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Abstract

We describe a subdivision algorithm for isolating the complex roots of
a polynomial F ∈ C[x]. Our model assumes that each coefficient of F has
an oracle to return an approximation to any absolute error bound. Given
any box B in the complex plane containing only simple roots of F , our
algorithm returns disjoint isolating disks for the roots in B.

Our complexity analysis bounds the absolute error to which the co-
efficients of F have to be provided, the total number of iterations, and
the overall bit complexity. This analysis shows that the complexity of our
algorithm is controlled by the geometry of the roots in a near neighbor-
hood of the input box B, namely, the number of roots and their pairwise
distances. The number of subdivision steps is near-optimal. For the bench-
mark problem, namely, to isolate all the roots of an integer polynomial
of degree n with coefficients of bitsize less than τ , our algorithm needs
Õ(n3 + n2τ) bit operations, which is comparable to the record bound of
Pan (2002). It is the first time that such a bound has been achieved using
subdivision methods, and independent of divide-and-conquer techniques
such as Schönhage’s splitting circle technique.

Our algorithm uses the quadtree construction of Weyl (1924) with two
key ingredients: using Pellet’s Theorem (1881) combined with Graeffe
iteration, we derive a soft test to count the number of roots in a disk.
Using Newton iteration combined with bisection, in a form inspired by the
quadratic interval method from Abbot (2006), we achieve quadratic con-
vergence towards root clusters. Relative to the divide-conquer algorithms,
our algorithm is simple with the potential of being practical. This paper
is self-contained: we provide pseudo-code for all subroutines used by our
algorithm.

1 Introduction

The computation of the roots of a univariate polynomial is one of the best
studied problems in the areas of computer algebra and numerical analysis,

∗MPI for Informatics, Campus E1 4, 66123 Saarbrücken, Germany. emails: ruben@mpi-
inf.mpg.de and msagralo@mpi-inf.mpg.de
†Institute of Mathematical Sciences Chennai, India 600113. vikram@imsc.res.in
‡Courant Institute of Mathematical Sciences, New York University, New York, USA. email:

yap@cs.nyu.edu

1

ar
X

iv
:1

50
9.

06
23

1v
3 

 [
cs

.N
A

] 
 1

9 
Ja

n 
20

16



nevertheless there are still a number of novel algorithms presented each year;
see [19, 20, 21, 22, 28] for an extensive overview. One reason for this development
is undoubtedly the great importance of the problem, which results from the
fact that solutions for many problems from mathematics, engineering, computer
science, or the natural sciences make critical use of univariate root solving.
Another reason for the steady research is that, despite the huge existing literature,
there is still a large discrepancy between methods that are considered to be
efficient in practice and those that achieve good theoretical bounds. For instance,
for computing all complex roots of a polynomial, practitioners typically use
Aberth’s, Weierstrass-Durand-Kerner’s and QR algorithms. These iterative
methods are relatively simple as, in each step, we only need to evaluate the given
polynomial (and its derivative) at certain points. They have been integrated
in popular packages such as MPSolve [5] or eigensolve [14], regardless of
the fact that their excellent empirical behavior has not been entirely verified in
theory. In contrast, there exist algorithms [13, 27, 23] that achieve near-optimal
bounds with respect to asymptotic complexity, however, implementations of
these methods do not exist. The main reason for this situation is that these
algorithms are quite involved and that they use a series of asymptotically fast
subroutines (see [27, p. 702]). In most cases, this rules out a self-contained
presentation, which makes it difficult to access such methods, not only for
practitioners but also for researchers working in the same area. In addition, for
an efficient implementation, it would be necessary to incorporate a sophisticated
precision management and many implementation tricks. Even then, there might
still be a considerable overhead due to the extensive use of asymptotically fast
subroutines, which does not show up in the asymptotic complexity bounds but
is critical for input sizes that can be handled on modern computers.

In this paper, we aim to resolve the above described discrepancy by intro-
ducing a simple subdivision algorithm for complex root isolation, which we
denote by CIsolate. We derive bounds on its theoretical worst-case complexity
matching the best bounds currently known for this problem; see Section 1.1
for more details. For our method, we mainly combine known techniques such
as the classical quad-tree construction by Weyl [47], Pellet’s Theorem, Graeffe
iteration [4], and Newton iteration. Hence, our contribution should primarily be
considered as an algorithmic one, which, as we hope, will finally bring together
theory and practice in the area of complex root finding. In this context, it is
remarkable that, for the complexity results, we do not require any asymptotically
fast subroutines except the classical fast algorithms for polynomial multiplica-
tion and Taylor shift computation. Our presentation is self contained and we
provide pseudo-code for all subroutines. Compared to existing asymptotically
fast algorithms, our method is relatively simple and has the potential of being
practical.

In theory, the currently best algorithm for complex root finding goes back to
Schönhage’s splitting circle method [41], which has been considerably refined by
Pan [27] and others [16, 26]. In [27], Pan gives an algorithm for approximate
polynomial factorization with near-optimal arithmetic and bit complexity.1 From

1Pan considers a similiar model of computation, where it is assumed that the coefficients of
the input polynomial are complex numbers that can be accessed to an arbitrary precision. Then,
for a polynomial F with roots z1, . . . , zn contained in the unit disk and an integer L ≥ n logn,
Pan’s algorithm computes approximations z̃i of zi with ‖F−lcf(F )·

∏n
i=1(x−z̃i)‖1 < 2−L ·‖F‖1

using only Õ(n logL) arithmetic operations with a precision of O(L). For a lower bound on
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an approximate factorization, one can derive isolating disks for all complex roots.
A corresponding algorithm for complex root isolation, which uses Pan’s method
as a subroutine, has been presented and analyzed in [23]. Its cost can be
expressed in terms of (accessible) parameters that directly depend on the input
such as the degree of F and the size of its coefficients, but also in terms of
(hidden) geometric parameters such as the pairwise distances between the roots.
A special case, namely the so-called (complex) benchmark problem of isolating
all complex roots of a polynomial F with integer coefficients of bit size at most
τ , has attracted a lot of interest in the literature. Using Pan’s method [13, 23],
the latter problem can be solved with Õ(n2τ) operations, which constitutes the
current record bound for this problem.2 So far, there exists no other method for
complex root isolation that achieves a comparable bound. For the real benchmark
problem, that is the isolation of the real roots of a polynomial of degree n with
integer coefficients of bit size at most τ , recent work [38] describes a practical
subdivision algorithm based on the Descartes method and Newton Iteration
with bit complexity Õ(n3 + n2τ). A first implementation of this method [17] is
competitive with the fastest existing implementations [34] for real root isolation,
and it shows superior performance for hard instances, where roots appear in
clusters. Our contribution is in the same line with [38], that is, both methods
combine a subdivision approach, a simple predicate to test for roots, and Newton
iteration to speed up convergence. The main difference is that we treat the more
general problem of isolating all complex roots, whereas the algorithm from [38]
can only be used to compute the real roots, due to the use of Descartes’ Rule of
Signs to test for roots.

We further remark that, in comparison to global approaches such as Pan’s
method from [27], which always compute all complex roots, our algorithm can
also be used for a local search for only the roots contained in some given box.
In this case, the number of iterations as well as the cost of the algorithm
adapt to geometric parameters that only depend on the roots located in some
neighborhood of the given box.

the bit complexity of the approximate polynomial factorization, Pan considers a polynomial
whose coefficients must be approximated with a precision of Ω(L) as, otherwise, the above
inequality is not fulfilled. This shows that already the cost for reading sufficiently good
approximations of the input polynomial is comparable to the cost for running the entire
algorithm. Hence, near-optimality of his algorithm follows. In the considered computational
model, Pan’s algorithm also performs near-optimal with respect to the Boolean complexity
of the problem of approximating all roots. However, we remark that this does not imply
near-optimality of his method for the benchmark problem of isolating the complex roots of an
integer polynomial. Namely, Pan’s argument for the lower bound is based on a lower bound
on the precision to which the coefficients have to be approximated. In the case of integer
polynomials, the coefficients are given exactly, hence the cost for reading an arbitrary good
approximation of the polynomial never exceeds the cost for reading the integer coefficients.

2So far, the bound Õ(n2τ) can only be achieved by running Pan’s factorization algorithm
with an L of size Ω(n(τ + logn)), which means that we need Θ̃(n2τ) bit operations for
any polynomial; see [13, Theorem 3.1] for details. The adaptive algorithm from [23] needs
Õ(n3 + n2τ) bit operations, however its cost crucially depends on the hardness of the input
polynomial (e.g., the separations of its roots), hence the actual cost is typically much lower.
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1.1 Overview of the Algorithm and Main Results

We consider a polynomial

F (x) =

n∑
i=0

aix
i ∈ C[x], with n ≥ 2 and

1

4
< |an| ≤ 1. (1)

Notice that, after multiplication with a suitable power of two, we can always
ensure that the above requirement on the leading coefficient is fulfilled, without
changing the roots of the given polynomial. It is assumed that the coefficients
of F are given by means of a coefficient oracle. That is, for an arbitrary L, the
oracle provides a dyadic approximation ãi of each coefficient ai that coincides
with ai to L bits after the binary point. We call an approximation F̃ obtained
in this way an (absolute) L-bit approximation of F and assume that the cost for
asking the oracle for an L-bit approximation of F is the cost of reading such an
approximation;3 see Section 2 for more details. Let us denote by z1 to zn the
roots of F , where each root occurs as often as determined by its multiplicity.
Now, given a closed, axis-aligned, and squared box B in the complex plane, our
goal is to compute isolating disks for all roots of F contained in B. Since we can
only ask for approximations of the coefficients, we need to further require that
B contains only simple roots of F as, otherwise, a multiple root of multiplicity k
cannot be distinguished from a cluster of k nearby roots, and thus the problem
becomes ill-posed. If the latter requirement is fulfilled, then our algorithm
CIsolate computes isolating disks for all roots contained in B.4 However, it
may also return isolating disks for some of the roots contained in 2B, the box
centered at B and of twice the size as B. Our approach is based on Weyl’s quad
tree construction, that is, we recursively subdivide B into smaller sub-boxes and
discard boxes for which we can show that they do not contain a root of F . The
remaining boxes are clustered into maximal connected components, which are
tested for being isolating for a single root.

As exclusion and inclusion predicate, we propose a novel test based on Pellet’s
theorem and Graeffe iteration. We briefly outline our approach and refer to
Section 3 for more details. Let ∆ := ∆(m, r) ⊂ C be the disk centered at m with
radius r, and define λ ·∆(m, r) := ∆(m,λ · r) for arbitrary λ ∈ R+. According
to Pellet’s theorem, the number of roots contained in ∆ equals k if the absolute
value of the k-th coefficient of F∆(x) := F (m+ rx) dominates the sum of the
absolute values of all other coefficients. For k = 0 and k = 1, it has been
known [39, 49] that Pellet’s theorem applies if the smaller disk n−c1 ·∆ contains
k roots and the larger disk nc2 ·∆(m, r) contains no further root, where c1 and c2
are suitable positive constants. We improve upon this result by giving constants
c1 and c2 such that the latter result stays true for all k. As a consequence,
using only O(log log n) Graeffe iteration for iteratively squaring the roots of

F∆, we can replace the factors nc1 and nc2 by the constants ρ1 := 2
√

2
3 ≈ 0.94

3Notice that we only require approximations of the coefficients, hence our method also
applies to polynomials with algebraic, or even transcendental coefficients. In any case, the
given bounds for the cost of isolating the roots of such a polynomial do not encounter the cost
for computing sufficiently good L-bit approximations of the coefficients. Depending on the
type of the coefficients, this cost might be considerably larger than the cost for just reading
such approximations.

4If the requirement is not fulfilled, our algorithm does not terminate. However, using an
additional stopping criteria, it can be used to compute arbitrarily good approximations of all
(multiple) roots; see the remark at the end of Section 4.2 for more details.
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and ρ2 := 4
3 . More precisely, we derive a test, denoted TGk , which allows us to

exactly count the number of roots contained in a disk ∆, provided that the disks
ρ2 ·∆ and ρ1 ·∆ contain the same number of roots.5 Since, in general, the latter
test requires exact arithmetic and since we can only ask for approximations of
the coefficients of F , there might be cases, where we either cannot decide the
outcome of our test or where an unnecessarily high precision is needed. Based on
the idea of so-called soft-predicates [51], we formulate a variant of the TGk -test,

which we denote by T̃Gk , that uses only approximate arithmetic and runs with a
precision demand that is directly related to the maximal absolute value that F
takes on the disk ∆.

In the subdivision process, we inscribe each box in a corresponding disk
and run the T̃G0 -test on this disk. Boxes, for which the test succeeds, do not
contain a root and can thus be discarded. The remaining boxes are clustered
into maximal connected components, which we also inscribe in corresponding
disks. If the T̃G1 -test succeeds for such a disk, we discard the cluster and store
the disk as an isolating disk. Otherwise, we keep on subdividing each box into
four equally sized sub-boxes and proceed. This approach on its own already
yields a reasonably efficient algorithm, however, only linear convergence against
the roots can be achieved. As a consequence, there might exist long paths in
the subdivision tree with no branching (there are at most n branching nodes).
For instance, when considering the benchmark problem, there exist polynomials
(e.g., Mignotte polynomials) for which the length of such a sequence is lower
bounded by Ω(nτ). We show how to traverse such sequences in a much faster
manner (reducing their length to O(log(nτ)) in the worst-case) via a regula falsi
method, which combines Newton iteration and box quartering. Our approach is
inspired by the so-called quadratic interval refinement (QIR for short) method
proposed by Abbott [1]. He combines the secant method and interval bisection in
order to further refine an interval that is already known to be isolating for a root.
In [35, 36, 38], the QIR approach has been considerably refined by replacing the
secant method by Newton iteration (for multiple roots). Compared to Abbott’s
original variant, this yields a method with quadratic convergence against clusters
of roots during the isolation process. Our approach is similar to the one from [38],
however, we use the T̃Gk -test instead of Descartes’ Rule of Signs, which only
applies to intervals on the real axes. Furthermore, the approach from [38] uses
fast approximate multipoint evaluation [18, 16] in order to determine subdivision
points whose distance to the roots of F is not too small. This is needed to
avoid an unnecessarily large precision when using Descartes’ Rule of Signs. For
our algorithm CIsolate, there is no need for (fast) approximate multipoint
evaluation. We now state our first main theoretical result, which shows that our
algorithm performs near-optimal with respect to the number of produced boxes:

Theorem. Let F be polynomial as in (1) and suppose that F is square-free. For
isolating all complex roots of F , the algorithm CIsolate produces a number of
boxes bounded by

Õ
(
n · log(n) · log

(
n · ΓF · log(σ−1

F )
))
,

where we define log(x) := max(1, log max(1, |x|)) for arbitrary x ∈ C, ΓF :=

5The subscript k indicates a test to check whether ∆ contains exactly k roots. The
superscript G indicates that we apply Graeffe iteration.
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log(maxni=1 |zi|) the logarithmic root bound of F , and σF := min(i,j):i 6=j |zi− zj |
the separation of F .

For the benchmark problem, the above bound simplifies toO(n log(n) log(nτ)).
When running our algorithm on an arbitrary axis-aligned box B, we obtain re-
fined bounds showing that our algorithm is also adaptive with respect to the
number of roots contained in some neighborhood of B as well as with respect to
their geometric location. Namely, suppose that the enlarged box 2B contains
only simple roots of F , then we may replace n, ΓF , and σF in the above bound
by the number of roots contained in the enlarged box 2B, the logarithm of
the width of B, and the minimal separation of the roots of F contained in 2B,
respectively; see also Theorem 6.

Finally, we give bounds on the precision to which the coefficients of F have
to be provided as well as bounds on the bit complexity of our approach:

Theorem. Let F be a polynomial as in (1) and suppose that F is square-free.
For isolating all complex roots of F , the algorithm CIsolate uses a number of
bit operations bounded by

Õ
(∑n

i=1
n · (τF + n · log(zi) + log(σF (zi)

−1) + log(F ′(zi)
−1))

)
=

Õ(n(n2 + n log(Mea(F )) + log(Disc(F )−1))),

where we define τF := dlog ‖F‖∞e, σF (zi) := minj 6=i |zi−zj | the separation of zi,
Mea(F ) :=

∏n
i=1 max(1, |zi|) the Mahler Measure, and Disc(F ) the discriminant

of F . As input, the algorithm requires an L-bit approximation of F with

L = Õ
(∑n

i=1
(τF + n · log(zi) + log(σF (zi)

−1) + log(F ′(zi)
−1))

)
= Õ(n2 + n log(Mea(F )) + log(Disc(F )−1)).

Again, we also give refined complexity bounds for the problem of isolating all
roots of F contained in some box B, which show that the cost and the precision
demand of our algorithm adapt to the hardness of the roots contained in a
close neighborhood of the box. For the benchmark problem, the above bound
simplifies to Õ(n3 +n2τ). It is remarkable that our bounds on the bit complexity
for isolating all complex roots as achieved by CIsolate exactly match the
corresponding bounds for the complex root isolation algorithm from [23], which
uses Pan’s method for approximate polynomial factorization.

1.2 Related Work

As already mentioned at the beginning, there exists a huge literature on com-
puting the roots of a univariate polynomial. This makes it simply impossible
to give a comprehensive overview without going beyond the scope of a research
paper, hence we suggest the interested reader to consult some of the excellent
surveys [19, 20, 21, 22, 28]. Here, we mainly focus on a comparison of our method
with other existing subdivision methods for real and complex root finding.

