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We discuss flavor symmetries in left-right symmetric theories. We show that such frameworks are a
different environment for flavor symmetry model building compared to the usually considered cases.
This does not only concern the need to obey the enlarged gauge structure, but also more subtle
issues with respect to residual symmetries. Furthermore, if the discrete left-right symmetry is charge
conjugation, potential inconsistencies between the flavor and charge conjugation symmetries should
be taken care of. In our predictive model based on A4 we analyze the correlations between the
smallest neutrino mass, the atmospheric mixing angle and the Dirac CP phase, the latter prefers to
lie around maximal values. There is no lepton flavor violation from the Higgs bi-doublet.

I. INTRODUCTION

Despite the huge and continued success of the Standard
Model (SM) in the last several decades, the flavor struc-
ture of the three generations of fermions in the SM leaves
a big puzzle that remains to be understood. In particu-
lar, lepton mixing is so drastically different from quark
mixing that the field of flavor symmetry model building is
among the busiest ones in flavor physics. To avoid Gold-
stone bosons and to unify at least two different genera-
tions one typically chooses discrete non-Abelian groups
as flavor symmetry [1H4].

Apart from the unusual lepton mixing structure, the
second big puzzle introduced by neutrino physics is the
smallness of neutrino mass. An attractive approach is
to link this smallness to the parity violation of the SM.
This is in fact achieved in left-right symmetric models
[5H9] where the gauge group of the SM is extended to
SU(Q)L X SU(Z)R X U(I)B_L.

Linking the two aspects mentioned so far, we aim in
this paper at building a flavor symmetry model in a
left-right symmetric model (LRSM). As Grand Unified
Theories (GUTS) based on SO(10) can be broken down
with an intermediate left-right symmetry to the SM,
it may be possible to extent such LRSM flavor models
in a bottom-up strategy to GUT flavor models. Our
approach could be considered as a first modest step to
unify particle and chirality species.

The constraints that are imposed by left-right symme-
try modify some of the well-known features of usually
considered flavor symmetry models. For instance, a typ-
ical example [10] based on the most often used flavor
group Ay, assigns the left-handed lepton SU(2); dou-
blets as well as the right-handed neutrinos to the three-
dimensional irreducible representation of A4. Right-
handed charged fermions instead transform as the three
different one-dimensional representations. This is incom-
patible with the fact that right-handed neutrinos and
charged fermions are part of the same gauge doublet.
In general, models that unify the different particle or
chirality species are rarely considered and are in general
challenging to construct.

Another issue concerns residual symmetries. Usually a
discrete flavor symmetry group G is broken to two sub-
groups Gy and GG, which constrain the form of the mass
matrices M*¢ and MY for charged leptons and neutrinos
respectively. The mixing matrix is thus essentially de-
termined by the symmetry group. The lepton mixing is
then independent of the neutrino masses. In the min-
imal left-right symmetric models under study, however,
typically this direct correlation of subgroups with lepton
mixing does not exist. The reason is that the neutrino
Dirac and the charged lepton mass matrices contain in
general two contributions as a consequence of the Higgs
bi-doublet. As a result, even though there are in princi-
ple conserved subgroups of the flavor group, they do not
translate in invariance of the mass matrices. Therefore
lepton mixing will depend on neutrino masses. Another
issue concerns the discrete left-right symmetry in such
models. If it is charge conjugation, one may encounter
(depending on the chosen flavor symmetry group) poten-
tial inconsistencies between this discrete symmetry and
the flavor symmetry. This is then similar to the situa-
tion when flavor and CP symmetries are combined, see
e.g. Ref. [11].

In this paper we will construct a flavor symmetry
model based on Ay within a left-right symmetric
context. We discuss carefully the general and specific
model building aspects of such scenarios and analyze
several predictive solutions for the neutrino sector. We
show that flavor changing currents in the lepton sector
generated by the Higgs bi-doublet are absent.

The paper is organized as follow. In Sec. [[T| we discuss
left-right symmetric models and outline aspects of their
impact on flavor symmetry model building. In Sec. [IT]]
we present a model based on A4 that is compatible with
left-right symmetry and analyze it numerically and an-
alytically in Sec. [[V] in order to demonstrate that it is
compatible with current data. We conclude in Sec. [V}
some analytical details are delegated to the Appendix.



II. THE IMPACT OF LRSM ON FLAVOR
SYMMETRY

In this section we first review the aspects of minimal
left-right symmetric models (LRSM) that we need in this
paper and then discuss their impact on building flavor
symmetry models.

