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We determine constraints on parameters of a single eV-scale light neutrino using IceCube-59 data.
Particular emphasis is put on the question whether such an analysis can rule out sterile neutrino
hints. While important complementary information is provided, the different dependence on the
various sterile neutrino mixing angles makes it currently not possible to fully exclude short baseline
appearance results or sterile neutrinos in general.

I. INTRODUCTION

Though the standard 3-neutrino mixing paradigm has been well established [1], there are still several short-baseline
anomalies, most notably in LSND [2], MiniBooNE [3] and reactor neutrino flux measurements [4, 5]. These anomalies
could be explained by introducing light sterile neutrinos with the mass-squared difference ∆m2 at 0.1 ∼ 1 eV2 scale
and mixing matrix elements around 0.1. If such light sterile neutrinos would indeed exist, the theoretical implications
would be profound. Therefore several experiments are running or in construction in order to confirm or refuse the
existence of light sterile neutrinos. See the recent reviews [6, 7] for an overview of the hints, consequences and tests
of light sterile neutrinos.

In this work we focus on effects of eV-scale sterile neutrinos in atmospheric neutrino oscillations at high energies
as measured in the IceCube experiment. We use here an IceCube-59 data set from Ref. [8], where a search for diffuse
astrophysical neutrinos was performed. The fact that sterile neutrinos would have an impact in IceCube is easily
understood by noting that a mass-squared difference of order eV2 corresponds to maximal oscillations at energies
Eν ∼ 103 GeV and a baseline around Earth radius R⊕ ' 6.4 × 103 km. Indeed, atmospheric neutrinos observed
in IceCube have energies ranging from 102 GeV to 106 GeV, peaked at about 103 GeV. Several papers have in the
past analyzed the effect of light sterile neutrinos at high energies as a potential test of the sterile neutrino hypothesis
[9–16].

We will perform here a χ2-analysis on the IceCube-59 data within a 3+1 scheme to see how significant the constraint
on sterile neutrinos is1. We are particularly interested in the interplay of this constraint with the results of short
baseline appearance and other experiments. We work in the minimal framework of only one sterile neutrino with a
unitary 4×4 matrix and no additional interactions. Even in this simple situation the dependence on the various lepton
mixing angles is different in each experiment, and in addition, muon neutrino disappearance in IceCube depends on the
weakly constrained angle θ34, that should not be set to zero in analyses. For scenarios with more than one sterile state
the larger number of mixing angles will complicate further the direct comparison of oscillation probabilities in IceCube
and other experiments. Moreover, there is dependence on the sterile neutrino global fit results to which one com-
pares the IceCube sensitivity. All in all, a full exclusion of short baseline appearance and/or other results is currently
not possible, though of course important complementary constraints on sterile neutrinos are provided by IceCube data.

The paper is build up as follows: in Section II we discuss the procedure to obtain the oscillation probability of high
energy neutrinos including matter effects, before discussing event numbers in IceCube in Section III. The numerical
analysis of IceCube data is performed in Section IV, where we also discuss the comparison of the parameters crucial
for IceCube with the ones for short baseline appearance and other experiments.

II. ATMOSPHERIC NEUTRINO DISAPPEARANCE INDUCED BY STERILE NEUTRINOS

Neutrino oscillation can be described by the following Schrödinger equation in flavor space,

i
d

dL
|ν(L)〉 = H|ν(L)〉, (1)

1 Here the 3 + 1 scheme refers to the case that there are 3 active neutrinos and 1 heavier sterile neutrino. In principle other cases such
as 1 sterile neutrino + 3 heavier active neutrinos, 3 active neutrinos + 2 heavier sterile neutrinos, are also possible. However, since in
these cases the total neutrino mass Σimi is much larger, they are disfavored by cosmological constraints.
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where H is the effective Hamiltonian and |ν(L)〉 denotes the flavor state of the neutrino at a distance of L from the
source. For the standard 3+1 neutrino framework with 3 active neutrinos (νe, νµ, ντ ) plus one sterile neutrino νs,
including matter effects, the effective Hamiltonian H has the following matrix form

H =
1

2E
U

 m2
1

m2
2

m2
3

m2
4

U† +
√

2GFNe

 1
0

0
κ

 . (2)

Here E is the neutrino energy, mi and U are the neutrino masses and mixing matrix; GF is the Fermi constant, Ne
is the electron number density of matter and κ is a ratio defined as

κ ≡ Nn
2Ne

, (3)

where Nn is the neutron number density. For anti-neutrinos, we need to replace U → U∗ and GFNe → −GFNe in
Eq. (2).