For real root computation, subdivision algorithms have become extremely
popular due to their simplicity, ease of implementation, and practical efficiency.
They have found their way into the most popular computer algebra systems,
where they constitute the default routine for real root computation. Prominent
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examples of subdivision methods are the Descartes method [8, 11, 12, 34, 35, 38,
37, 43], the Bolzano method6 [6, 39, 3], the Sturm method [10], and the continued
fraction method [2, 42, 45]. From a high-level point of view, all of the above
mentioned methods essentially follow the same approach: Starting from a given
interval I0, they recursively subdivide I0 to search for the roots contained in I0.
Intervals that are shown to contain no root are discarded, and intervals that are
shown to be isolating for a simple root are returned. The two main differences
between these algorithms are the choice of the exclusion predicate and the way
how the intervals are subdivided. For the real benchmark problem of isolating all
real roots of a polynomial of degree n with integers of bit size τ or less, most
of the above methods need Õ(nτ) subdivision steps and their worst-case bit
complexity is bounded by Õ(n4τ2). The bound on the number of subdivision
steps stems from the fact that the product of the separation of all roots is

lower bounded by 2−Õ(nτ) and that only linear convergence against the roots is
achieved. By considering special polynomials (e.g., Mignotte polynomials) that
have roots with separation 2−Ω(nτ), one can further show that the bound Õ(nτ)
is even tight up to logarithmic factors; see [12, 7]. When using exact arithmetic,
the cost for each subdivision step is bounded by Õ(n3τ) bit operations, which
is due to the fact that n arithmetic operations with a precision of Õ(n2τ) are
performed. In [37], it has been shown for the Descartes method that it suffices
to work with a precision of size Õ(nτ) in order to isolate all real roots, a fact
that has already been empirically verified in [34]. This yields a worst-case bit
complexity bound of size Õ(n3τ2) for a modified Descartes method, which uses
approximate instead of exact arithmetic. For a corresponding modified variant
of the Bolzano method [3], a similar argument yields the same bound. Recent
work [35, 38, 43] combines the Descartes method and Newton iteration, which
yields algorithms with quadratic convergence in almost all iterations. They
use only O(n log(nτ)) subdivision steps, which is near optimal. The methods
from [35, 43] work for integer polynomials only and each computation is carried
out with exact arithmetic. An amortized analysis of their cost yields the bound
Õ(n3τ) for the bit complexity. [38] introduces an algorithm that improves upon
the methods from [35, 43] in two points. First, it can be used to compute the
real roots of a polynomial with arbitrary real coefficients. Second, due to the
use of approximate arithmetic, its precision demand is considerably smaller. For
the real benchmark problem, it achieves the bit complexity bound Õ(n3 + n2τ).
More precisely, it needs Õ(n log(nτ)) iterations, and, in each iteration, Õ(n)
arithmetic operations are carried out with an average precision of size Õ(n+ τ).
This essentially matches the bounds as achieved by our algorithm CIsolate for
complex root isolation. CIsolate shares common elements with the method
from [38], however we had to develop novel tools to accommodate the fact
that our search area is now the entire complex plane and not the real axis. In
particular, we replaced Descartes’ Rule of Signs, which serves as the test for real
roots in [38], by our novel test T̃Gk for counting the number of complex roots in
a disk.

For computing the complex roots, there also exist a series of subdivision

6The Bolzano method is based on Pellet’s theorem (with k = 0). It is used to test an
interval I for roots of the input polynomial F and its derivative F ′. I contains no root if
Pellet’s theorem applies to F . If it applies to F ′, the function F is monotone on I, and thus I
is either isolating for a root or it contains no root depending on whether there is a sign change
of F at the endpoints of I or not.
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methods (e.g. [9, 50, 24, 39, 33, 29, 25, 31, 48]), however, only a few algorithms
have been analyzed in a way that allows a direct comparison with our method.

Similar to our method, Yakoubsohn [50] combines Weyl’s quad tree approach
and a test for roots based on Pellet’s theorem. However, since only an exclusion
predicate (based on Pellet’s theorem with k = 0) is considered but no additional
test to verify that a region is isolating, his method does not directly compute
isolating regions but arbitrary good approximations of the complex roots. In [39],
we introduced a variant of Yakoubsohn’s method, denoted by Ceval, that
computes isolating disks for the complex roots of an integer polynomial. There,
an additional inclusion test (based on Pellet’s theorem with k = 1) has been
used to show that a disk is isolating for a root. The methods from [50, 39] only
consider box-quartering, and thus nothing better than linear convergence can
be achieved. For the benchmark problem, the algorithm from [39] needs Õ(n2τ)
subdivision steps and its cost is bounded by Õ(n4τ2) bit operations. Yakoubsohn
further mentions how to improve upon his method by combining the exclusion
predicate with Graeffe iterations, which yields an improvement by a factor of
size n with respect to the total number of produced boxes. In this paper, we
follow the approach of combining a test based on Pellet’s theorem and Graeffe
iteration. That is, we derive a corresponding method (i.e., the TGk -test) that
even allows us exactly count the number of roots in a disk, thus going beyond
a simple test to check whether a disk contains a root or not. In addition, we
derive a variant of TGk that works with approximate arithmetic, and we give
bounds on the precision demand in the worst case.

In our previous work [51], we provided the first complete algorithm for
computing ε-clusters of roots of analytic functions. Like the present work, it is a
subdivision approach based on the Tk-test of Pellet; but unlike this paper, it does
not have quadratic convergence nor complexity analysis. In [51], we assumed
that an analytic function is given when we also have interval evaluation of its
derivatives of any desired order; this natural assumption is clearly satisfied by
most common analytic functions. The algorithm from [51] does not compute
isolating disks but arbitrary small regions containing clusters of roots, hence
being also applicable to functions with multiple roots and for which separation
bounds are not known.

We also want to mention two further important contributions [33, 29], which
are similar to our approach in the sense that a classical subdivision algorithm,
which yields only linear convergence, is combined with Newton iteration to
speed up convergence. Renegar [33] combines the Schur-Cohn algorithm [15,
Section 6.8] and Newton iteration. In addition, he introduces a subroutine for
approximating the winding number of a polynomial F around the perimeter of
some disk, and thus a method for counting the number of roots of F in a disk.
The Schur-Cohen algorithm is used to derive some rough initial approximations
of the roots, whereas Newton iteration (applied to the (k − 1)-st derivative
of F ) guarantees quadratic convergence against clusters consisting of k roots.
Renegar focuses on the arithmetic complexity of his algorithm for the problem
of approximating the roots of F . For fixed degree n, his method performs
near-optimal in this regard. However, its dependence on n is cubic. In [29], Pan
describes a more involved algorithm that combines Weyl’s quadtree approach,
an exclusion predicate based on Turan’s proximity test [46] and Graeffe iteration,
root radii computation [40, Section 14], Newton iteration, and Renegar’s winding
number algorithm. Pan also studies the arithmetic complexity of his method
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for the problem of approximating all roots that are contained in some disk. For
a ”well isolating” disk ∆ of constant size and a polynomial F of degree n, his
algorithm computes approximations of the roots to an absolute error 2−L in
O(kn log n log(nL)) arithmetic operations, where k equals the number of roots
in ∆. He further shows that the total number of boxes produced by his method
is roughly k (up to some logarithmic factors depending on n, L, and the factor
of isolation of the input disk). Both results compare well with the bounds that
we obtain for our algorithm CIsolate. Neither Renegar nor Pan analyze the
precision demand or the Boolean complexity of their algorithms.

1.3 Structure of the Paper and Reading Guide

In Section 2, we summarize the most important definitions and notations, which
we will use throughout the paper. We suggest the reader to print a copy of this
section in order to quickly refer to the definitions. We introduce our novel test
T̃Gk for counting the roots in a disk in Section 3. The reader who is willing to
skip all details of this section and who wants to proceed directly with the main
algorithm should only consider Section 3.4, where give the main properties of
the T̃Gk -test. The algorithm CIsolate is given in Section 4. Its analysis is split
into two parts. In Section 5.1, we derive bounds on the number of produced
boxes, whereas, in Section 5.2, we estimate the bit complexity of our algorithm.
Some of the (rather technical) proofs are outsourced to an appendix, and we
recommend to skip these proofs in a first reading of the paper. In Section 6, we
summarize and hint to some future research.

2 Notations, Definitions, and a Root Bound

Let F be a polynomial as defined in (1) with complex roots z1, . . . , zn. We fix
the following definitions and notations:

• As already mentioned in the introduction, we assume the existence of
an oracle that provides arbitrary good approximations of the coefficients.
More precisely, for an arbitrary non-negative integer L, we may ask the
oracle for dyadic approximations ãi = mi

2L+1 of the coefficients ai such that
mi ∈ Z + i · Z are Gaussian integers and |ai − ãi| < 2−L for all i. We
also say that ãi approximates ai to L bits after the binary point, and a
corresponding polynomial F̃ = ã0 + · · ·+ ãn · xn with coefficients fulfilling
the latter properties is called an (absolute) L-bit approximation of F . It is
assumed that the cost for asking the oracle for such an approximation is
the cost for reading the approximations.

• For any non-negative integer k, we denote by [k] the set {1, . . . , k} of size
k. For any set S and any non-negative integer k, we write

(
S
k

)
for the set

of all subsets of S of size k.

• max1(x1, . . . , xk) := max(1, |x1|, . . . , |xk|) for arbitrary x1, . . . , xk ∈ C,
log := log2 the binary logarithm, and

log(x1, . . . , xk) := dmax1(log max1(x1, . . . , xk))e.

Notice that, if |z| ≤ 2 for some z ∈ C, then log(z) is 1. Otherwise, log(z)
equals log |z| rounded up to the next integer.
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• τF := log(‖F‖∞) is defined as the maximal number of bits before the
binary point in the binary representation of the coefficients of F , and

• ΓF := log(maxni=1 |zi|) is defined as the logarithmic root bound of F ,

• Mea(F ) := |an| ·
∏n
i=1 max1(zi) is defined as the Mahler measure of F ,

• σF (zi) := minj 6=i |zi − zj | is defined as the separation of the root zi and
σF := minni=1 σF (zi) the separation of F .

• For an arbitrary region R ⊂ C in the complex space, we define σF (R) :=
mini:zi∈R σF (zi), which we call the separation of F restricted to R. We
further denote by Z(R) the set of all roots of F that are contained in R.

• We denote the interior of a disk in the complex plane with center m ∈ C
and radius r ∈ R+ by ∆ = ∆(m, r). For short, we also write λ · ∆ to
denote the disk ∆(m,λ · r) that is centered at m and scaled by a factor
λ ∈ R+. We further use F∆(x) to denote the shifted and scaled polynomial
F (m+ r · x), that is, F∆(x) := F (m+ r · x).

• A disk ∆ is isolating for a root zi of F if it contains zi but no other root
of F . For a set S of roots of F and positive real values ρ1 and ρ2 with
ρ1 ≤ 1 ≤ ρ2, we further say that a disk ∆ is (ρ1, ρ2)-isolating for S if ρ1 ·∆
contains exactly the roots contained in S and ρ2 ·∆ \ ρ1 ·∆ contains no
root of F .

• Throughout the paper, we only consider boxes

B = {z = x+ i · y ∈ C : x ∈ [xmin, xmax] and y ∈ [ymin, ymax]}

in the complex space that are closed, axis-aligned, squared, and of width
w(B) = 2` for some ` ∈ Z (i.e., |xmax− xmin| = |ymax− ymin| = 2`), hence,
for brevity, these properties are not peculiarly mentioned. Similar as for
disks, for an integer λ, λ ·B denotes the scaled box of size λ · 2` centered
at B.

According to Cauchy’s root bound, we have |zi| ≤ 1+maxni=0
|ai|
|an| < 1+4·2τF ,

and thus ΓF = O(τF ). In addition, it holds that τF ≤ log(2n ·Mea(F )) ≤ n(1 +
ΓF ) ≤ 2nΓF . Following [23, Theorem 1] (or [37, Section 6.1]), we can compute
an integer approximation Γ̃P ∈ N of ΓP with ΓP + 1 ≤ Γ̃P ≤ ΓP + 8 log n+ 1
using Õ(n2ΓP ) many bit operations, where Õ(.) indicates that poly-logarithmic
factors in the argument are omitted. For this, the coefficients of F need to be
approximated to Õ(nΓF ) bits after the binary point. From Γ̃P , we can then
immediately derive an integer Γ = 2γ , with γ := dlog Γ̃P e ∈ N≥1, such that

ΓP + 1 ≤ Γ̃P ≤ Γ ≤ 2 · Γ̃P ≤ 2 · (ΓP + 8 log n+ 1). (2)

It follows that 2Γ = 2O(Γp+logn) is an upper bound for the modulus of all roots
of F , and thus we can always restrict our search for the roots to the set of all
complex numbers of absolute value 2Γ or less.
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3 Counting Roots in a Disk

3.1 Pellet’s Theorem and the Tk-Test

In what follows, let k be an integer with 0 ≤ k ≤ n = degF , and let K be a real
value with K ≥ 1. We consider the following test, which allows us to compute
the size of a cluster of roots contained in a specific disk:

Definition 1 (The Tk-Test). For a polynomial F ∈ C[x], the Tk-test on a disk
∆ := ∆(m, r) with parameter K holds if

Tk(m, r,K, F ) :

∣∣∣∣F (k)(m)rk

k!

∣∣∣∣ > K ·
∑
i 6=k

∣∣∣∣F (i)(m)ri

i!

∣∣∣∣ (3)

or, equivalently, if F (k)(m) 6= 0 and

Tk(m, r,K, F ) :
∑
i<k

∣∣∣∣F (i)(m)ri−kk!

F (k)(m)i!

∣∣∣∣+
∑
i>k

∣∣∣∣F (i)(m)ri−kk!

F (k)(m)i!

∣∣∣∣ < 1

K
. (4)

Sometimes, we also write Tk(∆,K, F ) for Tk(m, r,K, F ), or simply Tk(∆,K)
if it is clear from the context which polynomial F (or which disk ∆) is consid-
ered. Notice that if the Tk-test succeeds for some parameter K = K0, then
it also succeeds for any K with K ≤ K0. The reader may further notice that
Tk(m, r,K, F ) is equivalent to Tk(0, 1,K, F∆), with F∆(x) := F (m+ r · x).

The following result is a direct consequence of Pellet’s theorem, and, in our
algorithm, it will turn out to be crucial in order to compute the size of a cluster
of roots of F ; see [32, 51] for a proof.

Theorem 1. If Tk(m, r,K, F ) holds for some K ∈ R with K ≥ 1 and some k ∈
{0, . . . , n}, then ∆(m, r) contains exactly k roots of F counted with multiplicities.

In the remainder of this section, we derive criteria on the locations of the
roots z1, . . . , zn of F under which the Tk-test succeeds under guarantee. For
this, suppose that c1 and c2 are arbitrary real values that fulfill the following
inequality

c2 · ln
(

1 + 2K

2K

)
≥ c1 ≥

max1(k)

ln(1 + 1
8K )

(5)

For our algorithm, we will particularly focus on the special case, where K := 3
2 ,

and thus max1(k)

ln(1+ 1
8K )
≈ 12.49 · max1(k) and ln

(
1+2K

2K

)
≈ 0.29. In this case, we

further choose c1 := 16 · n and c2 := 64 · n. Hence, for simplicity, the reader may
carry these special values in mind. The following theorem provides sufficient
criteria expressed in terms of the locations of the roots of F such that the Tk-test
succeeds.

Theorem 2. Let k be an integer with 0 ≤ k ≤ n = deg(F ), let K be a real value
with K ≥ 1, and let c1 and c2 be constants that fulfill Inequality (5). For a disk
∆ = ∆(m, r), suppose that there exists a real λ with

λ ≥ max(4c2 ·max1(k) · n2, 16K ·max1(k)2 · n)

such that ∆ is (1, λ)-isolating for the roots z1, . . . , zk of F , then Tk(c1 ·∆,K, F )
holds.

11



For the special case, where K = 3
2 , c1 = 16n, c2 = 64n, and λ = 256n5,

Theorem 2 immediately yields the following result, which we will use throughout
this paper:

Corollary 1. Let ∆ be a disk in the complex space that is ( 1
16n , 16n4)-isolating

for a set of k roots (counted with multiplicity) of F . Then, Tk(∆, 3
2 , F ) holds.

We split the proof of Theorem 2 into the following two technical lemmas,
whose proofs are given in the appendix:

Lemma 1. Let ∆ := ∆(m, r) be a disk that is (1, 4c2 ·max1(k) · n2)-isolating
for the roots z1, . . . , zk, then, for all z ∈ c2 · n · ∆, it holds that F (k)(z) 6= 0.
Furthermore,

n∑
i=k+1

∣∣∣∣F (i)(m)(c1 · r)i−kk!

F (k)(m)i!

∣∣∣∣ < 1

2K
.

Lemma 2. Le λ be a real value with λ ≥ 16K ·max1(k)2 · n and suppose that
∆ := ∆(m, r) is a disk that is (1, λ)-isolating for the roots z1, . . . , zk of F , then

∑
i<k

|F (i)(m)|
|F (k)(m)|

(c1 · r)i−kk!

i!
<

1

2K
.