A. The minimal LRSM

In the minimal LRSM [6HJ] the gauge group is
SU(2)r, x SU(2)r x U(1)p—_r. Right- and left-handed
leptons g, ¢, are doublets under SU(2)r and SU(2),
respectively. Three Higgs multiplets A, ~ (3,1,2),
Agr ~ (1,3,2) and ® ~ (2,2,0) are introduced to break
SU(2)p x SU(2)r x U(1)g—p, to SU(2)r, x U(1l)y and
further to U(1)em, respectively. We choose here the left-
right parity transformation as

KLHKR,Q)H(PT,ALHAR. (1)
The Yukawa interactions of the lepton sector are
LD YijZLiCI)ERj + }N/i]‘ZLi(i)ERj
+ (YLij[fiALng + YRijE};iARERj) + h.c. (2)
The above discrete left-right symmetry leads to Y = YT,
Y =Y and Y, = Y. This can be seen in particular by
comparing the term Y;;£r;®{r; and its hermitian conju-
gate (YT)Z-][ RZ-<I>T€L]- with the parity-transformed terms
Y;‘ngi(I)TKLj and (YT)ingi(I)ij .
The scalar fields acquire the following vacuum expec-
tation values

(@) = (g ,S) (AL) =(0,0,vz), (Ar) =(0,0,vg).

From now on we will assume that vy, is sufficiently small
to be neglected. The neutrino Dirac mass matrix mp
and the charged lepton mass matrix M’ are given as

mp =kY + K'Y, M* =K'Y +KY . (3)

which implies that for given mp and M’ one can always
find the associated Y and Y as long as 2 # (k')°. The
relative contribution to the mass matrices is determined
by the ratio

tan B =k /K. (4)
The right-handed neutrinos have a Majorana mass ma-
trix

Mg = vrYrR, (5)

which generates the light neutrino masses via the type I
seesaw

MY = —mpMz'm},. (6)

With the simple and straightforward assumption of mp
lying around the weak scale, Mg lies around 10'° GeV,
which implies that the scale of parity restoration and thus
also the right-handed gauge boson masses lie around that
scale.

B. Left-right symmetry and flavor symmetries

We mention here some aspects that are connected to
left-right symmetry and flavor symmetry model building.
We focus on A4 here, but our statements will hold for
many other groups as well.

Note first that the left- and right-handed lepton dou-
blets, as well as the left- and right-handed Higgs triplets
have to transform in the same representation of the
flavor symmetry group. As right-handed fermions live in
a gauge group doublet now, the right-handed neutrinos
and the charged fermions of a given generation transform
together. This means that popular A; models with the
left-handed doublets as triplet and the right-handed
charged fermions as singlets are not possible. Also
models in which the right-handed neutrinos transform as
triplet and the right-handed charged fermions as singlets
are forbidden.

In typical flavor symmetry models, the Yukawa terms
are effective in the sense that apart from Higgs, left-
and right-handed fermion fields in addition scalar flavon
fields are present. The full Yukawa term (keeping the
bi-doublet ® as trivial singlet of the flavor group) can be
written in the usual compact form as

Yiilri®lrd, (7)

where ¢ is the flavon field. If /; r are multiplets and ¢ is
a trivial singlet of the flavor group, then as usual Y = Y'f.
Consider now the case when ¢;, rp and ¢ are non-trivial
multiplets of the flavor group. In this case Yi;{1;®lr;¢
should be written as ), YZ’J“E Li®lRrj¢", which means that
there will be several Yukawa coupling matrices. For in-
stance, in A4 the full Yukawa term could be a triple-
triplet term, i.e. {7 r and ¢ are all triplets. Then, be-
cause the product of two triplets contains two triplets
according to 3 x3 =3+3+4+1+1+1, we have two differ-
ent Yukawa matrices Y7 and Y5. Following the steps as
given after Eq. (2), one finds that

Actually we have here assumed real flavon fields, but the
same results applies for complex fields. As a physical
result of Eq. , the PMNS matrix of the left-handed
leptons will be equal to its right-handed analog.