For constant matter density, H does not vary with L so the solution is simply |ν(L)〉 = e−iHL|ν(0)〉. But the
matter density of Earth [17] varies significantly from 1 g/cm3 (at the surface) to 13 g/cm3 (at the inner core), so that
to obtain accurate results one has to either numerically solve the full differential equation Eq. (1), or divide the full
neutrino path into many segments with approximated constant densities so that

|ν(L)〉 =
∏
i

e−iHiLi |ν(0)〉 . (4)

Here Hi is the Hamiltonian in the i-th segment and Li is the corresponding baseline. Actually this is the main method
used to compute oscillation probabilities in the GLoBES package [18] (see also [19]). In this work, we will adopt the
same method, i.e. Eq. (4), to compute probabilities. Defining the S-matrix as

Sαβ ≡

(∏
i

e−iHiLi

)
αβ

, (5)

where α, β are flavor indices (e, µ, τ and s), the survival probability of νµ is given by

Pνµ→νµ = |Sµµ|2 . (6)

For the energy range of IceCube, νµ and νµ dominate the atmospheric neutrino flux while νe and νe are negligible2;
thus only Pνµ→νµ and Pνµ→νµ will be used in this work. The 4× 4 mixing matrix is

U = R34R24R14R23R13R12 ,

where Rij is a 4×4 matrix whose (i, i), (i, j), (j, i) and (j, j) elements are cos θij , sin θije
−iδij , − sin θije

iδij and cos θij ,
respectively. The other elements are the same as for a 4×4 identity matrix. Actually there are only three independent
CP-violating phases relevant for neutrino oscillations and one possible convention is to set δ34 = δ23 = δ12 = 03. Note
that in the limit of vanishing atmospheric and solar mass-squared differences there is no CP effect, and since these
two mass-squared differences are much smaller than the one corresponding to sterile neutrinos, the effect of CP phases
is suppressed. Therefore in our analysis, we will neglect them. If all CP-violating phases are zero, the last column of
U , denoted as u4, which we will need later in this analysis, has the following form:

u4 = (sin θ14, cos θ14 sin θ24, cos θ14 cos θ24 sin θ34, cos θ14 cos θ24 cos θ34)T . (7)

Let us now discuss matter effects. For eV-scale neutrinos with TeV-scale energies, the first and second terms in Eq. (2)
are comparable, about m2

4/2E ∼
√

2GFNe ∼ 10−13 eV. Therefore one expects that matter effects have a significant
influence on the probability. As usual for matter effects, a resonance can appear for certain values of energy and
baseline. For the case under study, this can only happen for the νµ → νµ channel, as has been recently studied for

2 Compared to the νµ (νµ) flux, the νe (νe) flux is suppressed by a factor of about 10 [20, 21]. Moreover, clean muon-neutrino samples
can be obtained by observing the corresponding muon track.

3 Keeping all six phases is useful because then the three Majorana phases are automatically taken care of as well [22].
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instance in Ref. [15]. As a result of the resonance, the survival probability can become zero; anti-muon-neutrinos
would completely disappear, even if the active-sterile mixing angles are small. Hence matter effects are crucial for the
sensitivity of IceCube to light sterile neutrinos.

However, a less noticed point is that though the matter effect contribution to the effective Hamiltonian is large,
in some case, νµ and νµ may oscillate as if they are in vacuum. The condition for this case is that Us4 is zero
or small, or equivalently that θ34 is π/2 or large. We first show this analytically with the single mass-squared-
difference approximation in constant density matter and then numerically verify it by taking into account all mass-
squared differences and also density variation. Considering that ∆m2

41 � ∆m2
31, ∆m2

21 we can neglect the effect of
∆m2

31, ∆m2
21 and set them to zero. Defining

∆m2
41 ≡ ∆m2 and A ≡ 2

√
2GFNeE/∆m

2 , (8)

we can write H as follows:

H =
m2

1

2E
+

∆m2

2E
M . (9)

Here M is a dimensionless matrix,

M ≡ u4.u
T
4 +A

 1
0

0
κ

 , (10)

with u4 being the last column of U , see Eq. (7). Note that uT4 above would be u†4 if u4 was complex. But since
rephasing M by M → QMQ† with Q = diag(eiα1 , eiα2 , eiα3 , eiα4) does not have any physical effect, we can always
make u4 real by such a transformation. This also implies that all CP-violating phases in the mixing matrix are
negligible if ∆m2

31, ∆m2
21 are negligible, as it should be. The S-matrix, assuming constant density, is

S = e−iHL = e−i
m2

1
L

2E e−itM , (11)

where t = ∆m2L
2E . The overall phase e−i

m2
1
L

2E does not affect the probability so it can be ignored. Considering the case
Us4 = 0, we can write u4 as

u4 = (e4, µ4, τ4, 0)T , (12)

where e4, µ4 and τ4 are short for Ue4, Uµ4 and Uτ4. Now M is a block-diagonal 4× 4 matrix:

e−itM =

(
e−itM3 0

0 e−itAκ

)
, (13)

where M3 is a 3× 3 matrix,

M3 ≡

 e4

µ4

τ4

( e4 µ4 τ4
)

+A

 1
0

0

 . (14)

The νµ survival probability Pνµ→νµ = |Sµµ|2 and Sµµ = (e−itM3)µµ can be computed as follows: According to the
Cayley-Hamilton theorem, e−itM3 can be written as

e−itM3 = s0I + s1M3 + s2M
2
3 . (15)

Here the coefficients s0, s1 and s2 are functions of the three eigenvalues (see e.g. [23]),

s0 =
−1

∆λ
[e−itλ3λ1λ2(λ1 − λ2) + e−itλ1λ2λ3(λ2 − λ3) + e−itλ2λ1λ3(λ3 − λ1)] , (16)

s1 =
1

∆λ
[e−itλ3(λ2

1 − λ2
2) + e−itλ1(λ2

2 − λ2
3) + e−itλ2(λ2

3 − λ2
1)] , (17)

s2 =
−1

∆λ
[e−itλ3(λ1 − λ2) + e−itλ1(λ2 − λ3) + e−itλ2(λ3 − λ1)] , (18)



4

where (λ1, λ2, λ3) are the three eigenvalues of M3 and ∆λ ≡ (λ1 − λ2)(λ2 − λ3)(λ3 − λ1). The eigenvalues of M3 are

λ1,2,3 = 0,
1

2
(1 +A± C) , (19)

where

C =
√

4Ae2
4 + (A− 1)2. (20)

Combine all these result we get

Sµµ =
µ2

4e
− 1

2 it(A+C+1)
[
−eCit

(
A+ C + 2e2

4 − 1
)

+A− C + 2e2
4 − 1

]
+ 2C(e2

4 + µ2
4 − 1)

2(e2
4 − 1)C

, (21)

The expansion of Eq. (21) in small e2
4 = |Ue4|2 gives

Sµµ = 1−
(
1− e−it

)
µ2

4 +
e−iAt − (A− 1)2 −Ae−it(2 + it−A(1 + it))

(A− 1)2
µ2

4e
2
4 +O(e4

4) . (22)

Note that for a typical matter density of ρ = 6.5 g/cm3 and ∆m2 = 1 eV2, A is about 0.5E/TeV. So in the energy
range from (102 ∼ 104) GeV, it is quite typical for A to be 1 (or close to 1) and the denominator in Eq. (22) would
be 0 (or close to 0). However, in this case Eq. (22) is still valid and accurate since the coefficient before µ2

4e
2
4 will not

blow up when A→ 1, as one can check directly. Actually the singularity here corresponds to a branch cut singularity
and as it has been proved in Ref. [23], all branch cut singularities should cancel out in the S-matrix. This is the
deeper reason of the good behavior of Eq. (22) at A → 1. Therefore, the coefficient before µ2

4e
2
4 can be regarded as

an O(1) number that varies with t (i.e. with L/E).
If we take the vacuum limit A = 0 we obtain