Notice that, in Lemma 1, we derive an upper bound, under the given as-
sumptions from Theorem 2, for the second sum in (4), whereas, in Lemma 2,
the first sum is bounded. In Lemma 1, we also state a bound on the minimal
distance from a root of the k-th derivative F (k) of F to a cluster of k roots of
F . Pawlowski [30] provides a similar but more general bound, which implies
the first part of Lemma 1. However, compared to [30], our proof is significantly
shorter and uses only simple arguments, hence we decided to integrate it in the
appendix of this paper for the sake of a self-contained presentation.

3.2 The TG
k -Test: Using Graeffe Iteration

Corollary 1 guarantees success of the Tk(∆)-test, with k = |Z(∆)| if the disk ∆
is ( 1

16n , 16n4)-isolating for a set of k roots. In this section, we use a well-known
approach for squaring the roots of a polynomial, called Graeffe iteration [4],
in order to improve upon the Tk-test. More specifically, we derive a variant
of the Tk-test, which we denote TGk -test7, that allows us to exactly count the
roots contained in some disk ∆ if ∆ is (ρ1, ρ2)-isolating for a set of k roots, with
constants ρ1 and ρ2 of size ρ1 ≈ 0.947 and ρ2 = 4

3 .

Definition 2 (Graeffe iteration). For a polynomial F (x) =
∑n
i=0 aix

i ∈ C[x],
write F (x) = Fe(x

2) + x · Fo(x2), with

Fe(x) := a2bn2 cx
bn2 c + a2bn2 c−2x

bn2 c−1 + . . .+ a2x+ a0, and

Fo(x) := a2bn−1
2 c+1x

bn−1
2 c + a2bn−1

2 c−1x
bn−1

2 c−1 + . . .+ a3x+ a1.

Then, the first Graeffe iterate F [1] of F is defined as:

F [1](x) := (−1)n[Fe(x)2 − x · Fo(x)2].

7The superscript ”G” indicates the use of Graeffe iteration.
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Algorithm 1: Graeffe Iteration

Input : Polynomial F (x) =
∑n
i=0 aix

i, and a non-negative integer N .

Output : Polynomial F [N ](x) =
∑n
i=0 a

[N ]
i xi. If F has roots z1, . . . , zn,

then F [N ] has roots z2N

1 , . . . , z2N

n , and a
[N ]
n = a2N

n

1 F [0](x) := F (x)
2 for i = 1, . . . , N do

3 F [i](x) := (−1)n[F
[i−1]
e (x)2 − x · F [i−1]

o (x)2]

4 return F [N ](x)

The first part of the following theorem is well-known (e.g. see [4]), and we
give its proof only for the sake of a self-contained presentation. For the second
part, we have not been able to find a corresponding result in the literature.
Despite the fact that we consider the result (in particular, the lower bound for
‖F [1]‖∞) to be of independent interest, we will use it in the analysis of our
approach.

Theorem 3. Denote the roots of F by z1, . . . , zn, then it holds that F [1](x) =∑n
i=0 a

[1]
i x

i = a2
n ·
∏n
i=1(x − z2

i ). In particular, the roots of the first Graeffe
iterate F [1] are the squares of the roots of F . In addition, we have

n2 ·max1(‖F‖∞)2 ≥ ‖F [1]‖∞ ≥ ‖F‖2∞ · 2−4n.

Proof. See Appendix 7.1

We can now iteratively apply Graeffe iterations in order to square the roots
of a polynomial F (x) several times; see Algorithm 1.

In the previous section, we have shown that Tk(∆, 3
2 , F ) holds if the disk ∆ is

( 1
16n , 16n4)-isolating for a set of k roots. That is, in order to guarantee success of

the Tk-test, a cluster consisting of k roots must be separated from the remaining
roots by a multiplicative factor that is polynomial in n (namely, 256n5). We can
now reduce the “separation factor” to a constant value (in our case, this constant
will be ≈ 1.41) when we run N , with N = Θ(log log n), Graeffe iterations first,
and then apply the Tk-test; see Algorithm 2.

From Theorem 2 and Theorem 3, we now obtain the following result:

Lemma 3. Let ∆ be a disk in the complex plane and F (x) ∈ C[x] a polynomial
of degree n. Let

N := dlog(1 + log n)e+ 5 (6)

and

ρ1 :=
2
√

2

3
≈ 0.943 and ρ2 :=

4

3
(7)

Then, we have 2N
√

1
16n > 0.947 > ρ1, and it holds:

(a) If ∆ is (ρ1, ρ2)-isolating for a set of k roots of F , then TGk (∆, 3
2 ) succeeds.

(b) If TGk (∆,K) succeeds for some K ≥ 1, then ∆ contains exactly k roots.
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Algorithm 2: TGk (∆,K)-Test

Input : Polynomial F (x), disk ∆ = ∆(m, r), real value K with
1 ≤ K ≤ 3

2
Output : True or False. If the algorithm returns True, ∆ contains exactly

k roots.

1 Call Algorithm 1 with input F∆(x) := F (m+ r · x) and

N := dlog(1 + log n)e+ 5, which returns F
[N ]
∆

2 return Tk(0, 1,K, F [N ](x))

Proof. The lower bound on ρ(n) := 2N
√

1
16n follows by a straight forward com-

putation that shows that ρ(n) (considered as a function in n only) is strictly

increasing and that ρ(2) ≈ 0.947 > 2
√

2
3 ≈ 0.943. Now, let F

[N ]
∆ be the polyno-

mial obtained from F∆ after performing recursive N Graeffe iterations; for the
definition of F∆, see Section 2. If ∆ is (ρ1, ρ2)-isolating for a set of k roots of F ,
then the unit disk ∆′ := ∆(0, 1) is also (ρ1, ρ2)-isolating for a set of k roots of
F∆. That is, ∆′ contains k roots of F∆ and all other roots of F∆ have absolute

value larger than 4
3 . Hence, we conclude that F

[N ]
∆ has k roots of absolute value

less than ρ2N

1 < 1
16n , whereas the remaining roots have absolute value larger than

ρ2N

2 ≥ 16n4. Hence, from Corollary 1, we conclude that Tk(∆′, 3
2 , F

[N ]
∆ ) succeeds.

This shows (a). Part (b) is an immediate consequence of Theorem 1 and the
fact that Graeffe iteration does not change the number of roots contained in the
unit disk.

Notice that, in the special case where k = 0, the failure of TG0 (∆) already
implies that 4

3 ·∆ contains at least one root.

We also fix the following result, which is a direct consequence of Theorem 3.
We will later make use of it in the analysis of our algorithm:

Corollary 2. Let F∆ and F
[N ]
∆ be defined as in Algorithm 2. Then, it holds:

log(‖F [N ]
∆ (x)‖∞, ‖F [N ]

∆ (x)‖−1
∞ ) = O(log n · (n+ log(‖F∆‖∞, ‖F∆‖−1

∞ )).

3.3 The T̃G
k -Test: Using Approximate Arithmetic

So far, the Tk-test is formulated in a way such that, in general, high-precision
arithmetic, or even exact arithmetic, is needed in order to compute its output.
Namely, if the two expressions on both sides of (3) are actually equal, then
exact arithmetic is needed to decide equality. Notice that, in general, we cannot
even handle this case as we have only access to (arbitrary good approximations
of the coefficients of the input polynomial F . But even if the two expression
are different but almost equal, then we need to evaluate the polynomial F and
its higher order derivatives with a very high precision in order to decide the
inequality, which induces high computational costs. This is a typical problem
that appears in many algorithms, where a sign predicate P is used to draw
conclusions, which in turn decide a branch of the algorithm. Suppose that,

similar as for the Tk-test (with E` = |F (k)(m)|·rk
k! and Er =

∑
i6=k

|F (i)(m)|·ri
i! ),
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there exist two non-negative expressions E` and Er such that P succeeds8 if and
only if E` − Er has a positive sign (or, equivalently, if E` > Er). We further
denote by P 3

2
the predicate that succeeds if and only if the stronger inequality

E` − 3
2 · Er > 0 holds.9 Then, success of P 3

2
implies success of P, however,

a failure of P 3
2

does, in general, not imply that P fails as well. As already

mentioned above for the special case, where P = Tk(m, r, 1, F ), it might be
computationally expensive (or even infeasible) to determine the outcome of P,
namely in the case where the two expressions E` and Er are equal or almost
equal. In order to avoid such undesirable situations, we propose to replace the
predicate P by a corresponding so-called soft-predicate [51], which we denote
by P̃. P̃ does not only return True or False, but may also return a flag called
“Undecided”. If it returns True or False, the result of P̃ coincides with that
of P. However, if P̃ returns Undecided, we may only conclude that E` is a
relative 3

2 -approximation of Er (i.e., 2
3 · E` < Er <

3
2 · E`). We briefly sketch

our approach and give details in Algorithm 3: In the first step, we compute
approximations Ẽ` and Ẽr of the values E` and Er, respectively. Then, we check
whether we can already compare the exact values E` and Er by just considering
their approximations and taking into account the quality of approximation. If
this is the case, we are done as we can already determine the outcome of P.
Hence, we define that P̃ returns True (False) if we can show that E` > Er
(E` < Er). Otherwise, we iteratively increase the quality of the approximation
until we can either show that E` > Er, E` < Er, or 2

3 · E` ≤ Er ≤ 3
2 · E`. We

may consider the latter case as an indicator that comparing E` and Er is difficult,
and thus P̃ returns Undecided in this case.

It is easy to see that Algorithm 3 terminates if and only if at least one of
the two expressions E` and Er is non-zero, hence we make this a requirement.
In the following lemma, we further give a bound on the precision to which the
expressions E` and Er have to be approximated in order to guarantee termination
of the algorithm.

Lemma 4. Algorithm 3 terminates for an L that is upper bounded by

L0 := 2 · (log(max(E`, Er)
−1) + 4).

Proof. Suppose that L ≥ log(max(E`, Er)
−1) + 4. We further assume that

E` = max(E`, Er); the case Er = max(E`, Er) is then treated in analogous
manner. It follows that

E+
r ≤ Er + 2−L+1 ≤ E` + 2−L+1 ≤ 9

8
· E` ≤

3

2
· E` − 2−L+2 ≤ 3

2
· E−` .

Hence, if, in addition, 2
3 · E

+
` ≤ E−r , then the algorithm returns Undecided in

Step 10. Otherwise, we have 9
8 · E` ≥ E` + 2−L+1 ≥ E+

` > 3
2 · E

−
r , and thus

E−` ≥ E` − 2−L+1 ≥ 7

8
· E` ≥

3

4
· E` + 2−L+1 ≥ E−r + 2−L+1 ≥ E+

r ,

which shows that the algorithm returns True in Step 6. Since we double L
in each iteration, it follows that the algorithm must terminate for an L with
L < 2 · (log(max(E`, Er)

−1) + 4).

8We assume that the predicate P either returns “True” or “False”. We say that P succeeds
if it returns True. Otherwise, we say that it fails.

9You may replace 3
2

by an arbitrary real constant K larger than 1.
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Algorithm 3: Soft-predicate P̃
Input : A predicate P defined by non-negative expressions E` and Er,

with E` 6= 0 or Er 6= 0; i.e. P succeeds if and only if E` > Er.
Output : True, False, or Undecided. In case of True (False), P succeeds

(fails). In case of Undecided, we have 2
3 · E` < Er ≤ 3

2 · E`.
1 L := 1
2 while True do

3 Compute L-bit approximations Ẽ` and Ẽr of the expressions E` and
Er, respectively.

4 E±` := max(0, Ẽ` ± 2−L) and E±r := max(0, Ẽr ± 2−L)

5 if E−` > E+
r then

6 return True

// It follows that E` > Er.

7 if E+
` < E−r then

8 return False

// It follows that E` < Er.

9 if 2
3 · E

+
` ≤ E−r < E+

r ≤ 3
2 · E

−
` , then

10 return Undecided

// It follows that 2
3 · E` ≤ Er ≤

3
2 · E`.

11 L := 2 · L

Notice that if P̃ returns True, then P also succeeds, however, this does not
hold for the opposite direction. In addition, if P 3

2
succeeds, then E` > Er and

E` cannot be a relative 3
2 -approximation of Er. Hence, P̃ must return True.

We conclude that our soft-predicate is somehow located ”in between” the two
predicates P and P 3

2
.

We now return to the special case, where P = Tk(m, r, 1, F ), with E` =
|F (k)(m)|·rk

k! and Er =
∑
i6=k

|F (i)(m)|·ri
i! the two expressions on the left and

the right side of (3), respectively. Then, success of P implies that the disk
∆ = ∆(m, r) contains exactly k roots of F , whereas a failure of P yields no
further information. Now, let us consider the corresponding soft predicate
P̃ = T̃k(∆, F ) of P = Tk(∆, F ). If P̃ returns True, then this implies success
of P. In addition, notice that success of Tk(∆, 3

2 , F ) implies that P̃ returns

True, and thus we may replace Tk(∆, 3
2 , F ) by T̃k(∆, F ) in the second part of

Theorem 2. Similarly, in Lemma 3, we may also replace TGk (∆, 3
2 , F ) by the

soft-version T̃Gk (∆, F ) of TGk (∆, F ). We give more details for the computation of

T̃k(∆, F ) and T̃Gk (∆, F ) in Algorithm 4 and Algorithm 5, which are essentially
applications of Algorithm 3 to the predicates Tk(∆, F ) and TGk (∆, F ). The
lemma below summarizes our results. Based on Lemma 4, we also provide a
bound on the precision L for which Algorithm 4 terminates and a bound for the
bit complexity of Algorithm 4. A corresponding bound for the bit complexity of
carrying out the T̃Gk (∆, F )-test for all k = 0, . . . , n is given in Lemma 5.

Lemma 5. For a disk ∆ := ∆(m, r) in the complex plane and a polynomial
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Algorithm 4: T̃k(∆, F )-test

Input : A polynomial F (x) as in (1), a disk ∆ := ∆(m, r) in the complex
plane, and an integer k with 0 ≤ k ≤ n.

Output : True, False, Undecided. If the algorithm returns True, the disk
∆(m, r) contains exactly k roots.

1 L := 1
2 while True do

3 Compute an approximation F̃∆(x) =
∑n
i=0 f̃ix

i of the polynomial

F∆(x) :=
∑n
i=0 fi · xi := F (m+ r · x) such that f̃i · 2L+dlog(n+1)e ∈ Z

and |fi − f̃i| < 2−L+dlog(n+1)e for all i.
// (L+ dlog(n+ 1)e)-bit approximation of F∆.

4 f−i := max(0, |f̃i| − 2−L−dlog(n+1)e) for i = 0, . . . , n.

5 f+
i := |f̃i|+ 2−L−dlog(n+1)e for i = 0, . . . , n.

// lower and upper bounds for |fi|.
6 if f−k −

∑
i 6=k f

+
i > 0 then

7 return True

// It follows that Tk(∆, F ) succeeds.

8 if
∑
i 6=k f

−
i − f

+
k > 0 then

9 return False

// It follows that Tk(∆, F ) fails.

10 if
∑
i 6=k f

−
i − 2

3 · f
+
k ≥ 0 and 3

2 · f
−
k −

∑
i 6=k f

+
i ≥ 0 then

11 return False

12 L := 2 · L

F ∈ C[x] of degree n, the T̃k(∆, F )-test terminates with an absolute precision L
that is upper bounded by

L(∆, F ) := L(m, r, F ) := 2 ·
(
4 + log(‖F∆‖−1

∞ )
)
. (8)

If Tk(∆, 3
2 , F ) succeeds, the T̃k(∆, F )-test returns True. The cost for running

the T̃k(∆, F )-test for all k = 0, . . . , n is upper bounded by

Õ(n(n · log(m, r) + τF + L(∆, F )))

bit operations. The algorithm needs an Õ(n · log(m, r) + τF + L(∆, F ))-bit
approximation of F .

Proof. Let P := Tk(∆, 1, F ) be the predicate that succeeds if and only if E` > Er,
with E` := |fk| and Er :=

∑
i 6=k |fi|. Then, E±` := f±k and E±r :=

∑
i6=k f

±
i are

lower and upper bounds for E` and Er, respectively, such that |E±` −E`| ≤ 2−L+1

and |E±r − Er| ≤ 2−L+1. Hence, Lemma 4 yields that Algorithm 4 terminates
for an L smaller than 2 · (4 + log(max(E`, Er)

−1)) ≤ L(∆, F ).
We have already argued above that success of the predicate P 3

2
= Tk(∆, 3

2 , F )

implies that P̃ = T̃k(∆, F ) returns True. Hence, it remains to show the claim on
the bit complexity for carrying out the T̃k(∆, F )-test for all k = 0, . . . , n. For
a given L, we can compute an (L + dlog(n + 1)e)-bit approximation F̃∆(x) =
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Algorithm 5: T̃Gk (∆, F )-Test

Input : Polynomial F (x) ∈ C[x], a disk ∆ := ∆(m, r) in the complex
space.

Output : True, False, or Undecided. If the algorithm returns True, ∆
contains exactly k roots.