We also note that the definition of the discrete left-
right symmetry is not unique in LR symmetric mod-
els. One could also choose charge conjugation, which
would replace in Eq. the T with 7. However, this
choice of discrete left-right symmetry would bring along
the complications that the flavor symmetry group trans-
formations are potentially incompatible with the charge
conjugation, similar to the situation of combining fla-
vor symmetry with CP symmetry, see e.g. Ref. [II]. In
particular, for different flavor groups one would need to



introduce different non-trivial charge conjugations in the
LRSM. In this paper we only focus on parity as discrete
left-right symmetry, leading to Eq. . In more general
models with different definitions of the discrete left-right
symmetry a careful check of the consistency would need
to be performed.

Another point we wish to make concerns residual sym-
metries. Typical models break A4 in such a way that in
the neutrino and charged lepton sector subgroups of Ay
remain intactﬂ In general, a flavor group G breaks to
different subgroups Gy and G, in the charged lepton and
neutrino sector, respectively:

o JGe: {T|TTM*M"T = M*M*T}

G,: {S|STM"S=M"} '
The eigenvectors of T are just the columns of the mix-
ing matrix U, which diagonalizes the charged lepton sec-
tor, and likewise in the neutrino sector S determines U, .
Thus, the PMNS matrix given by U, g U, is essentially de-
termined by G, Gy, irrespective of the dynamical real-
ization within a model [I2HI4]. This implies in particular
that mixing is independent of masses. It is thus possible
to reconstruct the flavor group G from the mixing ma-
trix U, or vice versa to break GG into proper subgroups to
obtain U. Both the U = G and G = U procedures have
been well understood and there are many studies on this
subject [15H26]. If in a given model with a seesaw mecha-
nism the right-handed Majorana mass matrix is assumed
to be proportional to the unit matrix, or if mp and Mg
share the same residual symmetry G,, (hence can be diag-
onalized simultaneously), the above game can again be
played and with identifying the residual symmetries of
MY and My, information on the original flavor symme-
try group could be obtained.

What concerns left-right symmetric models is that the
Dirac and charged lepton mass matrices are given by con-
tributions of two fundamental terms, Y and Y, see Eq.
(). Their relative contribution is governed by tan in
Eq. . Only in the limit tan § — oo the minimal LR
model is similar to the SM, as in this case only Y con-
tributes to Dirac neutrino masses and Y to charged lep-
ton masses. In this limit of k' < x the symmetry of mp
is the one of Y. Once k’/k is non-zero mp has neither
the symmetry of ¥ nor of Y. Similar statements hold for
tan 8 — 0.

In left-right symmetric models mp and Mg cannot
share the same residual symmetry G, and hence cannot
be diagonalized simultaneously: the fact that in Eq.
two contributions to M, and mp are present, means that
there is no non-trivial symmetry basis in which this can
happen, unless tan 5 — oo or tan 3 — 0.

If neutrino mass would be given by a dominating type
II seesaw term, i.e. the contribution of type I seesaw

1 Sometimes those residual symmetries are also accidental.

| adsu@)L]su@rlu()s-.] 2]
]3] 2 1 1 o
lr| 3 1 2 -1 0
o |1 2 2 0 1
ot 3 1 1 0 1
o1 3] 1 1 0o |o
el1] 1 1 0 1
Ar| 1l 3 1 2 0
Agrl| 1 1 3 2 0

Table 1. Particle content of the model.

which involves mp is suppressed, then in principle the
residual symmetries can be well separated.

One can therefore conclude: if we introduce a flavor
group and intend to break it into two parts for neutrinos
and charged leptons respectively, then within left-right
symmetric models this is impossible unless tan 8 takes
on extreme values or the contribution of type I seesaw to
neutrino masses is absent. If this is not the case, the sim-
ple connection between the flavor symmetry subgroups
and U no longer applies. To put it in another way, if
some VEV alignment would lead to simple residual sym-
metries and a simple mixing structure in a model without
left-right symmetry, the presence of a left-right symmetry
leads to deviations.

As is well known, the presence of the Higgs bi-doublet
and thus two Dirac Yukawa contributions in Eq. im-
plies potentially dangerously rates for lepton flavor vi-
olation (LFV), see [27] for a compliation. While the
Higgs triplets and processes involving the right-handed
gauge bosons and neutrinos also lead to LFV, their con-
tributions are naturally suppressed if the scale of parity
restoration lies above, say, 10 TeV. This is in fact ex-
pected from simple neutrino mass constraints, where the
mass scale of the right-handed neutrinos is almost GUT
scale, see Eq. @ Already in the very early Ref. [9] the
dangerous LFV generated by the bi-doublet was noted
and taken care of by imposing a simple Zs symmetry to
suppress ¢ — ey and u — 3e. Hence, a flavor symmetry
can be very useful and important in order to avoid LFV.
Generally speaking, if Y and Y in Egs. cannot be
simultaneously diagonalized, LE'V processes generated by
the bi-doublet Dirac Yukawas are not suppressed. If Y’
and Y can be made simultaneously diagonal, such pro-
cesses are absent. As we will see in the next Section, our
model has this feature.

