γ2ξ2
+

40S2
+β−β

2
+ζψ

γ2ξ2
+

1247S2
+β−ζψ

84γξ2

+
20S2

+β
3
−ζψ

3γξ2
+

5961S2
+β−β+ζψ

112γξ2
+

20S2
+β−β

2
+ζψ

γξ2
− 91S2

+β−γζψ

6ξ2
− 64S2

+β−β+γζψ

9ξ2
− 32S2

+β−γ
2ζψ

9ξ2

− 29S4
+β−ζ

2ψ

28ξ2
− 32S4

+β−β+ζ
2ψ

27ξ2
− 25S4

+β
3
−β+ζ

2ψ

3γ4ξ2
− 25S4

+β−β
3
+ζ

2ψ

3γ4ξ2
− 10S4

+β
3
−ζ

2ψ

3γ3ξ2
− 10S4

+β−β
2
+ζ

2ψ

γ3ξ2

+
20S4

+β
3
−ζ

2ψ

9γ2ξ2
+

1529S4
+β−β+ζ

2ψ

336γ2ξ2
+

20S4
+β−β

2
+ζ

2ψ

3γ2ξ2
+

485S4
+β−ζ

2ψ

168γξ2
+

52S4
+β−β+ζ

2ψ

9γξ2

− 16S4
+β−γζ

2ψ

27ξ2
− 140β−ηψ

3ξ2
− 140β−γηψ

3ξ2
− 35β−γ

2ηψ

3ξ2
− 175S2

+β−ζηψ

18ξ2
+

175S2
+β−β+ζηψ

6γ2ξ2

− 160S2
+β−β

2
+ζηψ

3γ2ξ2
+

35S2
+β−ζηψ

3γξ2
+

175S2
+β−β+ζηψ

12γξ2
− 80S2

+β−β
2
+ζηψ

3γξ2
− 70S2

+β−γζηψ

9ξ2

− 35S4
+β−ζ

2ηψ

27ξ2
+

100S4
+β−β

3
+ζ

2ηψ

3γ4ξ2
+

40S4
+β−β

2
+ζ

2ηψ

3γ3ξ2
+

175S4
+β−β+ζ

2ηψ

36γ2ξ2
− 80S4

+β−β
2
+ζ

2ηψ

9γ2ξ2



22

+
35S4

+β−ζ
2ηψ

18γξ2
− 361β−ψ

140ξ
− 32S+β

2
−ψ

3S−ξ
− 2143S+β+ψ

84S−ξ
− 64β−β+ψ

3ξ
− 32S+β

2
+ψ

3S−ξ
− 1247β−ψ

42γξ

− 64S+β
2
−ψ

3S−γξ
− 1247S+β+ψ

42S−γξ
− 128β−β+ψ

3γξ
− 64S+β

2
+ψ

3S−γξ
+

84β−γψ

5ξ
− 16S+β+γψ

3S−ξ
+

16β−γ
2ψ

3ξ

− 28S2
+β−ζψ

45ξ
− 16S3

+β+ζψ

9S−ξ
+

20S2
+β

3
−ζψ

3γ3ξ
+

20S3
+β

2
−β+ζψ

S−γ3ξ
+

20S2
+β−β

2
+ζψ

γ3ξ
+

20S3
+β

3
+ζψ

3S−γ3ξ

+
16S3

+β
2
−ζψ

3S−γ2ξ
− 11S2

+β−β+ζψ

3γ2ξ
+

16S3
+β

2
+ζψ

3S−γ2ξ
− 1611S2

+β−ζψ

140γξ
− 32S3

+β
2
−ζψ

9S−γξ
− 485S3

+β+ζψ

84S−γξ

− 124S2
+β−β+ζψ

9γξ
− 32S3

+β
2
+ζψ

9S−γξ
+

16S2
+β−γζψ

9ξ
− 11β−ηψ

3ξ
− 35S+β+ηψ

3S−ξ
− 70β−ηψ

3γξ
− 70S+β+ηψ

3S−γξ

+
4β−γηψ

ξ
+

4S2
+β−ζηψ

3ξ
− 80S2

+β−β
2
+ζηψ

3γ3ξ
− 80S3

+β
3
+ζηψ

3S−γ3ξ
− 5S2

+β−β+ζηψ

γ2ξ
− 53S2

+β−ζηψ

9γξ

− 35S3
+β+ζηψ

9S−γξ
− 8

3
χ−ψ − 4χ−ψ

γ
− 4S+χ+ψ

S−γ
. (B12c)

[1] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Aber-
nathy, F. Acernese, K. Ackley, C. Adams, T. Adams,
P. Addesso, R. X. Adhikari, and et al., Physical Review
Letters 116, 061102 (2016), arXiv:1602.03837 [gr-qc].

[2] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev.
Lett. 116, 241103 (2016), arXiv:1606.04855 [gr-qc].

[3] J. Aasi et al. (LIGO Scientific, Virgo), (2013),
arXiv:1304.0670 [gr-qc].

[4] B. P. Abbott et al. (LIGO Scientific, Virgo), (2016),
arXiv:1602.03838 [gr-qc].

[5] W. Del Pozzo, J. Veitch, and A. Vecchio, prd 83, 082002
(2011), arXiv:1101.1391 [gr-qc].

[6] B. P. Abbott et al. (Virgo, LIGO Scientific), (2016),
arXiv:1606.04856 [gr-qc].

[7] B. P. Abbott et al. (LIGO Scientific, Virgo), (2016),
arXiv:1602.03842 [gr-qc].

[8] T. Accadia et al., JINST 7, P03012 (2012).
[9] Y. Aso, Y. Michimura, K. Somiya, M. Ando,

O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Ya-
mamoto, prd 88, 043007 (2013), arXiv:1306.6747 [gr-qc].

[10] B. Iyer, T. Souradeep, C. S. Unnikrishnan, S. Dhurand-
har, S. Raja, and A. Sengupta, (2011).

[11] P. Amaro-Seoane et al., GW Notes 6, 4 (2013),
arXiv:1201.3621 [astro-ph.CO].

[12] B. P. Abbott et al. (LIGO Scientific, Virgo), (2016),
arXiv:1602.03841 [gr-qc].

[13] K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S.
Sathyaprakash, prd 74, 024006 (2006), gr-qc/0604067.

[14] N. Yunes and F. Pretorius, prd 80, 122003 (2009),
arXiv:0909.3328 [gr-qc].

[15] C. M. Will, Living Reviews in Relativity 17 (2014),
10.12942/lrr-2014-4, arXiv:1403.7377 [gr-qc].

[16] N. Yunes and X. Siemens, Living Reviews in Relativity
16 (2013), 10.12942/lrr-2013-9, arXiv:1304.3473 [gr-qc].

[17] T. Damour and G. Esposito-Farèse, prd 54, 1474 (1996),
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