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Plant development occurs in 3D space over time (4D).

Recent advances in image acquisition and computational

analysis are now enabling development to be visualized and

quantified in its entirety at the cellular level. The

simultaneous quantification of reporter abundance and 3D

cell shape change enables links between signaling

processes and organ morphogenesis to be accomplished

organ-wide and at single cell resolution. Current work to

integrate this quantitative 3D image data with computational

models is enabling causal relationships between gene

expression and organ morphogenesis to be uncovered.

Further technical advances in imaging and image analysis

will enable this approach to be applied to a greater diversity

of plant organs and will become a key tool to address many

questions in plant development.
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Introduction
In order to understand how genes control geometry and

the emergence of form [1], it is necessary to relate shape

change to gene expression patterns. Often the relation-

ships are complex, and simulation modeling has emerged

as an important tool to aid the biologist [2��,3,4��,5], in a

discipline termed computational morphodynamics [6–8].

This area is being driven in part by the development of

new microscopy techniques that are enabling the collec-

tion of cell geometry and gene expression at increasingly

higher resolutions in both space and time [9–12]. In step

with advances in image acquisition hardware, new and

increasingly powerful software specifically targeted at

plants is being developed to quantify cell shape and
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gene expression at the cellular and subcellular levels

[13��,14��,15�,16–18].

Many studies have looked at development in 2D, as

developmental events can often be abstracted to 2D

layers of cells [19–22]. However the full 3D phenotype

is the developmental output of the genome, and quanti-

fying this in its complete form is becoming a primary

objective of developmental genetics and biology. Al-

though many recent advances in 3D plant imaging have

also been made at the whole plant and whole organ scale

[23–30], here we will focus on cellular level analyses.

Fixed samples versus live imaging
A common way to image plant cells in 3D is to use

conventional confocal laser scanning microscopy which

generates a z-stack of 2D (x–y) optical sections through

the sample [31]. Imaging can be performed using either

live or fixed tissue, and the two methods have their own

advantages and disadvantages.

Live imaging requires in planta staining technique using a

vital fluorescent marker, such as green fluorescent protein

(GFP), which can be targeted to the cell wall, membrane

or nucleus, depending on the type of analysis being

performed. Several marker lines have been specifically

developed to label geometry in living plant cells [32,33��].
Cell walls may also be fluorescently stained with vital

dyes including propidium iodide (PI) or FM4-64. A key

advantage to a live imaging approach is the ability to

observe the same cells over time, however there is a

significant loss of fluorescent signal as one images deeper

into tissues (Figure 1).

An alternative is to use fixed tissue that is stained and

then cleared using a mounting media such as chloral

hydrate, which has a refractive index similar to glass

[31] (compare Figure 1a,b with Figure 1c,d). Although

this destroys vital fluorescence markers such as GFP,

gene expression can still be monitored by using GUS

reporter lines and imaging the reflection of the crystals

which form as the product of the enzymatic reaction using

5-bromo-4-chloro-3-indolyl-b-D-glucuronic acid as a sub-

strate [34]. The use of fixed tissue provides vastly superior

resolution and the ability to image deep into plant tissues,

and as a result yields superior 3D geometry for quantita-

tive analysis. The key disadvantage to this approach is

that only static images can be analyzed, complicating the

analysis of the dynamics of cellular processes.

Nonetheless, plant organs which consistently ordered cel-

lular patterning, including roots, embryos, and hypocotyls,
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Figure 1

(a) (b)

(c) (d)
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Comparison of live and fixed tissue imaging in the mature Arabidopsis root. (a and b) Live images mature root stained with propidium iodide in

longitudinal and cross section. (c and d) Mature root fixed, stained and clear using the mPA-PI method [34].
can be imaged using fixed tissue and dynamic develop-

mental series reconstructed using single cell digital atlases

[2��,4��,35�].

In the case of both live and fixed plant tissue, 3D images

taken with confocal microscopy have much lower reso-

lution in the z-direction, and the signal from cell walls

perpendicular to the view angle can be very low. To

address this issue, Fernandez et al. [13��] proposed a

method whereby samples are imaged from several dif-

ferent angles and the stacks merged to create a single

stack.

Image acquisition
Advances in confocal microscopy are both enhancing z-

stack quality for 3D image analysis and creating new

opportunities where limitations existed previously. Cur-

rent confocal microscopes are now available with a new

generation of high sensitivity detectors, enabling weak

signals deep within plant organs to be detected. The use

of two photon confocal microscopy can enhance the

retrieval of fluorescence signal deeper within live imaged

tissue and fixed samples alike [36], and is less photo-toxic.

Selective Plane Illumination Microscopy (SPIM or light

sheet microscopy), has also been applied to live image

plant organs in both primary and lateral roots [37,38].