1 Let F
[N ]
∆ (x) be the N -th Graeffe iterate of F∆(x) := F (m+ r · x), where

N := dlog(1 + log n)e+ 5

2 Output T̃k(0, 1, F
[N ]
∆ ).

∑n
i=0 f̃ix

i of F∆ with a number of bit operations that is bounded by Õ(n(τF +
n log(m, r) + L)); e.g. see the first part of the proof of [38, Lemma 17]. For a
fixed k, the computation of the signs of the sums in each of the three IF clauses
needs n additions of dyadic numbers with denominators of bitsize dlog(n+1)e+L
and with numerators of bitsize O(L+ n log(r) + τF ), hence the cost is bounded
by O(n(τF + n log(r) + L)) bit operations. Notice that, when passing from
one k to a k′ 6= k, the corresponding sums in one IF clause differ only by two
terms, that is, f±k and f±k′ . Hence, we can decide all IF clauses for all k using
O(n) additions. Furthermore, we double the precision L in each step, and the
algorithm terminates for an L smaller than L(∆, F ). Hence, L is doubled at
most logL(∆, F ) many times, and thus the total cost for all k is bounded by
Õ(n(τF + n log(m, r) + L(∆, F ))) bit operations.

We now extend the above soft-variant of the Tk-test to a corresponding
soft-variant of the TGk -test, which we denote T̃Gk ; see Algorithm 5 for details.
The following result, which can be considered as the ”soft variant” of Lemma 3,
then follows immediately from Lemma 3 and Lemma 5:

Lemma 6 (Soft-version of Lemma 3). Let ∆ := ∆(m, r) be a disk in the complex
plane, F (x) ∈ C[x] be a polynomial of degree n, and let N , ρ1 and ρ2 be defined
as in Lemma 3. Then, it holds:

(a) If ∆ is (ρ1, ρ2)-isolating for a set of k roots of F , then T̃Gk (∆, F ) succeeds.

(b) If T̃Gk (∆, F ) succeeds, then ∆ contains exactly k roots.

For the complexity analysis of our root isolation algorithm (see Section 4), we
provide a bound on the total cost for running the T̃Gk (∆)-test for all k = 0, . . . , n:

Lemma 7. The total cost for carrying out all T̃Gk (∆, F )-tests, with k = 0, . . . , n,
is bounded by

Õ(n(τF + n log(m, r) + L(∆, F )))

bit operations. For this, we need an Õ(τF + n log(m, r) + L(∆, F ))-bit approxi-
mation of F .

Proof. According to Lemma 5, the computation of T̃k(0, 1, F
[N ]
∆ ) needs an L-bit

approximation F̃
[N ]
∆ of F

[N ]
∆ , with L bounded by

Õ(n+ τ
F

[N]
∆

+ L(0, 1, F
[N ]
∆ )) = Õ(n+ log(‖F [N ]

∆ ‖∞, ‖F [N ]
∆ ‖−1

∞ )). (9)
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Given such an approximation F̃
[N ]
∆ , the cost for running the test for all k =

0, . . . , n is then bounded by Õ(n(n+ τ
F

[N]
∆

+ L)) bit operations. In each of the

N = O(log log n) Graeffe iterations, the size of log(‖F [i]
∆ ‖∞, ‖F

[i]
∆ ‖−1
∞ ) increases

by at most a factor of two plus an additive term 4n; see Theorem 3. Hence, we
must have

log(‖F [i]
∆ ‖∞, ‖F

[i]
∆ ‖
−1
∞ ) = O(log n · log(‖F∆‖∞, ‖F∆‖−1

∞ ) + n log n)

= Õ(n log(m, r) + τF + L(∆, F ))

for all i = 0, . . . , N . We conclude that the above bound (9) for L can be replaced
by Õ(τF + n log(m, r) + L(∆, F )).

It remains to bound the cost for computing an approximation F̃
[N ]
∆ of F

[N ]
∆

with ‖F [N ]
∆ − F̃N∆ ‖∞ < 2−L. Suppose that, for a given ρ ∈ N we have computed

an approximation F̃∆ of F∆, with ‖F∆ − F̃∆‖∞ < 2−ρ. According to [40,
Theorem 8.4] (see also [18, Theorem 14] and [38, Lemma 17]), this can be achieved
using a number of bit operations bounded by Õ(n(n log(m, r) + τF + ρ)). In

each Graeffe iteration, an approximation F̃
[i]
∆ of F

[i]
∆ is split into two polynomials

F̃
[i]
∆,o and F̃

[i]
∆,e with coefficients of comparable bitsize (and half the degree), and

an approximation F̃
[i+1]
∆ of F

[i]
∆ is then computed as the difference of F̃

[i]
∆,e and

x · F̃ [i]
∆,o. If all computations are carried out with fixed point arithmetic and

an absolute precision of ρ bits after the binary point, then the precision loss

in the i-th step, with i = 0, . . . , N , is bounded by O(log n + log ‖F [i]
∆ ‖∞) =

O(2i(log n + log ‖F∆‖∞)) = O(log n(log n + log ‖F∆‖∞)) bits after the binary
point. The cost for the two multiplications and the addition is bounded by

Õ(n(ρ+ log ‖F [i]
∆ ‖∞)). Since there are only N = O(log log n) many iterations,

we conclude that it suffices to start with an approximation F̃∆ of F∆, with
‖F∆ − F̃∆‖∞ < 2−ρ and ρ = Õ(n log(m, r) + τF + L(∆, F )). The total cost for
all Graeffe iterations is then bounded by Õ(nρ) bit operations, hence the claim
follows.

3.4 A Short Summary

Before we proceed with the section, where we give our algorithm for isolating
the complex roots of F , we briefly summarize the key properties of the T̃Gk -test:

• If T̃Gk (∆, F ) holds for some disk ∆, then ∆ contains exactly k roots.

• If ∆ is (ρ1, ρ2)-isolating for a set of k roots of F , where ρ1 = 2
√

2
3 ≈ 0.94

and ρ2 = 4
3 , then T̃Gk (∆, F ) succeeds.

• In particular, T̃G0 (∆, F ) succeeds if 4
3 ·∆ contains no root.

• The cost for running the T̃Gk (∆, F )-test for all k is bounded by Õ(n(τF +
n log(m, r) + log(‖F∆‖−1

∞ ))) bit operations, and thus directly related to
the size of ∆ and the maximum absolute value that F takes on the disk ∆.
Here, we use that maxz∈∆ |F (z)| as shown in the proof of Theorem 3.
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4 CIsolate: An Algorithm for Root Isolation

We can now formulate our algorithm, which we denote by CIsolate, to isolate
all complex roots of a polynomial F (x) that are contained in some given box10

B ⊂ C. If the enlarged box 2B contains only simple roots of F , then our
algorithm returns isolating disks for all roots that are contained in B. However,
it might also return isolating disks for some of the roots that are not contained
in B but in the complement 2B \ B. In particular, in the important special case,
where F is square-free and where we start with a box B that is known to contain
all complex roots of F , our algorithm isolates all complex roots of F . Before we
give details, we need some further definitions, which we provide in Section 4.1.
In Section 4.2, we first give an overview of our algorithm before we provide
details and the proof for termination and correctness.

4.1 Connected Components

Given a set S = {B1, . . . , Bm} of boxes B1, . . . , Bm ⊂ C, we say that two
boxes B,B′ ∈ S are connected in S (B ∼S B′ for short) if there exist boxes
Bi1 , . . . , Bis′ ∈ S with Bi1 = B, Bis′ = B′, and Bij ∩ Bij+1

6= ∅ for all
j = 1, . . . , s′ − 1. This yields a decomposition of S into equivalence classes
C1, . . . , Ck ⊂ S that correspond to maximal connected and disjoint components
C̄` =

⋃
i:Bi∈C`

Bi, with ` = 1, . . . , k. Notice that C` is defined as the set of

boxes Bi that belong to the same equivalence class, whereas C̄` denotes the
closed region in C that consists of all points that are contained in a box Bi ∈ C`.
However, for simplicity, we abuse notation and simply use C to denote the set
of boxes B contained in a component C as well as to denote the set of points
contained in the closed region C̄. Now, let C = {B1, . . . , Bs} be a connected
component consisting of equally sized boxes Bi of width w, then we define (see
also Figure 1):

• BC is the square axis-aligned closed box in C of minimal width such that
C ⊂ BC and

min
z∈BC

<(z) = min
z∈C
<(z) and max

z∈BC

=(z) = max
z∈C
=(z),

where <(z) denotes the real part and =(z) the imaginary part of an
arbitrary complex value z. We further denote mC the center of BC , and
∆C := ∆(mC ,

3
4w(BC)) a disk containing BC , and thus also C. Notice

that ρ1 ·∆C , with ρ1 = 2
√

2
3 , also contains C.

We further define the diameter w(C) of the component C to be the width

of BC , i.e. w(C) := w(BC), and r(C) := w(C)
2 to be the radius of C.

• C+ :=
⋃
i:Bi∈C 2Bi is defined as the union of the enlarged boxes 2Bi.

Notice that C+ is the open w
2 -neighborhood of C (w.r.t. max-norm).

10As already mentioned in Section 2, we only consider closed, axis-aligned and squared
boxes B ⊂ C. Hence, these properties are not further mentioned throughout the following
considerations.
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4.2 The Algorithm

We start with an informal description of our algorithm CIsolate, where we
focus on the main ideas explaining the ratio behind our choices. For the sake
of comprehensibility, we slightly simplified some steps at the cost of exactness,
hence, the considerations below should be taken with a grain of salt. A precise
definition of the algorithm including all details is given in Algorithm 6 and the
subroutines NewtonTest (Algorithm 7) and Bisection (Algorithm 8).

From a high-level perspective, our algorithm follows the classical subdivision
approach of Weyl [47]. That is, starting from the input box B, we recursively
subdivide B into smaller boxes, and we remove boxes for which we can show that
they do not contain a root of F . Eventually, the algorithm returns regions that
are isolating for a root of F . In order to discard a box B, with B ⊂ B, we call
the T̃G0 (∆B , F )-test, with ∆B the disk containing B. The remaining boxes are
then clustered into maximal connected components. We further check whether
a component C is well separated from all other components, that is, we test
whether the distance from C to all other components is considerably larger than
its diameter. If this is the case, we use the T̃Gk -test, for k = 1, . . . , n, in order
to determine the “multiplicity” kC of the component C, that is, the number of
roots contained in the enclosing disk ∆C ; see Line 9 of Algorithm 6 and Figure 1
for details. If kC = 1, we may return an isolating disk for the unique root.
Otherwise, there is a cluster consisting of two or more roots, which still have to
be separated from each other. A straight-forward approach to separate these
roots from each other is to recursively subdivide each box into four equally sized
boxes and to remove boxes until, eventually, each of the remaining components
contains exactly one root that is well separated from all other roots; see also
Algorithm 8 (Bisection) and Figure 3. However, this approach itself yields only
linear convergence to the roots, and, as a consequence, there might exist (e.g.
for Mignotte polynomials) long sequences C1, . . . , Cs of interlaced connected
components with invariant multiplicity k, that is C1 ⊃ C2 ⊃ · · · ⊃ Cs and
k = kC1

= · · · = kCs
> 1. The main idea to traverse such sequences more

efficiently is to consider a cluster of k roots as a single root of multiplicity k and
to use Newton iteration (for multiple roots) to compute a better approximation
of this root. For this, we use an adaptive trial and error approach similar to the
quadratic interval refinement (QIR) method, first introduced by Abbott [1]; see
Algorithm 7 (NewtonTest) and Figure 2. In its original form, QIR has been
combined with the secant method to efficiently refine an interval that is already
known to be isolating for a real root of a real polynomial. Recent work [35]
considers a modified approach of the QIR method that uses Newton iteration (for
multiple roots) and Descartes’ Rule of Signs. It has been refined and integrated
in almost optimal methods [38, 36] for isolating and approximating the real
roots of a real (sparse) polynomial, where it constitutes the crucial ingredient for
quadratic convergence. In this paper, we further extend the QIR approach for
approximating complex roots of a polynomial. The main crux of the Newton-
Test (and the QIR method in general) is that we never have to check in advance
whether Newton iteration actually yields an improved approximation of the
cluster of roots. Instead, correctness is verified independently using the T̃Gk -test.
In order to achieve quadratic convergence in the presence of a well isolated root
cluster, we assign, in each iteration, an integer NC to each component C. The
reader may think of NC as the actual speed of convergence to the cluster of roots
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Algorithm 6: CIsolate
Input : A polynomial F (x) ∈ C[x] as in (1) and a box B ⊂ C of width

w0 := w(B) = 2`0 , with `0 ∈ Z; F has only simple roots in 2B.
Output : A list O of disjoint disks ∆1, . . . ,∆s ⊂ C such that, for each

i = 1, . . . , s, the disk ∆i as well as the enlarged disk 2∆i is
isolating for a root of F that is contained in 2B. In addition, for
each root z contained in B, there exists a disk ∆i ∈ O that
isolates z.

1 O = {} // list of isolating disks
2 C = {(B, 4)} // list of pairs (C,NC), where C is a connected

// component consisting of sC equally sized boxes,

// each of width 2`C , where `C ∈ Z≤`0 . NC is an

// integer with NC = 22nC and nC ∈ N≥1.

// * Preprocessing *//
3 repeat
4 Let (C,NC) be the unique pair in C

// If
⋃
C:(C,NC)∈C C = B, then there exists a

// unique component C with (C,NC) ∈ C.
// * linear step *//

5 {C ′1, . . . , C ′`} :=Bisection(C) and C = {(C ′1, 4), . . . , (C ′`, 4)}
6 until

⋃
C:(C,NC)∈C C 6= B

// * Main Loop *//
7 while C is non-empty do
8 Remove a pair (C,NC) from C.
9 if 4∆C ∩C ′ = ∅ for each C ′ 6= C with (C ′, NC′) ∈ C and there exists a

kC ∈ {1, . . . , n} such that T̃GkC (2∆C , F ) and T̃GkC (4∆C , F ) succeed then

// If the second condition holds, kC equals the
// number of roots contained in 2∆C and 4∆C .

if kC = 1 then
10 Add the disk 2∆C to O, continue

11 if kC > 1 then
12 Let xC ∈ B \ C be an arbitrary point with distance 2`C−1

from C and distance 2`C−1 or more from the boundary of B.
// Existence of such a point follows from the
// proof of Theorem 4. It holds that F (xC) 6= 0.

13 if NewtonTest(C,NC , kC , xC) = (Success, C ′) then
// * quadratic step *//

14 Add (C ′, N2
C) to C, continue

// * linear step *//
15 {C ′1, . . . , C ′`} := Bisection(C).

16 Add (C ′1,max(4,
√
NC)), . . . , (C ′`,max(4,

√
NC)) to C.

17 return O.
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Algorithm 7: NewtonTest

Input : A tuple (C,NC , kC , xC): C = {B1, . . . , BsC} is a connected
component consisting of equally sized and aligned boxes Bi
contained in B and of size 2`C , NC is an integer of the form 22nC

with nC ∈ N≥1, kC is the number of roots in 4∆C , and xC is a
point with F (xC) 6= 0.

Output : Either Failure or (Success, C ′), where C ′ ⊂ C is a connected
component that contains all roots contained in C. C ′ consists of

at most 4 equally sized and aligned boxes, each of width 2`C−1

NC
.

1 if Algorithm 3 does not return False for the input E` := 4r(C)|F ′(xC)|
and Er := |F (xC)| then // This implies |F (xC)| < 6r(C)|F ′(xC)|.

2 for L = 1, 2, 4, . . . do
3 Compute L-bit approximations of F (xC) and F ′(xC) and derive an

(6− `C + logNC)-bit approximation x̃′C of the Newton iterate

x′C :=xC − kC ·
F (xC)

F ′(xC)
such that |x̃′C − x′C | <

1

64
· 2`C

NC
. (10)

// For details, consider the similar computation
// in [38, Step 2 of NewtonTest].

4 Let ∆′ := ∆(x̃′C ,
1
8 ·

2`C

NC
).

5 if T̃GkC (∆′, F ) holds // This implies that ∆′ contains all

// roots that are contained in 2∆C .
6 then
7 Decompose each box Bi into 4N2

C many equally sized subboxes Bi,j
8 return (Success, C ′), with C ′ the unique connected component

consisting of all boxes Bi,j of width 2`C−1

NC
that intersect ∆′.

9 return Failure

contained in C. Then, in case of success of the NewtonTest, the component
C is replaced by a component C ′ ⊂ C of diameter w(C ′) ≈ w(C) · N−1

C . In
this case, we “square the speed” of convergence, that is, we set NC′ := N2

C .
If the NewtonTest fails, we fall back to bisection and decrease the speed
of convergence, that is, we set NC′ :=

√
NC for all components C ′ into which

the component C is split. Our analysis shows that the NewtonTest is the
crucial ingredient for quadratic convergence. More precisely, we prove that, in
the worst-case, the length of each sequence C1, . . . , Cs as above is logarithmic in
the length of such a sequence if only bisection is used; see Lemma 10.

We now turn to the proof of termination and correctness of the algorithm.
In addition, we derive further properties, which will turn out to be useful in the
analysis.

Theorem 4. The algorithm CIsolate terminates and returns a correct result.
In addition, at any stage of the algorithm, it holds that:

(a) For any (C,NC) ∈ C, the connected component C consists of disjoint,
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Algorithm 8: Bisection

Input : A connected component C = {B1, . . . , BsC} consisting of aligned
boxes Bi, each of width w(Bi) = 2`C .

Output : A list of components C ′j ⊂ C, each consisting of aligned and

equally sized boxes of width 2`C−1. The union of all C ′j contains
all roots of F that are contained in C.

1 C ′ := ∅
2 for each Bi ∈ C do
3 Remove Bi from C and subdivide Bi into four equally sized sub-boxes

Bi,j , with j = 1, . . . , 4, and add these to C ′.