III. A4-LRSM MODEL

The flavor symmetry in this model is A4 X Z and
the particle content with its transformation properties is
given in Tab.[[] Note that the left- and right-handed lep-
ton doublets, as well as the left- and right-handed Higgs
triplets transform in identical representation of the flavor



symmetry group. In addition to the standard LRSM par-
ticles we only introduce two Ay triplets (¢¢, ¢¥) and one
Ay singlet €. The Lagrangian of all Yukawa interactions
can be written as

LDl (Yel+ Yoo + Yiod")0lr
+ 0 (Ye& + Yoo + Yo' @lR
+ 0E(YR +YEQ")ARlR
+ P Y+ YEQ)ALLL . (10)

Note the presence of two terms with £;¢‘lp, as it is
a triple-triplet product, see the discussion around Eq.
@. For simplicity, we suppress all flavor indices in
the Lagrangian. Choosing for convenience the real 3-
dimensional representation of Ay, it follows that Ye, Y
and Y}% are proportional to the unit matrix. The terms
involving Yy, are governed by

0 ¢4 0
y| 0 0 ¢f |. (11)
¢5 0 0

Identical flavor structure holds for Yy;. The terms involv-
ing Yyo are, obeying the consistency relation from Eq.
proportional to

0 0 &%
vl ¢5 0 0 (12)
0 ¢ 0

with again identical flavor structure of 1742. We assume
here symmetry breaking of the flavor symmetry accord-
ing to the usual vacuum expectation value alignment

(") o< (1,1,1), (¢")

Combining Y, with the structure of Yy; and Yio gives

(0,1,0). (13)

a B v
V=|17asp (14)

B v«

with the constraint o = o* and 8 = v*. Also Y has this
structure. Therefore, ¥ and Y can be simultaneously
diagonalized which implies that the Dirac mass matrices
of charged leptons and neutrinos can be simultaneously
diagonalized. Note that this feature implies the absence
of potentially dangerous LFV processes generated by the
Higgs bi-doublet, as discussed at the end of Sec. [[I}

The remaining symmetric Yukawa matrix resulting
from Y% is proportional to

0 ¢5 ¢5
¢5 0 of |, (15
¢ o7 0

~

leading to

a 0 b
0ao0|. (16)
b 0 a

Yr =

Towards an explicit form of the light neutrino mass ma-
trix we first perform the transformation

bp = 0y = Uil tr — Uy = Ul lr (17)
with the Wolfenstein matrix Uy (here w = €27%/3)
TN B 09

As aresult of this transformation, Y, }7 and Y are trans-
formed to Y’, Y’ and Y}, where Y', Y’ are diagonal ma-
trices and

Y}, = U Uisdiag(a + b, a,a — b)UisUwy . (19)
Inverting this expression,
(V4™ = Ul Usgding(——, &, L y0Lus,.  (20)
R 13d1ag atb aa—p BYW:
Here we have defined the matrix
1 -1
vz
Us=] 0 1 0 (21)
1 0 L
V2 V2

As common in many A, models, U\JEVUlg gives tri-
bimaximal mixing, to be more specific:

U\];\/Ulg = U,UTBMUﬂa (22)
where U’ = diag(1,w, —w?), U"” = diag(1,1,) and
2 1
55 0
— | =1 1
Ureni = | =k 5% | (23)
V6 V3 V2

Therefore Eq. can also be written as (Y})™! o
U’ XtemU’, where we have defined

4 0 0
Xtem=Ursn | 0 1 0 |[Ufgy. (24)
0 0 =

1—z

Here z = b/a is in general a complex number. Since
in the type I seesaw the light neutrino mass matrix is
MY = —mDM§1m£7 where mp is diagonalized with the
transformation , we can write MV as

1 0 0 1 0 0
M'=m|0r, 0 | XtBM| 0r 0 . (25)
0 0 rs 0 0 rs



Only m has the dimension of mass while the other quan-
tities are all dimensionless. Note that the re-phasing
MY — PM"P" with P = diag(e?", e?2, ¢%3) does not
have physical meaning so we can always assume m and
r9, r3 in Eq. to be real numbers.