Selective plane illumination also reduces photo-toxicity,

and although the resolution for a single stack is not as

good as with conventional single-photon confocal, com-

bining data from multiple angles (stack fusion) provides

an option to obtain superior 3D images with this method

[38].
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Other emerging technologies for 3D imaging of fixed

samples rely on ultra-thin sectioning techniques. This

greatly increases z resolution as sections can be down to

the tens of nanometers, and signal strength does not

depend on depth within the tissue. Serial block face

SEM [39,40] progressively removes sections from the

sample block, and the remaining block face is imaged

using SEM. Since the block is imaged rather than the

section, this method largely avoids the distortion intro-

duced from cutting, and associated registration difficulties.

Compared to normal sectioning which can be immunola-

beled, this approach is more limited in its capacity to image

gene expression as SEM compatible gene reporter con-

structs are required [41]. High resolution X-ray computed

tomography (HRXCT) has also shown promise to achieve

cellular resolution in fixed samples [42�], although in

principle live imaging is possible if appropriate contrast

enhancing agents are developed.

Cellular versus nuclear 3D analyses
Cellular level 3D analyses of plant organs can be divided

into two broad approaches. In the simpler of the two, only

the plant nuclei are computationally extracted from

images. The geometric properties of the cells from which

these nuclei come, including their size and shape, must

be inferred from the spacing of the nuclei [15�]. A

disadvantage is that in larger cells, anisotropic cell shape

and nuclear movement can influence the accuracy of

these calculations.

Nuclear analysis is well suited to performing live imaging

in plant organs [37,38]. Unlike cell shape calculations,
www.sciencedirect.com
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tracking nuclei over time gives an accurate representation

of cell division rates [15�,43] and cell lineages [44].

Nuclear analyses are also particularly useful in the quan-

tification of single cell gene expression where ratiometric

analysis of reporter fluorescence can be performed against

a constitutively expressed control [33��,45�].

A more precise, and more demanding alternative to nuclear

analyses is to segment the cell walls fully in 3D to extract

complete cell geometry [2��,4��,13��,31,46,47]. This

requires the cell boundary to be fully labelled using a

fluorescent protein targeted to the plasma membrane

marker line, or the use of a cell wall and membrane stains

such a propidium iodide or FM4-64. Cell wall stains have

the advantage that they can be used on species where

genetic tools are not available, however can have issues

with toxicity and uneven staining. It is also straightforward

to separate PI signal from YFP or GFP reporter lines,

enabling the collection of both geometry and gene expres-

sion simultaneously on different channels.

The nuclei versus cell wall approaches are not mutually

exclusive. Geometry can be extracted with using a cell

wall stain, and gene expression from a nuclear signal

[38,43]. It is even possible to use a nuclear marker to

generate seeds for a segmentation algorithm designed to

extract the cell geometry from a cell wall signal collected

on another channel [33��]. In practice the main limitations

are the number of colors that can be reliably separated,

which in plants is often limited to around three.

3D image segmentation
Following the collection of 3D image stacks, computa-

tional analyses are required to extract either the nuclei

and/or cell walls to provide quantitative information

about the cells. In order to accomplish this, segmentation

algorithms are used to divide the image into objects of

interest. This can be done at the tissue level, to extract

the global shape of an organ, or at the cellular-level and

even the subcellular levels when segmenting nuclei or

subcellular compartments. In order to have an accurate

cell segmentation, a high signal to noise ratio is required

[2��,4��,48–50], and in most cases the simplest way to

improve segmentation results is to refine collection tech-

niques. The next step is to try to improve the quality of

the raw images with filters such as edge-preserving ani-

sotropic diffusion [15�], or edge detection and enhance-

ment [46].

Once the images are pre-processed, a segmentation algo-

rithm is performed. A common method used for this is the

watershed algorithm. In this algorithm the image signal

intensity is viewed like the height in terrain (in 2D).

Seeds for regions are placed in the valleys (lowest signal

pixels), and then the pixels are added to the regions in

order of their intensity. The regions grow until they meet,

segmenting the image into cells. Often some sort of
www.sciencedirect.com 
region merging method is applied afterward, to fuse

over-segmented cells. It is usually easier to process an

over segmented image by fusing regions, than it is to split

cells in an under segmented image. The manual editing

and correction of segmented images in 3D remains a

challenge.

In order to improve on results obtained with the water-

shed algorithm, several methods have been used that

attempt to incorporate a priori information about the

image. Plant cells are fairly restricted in the types of

shapes they can take. For example, with the watershed,

it is very common for two cells to become joined because

there is a small hole in the signal at one of the walls. To

overcome this, Federici et al. [33��] have used a balloon

segmentation algorithm. A small virtual balloon is placed

inside the cell and inflated until it hits the high signal area

comprising the cell boundary. There is an energy cost for

bending so that the balloon will not protrude into a

neighboring cell through a small hole.