4 for each B ∈ C ′ do

5 if T̃G0 (∆B , F ) holds // This implies that B contains no root.
6 then
7 Remove B from C ′.

8 Compute maximal connected components C ′1, . . . C
′
` from the boxes in C ′.

9 return C ′1, . . . C
′
`

aligned, and equally-sized boxes B1, . . . , BsC , each of width 2`C with some
`C ∈ Z.

(b) For any two distinct pairs (C1, NC1
) ∈ C and (C2, NC2

) ∈ C, the distance
between C1 and C2 is at least max(2`C1 , 2`C2 ). In particular, the enlarged
regions C+

1 and C+
2 are disjoint.

(c) The union of all connected components C covers all roots of F contained
in B. In mathematical terms,

F (z) 6= 0 for all z ∈ B \
⋃

C:(C,NC)∈C

C.

(d) For each box B produced by the algorithm that is not equal to the initial
box B, the enlarged box 2B contains at least one root of F .

(e) Each component C considered by the algorithm consists of sC ≤ 9 · |Z(C+)|
boxes. The total number of boxes in all components C is at most 9-times
the number of roots contained in 2B, that is,11∑

C:∃(C,NC)∈C

sC ≤ 9 · |Z(2B)|.

(f) For each component C produced by the algorithm, w(C) ≤ 4w(B)
NC

, and

(g) σF (2B)2

217·n2·w(B) ≤ 2`C ≤ w(B) and 4 ≤ NC ≤
(

29·w(B)
σF (2B)

)2

, where σF (2B) :=

mini:zi∈2B σF (zi) is the separation of F restricted to 2B.

11We will later prove that even the total number of boxes produced by the algorithm in all
iterations is near linear in the number Z(2B) of roots contained in 2B.
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4∆C := ∆(m, 3w(BC))

2∆C := ∆(m, 3
2w(BC))

∆C := ∆(m, 3
4w(BC))

BC

B1 B2 B3

B4

B5

C1

m := mC

C2
C3

Figure 1: A component C1 := C consisting of 5 boxes B1, . . . B5, the enclosing
box BC with center m := mC and the disks ∆C , 2∆C and 4∆C . The disk 4∆C

intersects the component C2 but does not intersect the component C3.

Proof. Part (a) follows almost immediately via induction. Namely, a compo-
nent C consisting of boxes of size 2`C is either replaced by a single connected
component consisting of (at most 4) boxes of width 2`C−1/NC in line 14 after
NewtonTest was called, or it is replaced by a set of connected components
C ′ ⊂ C, each consisting of boxes of size 2`C−1 in line 16 after Bisection was
called.

For (b), we can also use induction on the number of iterations. Suppose first
that a component C is obtained from processing a component D in line 16. If
C is the only connected component obtained from D, then, by the induction
hypotheses, it follows that the distance to all other components C ′, with C ′∩D =
∅, is at least max(2`D , 2`C′ ) ≥ max(2`C , 2`C′ ). If D splits into several components
C1, . . . , Cs, with s > 1, their distance to any component C ′, with C ′ ∩D = ∅,
is at least max(2`D , 2`C′ ) ≥ max(2`Ci , 2`C′ ) for all i. In addition, the pairwise
distance of two disjoint components Ci and Cj is at least 2`C−1 = 2`Ci for
all i. Finally, suppose that, in line 14, we replace a component D by a single
component C. In this case, C ⊂ D and C consists of boxes of width 2`−1/NC .
Hence, the distance from C to any other component C ′ is also lower bounded by
max(2`C , 2`C′ ).

For (c), notice that in line 7 of Bisection, we discard a box B only if
the T̃G0 (∆B , F )-test succeeds. Hence, in this case, B contains no root of F . It
remains to show that each root of F contained in C is also contained in C ′, where
C ′ ⊂ C is a connected component as produced in line 14 after NewtonTest was
called. If the T̃GkC (∆′, F )-test succeeds, then ∆′ contains kC roots; see Lemma 6.
Hence, since ∆′ is contained in 2∆C , and since 2∆C also contains kC roots (as
T̃GkC (2∆C , F ) holds), it follows that ∆′ contains all roots that are contained in
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BC

B1 B2

B3

C ′
m

∆′

Figure 2: The NewtonTest: If T̃GkC (∆′, F ), with ∆′ := ∆(x̃′C ,
2`C−3

NC
), succeeds,

then ∆′ contains exactly kC roots of F . Since T̃GkC (2∆C , F ) also succeeds and
C+ ⊂ 2∆C , it follows that ∆′ contains all roots contained in C+. The sub-boxes

Bi,j of width 2`C−1

NC
that intersect ∆′ yield a connected component C ′ of width

at most 2`C

NC
≤ w(C)

NC
. In addition, all roots that are contained in C are also

contained in C ′. Further notice that if x̃′C is contained in C, then ∆′ intersects
at most four boxes Bi,j . Otherwise, it intersects at most three boxes. In each
case, the boxes are connected with each other, and the corresponding connected

component C ′ has width at most 2`C

NC
≤ w(C)

NC
.

C. The disk ∆′ intersects no other component C ′ 6= C as the distance from C
to C ′ is larger than 2`C , and thus, by induction, we conclude that (∆′ ∩ B) \ C
contains no root of F . This shows that C ′ already contains all roots contained
in C.

We can now prove part (d) and part (e). Any box B 6= B that is considered by
the algorithm either results from the Bisection or from NewtonTest routine.
If a box B results from the Bisection routine, then the disk ∆B = ∆(mB , w(B))
contains at least one root of F , and thus also 2B contains at least one root. If a
box B results from the NewtonTest routine, then 2B even contains two roots
or more. Namely, in this case, the T̃GkC -test succeeds for a disk ∆′ = ∆(m′, r′),

with r′ = 1
4w(B) and some kC > 1, and thus ∆′ contains kC roots. Since 2B

contains the latter disk, 2B must contain at least kC roots. This shows (d).
From (d), we immediately conclude that, for each component C 6= B produced
by the algorithm, the enlarged component C+ contains at least one root of F .
In addition, since C+ is contained in 2B, each of these roots must be contained
in 2B. The first part in (e) now follows from the fact that, for a fixed root of F ,
there can be at most 9 different boxes B of the same size such that 2B contains
this root. From part (b), it follows that, for any two distinct components C1

and C2, the enlarged components C+
1 and C+

2 do not intersect, and thus the
total number of boxes in all components is upper bounded by 9 · |Z(2B)|, which
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∆C := ∆(m, 3
4w(BC))

BC

Figure 3: The Bisection routine: The orange sub-boxes are all boxes on
which the T̃G0 -test does not hold. They are grouped together into three maximal
connected components, which contain all roots contained in C. All other sub-
boxes are discarded.

proves the second part in (e).
For (f), we may assume that NC > 4 as, otherwise, the inequality becomes

trivial. Notice that there is a unique maximal sequence C1, . . . , Cs of components
Ci, with C1 := B, Cs = C, and Ci ⊃ Ci+1, that connects B with C. In
order to reach NC , there must have been quadratic steps from Ci to Ci+1

for indices i = im, with m = 1, . . . , log log
√
NC and NCi

= 22m

. Since, in
each such quadratic step, the width of Ci is lowered by a factor N−1

Ci
or more,

and since, in each linear step, the width of Ci does not grow, we must have

w(C) ≤ w(B) · (4 · 16 · · ·
√
NC)−1 ≤ w(B) · 2−(2nC +1) = 2w(B)

NC
.

We can now show that the algorithm terminates; the inequality in (g) will
then follow from the proof of termination: Suppose that the algorithm produces
a sequence C1, C2, . . . , Cs of connected components, with s ≥ log n + 6 and
C1 ⊃ C2 ⊃ · · · ⊃ Cs. If, for at least one index i ∈ {1, . . . , s − 1}, Ci+1 is
obtained from Ci via a quadratic step, then w(Ci+1) ≤ w(Ci)/NCi

≤ w(Ci)/4.

Hence, in this case, we also have w(Cs) ≤ w(C1)
4 . Now, suppose that each Ci+1

is obtained from Ci via a linear step, then each box in Ci has size 2`C1
−i+1, and

thus w(Cs) ≤ 9n · 2`C1
−s+1 ≤ w(C1)

2 . This shows that, after at most log n + 6
iterations, the width of each connected component is halved. Hence, in order to
prove termination of the algorithm, it suffices to prove that each component C
of small enough width is terminal, that is C is replaced by an isolating disk in
line 10 or discarded in NewtonTest or Bisection. The following argument
shows that each component C of width smaller than w := 1

32 · σF (2B) that is
not discarded is replaced by an isolating disk. We have already shown that C+

must contain a root ξ of F , and thus we have |mC − ξ| < 2w(C) < σF (ξ)/16
and rC < σF (ξ)/16. We conclude that the disks 2∆C and ∆(mC , 8rC) are
both isolating for ξ. Then, Lemma 6 guarantees that the T̃G1 (2∆C , F )-test and
the T̃G1 (4∆C , F )-test succeed. Hence, if 4∆C intersects no other component
C ′ 6= C, then the algorithm replaces C by the isolating disk 2∆C in line 10,
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because the if-clause in line 9 succeeds with kC = 1. It remains to show that
the latter assumption is always fulfilled. Namely, suppose that 4∆C intersects a
component C ′ 6= C, and let B and B′ be arbitrary boxes contained in C and
C ′, respectively. Then, the enlarged boxes 2B and 2B′ contain roots ξ and ξ′,
respectively, and ξ and ξ′ must be distinct as C+ and (C ′)+ are disjoint. Hence,
the distance between B and B′, and thus also the distance δ between C and C ′,
must be larger than σF (2B)−2`C −2`C′ = 32w−2`C −2`C′ ≥ 31w−2`C′ . Hence,
if 2`C′ ≤ 25w, then 4∆C ⊂ ∆(mC , 6w) does not intersect C ′. Vice versa, if
2`C′ > 25w, then the distance between C and C ′ is at least max(2`C , 2`C′ ) > 25w,
and thus 4∆C does not intersect C ′ as well. Notice that (g) now follows almost
directly from the above considerations. Indeed, let C 6= B be an arbitrary
component C and D be any component that contains C. Since D is not terminal,

we conclude that w(D) ≥ w, and thus ND ≤ 4w(B)
w according to (f). Since NC

is smaller than or equal to the square of the maximum of all values ND, the
second inequality in (g) follows. The first inequality follows from the fact that

2`C ≥ minD:C⊂D
2`D−1

ND
≥ w

9n·maxD:C⊂D ND
.

For correctness, we remark that each disk D returned by the algorithm is
actually isolating for a root of F contained in 2B and that 2D also isolates this
root. Namely, for each component C produced by the algorithm, the enlarged
component C+ contains at least one root. Now, if the if-clause in line 9 succeeds
on C with kC = 1, the T̃G1 (2∆C , F )-test succeeds, and thus the disk 2∆C contains
exactly one root ξ. Hence, since ∆C contains C+, this root must be contained in
C+. In addition, if also the T̃G1 (4∆C , F )-test succeeds, then the disk 4∆C isolates
ξ as well. Finally, it remains to show that the algorithm returns an isolating
disk for each root ξ that is contained in B. From (a) and (c), we conclude that
there is a unique maximal sequence S = C1, C2, . . . , Cs of connected components,
with C1 ⊃ C2 ⊃ · · · ⊃ Cs, such that each Ci contains ξ. Now, when processing
Cs, Cs cannot be replaced by other connected components C ′ ⊂ Cs as one of
these components would contain ξ, and this would contradict the assumption
that the sequence S is maximal. Since Cs contains ξ, it cannot be discarded in
Bisection or NewtonTest, hence Cs is replaced by an isolating disk for ξ in
line 10.

Remarks. We remark that our requirement on the input polynomial F to have
only simple roots in 2B is only needed for the termination of the algorithm.
Running the algorithm on an arbitrary polynomial (having multiple roots) yields
connected components, which converge against the roots of F contained in B.
Namely, if B is not discarded in the first iteration, then the enlargement C+ of
each component C contains at least one root. Since C consists of at most 9n
boxes, each of size 2`C , it holds that each point in C approximates a root of F
to an error of less than n · 2`C+4. In addition, the union of all components covers
all roots contained in B, and thus our algorithm yields L-bit approximations
of all roots in B if we iterate until `C ≤ −4 − log n − L for all components C.
In the special situation, where we run the algorithm on an input box that is
known to contain all roots and if, in addition, the number k of distinct roots of
F is given as input, our algorithm can be used to return isolating regions for
all roots. Namely, in this situation, we may proceed until the total number of
connected components C equals k. Then, each of the enlarged components C+

isolate a root of F . The latter problem is of special interest in the context of
computing a cylindrical algebraic decomposition, where we have to isolate the
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roots of a not necessarily square-free polynomial with algebraic coefficients. In
this case, it might be easier to first compute k via a symbolic pre-computation
and to consider sufficiently good approximations of the initial polynomial instead
of computing approximations of the square-free part of F . A corresponding
approach based on approximate polynomial factorization has been presented
in [23], and we refer the reader to this work for more details and for a motivation
of the problem.

5 Complexity Analysis

We split the analysis of our algorithm into two parts. In the first part, we focus
on the number of iterations that are needed to isolate the roots of F (x) that
are contained in a given box B. We will see that this number is near-linear12

in |Z(2B)|, the number of roots contained in the enlarged box 2B. We further
remark that, for any non-negative constant ε, the total number iterations is
near-linear in |Z((1 + ε) · B)|, however, for the sake of a simplified analysis, we
only provide details for the case ε = 1. Hence, we conclude that our algorithms
performs near-optimal with respect to the number of subdivision steps if the
input box B is chosen in a way such that each root contained in (1 + ε) · B is also
contained in B; this is trivially fulfilled if B is chosen large enough to contain all
roots of F .

Then, in the second part, we give bounds on the number of bit operations
that are needed to process a component C. This eventually yields a bound on
the overall bit complexity that is stated in terms of the degree of F , the absolute
values and the separations of the roots in Z(2B), and the absolute value of the
derivative F ′ at these roots. For the special case, where our algorithm is used to
isolate all roots of a polynomial of degree n with integer coefficients of bitsize
less than τ , the bound on the bit complexity simplifies to Õ(n3 + n2τ).

5.1 Size of the Subdivision Tree

We consider the subdivision tree TB, or simply T , induced by our algorithm,
where B is the initial box/component. More specifically, the nodes of the
(undirected) graph T are the pairs (C,NC) ∈ C produced by the algorithm,
and two nodes (C,NC) and (C ′, NC′) are connected via an edge if and only if
C ⊂ C ′ (or C ′ ⊂ C) and there exists no other component C ′′ with C ⊂ C ′′ ⊂ C ′
(C ′ ⊂ C ′′ ⊂ C). In the first case, we say that (C,NC) is a child of (C ′, NC′),
whereas, in the second case, (C,NC) is a parent of (C ′, NC′). For brevity, we
usually omit the integer NC , and just refer to C as the nodes of T . Notice that,
according to Theorem 4, the so obtained graph is indeed a tree rooted at B. A
node C is called terminal if and only if it has no children. We further use the
following definition to refer to some special nodes:

Definition 3. A node (C,NC) ∈ T is called special, if one of the following
conditions is fulfilled:

• The node (C,NC) is terminal.

12More precisely, it is linear in |Z(2B)| up to a factor that is polynomially bounded in logn,
log log(w(B)), and log log(σF (2B)−1). If 2B contains no root, then there is only one iteration.
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• The node (C,NC) is the root of T , that is, (C,NC) = (B, 4).

• The node (C,NC) is the last node for which Bisection is called in the
preprocessing phase of the algorithm. We call this node the base of T .
Notice that the first part of the tree consists of a unique path connecting
the root and the base of the tree.

• For each child D of C, it holds that Z(D+) 6= Z(C+).

Roughly speaking, except for the root and the base of T , special nodes either
isolate a root of F or they are split into two or more disjoint clusters each
containing roots of F . More precisely, from Lemma 4, we conclude that, for any
two distinct nodes C,D ∈ T , the enlarged regions Z(C+) and Z(D+) are either
disjoint or one of the nodes is an ancestor of the other one. In the latter case, we
have C+ ⊂ D+ or D+ ⊂ C+. Since, for any two children D1 and D2 of a node C,
the enlarged regions D+

1 and D+
2 are disjoint, we have

∑k
i=1Z(D+

i ) ≤ Z(C+),
where D1 to Dk are the children of C. Hence, since each D+

i contains at least
one root, the fourth condition in Definition 3 is violated if and only if C has
exactly one child D and Z(C+) = Z(D+). The number of special nodes is at
most 2 · (1 + |Z(2B)|) as there is one root and one base, at most |Z(2B)| terminal
nodes C with C 6= B, and each occurrence of a special node, which fulfills the
fourth condition, yields a reduction of the non-negative number

∑
C(|Z(C+)|−1)

by at least one. The subdivision tree T now decomposes into special nodes
and sequences of non-special nodes C1, . . . , Cs, with C1 ⊃ C2 ⊃ · · · ⊃ Cs, that
connect two consecutive special nodes. The remainder of this section is dedicated
to the proof that the length s of such a sequence is bounded by some value smax

of size

smax = O
(
log n+ log log(w(B) + log log(σF (2B)−1)

)
(11)

= O
(
log
(
n · log(w(B)) · log(σF (2B)−1)

))
.