Svac
µµ = 1−

(
1− e−it

)
µ2

4 , (23)

and therefore Eq. (22) can be written as

Sµµ = Svac
µµ +O(1)µ2

4e
2
4 +O(e4

4) . (24)

Eq. (24) has an important implication. Since e2
4 = |Ue4|2 has been constrained by reactor neutrino experiments to

be small, typically less than s2
13, the difference between Sµµ and Svac

µµ is small. We thus reach the conclusion that
if Us4 = 0, νµ(νµ) will oscillate as if they would propagate in vacuum. Recalling that the resonance of the matter
effect is crucial for the constraints on sterile neutrinos, it implies that the value of Us4 or θ34 is important for the
constraints, and eventually on the ability of IceCube data to rule out sterile neutrino hints.

To further verify the importance of θ34, we generate numerical plots without any approximation. We set
∆m2

21 = 7.5 × 10−5 eV2, ∆m2
31 = 2.4 × 10−3 eV2, θ23 = 45◦, θ13 = 9◦, θ12 = 34◦ and all CP-violating phases

are set to zero. The survival probability as a function of E and the zenith angle cos θz is plotted in Fig. 14. The
plot with θ34 = 10◦ on the right panel (i.e. antineutrino survival probability) shows that the probability reaches 0 at
lg(E/GeV) ' 3.4 and cos θz ' −0.9 even though all active-sterile mixing angles are small. This is due to the matter
effect resonance in the νµ-channel. When Us4 is reduced, we can see that the resonance becomes weaker and for
Us4 = 0 (i.e. θ34 = 90◦), the resonance completely disappears, and the result is indistinguishable from the vacuum
case. Note that as θ34 increases the effect at Eν = 102 GeV and cos θz = −1 becomes significant, which was previously
pointed out in [15].

Let us recall here that short baseline disappearance results are essentially electron neutrino appearance results,
with an oscillation amplitude of

sin2 2θµe = sin2 2θ14 sin2 θ24 . (25)

We will use later the global fit results from Ref. [25] for sin2 2θµe (see Fig. 8 therein), which have been obtained
by a fit of available appearance and disappearance results. Also used for comparison will be fit results to sin2 2θµe

4 Oscillagrams for muon-neutrino oscillations into sterile neutrinos (though of much lower scale than discussed here) have been first given
in Ref. [24].
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θ34 = 0◦ θ34 = 10◦

θ34 = 20◦ θ34 = 30◦

θ34 = 45◦ θ34 = 90◦

θ34 = 0◦ θ34 = 10◦

θ34 = 20◦ θ34 = 30◦

θ34 = 45◦ θ34 = 90◦

Figure 1. The survival probabilities Pνµ→νµ (left panel) and Pνµ→νµ (right panel) in the 3(active)+1(sterile) scheme. We
assume θ34 = (0◦, 10◦, 20◦, 30◦, 45◦, 90◦), increased from left to right, top to bottom. Other parameters are ∆m2 = 0.8 eV2,
θ24 = 10◦ and θ14 = 0◦.

from Ref. [7] (see Fig. 4 therein) that includes νµ → νe (νµ → νe) appearance results in combination with various
νe (νe) and νµ (νµ) disappearance results (excluding the MiniBooNE low energy excess). Another fit result is from
Ref. [26] (see Fig. 4 therein). The data used in those fits is not always the same, as is the treatment of the data, so
differences arise. However, the analyses of [25] and [26], using very similar data sets, are giving results in approximate
agreement with each other. Hence statements regarding ruling out sterile neutrino hints will depend on the fit result
one compares to. Less differences arise for fit results of only appearance data, and we will compare to the results from
Ref. [25] on νµ → νe (νµ → νe) appearance data. Let us note that the LSND results are crucial for the hints for sterile
neutrinos, excluding them from global fits reduces the significance dramatically [7]. Another bound of interest is from
Super-Kamiokande [27], which found |Uµ4|2 < 0.054 at 99% C.L., though with assuming Ue4 = 0 and ∆m2

41 > 0.1
eV2, and a limit on |Ue4|2 of about 0.09. Finally, we should mention the 90% C.L. constraint θ34 ≤ 25◦, obtained
from an analysis of muon neutrino disappearance in the MINOS experiment [28]. Regarding electron (anti)neutrino
disappearance results, severe tension with various appearance results exists [7, 25, 26], resembling situations in which
inconsistent data sets are combined. Anyway, later we will often take the example values θ14 = 4◦ and θ14 = 10◦,
which are compatible with the 3σ ranges of a most recent global appearance and disappearance fit from Ref. [7].