Finally, we can give the final form of the light neutrino
mass matrix in the charged lepton basis:

3+z 2ro —2r3
im0 ek ()
3(1+ 2 z—1 z—1
( ) . . z(2+zl)r§
Z_

(26)
Note that in the limit 7o = r3 = 1, MY = mXrpm leads
to TBM and the neutrino mass sum-rule 1/m; —1/m3 =
2/mq (here the masses are understood to be complex, see
e.g. [28]) since the three neutrino masses are proportional
to 1/(1 4 z), 1, —=1/(1 — z) respectively.

IV. NUMERICAL AND ANALYTICAL
RESULTS

In our left-right symmetric A4 model the light neu-
trino mass matrix is given by Eq. while the charged
leptons are diagonal with enough parameters to fully fit
their masses. First we will numerically diagonalize M"
in order to find all possible parameter values. Analytical
diagonalization of the general mass matrix turns out to
be rather complicated, so we will only give one example.
Note that, in the spirit of the discussion in Sec. [[TB] the
VEV alignment in Eq. breaks A4 to subgroups, but
they do not end up in the mass matrices. Hence, the
mixing will depend on the values of the masses.

A. Numerical solutions

Varying all 5 free parameters (12, r3, m and complex z)
in Eq. and comparing the mixing angles and masses
with the 30 global fit results from Ref. [29] reveals that
there are several disconnected ranges of parameters. The
eight different cases for the normal ordering and the ten
cases for the inverted ordering can be seen in Fig. [}
where we plot them in the parameter space of 053, § and
the smallest mass my,. Note that some solutions overlap,
but this happens only because of the three-dimensional
plot. The space of solutions is actually five-dimensional
and the areas in that parameter space do not overlap.

For the normal ordering there are four curves in the
shape of a “J” and another four in the shape of an “U”.
All require a smallest neutrino mass above zero, the ones
in U-shape have a larger minimal value than the ones of
J-shape. We name the solutions A}, and BY,. The
subscript £+ denotes the signs of 033 — /4 and 6 (lying
in our convention between —7 and 7). Interestingly, so-
lutions of type A have values of the CP phase very close
to £7/2, where —7/2 seems to be preferred by current

data [30]. The type A solutions always keep the signs of
023 — w/4 and §, those of type B only for most of the
parameter space. While the lower limit on the smallest
mass is 0.034 eV for type A, it is 0.046 eV for type B.

There are similar types of solutions for the inverted
mass ordering, denoted Al | and B, (having smallest
masses of at least 0.034 and 0.053 €V, respectively). In
addition, there is a different type of solution denoted C1,
where the subscript denotes the sign of 03 — 7/4. These
two cases are special in the sense that they allow only
a smallest mass between 0.004 and 0.013 eV. Example
solutions are given in Table [[Il Note that some of the
solutions with § — —§ are connected by complex conju-
gation of the mass matrix.

The correlation between the interesting parameters
o3, 6 and my are given in Figs. ] and [3] respectively.
Finally, Fig. [4 summarizes the prediction of the model
for neutrinoless double beta decay [3I]. We see in
particular that for the inverted ordering it always holds
that the effective mass takes essentially its largest
possible values and that for the normal mass ordering
the effective mass is non-zero.

B. Analytical calculation

Now we try to analytically find approximate expres-
sions for one of the many possible solutions. From Table
[ we see that there are solutions with rs and rz close
to one. Focusing on this case, we introduce the small
parameters

6257‘2—1,(5357“3—1 (27)

in Eq. . In this case the neutrino mixing should be
close to tri-bimaximal mixing (TBM) because if d2, d5 =
0 the neutrino mixing is TBM. We further assume for
simplicity that the neutrino mass sum-rule as discussed
at the end of Sec. [[T] holds, which is approximately true

in this case as well.

The deviation from TBM can be computed perturba-
tively under the assumption d5, d3 < 1 and some details
are found in the Appendix. The result turns out to be

(62 +03) f11(2) (62 + 03)f12(2) f13(2)(62 — d3)
f23(2)(62 —83) | >

f33(2)(d2 — 63)
(28)

where z first appears in Eq. and the f-functions are
given in the appendix. The elements not given can be
found there, but are not important here.