For the proof, we need the following lemma, which provides sufficient condi-
tions for the success of the NewtonTest.

Lemma 8 (Success of NewtonTest). Let C = {B1, . . . , BsC} be a non-
terminal component with B \C 6= ∅, let BC be the corresponding enclosing box of
width w(C) and center m = mC , and let ∆ := ∆C = ∆(m, r), with r := 3

4w(C),
be the corresponding enclosing disk. Let z1, . . . , zk be the roots contained in the
enlarged component C+, and suppose that all these roots are contained in a disk
∆′′ := ∆(m′′, r′′) of radius r′′ = 2−20−logn r

NC
. In addition, assume that the

disk ∆(m, 22 logn+20NCr) contains none of the roots zk+1, . . . , zn. Then, the
algorithm CIsolate performs a quadratic step, that is, C is replaced by a single

component C ′ of width w(C ′) ≤ w(C)
NC

.

Proof. We first argue by contradiction that 4∆ does not intersect any other
component C ′, which implies that the first condition of the and in the if-clause
in line 9 is fulfilled. If 4∆ intersects C ′, then the distance between C and
C ′ is at most 8r, and thus 2`C′ < 8r as the distance between C and C ′ is at
least max(2`C , 2`C′ ). Hence, we conclude that the disk ∆(m, 64r) completely
contains 2B′ for some box B′ of C ′. Since 2B′ also contains at least one root
and since each such root must be distinct from any of the roots z1, . . . , zk, we
get a contradiction.
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According to our assumptions, each of the two disks ∆ and 8∆ contains
the roots z1, . . . , zk but no other root of F . Hence, according to Lemma 6,
both tests T̃Gk (2∆, F ) and T̃Gk (4∆, F ) must succeed. Since we assumed C to be
non-terminal, we must have k ≥ 2, and thus the algorithm reaches line 11 and
the NewtonTest is called. We assumed that C does not entirely cover the
initial box B, hence, in a previous iteration, we must have discarded a box of
width 2`C or more whose boundary shares at least one point with the boundary
of C. Hence, we can choose a point in such a box as the point xC ∈ B \C in the
NewtonTest such that the distance from xC to C is equal to 2`C−1 and such
that the distance from xC to the boundary of B is at least 2`C−1. Notice that
also the distance from xC to any other component C ′ is at least 2`C−1, and thus
the distance from xC to any root of F is at least 2`C−1, which is larger than or
equal to r

27n as C consists of at most 9n boxes. From our assumptions, we thus
conclude that

|xC −m′′| ≤ 4r and |xC − zi| ≥
r

27n
for i ≤ k,

and

|xC − zi| ≥ 220n2NC · r − 4r > 219n2NC · r for i > k.

Using the fact that F ′(x)
F (x) =

∑n
i=1

1
x−zi for any x with F (x) 6= 0, we can bound

the distance from the Newton iterate x′C as defined in (10) to the ”center” m′′

of the cluster of roots:∣∣∣∣1k (xC −m′′)F ′(xC)

F (xC)
− 1

∣∣∣∣ =

∣∣∣∣∣1k
k∑
i=1

xC −m′′

xC − zi
+

1

k

∑
i>k

xC −m′′

xC − zi
− 1

∣∣∣∣∣
=

1

k

∣∣∣∣∣
k∑
i=1

zi −m′′

xC − zi
+
∑
i>k

xC −m′′

xC − zi

∣∣∣∣∣ ≤ 1

k

k∑
i=1

|zi −m′′|
|xC − zi|

+
∑
i>k

|xC −m′′|
|xC − zi|

≤ r′′

r/(27n)
+
n− k
k

4r

n2219NCr
<

27nr

rn2220NC
+

4nr

rn2220NC
≤ 1

214nNC
.

Hence, there is an ε ∈ C, with |ε| < 1
214nNC

, such that 1
k

(xC−m′′)F ′(xC)
F (xC) = 1 + ε.

This implies that |F
′(xC)|
|F (xC)| ≥

1
|xC−m′′| ≥

1
4r , and thus the NewtonTest must

reach line 2 as Algorithm 3 must return True or Undecided. With x′C =

xC − k · F (xC)
F ′(xC) , it further follows that

|m′′ − x′C | = |m′′ − xC | ·

∣∣∣∣∣∣1− 1
1
k

(xC−m′′)F ′(xC)
F (xC)

∣∣∣∣∣∣ = |m′′ − xC | ·
∣∣∣∣1− 1

1 + ε

∣∣∣∣
=

∣∣∣∣ε(m′′ − xC)

1 + ε

∣∣∣∣ ≤ 4r

213nNC
≤ r

211nNC
<

2`C

128NC
.

We can therefore bound

|x̃′C −m′′| ≤ |x̃′C − x′C |+ |x′C −m′′| ≤
2lC

64NC
+ |x′C −m′′|

≤ 2lC

64NC
+

2lC

128NC
<

2lC

32NC
.
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Since the distance from m′′ to any of the roots z1, . . . , zk is also smaller

than r” < 2lC

32NC
, we conclude that the disk ∆(x̃′C ,

2lC

16NC
) contains all roots

z1, . . . , zk. Hence, we conclude that ∆′ := ∆(x̃′C ,
2lC

8NC
) is ( 1

2 ,
4
3 )-isolating for

the roots z1, . . . , zk, and thus the T̃Gk (∆′, F )-test must succeed according to
Lemma 6. This shows that we reach line 8 and that the NewtonTest returns
Success.

In essence, the above lemma states that, in case of a well separated cluster of
roots contained in some component C, our algorithm performs a quadratic step.

That is, it replaces the component C by a component C ′ of width w(C ′) ≤ 2`C

NC
≤

w(C)
NC

, which contains all roots that are contained in C. Now, suppose that there
exists a sequence C1, . . . , Cs of non-special nodes, with C1 ⊃ · · · ⊃ Cs, such
that Cs has much smaller width than C1. Then, C1 contains a cluster of nearby
roots but no other root of F . We will see that, from a considerably small (i.e.,
comparable to the bound in (11)) index on, this cluster is also well separated from
the remaining roots (with respect to the size of Ci) such that the requirements
in the above lemma are fulfilled. As a consequence, only a small number of steps
from Ci to Ci+1 are linear, which in turn implies that the whole sequence has
small length. For the proof, we need to consider a sequence (si)i = (xi, ni)i,
which we define in a rather abstract way. The rationale behind our choice for
si is that, for all except a small number of indices and a suitable choice for
si, the sequence (si)i behaves similarly as the sequence (2`Ci , log logNCi)i. We
remark that (si)i has already been introduced in [38], where it serves as a crucial
ingredient for the analysis of the real root isolation method ANewDSC.

Lemma 9 ([38], Lemma 25). Let w, w′ ∈ R+ be two positive reals with w > w′,
and let m ∈ N≥1 be a positive integer. We recursively define the sequence
(si)i∈N≥1

:= ((xi, ni))i∈N≥1
as follows: Let s1 = (x1, n1) := (w,m), and

si+1 = (xi+1, ni+1) :=

{
(εi · xi, ni + 1) with an εi ∈ [0, 1

Ni
], if xi

Ni
≥ w′

(δi · xi,max(1, ni − 1)) with a δi ∈ [0, 1
2 ], if xi

Ni
< w′,

where Ni := 22ni
and i ≥ 1. Then, the smallest index i0 with xi0 ≤ w′ is bounded

by 8(n1 + log log max(4, ww′ )).

We are now ready to prove the claimed bound on the maximal length of a
sequence of non-special nodes:

Lemma 10. Let P = (C1, N1), . . . , (Cs, Ns), with C1 ⊃ · · · ⊃ Cs, be a sequence
of consecutive non-special nodes. Then, we have s ≤ smax with an smax of size

smax = O
(
log n+ log log(w(B)) + log log(σF (B+)−1)

)
= O

(
log
(
n · log(w(B)) · log(σF (2B)−1)

))
.

Proof. We distinguish two cases. We first consider the special case, where P is
an arbitrary sub-sequence of the unique initial sequence from the child of the
root of the tree to the parent of the base of the tree; if there exists no non-special
root in between the root and the base of the tree, there is nothing to prove. Due
to Theorem 4, part (e), Cs consists of at most 9 · |Z(2B)| boxes. It follows that
22s ≤ 9n as Ci consists of at least 22i boxes. This yields s = O(log n).
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We now come to the case, where we can assume that each Ci is a successor of
the base of the tree. In particular, we have B \ Ci 6= ∅. W.l.o.g., we may further
assume that z1, . . . , zk are the roots contained in the enlarged component C+

1 .
Since all Ci are assumed to be non-special, each C+

i contains z1 to zk but no
other root of F . Let wi := w(Ci) be the width of the component Ci, ri := 3

4 ·wi
be the radius of the enclosing disk ∆i := ∆Ci , and 2`i := 2`Ci be the width of
each of the boxes into which Ci decomposes. Notice that, for each index i, the
enlarged component C+

i is contained in the disk 2∆i of radius 3
2 ·wi, and thus the

disk 2∆s of radius 3
2 · ws contains the roots z1 to zk. We now split the sequence

P into three (possibly empty) subsequences P1 = (C1, N1), . . . , (Ci1 , Ni1), P2 =
(Ci1+1, Ni1+1), . . . , (Ci2 , Ni2), and P3 = (Ci2+1, Ni2+1), . . . , (Cs, Ns), where i1
and i2 are defined as follows:

• i1 is the first index with 2`1 > 23 logn+32 ·Ni1 · 2`i1 . If there exists no such
index, we set i1 := s. Further notice that, for any index i larger than i1,
we also have 2`1 > 23 logn+32 ·Ni · 2`i , which follows from induction and

the fact that 2`i and Ni are replaced by 2`i

2Ni
and N2

i in a quadratic step.

• i2 is the first index larger than or equal to i1 such that the step from i2 to
i2 + 1 is quadratic and 2`s · 23 logn+32 ·Ni2 ≥ 2`i2 . If there exists no such
index i2, we set i2 := s.

From the definition of i2, it is easy to see that P3 has length bounded by O(log n).
Namely, if i2 = s, there is nothing to prove, hence we may assume that the step
from i2 to i2+1 is quadratic and 2`s ≥ 2−3 logn−32 ·N−1

i2
·2`i2 = 2−3 logn−31 ·2`i2+1 .

Hence, we conclude that s− (i2 + 1) ≤ 3 log n+ 31 as `i is reduced by at least 1
in each step.

Let us now consider an arbitrary index i from the sequence P2. The distance
from an arbitrary point in C+

i to the boundary of C+
1 is at least 2`1−1 ≥

23 logn+31 · Ni · 2`i > 22 logn+20 · Ni · ri, where the latter inequality follows
from ri = 3

4wi ≤
3
4 · 9n · 2

`i . Since C+
1 contains only the roots z1, . . . , zk, this

implies that the distance from an arbitrary point in C+
i to an arbitrary root

zk+1, . . . , zn is larger than 22 logn+20 · Ni · ri. Hence, the second requirement
from Lemma 8 is fulfilled for each component Ci with i ≥ i1. Now, suppose
that 2`s · 23 logn+32 · Ni < 2`i , then the roots z1 to zk are contained in a disk
of radius 3

2 · 9n · 2
`s < 2−20−logn ·N−1

i · ri, and thus also the first requirement
from Lemma 8 is fulfilled. Hence, from the definition of i2, we conclude that
the algorithm performs a quadratic step if and only if 2`s · 23 logn+32 ·Ni < 2`i .
We now define the sequence si := (2`i , log logNi), where i runs from i1 to the

first index, denoted i′1, for which 2
`i′1 < 2`s · 2−3 logn−32. Then, according to

Lemma 9, it holds that i′1 − i1 ≤ 8(m + log log max(4, ww′ )), with w := 2`i1 ,
m := log logNi1 , and w′ := 2`s · 23 logn+32. Theorem 4 (g) yields that m =
O(log log(w(B)) + log log(σF (2B)−1). Hence, since i2 − i′1 ≤ 3 log n + 32, we
conclude that i2 − i1 ≤ O(log n+ log log(w(B)) + log log(σF (2B)−1)).

It remains to show that the latter bound also applies to i1. From the
upper bound on the numbers Ni, it follows the existence of an mmax of size
O(log n + log log(w(B)) + log log(σF (2B)−1)) such that each sequence of con-
secutive quadratic steps has length less than mmax, and such that after mmax

consecutive linear steps, the number Ni drops to 4. Since the number `i de-
creases by at least 1 in each step, there exists an index i′ of size O(log n)
such that 2`i′ · 23 logn+34 < 2`1 . Now, if the sequence Ci′ , Ci′+1, . . . starts with
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mmax or more consecutive linear steps, we must have Ni′+mmax
= 4, and thus

2`i′+mmax · 23 logn+32Ni′+mmax
< 2`1 . Hence, we conclude that i1 ≤ i′ +mmax in

this case. Otherwise, there must exist an index i′′, with i′ ≤ i′′ < i′ + mmax,
such that the step from i′′ to i′′ + 1 is quadratic, whereas the step from i′′ + 2 is
linear. Then, it holds that

Ni′′+2 =
√
Ni′′+1 = Ni′′ and 2`i′′+2 ≤ 2`i′′+1 =

2`i′′

2Ni′′
< 2−3 logn−32 2`1

Ni′′
,

which implies that i1 ≤ i′′ + 2 ≤ i′ + mmax + 1 = O(log n + log log(w(B)) +
log log(σF (2B)−1)). Hence, the claimed bound on i1 follows.

We can now state the first main result of this section, which immediately
follows from the above bound on smax and the fact that there exists at most
2 · (|Z(2B)|+ 1) special nodes:

Theorem 5. The subdivision tree T induced by CIsolate has size

|T | ≤ 2 · (|Z(2B)|+ 1) · smax (12)

= O
(
|Z(2B)| · log

(
n · log(w(B)) · log(σF (2B)−1)

))
.

If B contains all complex roots of F , and if log(w(B)) = O(ΓF + log n),13 then
the above bound writes as

O
(
n · log

(
n · ΓF · log(σ−1

F )
))
. (13)

We can also give simpler bounds for the special case, where our input
polynomial has integer coefficients. Suppose that f(x) ∈ Z[x] has integer
coefficients of bitsize less than τ . We first divide f by its leading coefficient lcf(f)
to obtain the polynomial F := f/ lcf(f), which meets our requirement from (1)
on the leading coefficient. Then, we have ΓF = O(τ) and σF = 2−O(n(logn+τ));
e.g. see [52] for a proof of the latter bound. Hence, we obtain the following
result:

Corollary 3. Let f be a polynomial of degree n with integer coefficients of bitsize
less than τ , F := f/ lcf(f), and let B be a box of width 2O(ΓF +logn). Then, the
algorithm CIsolate (with input F and B) uses

O(|Z(2B)| · log(nτ)) = O(n · log(nτ))

iterations to isolate all roots of F that are contained in B.

The above results show that our algorithm performs near-optimal with respect
to the number of components that are produced by the algorithm. In addition,
since each component consists of at most 9n boxes, we immediately obtain an
upper bound for the total number of boxes produced by the algorithm that
exceeds the bound from (13) by a factor of n. Indeed, we will see that the actual
number of boxes is considerably smaller, that is, of size O(|Z(2B)| · smax · log n),
which exceeds the bound in (13) only by a factor log n. For the proof, we consider
two mappings φ and ψ, where φ maps a component C = {B1, . . . , BsC} to a root
zi ∈ C+, and ψ maps a box Bj to a root zi ∈ 4Bj ∩C+. The claimed bound for

13Notice that we can compute such a box B with Õ(n2ΓF ) bit operations; see Section 2.
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the total number of boxes then follows from the fact that we can define φ and ψ
in a way such that the pre-image of an arbitrary root zi ∈ 2B (under each of the
two mappings) has size O(smax · log n). The rest of this section is dedicated to
the definitions of φ and ψ and the proof of the latter claim. In what follows, we
may assume that 2B contains at least one root as, otherwise, all four sub-boxes
of B are already discarded in the first iteration of the preprocessing phase.

Definition 4. For a root ξ ∈ 2B, we define the canonical path Pξ of ξ as the
unique path in the subdivision tree TB that consists of all nodes C with ξ ∈ C+.

Notice that the canonical path is well-defined as, for any two nodes C1 and
C2, either C+

1 and C+
2 are disjoint or one of the two components contains the

other one. We can now define the maps φ and ψ:

Definition 5 (Maps φ, ψ). Let C = {B1, . . . , BsC} be a node in the subdivision
tree TB, and let B := Bj be an arbitrary box in C. Then, we define maps φ and
ψ as follows:

(φ) Starting at C, we descend in the subdivision tree as follows: If the current
node D is a non-terminal special node, we go to the child E that minimizes
|Z(E+)|. If D is terminal, we stop. If D is non-special, then there is a
unique child of D to proceed with. Proceeding this way, the number |Z(D+)|
is at least halved in each non-terminal special node D, except for the base
node. Hence, since any sequence of consecutive non-special nodes has length
at most smax, it follows that after at most smax · (logd(|Z(C+)|)e+ 1) ≤
smax · (log n+ 2) many steps we reach a terminal node F . We define φ(C)
to be an arbitrary root contained in Z(F+).

(ψ) According to part (d) of Theorem 4, the enlarged box 2B contains at least
one root ξ. Now, consider the unique maximal subpath P ′ξ = C1, C2, . . . , Cs
of the canonical path Pξ that starts at C1 := C. If s ≤ dlog(18n)e, we
define ψ(B) := ξ. Otherwise, consider the component C ′ := Cdlog(18n)e
and define ψ(B) := φ(C ′).