Another approach to tackling this problem includes com-

putationally improving holes in cell walls before segmen-

tation [46]. Binarization of weak cell wall signal using

direction-selective local thresholding enabled the crea-

tion of a complete boundary which reduced cell fusion

following segmentation. Machine learning methods may

also hold promise for improving 3D segmentation results

in plant cells [51].

The output of 3D cell segmentation is usually in the form

of another 3D image, where voxel values represent labels

for the cells they belong to. Simple analyses of cell shape,

including surface area and volume, may be done directly

using these images [13��]. However often it is convenient

to convert the segmented bitmap image into a polygonal

mesh using an algorithm such as 3D marching cubes [52].

This facilitates shape analysis and visualization of the

cells [4��,35�,47,48,53].

2.5D analysis
The technical limitations of imaging opaque plant tissue

suggest that full 3D live-imaging of plant tissue will

remain difficult in many tissues. However many pattern-

ing processes in plant development occur in or near the

epidermal layer of cells [19,54,55]. Plant cells are encased

within shared cell walls that physically adhere cells to

their neighbors, so they do not move with respect to each

other during growth. In many plant organs, this symplastic

growth allows the determination of the principle growth

rate in all cells from analyzing the surface [56]. Similarly,

in thin flat structures such as leaves, many interesting

developmental decisions can be examined by tracking the

surface deformation [57–60], or the events happening in

only a few cells deep in the tissue [61]. This suggests the

possibility to simplify many problems to 2D. Typically,

2D images are obtained from a 3D stack by projecting it
Current Opinion in Plant Biology 2016, 29:87–94
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(i.e. maximum intensity) onto a plane, or by taking an

optical section (which may be oblique) through the sam-

ple. One can also combine the two, such as a thick optical

section [22]. However the key problem is that the result-

ing image is flat, compressing information into plane and

losing the 3D shape of the structure.

To overcome this problem, it is possible to work directly

with the curved surface itself, a structure that contains 3D

shape information at the organ level, and is accessible

with current live-imaging technologies. Dumais and

Kwiatkowska (2002) [62] developed the sequential repli-

ca technique [63] where surface molds of the shoot

meristem were taken over several time points allowing

the creation of resin replicas which could be imaged by

SEM. Imaging each cast at several angles allows the

surface to be reconstructed in 3D, and has been used

to track growth in the shoot apex [64��] (Figure 2a).

Barbier de Reuille et al. [14��] have developed a method

to extract the organ surface and generate a curved surface

image (2.5D) directly from 3D confocal stacks

(Figure 2b). By projecting the signal normal to the surface

an undistorted image of the surface cell shape is created,

eliminating the artifacts from a 2D slice or projection.

The method has been used to track growth, gene expres-

sion, and cell division on the surface in a variety of plant

organs [56,57,65�] (Figure 2c). The combined 2D-3D

nature of surface projections also makes it straightforward

to extract the principle directions of growth [62], facili-

tating studies where the anisotropy of growth plays an

important role. Organ level analysis, such as surface
Figure 2
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curvature and global shape, is also possible with these

methods [56].

Cell type recognition
Image datasets, like gene expression datasets, require

annotation in order to extract relevant local information

within organs. Since 3D imaging is able to capture many

more cells of multiple cell types deep within plant organs,

there is an increased need to be able to identify and

annotate cells in order to extract meaningful information

from these images.

This has been done manually in 3D [4��], or automatically

using the intrinsic 3D cell geometry of cells in radially

symmetric organs [35�] (Figure 3c,d). 3D automatic an-

notation has also been achieved for nuclei in roots [15�]
(Figure 3b). Both of the latter approaches make use of the

natural local co-ordinate system radially symmetric plants

organs possess [66] (Figure 3a). However, there remains a

need to develop tools to annotate 3D images of organs

with diverse and non-symmetric cellular architectures.