The important point is that the deviations of U.; and
U.o are proportional to (d2 + d3) while the deviations of
Ues, U,3 and U3 are proportional to (62 —d3). Note that
U.1 and U,, determine the value of 015, which should not
be too far away from the TBM value sin 15 = 1/v/3. At
the same time, U.3 x d2 — d3 should be relatively large
compared to the deviation of 615. Thus, we simplify the

U~ UrsMm +
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Figure 1. The 8 solutions for normal (top) and 10 for inverted ordering (bottom) in 623 — & — my, space.

input parameters output parameters
type T2, T3 z m/eV (023, 013,012,0)/° (1056m2,103AmZ)/eV2 mr/eV
AN | -0.439428, 2.58285| —0.0409371 4 0.0171862|0.0725532[42.5, 9.2, 33.9, —88.2 7.46, 2.42 0.074
BN | 1.10094,1.16147 | —0.152655 + 0.422545i |0.0625143(43.9, 9.0, 33.9, —60.7 7.33, 2.42 0.065
A" | —2.27434, 0.399492| 0.0325321 — 0.0126102i | 0.10147 |43.1, 9.2, 34.7, —89.6 7.75, —2.42 0.087
B! 1.04956, —0.947632|—0.00592698 — 0.1441044| 0.223795 | 42.5, 9.5, 33.5,80.1 7.33, —2.42 0.22
C" 10.400877, 0.369437 0.9466 + 0.2083557 0.0723235|42.7, 9.0, 34.2, —57.7 7.31, —2.42 0.0079

Table II. Examples of numerical solutions. The names of the five types of solutions are introduced in the text.

analysis further by taking 63 = —d5. Another assumption
to make our life simpler is that |1+ z| ~ 1, which implies

The reason for this assumption is as follows: as
mentioned above, we use that the actual mass spec-
trum (my, mo, m3) is still very close to the leading or-
der one which is proportional to (1_%2, 1, 1%12) With
dm?/Am? < 1 it follows (1 — |5 [)/(1 - | < 1
which implies |1+ z| should be very close to 1. Note that
if we assume z &~ e2'® — 1, we are limited to the inverted
ordering because |- |? is always less than 1.

With the above assumptions (first taking 05 = —d and
then z ~ e?* — 1), Eq. can be simplified to

3 (@)
val| o @m0 @)
933(a)52+%
where

3—1cota —3+2tcota 3 —2tcota

o) = 5 9
913,23,33( ) 3\@ 3\/5 3\/5

(30)

Note that with |g13()|d2 = sin 613 we can replace 02 with
s13/|g13(a)| and then extract tanfa3 and sind from Eq.
(29). They can be expressed in terms of 613 and «,

7251322+i\/§‘zl‘

tan A3 =~ :
23 2s1322+1V/2|21| 31
. 21(\/Eiz2513+|21|)(\/§Z3S13+2i|21\) ( )
sind ~ Im BN ,

where
z1 =cota— 31,
2o = 2cota+ 37,
z3 =3cota+ 3i.
Now we have derived approximate expressions for 633 and

6 in terms of a. The value of o can be related to the
lightest neutrino mass mj, via

1
mp(a) =4/ gAmQ csc? (32)

because the mass spectrum is (m2,m3 m3) =~
m?2(1,1,|1 + 2|=2) in our approximation. From Eq. ( .
we can extract the following limit

6v/2513

ilin tan fg3 = hrr%)l T8 11 |[tana| =1, (33)
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Figure 2. Predicted relations from our model for the normal
mass ordering.

which implies « should be a small angle to make 653 close
to 45°. The limits of Eqgs. can also be computed,

resulting in

lim sind = +(3cos2013 —4) = £1 (34)
a—0%
and
. vV Am?
Olll_%mL(oz) x ol (35)

Note the limit of | sin | in Eq. is larger than 1 since
4 — 3cos2013 = 1+ 60725 + O(637;). This is due to the
inaccuracy of our approximate calculation where we omit
all second-order corrections of d2. The limit implies
that small o results in large mp, i.e. mp — 0 <
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Figure 3.  Predicted relations from our model for the in-
verted mass ordering. The black curves represent analytical
results (see Egs. for explicit expressions) obtained
from an approximate calculation, being well compatible with
the numerical result.

a — 0. Therefore, for small |fa3 —45°| the smallest mass
my, is large. Furthermore, the larger o the larger is the
deviation of 653 from /4, which means that there should
be a lower bound on mj;. The above expressions also
imply that lim,,, o |sind| = 1, i.e. as neutrino mass
increases the CP phase approaches one of its maximal
values.