It is clear from the above definition that φ(C) is contained in C+ as each
root contained in the enlarged component F+ corresponding to the terminal
node F is also contained in C+. It remains to show that ψ(B) ∈ 4B ∩ C+. If
the length of the sub-path P ′ξ is dlog(18n)e or less, then ψ(B) = ξ ∈ 2B, hence,

there is nothing to prove. Otherwise, the boxes in C ′ have width less than w(B)
18n .

Since C ′ can contain at most 9n boxes, we conclude that w(C ′) < w(B)
2 , and

since ξ is contained in B+ as well as in (C ′)+, we conclude that (C ′)+ ⊂ 4B,
and thus ψ(B) = φ(C ′) ∈ 4B ∩ (C ′)+ ⊂ 4B ∩ C+.

Now, consider the canonical path Pξ = C1, . . . , Cs, with C1 := B, of an
arbitrary root ξ ∈ 2B. Then, a component C can only map to ξ via φ if
C = Ci for some i with s − i ≤ smax · (log |Z(2B)| + 1). Hence, the pre-
image of ξ has size O(smax · log |Z(2B)|). For the map ψ, notice that a box
B can only map to ξ if B is contained in a component C = Ci for some i
with s − i = smax · (log |Z(2B)| + 1) + dlog(18n)e. Since, for each component
Ci, there exist at most a constant number of boxes B′ ∈ Ci with ξ ∈ 4B′, we
conclude that the pre-image of ξ under ψ is also of size O(smax · logZ(2B)).
Hence, the total number of boxes produced by our algorithm is bounded by
O(|Z(2B)| · smax · log |Z(2B)|). We summarize:
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Theorem 6. Let ξ ∈ 2B be a root of F contained in the enlarged box 2B. Then,
with mappings φ and ψ as defined in Definition 5, the pre-image of ξ under each
of the two mappings has size O(smax · log |Z(2B)|). The total number of boxes
produced by the algorithm CIsolate is bounded by

O(smax · |Z(2B)| · log |Z(2B)|) = Õ
(
n · log

(
log(w(B)) · log(σF (2B)−1)

))
We can also state a corresponding result for polynomials with integer coeffi-

cients:

Corollary 4. Let f ∈ Z[x] and F := f/ lcf(f) be polynomials and B be a box as
in Corollary 3. Then, for isolating all roots of f contained in B, the algorithm
CIsolate (with input polynomial F ) produces a number of boxes bounded by

O(|Z(2B)| · log(nτ) · log n) = O(n log2(nτ)).

5.2 Bit Complexity

We first assume that the input box B fulfills the following conditions

w(B) ≥ 1

2
, (14)

max
z∈2B

log(z) ≤ 4 + Γ = O(ΓF + log n), and (15)

max
z∈2B

log(z) ≤ 4 + min
z∈2B

log z, (16)

where Γ = 2γ , with γ ∈ N, is the upper bound for ΓF as computed in Section 2.
We remark that the above assumptions are only needed for the sake of a

simplified analysis. That is, they are actually not needed in the algorithm and
we are confident that a refined analysis would yield the same complexity results.
In an implementation, we propose to just run the algorithm on an initial box of
interest, no matter whether it meets the above requirement or not. Of special
interest is the case, where our input box B is chosen large enough such that it
contains all roots of F ; e.g. this is the case if the vertices of B are the four points
±2Γ ± i · 2Γ. Unfortunately, B does not fulfill the third condition 16, however,
we will later show how to efficiently compute a set of disjoint boxes B1, . . . , Bm
such that each Bi fulfills all of the above conditions and such that each root of
F is contained in at least one, but at most a constant number of, boxes. We
can then run our algorithm on each of the boxes Bi and, finally, merge isolating
disks that isolate the same root.

Now, let B be an input box fulfilling the above conditions, let C = {B1, . . . , BsC}
be a component produced by the algorithm, and let

SC := {ξ ∈ C+ a root of F with ξ = φ(C) or ξ = ψ(Bi) for some i} (17)

be the images of C and the boxes Bi under the maps φ and ψ as defined in
Definition 5. The following analysis will then show that the cost for processing
the component C can be related to values that depend only on the roots in SC ,
such as their separations or their absolute values. More specifically, we will prove
that the bit-complexity of processing C is bounded by∑

ξ∈SC

Õ
(
n · (τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))

)
. (18)
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When summing up the above cost over all components C produced by our
algorithm, each root ξ ∈ 2B is considered at most O(smax · log(|Z(2B)|) =
O(smax · log n) many times; see Theorem 6. Hence, we obtain the upper bound∑

ξ∈2B

Õ
(
n · (τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))

)
for the overall bit-complexity of the algorithm. For the proof of the bound in
(18), we need the following lemma, which provides a lower bound on the maximal
value that |F (x)| takes on a disk ∆(m, r). The bound is related to some value K,
with K > 1, such that the enlarged disk K ·∆ contains at least two roots, the
number of roots contained in K ·∆, and the separation as well as the absolute
value of the derivative F ′ at an arbitrary such root.

Lemma 11. Let ∆ := ∆(m, r) ⊂ C be a disk and K, with K > 1, be a real
number such that the enlarged disk ∆̂ := K ·∆ contains at least two roots of F .
Then, it holds that

max
z∈∆
|F (z)| > σF (zi) · |F ′(zi)| · (nK)−µ · 2−3n,

where zi is an arbitrary root of F contained in ∆̂, and µ denotes the number of
roots contained in ∆̂.

Proof. See Appendix 7.3.

When processing a component C = {C1, . . . , CsC}, our algorithm calls the T̃Gk -

test in up to three steps. More specifically, in line 9 of CIsolate the T̃Gk (2∆C , F )-

and the T̃Gk (4∆C , F )-test are called for k = 1, . . . , n. In NewtonTest, the

T̃GkC (∆′, F )-test is called, with ∆′ as defined in line 4 in NewtonTest. Finally,

in Bisection, the T̃G0 (∆Bi,j
, F )-test is called for each of the 4 sub-boxes Bi,j ,

j = 1, . . . , 4, into which each box Bi of C is decomposed. The following lemma
provides bounds for the cost of each of these calls:14

Lemma 12. When processing a component C, the cost for each call of a T̃Gk -test
is bounded by

Õ
(
n · (τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))

)
bit operations, where ξ is an arbitrary root of F contained in C+. If C+ contains
no root, then the cost is bounded by Õ(n(τF + n logw(C))) bit operations.15 As
input, the algorithm requires an L-bit approximation of F with

L = Õ
(
τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1)

)
.

Proof. We may assume that C+ contains at least one root; see Footnote 15. We
first consider the special case, where 4∆C contains exactly one root zi0 . In this

14Notice that the cost for calling the T̃Gk (∆, F )-test for a specific k is comparable to the cost
for calling it for all k = 0, . . . , n.

15 Notice that this can only happen if C = B and 2B contains no root. In this case,
the algorithm performs four T̃G0 (∆C , F )-tests in the preprocessing phase and then discards

C. Due to Lemma 7, the cost for this test is bounded by Õ(n(τF + n log(w(C)))) as |z| =

2O(logw(C)+logn) for all z ∈ C and L(∆C , F ) ≥ |F (mC)| ≥ |an| ·
∏n
i=1 |mC − zi| ≥

1
2n+2 .
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situation, the algorithm produces a sequence C1, . . . , Cs of components, with
C1 = C, s = O(log n), and Cs terminal. Further notice that the NewtonTest
is never called, and thus each step from Ci to Ci+1 must be linear. Hence, we
only have to estimate the cost for calling the T̃Gk -test on a disk ∆ = ∆(m, r),
where ∆ = 2∆C , ∆ = 4∆C , or ∆ = ∆Bi,j . In each case, it holds that log(m, r) =
O(1) + log(zi0) due to the fact that zi0 ∈ C+ and due to our assumption (16).
Further notice that there exists a point z ∈ ∆ whose distance to zi0 is at least r/4
and whose distance to all other roots of F is larger than 1/4. Since r = 2−O(logn),
we conclude that |F (z)| = 2−O(n), and thus L(∆, F ) = 2O(n). From Lemma 7, it
now follows that the cost for each T̃Gk -test is bounded by Õ(n(n log(zi0) + τF ))
bit operations.

We now come to the case, where 4∆C contains at least two roots. Then, we
have σF (zi) ≤ n·2`C+5 for each root zi ∈ C+ as C has at most 9n boxes, and thus
the distance between any two points in 4∆C is smaller than 27n · 2`C < n · 2`C+5.

We have already shown that NC ≤ 4·w(B)
w(C) , see Theorem 4, part (f). This implies

that logNC = O(ΓF + log n+ log(σF (zi)
−1)), with zi an arbitrary root in C+.

Now, let ∆ = ∆(m, r) be a disk for which the T̃Gk -test is called, that is, either
∆ = 2∆C , ∆ = 4∆C , ∆ = ∆′, or ∆ = ∆Bi,j

. We show that

log(max
z∈∆
|F (z)|−1) = O(log(σF (zi)

−1) + log(|F ′(zi)|−1) + n log(zi) + n log n),

(19)

where zi is an arbitrary root contained in C+. In the cases, where ∆ = 2∆C

or ∆ = 4∆C , we may choose a point z ∈ C+ whose distance to zi equals σF (zi)
64n .

Notice that such a point exists as σF (zi)
64n < 2`C−1, and thus the boundary of the

disk ∆(zi, σF (zi)/(64n)) intersects C+ in some point. Then, the same argument
as in the proof of Lemma 11 shows that |F (z)| ≥ σF (zi) · |F ′(zi)| · 2−n−5. Hence,
the bound in (19) applies. In the case, where ∆ = ∆(m, r) = ∆Bi,j

, we consider

the enlarged disk ∆̂ := ∆(m,K · r), with K := 144n. Notice that the latter disk
completely contains C+, and thus Lemma 11 yields that

max
z∈∆
|F (z)| > σF (zi) · |F ′(zi)| · (144n2)−n · 2−3n,

where zi is an arbitrary root in C+. Again, the bound in (19) applies. It remains
to discuss the case, where ∆ = ∆′ = ∆(m′, r′) with r′ = 2`C−4/NC and m′ as
defined in line 4 of NewtonTest. Again, we want to apply Lemma 11, where
we consider the enlarged disk ∆̂ = ∆(m′,K · r′), with K := 210 · NC . Notice
that K is chosen large enough such that ∆̂ contains the component C+. Hence,
we obtain

max
z∈∆
|F (z)| ≥ σF (zi) · |F ′(zi)| · 2−3n(nK)−|Z(∆̂)|

≥ σF (zi) · |F ′(zi)| · 2−13n−n lognN
−|Z(∆̂)|
C

≥ σF (zi) · |F ′(zi)| · 2−13n−n logn

(
4w(B)

w(C)

)−|Z(∆̂)|

,

where zi is an arbitrary root in C+. From condition (16), we conclude that

w(B) = 2O(log(zi)), and thus w(B)−|Z(∆̂)| = 2−O(n log(zi)). Hence, it remains to

show that logw(C)−|Z(∆̂)| can be upper bounded byO(log(σ−1
i )+log(|F ′(zi)|−1)+

38



n log n+ τF + n log(zi)). Indeed, this follows from the following computation,

which relates the value w(C)|Z(∆̂)| to the absolute value of the derivative F ′ at
an arbitrary, but fixed, root zi ∈ C+:

|F ′(zi)| = |Fn| ·
∏

j 6=i:zj∈∆̂

|zi − zj |
∏

j:zj /∈∆̂

|zi − zj |

≤ |Fn| · (2Kρ)|Z(∆̂)|−1 Mea(F (zi − x))

|Fn|
≤ 22n+τF (Kρ)|Z(∆̂)|−1 max1(zi)

n

≤ 22n+τF (2`C+6)|Z(∆̂)|−1 max1(zi)
n

≤ 22n+τF (w(C) · 26)|Z(∆̂)|−1 max1(zi)
n

≤ 28n+τF ·max1(zi)
n ·
(
w(C)|Z(∆̂)|

)1/2

.

We remark that the bound on the precision demand for the input polynomial F
follows directly from Lemma 7 and the above considerations.

We can now bound the total cost of the algorithm CIsolate:

Theorem 7. Let B be a box fulfilling the conditions (14) to (16), and let C
be a component produced by the algorithm CIsolate on the input B and the
polynomial F . Then, the cost for processing C is bounded by

Õ
(∑

ξ∈SC

n · (τF + n log(w(C)) + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))
)

(20)

bit operations, with SC as defined in (17). The total cost of the algorithm is
bounded by16

Õ

(
n2 log(w(B)) +

∑
ξ∈Z(2B)

n · (τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))

)
(21)

bit operations. As input, the algorithm requires an L-bit approximation of F
with

L = Õ

(
n log(w(B)) +

∑
ξ∈Z(2B)

(τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))

)
.

Proof. We first consider the case, where 2B contains no root. Then, we have
already argued in the proof of Lemma 12 that the total cost for processing
B is bounded by Õ(n(τF + n log(w(B))) and that the algorithm requires a
Õ(τF + n log(w(B))-bit approximation of F .

If 2B contains at least one root, then, for each processed component C =
{B1, . . . , BsC}, the enlarged component C+ contains at least one root. Hence,
according to Lemma 12, when processing C, each call of a T̃Gk (∆, F )-test needs

Õ
(
n · (τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))

)
16Notice that if 2B contains at least one root, then, up to a constant, the term n2 log(w(B))

is of the same size as n2 log(ξ) for some ξ ∈ Z(2B). Hence, in this case, the bit complexity is

Õ
(∑

ξ∈Z(2B) n · (τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))
)
.
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bit operations, where ξ is an arbitrary root contained in C+.
Hence, by choosing ξ := ψ(Bi,j) for ∆ = ∆Bi,j

and ξ := φ(C) otherwise, we
obtain the bound∑

ξ∈SC

Õ
(
n · (τF + n · log(ξ) + log(σF (ξ)−1) + log(F ′(ξ)−1))

)
for the total cost of these calls. Since each root ξ ∈ 2B is contained in at most
O(smax log n) many sets SC , it follows that the total cost for all T̃Gk -tests called
by CIsolate is bounded by (21).

Notice that the cost for all other steps, except for the computation of the
Newton iterate x′C as defined in (10), are negligible. Namely, the total number N
of boxes produced by the algorithm is bounded by O(smax·|Z(2B)|·log |Z(2B)|) =
O(smax ·n log n). In addition, the bitsize bC of a box in a component C is bounded
by O(ΓF + log n+ log(σF (φ(C))−1)) = O(τF + log n+ log(σF (φ(C))−1)). Hence,
each combinatorial step, such as grouping together boxes into maximal connected
components in line 8 of Bisection, needs Õ(N) arithmetic operations with a
precision O(bC), and thus a number of bit operations bounded by Õ(N · bC),
which is dominated by (20). Summing up the latter bound over all components
C then yields a bound that is again dominated by the bound in (21).

It remains to bound the computation of the Newton iterate x′C , or more

precisely, of an approximation x̃′C of x′C with |x̃′C − x′C | < 1
64 ·

2`C

NC
. In line 12 of

CIsolate we choose a point xC ∈ B\C whose distance to C is 2`C−1 and whose
distance to the boundary of B is at least 2`C−1. Since the union of all components
covers all roots of F that are contained in B, and since the distance from C to any
other component is at least 2`C , it follows that the distance from xC to any root
of F is larger than 2`C−1. We may further assume that 4∆C contains at least
two roots as, otherwise, the NewtonTest is not called. With ∆ := ∆2`C−3(xC)
and ∆̂ := ∆(xC , 9n · 2`C+4), it holds that |F (xC)| ≥ 2−n ·maxz∈∆ |F (z)| and
4∆C ⊂ ∆̂. Hence, we can use Lemma 11 to show that

log |F (xC)|−1 ≥ log
(
σF (ξ)−1 · |F ′(ξ)|−1 · (9n · 27)n · (2n)n · 2n

)
= O(n log n+ log(σF (ξ)−1) + log(F ′(ξ)−1)),

where ξ is an arbitrary root in C+. It is then guaranteed that we succeed in
Algorithm 3 (soft-predicate) with an absolute precision L0 of size O(n log n +
log(σF (ξ)−1)+logF ′(ξ)−1+log(w(C))) = O(n log n+log(σF (ξ)−1)+log(F ′(ξ)−1)).
Notice that, when proceeding with the NewtonTest in Line 2, we also have

log(|F ′(xC)|−1) = O(n log n+ log(σF (ξ)−1) + log(F ′(ξ)−1 + ΓF )

as |F (xC)| < 6r · |F ′(xC)| must be satisfied and logw(C)−1 = O(log n+ ΓF +
log(σF (ξ)−1)). Hence, computing an approximation x̃′C of x′C with |x̃′C − x′C | <
1
64 ·

2`C

NC
needs

Õ(n(log(σF (ξ)−1) + log(F ′(ξ)−1) + τF + n · log(ξ)))

bit operations, where we again use that NC ≤ 4w(B)
w(C) . This proves the claimed

bound on the cost for processing C. For the total cost of computing all Newton
iterates x′C , we sum up the above bound over all components C, where we choose
zi := φ(C). The so obtained bound is comparable to the bound in (21).
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Again, we provide simpler bounds for the special case, where the input
polynomial f has integer coefficients:

Theorem 8. Let f ∈ Z[x] be an integer polynomial of degree n with integer
coefficients of bitsize less than τ , let F := f/ lcf(f), and let B ⊂ C be a box
fulfilling the conditions in (14) to (16). For isolating all roots of F contained in
B, the algorithm CIsolate needs Õ(n3 + n2τ) bit operations.