Note that from Eq. (10) one can show that the presence of matter effects will in general make muon survival
probabilities depend on Uµ4 and Uτ4, hence on θ14, θ24 and θ34 [15]. Indeed, assuming Ue4 = 0 (this matrix element
has little influence on the final result, as we have essentially a two flavor oscillation case) and following the same
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calculation as the one leading to Eq. (21), leads to

Sµµ =
µ2

4e
− 1

2 it(Aκ+C2+1)
[
eC2it (Aκ+ C2 − C3)−Aκ+ C2 + C3

]
+ 2C2τ

2
4

2C2 (µ2
4 + τ2

4 )
, (26)

where C2 =
√

1 +Aκ (2− 4(µ2
4 + τ2

4 ) +Aκ) and C3 = 2µ2
4 + 2τ2

4 − 1. The muon-neutrino survival probability is
therefore to good precision a function of |Uµ4|2/|Uτ4|2 = tan2 θ24/ sin2 θ34. Again, we see that the comparison of
IceCube atmospheric neutrino results with short baseline disappearance experiments depends on θ34.

III. NEUTRINO EVENT NUMBERS IN ICECUBE

The neutrino event numbers depend on the neutrino energy E and the zenith angle cz ≡ cos θz. It can be computed
via

∂2N

∂E∂cz
(E, cz) = 2πT

[
AeffΦP + Āeff Φ̄P̄

]
, (27)

where Aeff (Āeff ) is the effective area of IceCube for νµ (νµ), Φ (Φ̄) is the flux of νµ (νµ) and P (P̄ ) is the survival
probability of νµ (νµ). All three quantities (Aeff , Φ, P ) are functions of the neutrino energy E and the zenith angle
cz. For the IceCube-59 data, T = 348.1 days [8]. The factor 2π is due to integration over the azimuthal angle.

For Φ and Φ̄, we use the data from Ref. [20]. Since the flux has been computed only up to 104 GeV while a small
part of events in the IceCube-59 data have energies above 104 GeV (most events are in the energy range from 102 GeV
to 104 GeV), we need to extrapolate the data to 106 GeV to cover the full data. The final result should be insensitive
to the extrapolation because the high energy part has little contribution to the total event number.

The effective area can be extracted from [8], where in Fig. 1 the simulation results for the event numbers as functions
of energy and of zenith angle (without neutrino oscillation) are shown for the conventional atmospheric neutrino flux.
So AeffΦ can be obtained from that figure and Aeff can be extracted, provided that Φ is known. In practice, a
more detailed procedure is adopted by us to take into account the difference between ν and ν and the zenith angle
dependence of Aeff : we assume an energy-dependent ratio of Aeff to Āeff ,

Āeff (E, cz) = λ(E)Aeff (E, cz) , (28)

where the ratio λ(E) can be taken from Fig. 2 of Ref. [29]. We also assume that the dependence of Aeff on the zenith
angle is mainly due to the detection efficiency of photons generated by the muon tracks, since the cross section σ(E)
of neutrinos with nuclei of water molecules should only depend on E. Under this assumption, we have

Aeff = σ(E)Nf(cz) , (29)

where N is the number of water molecules and f(cz) is the detection efficiency. So without neutrino oscillation, Eq.
(27) becomes

∂2N

∂E∂cz
(E, cz) = f(cz)g(E)[Φ(E,Cz) + λ(E)Φ̄(E,Cz)] , (30)

where g(E) ≡ 2πTσ(E)N . In Eq. (30) only f(cz) and g(E) are unknown functions to be determined and there are two
curves in Fig. 1 of Ref. [8] for

´
∂2N
∂E∂cz

dE and
´

∂2N
∂E∂cz

dcz, correspondingly. So we can solve for f and g from the two
curves to obtain Aeff and Āeff . Note that the detection efficiency function of Cherenkov photons f in Eq. (29) (which
should mainly depend on cz because it is essentially a geometrical effect) may also have weak dependence on energy.
However, events in IceCube are not uniformly distributed from 102 GeV to 106 GeV, but are rather concentrated
around 103 GeV. Therefore, the effective integration region of

´
∂2N
∂E∂cz

dE is very narrow and even if f depends weakly
on E, only those f -values around 103 GeV are important.