Those features can be identified from the plots in Fig.
showing the accurateness of the analytical study.
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double beta decay for both normal (blue) and inverted mass
ordering (red, note the isolated red points corresponding to
the CL solutions). The green shaded area represents the cur-
rently allowed parameter space.

C. Phenomenological summary

Let us summarize the phenomenological consequences
of the model.

First of all, the lightest neutrino mass cannot be zero or
too small, quantitatively summarized from the previous
results as follows:

normal :my, £ 0.034 €V,
inverted : my, € (0.004,0.013) ormy 2 0.034 €V.

The lower bound of mj, for normal ordering has an im-
portant implication as the effective mass M., is always
non-zero. One finds

normal : M., 2 0.036 eV,
inverted : M., € (0.0482,0.0493) or M, < 0.059 €V.

We also note that for large myz (2 0.1 eV),
my =~ Mee . (36)

This is due to the (approximately valid) sum-rule 2my ' +
mz - ml_1 which will give the above relation for a quasi-
degenerate spectrum [28].

Another important feature of our model is the maximal
CP violation. As we can see from the top plots in Figs.
and [3) both the AN and A! types of solution (green and
blue points) always have maximal | sin d| with very little
uncertainties. For the BN and B! types of solution, if
my, is large enough, |sind| also approaches its maximal
value. This can be understood e.g. from our previous
analytic computation which gives lim,,, o |sind| = 1.

The C! solution in general do not have maximal CP
violation. However, from the lower plot in Fig. [3] we
see that 0 and 6.3 are strongly correlated (black dots).
If A3 turns out to deviate significantly from 45° such as

a3 < 42° or fy3 > 48°, then the C! solutions also predict
maximal | sin d].

The two bottom plots in Figs. [2land [3]show that if large
|#23 — 45°| is observed in the future, then |sin 4| must be
close to its maximal value. For the inverted ordering
this requires |f23 — 45°] = 3°, as just discussed, while
for the normal ordering it requires |fa3 — 45°] 2 1.5°. It
is interesting to note that such a deviation of f33 and
a maximal |sin §| are simultaneously (still rather mildly)
preferred by current global fit as the best-fit of (623, sin 6)
is (41.4°,—-0.94) for normal ordering and (42.4°, —0.83)
for inverted ordering [29].

Finally, since in the large my limit 023 goes to 45°,
a significant deviation of A3 from 45° implies an upper
bound on my. For example if |05 — 45°| = 3° in the
normal ordering then from Fig. 2| we get mp < 0.06 €V,
which constrains my, to a very narrow region (0.034,0.06)
ev.

It is also possible to rule out a mass ordering in this
model due to the different structures of solutions. For
example, if the future bound on my, is pushed below 0.034
eV, then only the C' solutions survive. Also, since (623, 0)
shown in the bottom plots in Figs. 2} B have very different
distributions for both possible mass orderings, it is also
possible to distinguish them with precise measurements
on fy3 and 9.

In summary, if my, is large, we have clear predictions
on d, 693 and M,., which should be close to their large
myp, limit

lim (|sind|, 023, Mee) = (1,45°,my) . (37)

mr,— oo

If my, is small, then we have some more interesting pre-
dictions among these parameters, such as large deviations
from 053 = 45°, correlations between 03 and § as well as
with the mass ordering.

V. CONCLUSION

We presented in this model a flavor symmetry model
based on Ay within a left-right symmetric framework.
Various aspect exist that make this environment differ-
ent from the usual model building. This includes the
necessity to treat the particles in left- and right-handed
doublets, but more crucially the fact that residual sym-
metries from breaking the full flavor group do not make
it in the mass matrices and hence do not determine the
mixing. Furthermore, the discrete left-right symmetry
should be parity rather than charge conjugation, in or-
der to avoid inconsistencies between the flavor and charge
conjugation symmetries.

Taking all this into account, we were discussing a left-
right symmetric model with A4 flavor symmetry and ana-
lyzed its predictions. No flavor changing neutral currents
from the Higgs bi-doublet are present. Several distinct
solutions for the neutrino sector were possible, many of



which prefering maximal CP violation as currently pref-
ered by data. Various other predictions and correlations
exist which would allow for tests of the model.