The 4th dimension
In order to quantify changes in cell shape or gene expres-

sion during plant development, it is necessary to identify

and track equivalent cells over time. This can be done by

live-imaging cells over multiple time points and then

finding the correspondence between them. On larger

samples landmarks have been identified in consecutive

images at the super-cellular level, and the correspon-

dence made between the time points [58,59].
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Figure 3
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Applying a natural coordinate system for a plant organ. (a) Hejnowicz and Karczewski. [66] propose a natural coordinate system for the root to

interpret growth and cell division. (b) Schmidt et al. [15�] and (c and d) Montenegro-Johnson et al. [35�] use a similar method to aid cell annotation

and the calculation of growth rates in organ-centric terms. (b) Alignment of the co-ordinate system using the nuclei of the root. (c) Placement of a

central Bezier curve through the centre of a hypocotyl, and alignment of 3 axes within each cell representing the principal directions. (d) Hypocotyl

false colored by cell type.
A more precise method is to segment the images into

cells, and to use the cells themselves as landmarks

[13��,14��,56,57,64��]. Assigning the lineage from parent

to daughter cells is often done manually, however Fer-

nandez et al. [13��] propose a graph-matching method that

seeks to find the most likely cell lineage automatically

[13��]. Another approach seeks to find the deformation

field directly between the two original images by per-

forming a non-rigid registration of the images. This

method used by Fernandez et al. [13��] to find an initial

correspondence, which is then improved with their graph-

based method.

When using fixed samples, there is the advantage of

increased accuracy and capture of cellular architecture,

however it is not possible to do time lapse analysis on

the same organ to track cells. In certain cases it has

been possible to extract growth data from fixed sam-

ples. For example, using the non-dividing cortical cells

in the Arabidopsis embryo as an internal cellular index-

ing system, cell positions were defined and tracked

enabling equivalent cells to be compared across sam-

ples [2��,35�]. The method was used to reconstruct the

dynamic series of cell expansion events driving seed

germination and hypocotyl elongation using static

images taken over time.

3D cellular patterning
Cell division patterns are particular importantly in plants

where cells are unable to move, unlike their animal

counterparts. In addition, patterning events can be influ-

enced by the shape of the cell itself, for example in

pavement cells [67], or vascular initials [68�]. As cell

geometry is intimately related to cell fate in plants, the

study of 3D cell geometry and division patterns becomes
www.sciencedirect.com 
of central importance. An example of this is the 3D

volumetric analysis of division patterns in the early de-

veloping Arabidopsis embryo that revealed the presence of

asymmetric divisions that were previously thought to be

symmetric [4��]. The involvement of an auxin-mediated

mechanism regulating these asymmetric cell divisions

was revealed through the analysis of mutant embryos.

A refinement of division rules in the shoot meristem has

also been accurately defined through the quantification

division planes in 2.5D [65�].

Gene and protein expression analysis in 3D
images
In order to understand how regulatory networks control

multicellular morphogenesis, both 3D cell geometry gene

and expression and/or protein abundance must be able to

be quantified simultaneously. This can be achieved in 3D

by looking at the total amount of reporter present within

the volume of an individual cell captured by a mesh

[35�,69], or in 2.5D by projecting the amount of signal

contained in a volume onto a curved surface representing

that cell [22,56]. Having quantitative information on 3D

cell shape and quantitative gene expression enables the

relationship between signaling networks and cellular

dynamics to be uncovered. The quantitative nature of

this information lends it to statistical analysis linking the

relationship between regulatory network and cell shape

dynamics [35�].

Combining 3D data with modeling
The value of 3D morphometric data is greatly enhanced

when integrated into a model which has a targeted

hypothesis. A key feature of growth models is to under-

stand the cellular, genetic, and signaling interactions in
Current Opinion in Plant Biology 2016, 29:87–94
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the context of 3D growth of plant organs [70]. As plant

growth is a mechanical process, the mechanical interac-

tions between cells and their feedbacks is an integral part

of multicellular morphogenesis [2��,71–73]. This has

spurred a trend towards mechanical simulation on more

realistic 3D templates of plant organs at cellular resolu-

tion [2��,73].

In order to yield valid results with numerical approaches

such as the finite element method (FEM), there is a need

to generate FEM-friendly cellular meshes, where the

aspect ratios of the elements are not too large. It is more

efficient and convenient for simulation if nodes on shared

walls are not duplicated. Typical iso-surface extraction

techniques such as 3D marching cubes have not been

optimized to extract such conjoined cellular structures. As

a result, meshes derived directly from segmented 3D

images are not optimal for mechanical simulation. A

targeted computational approach to generating mechani-

cally appropriate meshes is therefore required [74�]. The

paucity of tools available to generate optimal 3D meshes

from segmented images has constrained most work to

highly simplified meshes instead [2��,73,75–77].

3D imaging into the future
3D image analysis and modeling in plants is in its infancy

and holds great promise to uncover further mechanistic

principles underlying plant growth and development.

Central to advances in the area will be improvements

in 3D image acquisition at cellular resolution, and addi-

tional computational tools to analyze these digital data.

Limitations in live imaging and recovering signal deep

within tissues remains a central obstacle. The continued

development of novel imaging and software makes 3D

analysis in plants a growing and exciting field ready to

pursue a greater diversity of biological questions.
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