In the actual measurement E can only be partially reconstructed from the muon track; only a lower bound on E
can be obtained from the truncated energy loss of the muon (see Fig. 4 in Ref. [8]). Besides, the correlation of the true
energy E of the neutrino and the truncated energy loss of the muon is very difficult for us to handle. So in this paper
we will not use the energy spectrum information of the data and simply integrate over E in Eq. (27), though this
will somewhat reduce the sensitivity on sterile neutrinos. A full analysis involving the energy spectrum information
should be implemented by the IceCube collaboration.
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Figure 2. The ratio of event number N and the unoscillated event number N0 as function of the relevant sterile neutrino
parameters. We have chosen the illustrative value cos θz = −0.86; the parameters θ14 and θ24, if not specified in the plots, are
set at 10◦. But for θ34 it is 0◦.

Hence, we integrate over E and compute the event number in each small cz-bin,

N(cz) = 2πT∆cz

ˆ
E ln(10) [Aeff (lgE, cz)Φ(lgE, cz)P (lgE, cz) + (ν → ν)] d lgE , (31)

where ∆cz is the width of cos θz-bins, equal to 1/25 for 25 bins and

lgE ≡ log10(E/GeV) . (32)

Note that though reconstructed zenith angles are not true zenith angles of neutrinos, for energies relevant to our
analysis and track events, the difference is much smaller than the bin width [8], and thus we will not consider the
difference between reconstructed and true zenith angles in our analysis. For later use, we also define the no-oscillation
event number N0,

N0(cz) = 2πT∆cz

ˆ
E ln(10) [Aeff (lgE, cz)Φ(lgE, cz) + (ν → ν)] d lgE . (33)

Although the total event number is overall reduced due to neutrino disappearance, in practice this effect is not useful
to constrain sterile neutrino parameters. The reason is that the fluxes Φ and Φ̄ have a large uncertainty, e.g. about
25% at 103 GeV, indicated in Fig. 11 in [20]. Compared to the statistical uncertainty (about 3%) and the systematic
uncertainty (about 4% [30]) in each cz-bin, the large uncertainty in the normalization factor implies the flux can be
almost freely renormalized.

The main observable effect caused by a sterile neutrino in IceCube is tilting the zenith angle (cos θz) distribution
of events, i.e. the smaller cz the more the event numbers are suppressed [15]. The existence of sterile neutrinos causes
disappearance for atmospheric neutrinos going through Earth. For a very small |cz| the corresponding oscillation
baseline is very short hence neutrinos do not have enough time to oscillate before they arrive at the detector. So the
survival probability is always very close to 1 if cz is small enough, no matter how large the mixing angles are5. For

5 Note that for large ∆m2, neutrino oscillation may still happen in the horizontal direction (i.e. cz = 0); for this qualitative discussion we
ignore such aspects, the numerical analysis takes those effects into account.
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Figure 3. The ratio of event number N and the unoscillated event number N0 at cos θz = −0.86 in the θ24 − θ34 plane for
∆m2 = 0.5 eV2 and θ14 = 0◦.

a large |cz|, neutrinos may have propagated over enough baseline to oscillate and thus the survival probability could
be low. They may also experience several oscillatory periods before they arrive and the survival probability would be
a value between the minimum and 1, depending on energy and zenith angle. This qualitative analysis can be verified
from Fig. 1, where P is always close to 1 at cz ' 0. For a large |cz|, P can be relatively small or still large (close to 1),
depending on E. Note that Eq. (31) is an integral over E so only the average value (roughly) of P is of importance. In
this sense, we can say that the disappearance signal is stronger at larger |cz| and weaker at small |cz|. Therefore, the
sterile neutrino signal in the zenith angle distribution is mainly a tilting effect. To obtain a qualitative understanding
of the sensitivity on sterile neutrino parameters, we plot in Fig. 2 for illustration N/N0 at cz = −0.86 for the various
sterile neutrino parameters (∆m2, θ14, θ24, θ34), i.e. the ratio of events for the oscillated and unoscillated case at a
large zenith angle. The more this quantity deviates from 1, the more the zenith angle distribution tilts. The upper
left ∆m2-plot shows that N/N0 drops down quickly from 1 when ∆m2 goes from 0 to 0.1 eV2. This implies that the
sensitivity of IceCube on sterile neutrinos depends on ∆m2 significantly at this range. The upper right θ14-plot shows
that N/N0 changes very little for θ14 ∈ [0◦, 20◦] which means IceCube is insensitive to small θ14 (note that large θ14