The various constraints that left-right symmetric the-
ories impose on flavor symmetry models will allow for
further analyses, both conceptual as well as phenomeno-
logical. The possibility to use left-right symmetry as a
first bottom-up step to approach GUT flavor symmetries
is another attractive option to study. Such endevours
will be left for future studies.
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Appendix A: Approximate diagonalization of
Majorana mass matrices

1. General formulae

If a Majorana mass matrix can be written as
M= My+ oM, (A1)
where M < My and My can be diagonalized by Uy
UL MUy = diag(my, ma, ms), (A2)
then M can be approximately diagonalized by U
UTMU =~ diag(my + dmy, mo + dma, ms + dms), (A3)
where U can be computed as

UEUO(]-—’_Z‘T)a
i(Ayym;+A7 . m; . .
Tz‘jZW(l#J%Tn:m

AEUE&MU@, 677’11:14“

(A4)

The above formulae only hold for T;; <« 1, which requires
not only 6M < M, but also |m;|*> — |m;|* are not very
small, i.e. degeneracies in the zeroth-order mass spectrum
would invalidate the approximate diagonalization.
These formulae can be derived as follow. Note that

my
ufmu, = ma + A

ms3

(A5)
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is quasi-diagonal and we need to perform a small rotation
1+ 4T where T =T and T < 1 to diagonalize it:

my my
+A4 = (1-iT)" 1M

ms3

ma

ms3

(A6)

We can assume T;; = 0 because if we rephase each column

of U, i.e. U — Udiag(e'®t, e, ¢'@3), U still can diago-

nalize M and any non-zero T;; can be absorbed into such
rephasing.

The next-to-leading order in Eq. gives

0 ti2 t13 dmy
Ar —i 0 to3 + dmo ,
0 5m3
where

tij = Tjmy +Ti;my ,6my = m; —m; .
So we have
Aij = —i(Tyim; + Tigmi)
and its conjugate
AL = i(Tyym; + Tymy) .
Now we can solve the above two equations with respect

to T;; and Tj; to get Eq. (Ad).

2. Diagonalization of the neutrino mass matrix in
the model

We use the general formulae to diagonalize Eq. ( .
First we compute A defined in Eq. .

5o+35 _ (242)(02+03)  2(d3—02)
( 3(22)?61) 5 3v2(z+1) \/(§¢5(22El))
z+ + 2 2(02—
A =m - 3\/5(224»1)3 3 (52 + 53) \/Eizfi) 9
2(83—02) 2(92—03) 82403
V3(z2-1) Vo(z-1) =

and then T from Eq. (A4)

0 i(32+(2+1)2"+4)(624+93)  i(2(z" —1)+R(2))(d2—93)
3V2(|z12+2+2%)

2v3R(z
0 (izz" +2\S(Z)S852 d3)
V6(|212—2R(2))
0

So from U in Eq. (A4]) we get

(z+(243)z"+4)(52+03)
|z]2+2+2*

36

+6

Uel =

(1—4T).
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3 _ (B (z41)2"+4) (92+03)
EEETETE

Z‘Z| \/% 527(53
3f(|2\2—2§R( ) R(z)

Ue3 =

3(121°+2—R(2))(62—03)

+ 2(z+(2+3)z"+4)(52+63) 6

R(z) [z]242+2*
U =
pl 6\/6
3(z+(2—1)2")(62—393) (3z+(2+1)2*+4)(62+353)
P . R £ S
1 6\/3
(2(z" 1)+ R(2)(0—85) _ 2(Iz1P=242")(52=83) 46
U,z = R(z) |z]*—2R(2)
H 6\/?
3(]27+2—R(2)) (82—33) _ 2(z+(2+3)2" +4) (62+83) 16
U.q = R(z) |z|242z+2*
T 6\/6
3(2+(2—=1)2")(02—03)  (3z+(24+1)2"+4)(524+03) 6
U,y = |z]2—2R(z) [z]2+2+2*
T 6\/5
(T D AR() (52 —63) | 2([21P—z+2" ) (52—63)
U,q = R(z) + Z—2R() +6

6v/2

The f-functions used in Eq. can be extract from
above results, for example,

(z+3)z*+2z+4

fll('z)E 3\/6(|Z|2+Z*+Z)7 (A7)
_ (412" +32+4

f12(2) = 3\/§(‘Z|2+Z*+2)7 (AB)

[ p—L LG ) (A9)

3V2R(2) (|22 — 2R(2))
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