has been excluded by reactor neutrino experiments). There is almost no difference between θ14 = 0◦ and 10◦ for
IceCube. The angle θ24 is the most sensitive parameter as shown in the lower left θ24-plot. For (too) large θ24 such
as 40◦, N/N0 could drop to 0.5. For small θ24, we should include θ34 in the sensitivity analysis because the matter
effect resonance is sensitive to the ratio Uµ4/Uτ4 = tan θ24/ sin θ34, see Eq. (26). Moreover, the important matter
effect could decouple for large θ34, as we have discussed in Section III. We therefore plot N/N0 in the θ24 − θ34 plane
in Fig. 3, where we can see that for θ34 = 20◦ even a small θ24 value (8◦) can make N/N0 drop to 0.9. Note that when
θ34 is close to 90◦ then as we have mentioned in the analytic discussion, νµ (νµ) neutrinos would oscillate as if they
are in vacuum. So generally speaking, the signal of sterile neutrinos for θ34 = 90◦ is weaker than for other values.

IV. χ2-FIT AND RESULT

We perform now a numerical analysis of the IceCube-59 data from Ref. [8], adopting a conventional χ2-function

χ2(θ14, θ24, θ34,∆m
2, a) =

a2

σ2
a

+
∑

i=cz bins

[(1 + a)Nth,i −Nob,i]
2

σ2
stat,i + σ2

sys,i

, (34)
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Figure 4. Event numbers versus zenith angle cos θz for several cases. The atmospheric neutrino flux is normalized by a factor
of 1 + a, see Eq. (34). The data can be fitted very well without any sterile neutrino contribution.

where Nob,i is the observed event number in each bin with statistical uncertainty σ2
stat,i and Nth,i is the predicted

event number for each bin. Since the events number in each bin is large enough, we can simply take σstat,i =
√
Nob,i.

For the systematic uncertainty we take, according to [30], σsys,i = 0.04Nob,i. The factor 1 + a in front of Nth,i is
the normalization factor of the full flux with a large uncertainty, for instance σa = 15% at 102 GeV or 25% at 103

GeV (see Fig. 11 in [20]). The major constraint on sterile neutrinos comes from the second term in Eq. (34). For
minimization of the χ2-function, it is easy to compute the value of a at the minimum analytically:

amin =

∑
i(Nob,i −Nth,i)Nth,i/di

σ−2
a +

∑
iN

2
th,i/di

. (35)

Here di ≡ σ2
stat,i + σ2

sys,i. In practice, we will use Eq. (35) for the minimization of the χ2-function.
Let us first simply fix θ14 and θ34 to certain values so χ2 is a function of θ24, ∆m2 and a. The conventional

treatment is then to replace a in the χ2-function with amin given by Eq. (35). After that, χ2 will be a function only of
θ24 and ∆m2. We perform the χ2-fit for several cases. For instance, for (θ14, θ34) = (10◦, 0◦) we find the best-fit point
is θ24 = 8.3◦, ∆m2 = 0.014 eV2 with χ2

min = 9.19. This is no significant effect as for θ24 = 0◦ (i.e., no sterile neutri-
nos) χ2 = 9.43 is essentially an equivalently good fit to the data. In Fig. 4 we show the event distributions of some
cases where we can see that the best-fit curve (red, dashed) almost overlaps with the green curve (no sterile neutrinos).

In Fig. 5 we plot the 90%, 95%, 99.73% exclusion bounds (i.e. contours for χ2 − χ2
min = 4.61, 5.99, 11.83) in the

sin2 2θ24 − ∆m2 plane, for several cases. We also display for comparison the 99% C.L. regions of various global fit
results on sin2 2θeµ from Refs. [7, 25, 26]. Though that signal depends on sin2 2θµe = sin2 2θ14 sin2 θ24 and ∆m2,
we can use the fixed value θ14 = 10◦ (or 4◦) to convert the LSND constraint from sin2 2θµe to sin2 2θ24. The
Super-Kamiokande result on |Uµ4|2 is also given [27].

We see from Fig. 5 that the value of θ34 is very important. As one increases θ34 from zero, the constraint becomes
stronger until θ34 is large enough. After that, the constraint becomes weaker when θ34 is increased. This can be
understood via Fig. 2, where in the bottom right panel we can see the event number generally drops down (which
implies the disappearance of neutrinos) when θ34 is increased from 0◦. The event number reaches its minimum at
about 30◦ and then increases because for θ34 = 90◦, as we have discussed, the signal of sterile neutrinos is weak
since there is no matter effect enhancement. θ14, however, has little influence on the IceCube result for ∆m2 and
sin2 2θ24. But the angle is important to compare the outcome to the short baseline appearance data. Note that with
θ14 = 0 there would be no short baseline appearance oscillations, see Eq. (25). The larger θ14, the smaller the value
of θ24 necessary to generate the same value of sin2 θµe, hence it becomes more difficult for IceCube to rule it out.
Marginalizing over θ34 results in Fig. 6. We see that for θ14 = 10◦ the appearance signal is partially compatible within
90%, but ruled out at 99.73% if θ14 = 4◦. Regarding the appearance plus disappearance data, strong dependence on
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Figure 5. Exclusion bounds for (∆m2, sin2 2θ24). In these plots, θ34 is fixed at (from top to bottom) 0◦, 10◦, 30◦ and 90◦; θ14
at 10◦ (left) or 4◦ (right). Also shown are 99% C.L. fit results from the world’s appearance and disappearance data in purple
(from Kopp et al. [25]), in yellow (from Giunti et al. [7]) and in the white contour (from Conrad et al. [26]). The blue contour
line is the result of an appearance data only fit from [25].
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θ14 = 10◦ θ14 = 4◦

Figure 6. Exclusion bounds for (∆m2, sin2 2θ24) after marginalizing over θ34; θ14 is fixed to 10◦ (left) or 4◦ (right). Also shown
are 99% C.L. fit results from the world’s appearance and disappearance data in purple (from Kopp et al. [25]), in yellow (from
Giunti et al. [7]) and in the white contour (from Conrad et al. [26]). The blue contour line is the result of an appearance data
only fit from [25].

the fit result exists. For θ14 = 10◦, the signal from [7] is fully consistent with IceCube-59 at 90%, whereas the full
regime from [25] and a part of the regime from from [26] are excluded at 90%. At θ14 = 4◦, the signal from [7] still
cannot be ruled out at about 90%, whereas the full regime from [25] and the one from [26] are ruled out at 95%. Such
strong dependence on fit results and parameters not appearing in IceCube expressions will also be present in fits of
IceCube-86 data, not yet available, and should be taken into account when interpreting the results.

V. CONCLUSION

We have performed a χ2-fit to IceCube-59 data in order to constrain sterile neutrino mixing parameters. Special
emphasis was put on the question on how muon neutrino disappearance compares to the muon neutrino disappearance
in short baseline experiments and other sterile neutrino results. We have stressed the different dependence on the
three relevant mixing angles and the important role of the very weakly constrained angle θ34, which governs the
strength of the matter resonance, and is often set to zero in analyses. The value of θ14 is also crucial. Fixing this
angle implies via the short baseline appearance results the value of θ24, on which the analysis of IceCube data is most
sensitive to. It was demonstrated that only part of the global parameter space is currently constrained by IceCube,
though of course important complementary information is provided. Moreover, there is dependence on which fit result
one compares the data to.

The comparison of the various oscillation channels relies on several assumptions, in particular the presence of only
one sterile neutrino. In this framework we assume unitarity of the 4× 4 mixing matrix, and the absence of additional
interactions that sterile neutrinos could be sensitive to. As even with these assumptions no final solution to the short
baseline disappearance and other problems can be given, it shows that several dedicated oscillation experiments are
required to fully settle the issue.
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