Proof. The claimed bound follows immediately from (21) and the fact that each
of the two sums

∑n
i=1 log(σF (zi)

−1),
∑n
i=1 log(F ′(zi)

−1) is upper bounded by

Õ(nτ), and that
∑n
i=1 log max1(zi) ≤ log Mea(F ) = O(log n + τ); e.g. see [38,

Section 2.5] for more details.

Notice that, so far, our bit complexity results do not directly apply to a
box B that contains all roots of F as, in general, such a box does not fulfill the
third condition (16). Hence, instead of considering one large input box, we first
compute a covering of all roots by means of disjoint boxes that fulfill each of the
conditions (14)-(16). Then, we run our algorithm on each of these boxes and
merge the solutions.

Lemma 13. Using Õ(n3 + n2 log Mea(F )) bit operations, we can compute a
set B′ = {B1, . . . , Bm} of squared and axis-aligned boxes B = Bi such that the
following properties are fulfilled:

(a) Each box B has size w(B) = 2j, with −1 ≤ j ≤ Γ + 1.

(b) For each B, maxz∈2B log(z) ≤ 4 + minz∈2B log(z) and maxz∈2B log(z) ≤
Γ + 4. In particular, we have logw(B) = O(1) + log(z) for any z ∈ 2B.

(c) For each B, the enlarged box 2B contains a root of F .

(d) The union of all B covers all roots of F .

(e) Each root of F is contained in a constant number of boxes B.

For the computation, we need a Õ(n2 + n log Mea(F ))-bit approximation of F .

For the proof of the above lemma, we need the following definitions: For
i = 0, 1, . . . ,Γ + 2, let Bi ⊂ C be the box of size 2i that is centered at the origin.
Notice that the boxes Bi cover all roots of F as 2Γ is an upper bound on the
absolute value of all roots. We further define ∆−1 := ∅ and ∆i := ∆(0, 3 · 2i−2)
for i = 0, 1, . . . ,Γ + 2, such that Bi ⊂ ∆i ⊂ Bi+1. For each i = 1, . . . ,Γ + 1, let
Ci be the connected component consisting of 12 boxes of size 2i−2 and 12 boxes
of size 2i−1 such that the set of points contained in Ci equals Bi+1 \ Bi−1. We
further define C0 := B1; see Figure 4 for an illustration. We fix some trivial,
however crucial, properties:

Lemma 14. Let B := {B : B ∈ Ci for some i} be the set of all boxes of which
all components Ci consists. Then, it holds:

(a) Each point z ∈ C is contained in at most a constant number of enlarged
boxes 2B, with B ∈ B.

(b) For each point z ∈ 2B, with B ∈ Ci and i ≥ 1, we have 2i−2 ≤ |z| ≤ 2i+2.
In particular, logw(B) = O(1) + log(z).
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Figure 4: On the left side are the interlaced squared boxes Bi of size 2i, with
i = 0, 1, . . . ,Γ + 2, each centered at the origin. On the right side is the connected
component C3 that corresponds to B3. In total, it consists of 24 boxes. Half of
the boxes have size 2, whereas the remaining boxes have size 4. For i ≥ 1, the
set of points contained in Ci equals Bi+1 \ Bi−1.

Proof. Trivial.

We can now compute a subset B′ ⊂ B of B that fulfills the properties from
Lemma 13 as follows: In the first step, we determine a subset C′ ⊂ C :=
{C0, . . . , CΓ+1} of the set of all Ci such that each Ci ∈ C′ contains at least one
root of F , and such that the union of all Ci ∈ C′ covers all roots of F . Then,
in the second step, we remove all boxes B ∈ Ci (for all Ci ∈ C′) for which the
T̃G0 (∆B)-test succeeds. The set B′ consisting of all remaining boxes then fulfills
the above properties as stated in Lemma 13.

For the first step, consider the result obtained from applying the T̃Gk -test,
for all k = 0, . . . , n, to the disks ∆i. For i = 0, . . . ,Γ + 2, we define

δi :=

{
−1 if none of the tests T̃Gk (∆i), for k = 0, 1, . . . , n, succeeds

k if T̃Gk (∆i) succeeds.

In addition, let δ−1 := −1. Notice that, for δi 6= −1, we may conclude that ∆i

contains exactly δi roots. In addition, it holds:

Lemma 15. Let C′ := {Ci : δi = −1 or δi−1 6= δi 6= 0}, then it holds:

(a) Each Ci ∈ C′ contains at least one root of F .

(b) The union of all Ci ∈ C′ covers all roots of F .

Proof. We first consider the case δi = −1. According to Lemma 6, we may

conclude that the annulus 4
3 ·∆i \ 2

√
2

3 ·∆i contains at least one root. Since this
annulus is contained in Ci, it follows that Ci contains at least one root. If δi > 0,
then may conclude that ∆i contains δi roots. If, in addition, δi−1 6= δi, then the
annulus ∆i \∆i−1 contains at least one root, and thus also Ci contains at least
one root. Hence, the first part follows.

For the second part, let ξ be an arbitrary root of F . Then, there must be an
index i with ξ ∈ ∆i \∆i−1. If δi = −1, then ξ is contained in Ci, which is an
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element of C′. If δi = 0, this would contradict the fact that ∆i contains ξ, hence
we can assume that δi > 0. Since ∆i−1 contains at least one root less than ∆i,
we must have δi−1 6= δi, and thus Ci ∈ C′.

The following lemma states that the set C′ can be efficiently computed.

Lemma 16. C′ can be computed with a number of bit operations bounded by

Õ(n3 + n2 log(Mea(F ))).

Proof. Let I = {i1, . . . , im} be the set of indices i for which δi = −1 or δi−1 6=
δi 6= 0. Since each component Cij contains at least one root and since each root of
F is contained in a constant number of components Ci, we must have |I| = O(n).
In order to compute I, suppose that i1, . . . , ij are already computed. In order

to determine ij+1, we apply the T̃Gk -test (for all k) to ∆ij+1. If δij+1 = −1 or
0 6= δij+1 6= δij , then we have ij+1 = ij + 1. Otherwise, we have to determine the
first index `, with ` > ij+1, for which δ` 6= δij . This can be achieved via a binary

search, where we have to apply the T̃Gk -test to O(log Γ) many disks ∆i with an
index i ≤ 2`. In order to estimate the cost for this computation, let ξ be an
arbitrary root contained in the component C`. Using Lemma 14, we conclude that

(4|ξ|)2 ≥ 2i for all i ≤ 2 · `. In addition, it holds that maxz∈∆i
|F (z)| ≥

(
1

4n

)n+1

for all i as there exists a point in z whose distance to any root of F is at least
1

4n , and thus, L(∆i, F ) = O(n) for all i. Hence, according to Lemma 7, the cost

for determining the index ij+1 is bounded by Õ(log Γ · n(τF + n log(ξ))). If we
now sum up the latter bound over all indices that need to be determined, then
each root of F occurs only a constant number of times as each root is contained
in only a constant number of components Ci. Hence, we obtain the bound
Õ(log Γ · n2(n+ τF + log Mea(F ))) = Õ(n3 + n2 log Mea(F )) for the overall bit
complexity, where we used that log(τF ) = O(n+ log(Mea(F ))).

We can now finalize the proof of Lemma 13. Suppose that C′ is already
computed. Then, for each Ci ∈ C′, we remove each box B ∈ Ci for which
the T̃G0 (∆B)-test succeeds; the remaining boxes then fulfill the properties
from Lemma 13. The cost for each such call of the T̃G0 -test is bounded by
Õ(n(τF + n log(ξ))), with ξ an arbitrary root in Ci, where we again use that
logw(B) = O(1) + log(ξ). Since each root is considered a constant number of
times, summing up the latter complexity bound over all boxes B yields the
bound Õ(n3 + n2 log Mea(F )) for the total bit-complexity of this step.

We are now ready to prove our main result:

Theorem 9 (Main Theorem). Let F ∈ C[x] be a polynomial as in (1). Then,
using the algorithm CIsolate, we can isolate all complex roots of F with

Õ(n · (n2 + n log(Mea(F )) +

n∑
i=1

log(F ′(zi)
−1)))

= Õ(n(n2 + n log(Mea(F )) + log(Disc(F )−1))). (22)

bit operations, where Disc(F ) := |An|2n−2
∏

1≤i<j≤n(zj−zi)2 is the discriminant
of F . The coefficients of F have to be approximated to

Õ(n2 + n log(Mea(F )) + log(Disc(F )−1))
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bits after the binary point.
For f ∈ Z[x] a polynomial of degree n and with integer coefficients of bitsize

less than τ , we can use the algorithm CIsolate to isolate all complex roots of
F := f/ lcf(f) with Õ(n3 + n2τ) bit operations.

Proof. Suppose that we have already computed a set B′ = {B1, . . . , Bm} of
boxes as in Lemma 13. We can now run our algorithm CIsolate on each of the
boxes Bi. Then, for each i, our algorithm returns isolating disks ∆i,1 to ∆i,mi

for all roots contained in Bi. However, since some of these disks might isolate
a root contained in 2Bi \ Bi, there might be disks ∆i,j and ∆i′,j′ , with i 6= i′,
that isolate the same root. If ∆ := ∆i,j isolates a root ξ, then the enlarged disk
2∆ is also isolating for ξ, and thus either two disks ∆i,j and ∆i′,j′ isolate the
same root or the disks must be disjoint. Hence, we may post-process all disks
∆i,j by first grouping them together into maximal connected components, and
then replacing each such component by an arbitrary disk in this component.
The so-obtained disks then isolate all complex roots of F . Notice that the total
number of disks ∆i,j is bounded by O(n) as each root is contained in only a
constant number of boxes 2Bi. In addition, the binary representation of each disk
needs O(τF + log n+ max1(σ−1

F )) bit operations. Hence, using a near-optimal
algorithm for computing the maximal connected components of the disks ∆i,j ,

the cost for the post-processing is bounded by Õ(n(τF + log n + max1(σ−1
F )))

bit operations. For the overall bit-complexity of this method, we sum up the
complexity bound in (21) over all boxes Bi. Again, using the fact that each
root is contained in only a constant number of enlarged boxes 2Bi, the bound
(22) follows, where we use that

∑n
i=1 log(zi) = O(log(Mea(F )) + n), τF = O(n+

log Mea(F )),
∑n
i=1 log(σF (zi)

−1) = O(n2+n log(Mea(F ))+
∑n
i=1 log(F ′(zi)

−1)),
and

∑n
i=1 log(F ′(zi)

−1) = O(nτF+n2+n log(Mea(F ))+log(Disc(F )−1)); see [38,
Section 2.5] and the proof of [38, Theorem 31] for proofs of the latter bounds.

For an integer polynomial f ∈ Z[x] with coefficients of bitsize less than τ , we
remark that log(Mea(F )) = O(τ+log n) and log(Disc(F )−1) = log(lcf(f)−(2n−2)·
Disc(f)−1) ≤ log(lcf(f)−(2n−2)) = O(nτ), where F := f/ lcf(f). Hence, the
claimed bound follows from (22).

6 Conclusion

In this paper, we proposed a simple and efficient subdivision algorithm to
isolate the complex roots of a polynomial with arbitrary complex coefficients.
Our algorithm achieves complexity bounds that are comparable to the best
known bounds for this problem, which are achieved by methods based on fast
polynomial factorization [23, 27, 13]. Compared to these methods, we see a series
of advantages of our algorithm. One advantage is that it can be used to isolate
only the roots contained in a given input box, in which case it does not have to
compute approximations of all roots. Also, the complexity of our algorithm scales
with parameters depending only on the roots in the box, hence its complexity is
locally adaptive. Another advantage of CIsolate is its simpleness and that only
fast algorithms for polynomial multiplication and Taylor shift computation are
used but no other, more involved, asymptotically fast subroutines. Hence, also by
providing a self-contained presentation and pseudo-code for all subroutines of the
algorithm, we hope that there will soon be implementations of our method. So far,
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we have not discussed a series of questions concerning an efficient implementation,
including heuristics and filtering techniques to speed up the computations in
practice. This will be subject of future research.

Another possible direction of future research is to extend our current Newton-
bisection technique and complexity analysis to the analytic roots algorithm
in [51]. See [44] for an alternative approach for the computation of the real roots
of analytic functions obtained by composing polynomials and the functions log,
exp, and arctan.

At the end of Section 4.2, we sketched how to use our algorithm to isolate the
roots of a not necessarily square-free polynomial for which the number of distinct
complex roots is given as additional input. Also, we may use our algorithm to
further refine the isolating disks for the roots of a polynomial. We have not
analyzed these extensions, however, we are confident that our approach yields
similar bit complexity bounds as provided in [23] for the modified variant of
Pan’s method. This will be subject of future work.
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7 Appendix

7.1 Missing proofs in Section 3.1

Lemma (Restatement of Lemma 1). Let ∆ := ∆(m, r) be a disk that is (1, 4c2 ·
max1(k) ·n2)-isolating for the roots z1, . . . , zk, then, for all z ∈ c2 ·n ·∆, it holds
that F (k)(z) 6= 0. Furthermore,

n∑
i=k+1

∣∣∣∣F (i)(m)(c1 · r)i−kk!

F (k)(m)i!

∣∣∣∣ < 1

2K
.

Proof. 1. For the first part, we may assume that k ≥ 1. Then, for the k’th
derivative of F and any complex z that is not a root of F , it holds that

F (k)(z)

F (z)
=

∑
J∈([n]

k )

∏
j∈J

1

z − zj
=

k∏
j=1

1

z − zj
+

∑
J∈([n]

k ),J 6=[k]

∏
j∈J

1

z − zj
.

By way of contradiction, assume F (k)(z) = 0 for some z ∈ c2n ·∆. Then,

k∏
j=1

1

|z − zj |
≤

∑
J∈([n]

k ),J 6=[k]

∏
j∈J

1

|z − zj |
.

Assuming k ≤ n/2, we proceed to show

1 ≤
∑

J∈([n]
k ),J 6=[k]

|z − z1| · · · |z − zk|∏
j∈J |z − zj |

=

k−1∑
k′=0

∑
J∈([k]

k′)

∑
J′∈([n]\[k]

k−k′ )

∏k
i=1 |z − zi|∏

i∈J |z − zi| ·
∏
j∈J′ |z − zj |

≤
k−1∑
k′=0

(
k

k′

)(
n− k
k − k′

)(
2c2nr

4c2kn2r − c2nr

)k−k′

≤
k−1∑
k′=0

(
k

k′

)(
n− k
k − k′

)(
1

2kn

)k−k′

≤
k−1∑
k′=0

kk−k
′

(k − k′)!
(n− k)k−k

′
(

1

2kn

)k−k′

≤
k−1∑
k′=0

(1/2)k−k
′
/(k − k′)!

< e1/2 − 1 < 1, a contradiction.

The preceding argument assumes k ≤ n/2 because this allows us to freely
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choose J and J ′ as indicated. But suppose k > n/2. We then have

1 ≤
∑

I∈([n]
k )\[k]

|z − z1| · · · |z − zk|
|z − zi1 | · · · |z − zik |

=

n−k∑
k′=1

∑
J∈( [k]

k−k′)

∑
J′∈([n]\[k]

k′ )

∏k
i=1 |z − zi|∏

i∈J |z − zi| ·
∏
j∈J′ |z − zj |

≤
n−k∑
k′=1

(
k

k − k′

)(
n− k
k′

)(
2c2nr

4c2kn2r − c2nr

)k′

<

n−k∑
k′=1

(
k

k − k′

)(
n− k
k′

)(
2

3kn

)k′

≤
n−k∑
k′=1

kk
′

k′!
(n− k)k

′
(

2

3kn

)k′

≤
n−k∑
k′=1

1

k′!

(
2

3

)k′
≤ e2/3 − 1 < 1, again a contradiction.

2. Similar as above, with z
(k)
1 , . . . , z

(k)
n−k denoting the roots of F (k), it holds

that ∣∣∣∣F (k+i)(m)

F (k)(m)

∣∣∣∣ ≤ ∑
J∈([n−k]

i )

∏
j∈J

1

|m− z(k)
j |
≤
(
n−k
i

)
(c2nr)i

,

and thus

n∑
i=k+1

∣∣∣∣F (i)(m)(c1r)
i−kk!

F (k)(m)i!

∣∣∣∣ ≤ n−k∑
i=1

∣∣∣∣F (k+i)(m)

F (k)(m)

∣∣∣∣ (c1r)
i

i!
| since

k!

(k + i)!
≤ 1

i!

≤
n−k∑
i=1

(
n−k
i

)
ci2n

iri
(c1r)

i

i!

<

n−k∑
i=1

(c1
c2

)i 1

i!
≤ ec1/c2 − 1 ≤ 1

2K
,

where we used (5) for the last inequality.

Lemma (Restatement of Lemma 2). Le λ be a real value with λ ≥ 16K ·
max1(k)2 · n and suppose that ∆ := ∆(m, r) is a disk that is (1, λ)-isolating for
the roots z1, . . . , zk of F , then∑

i<k

|F (i)(m)|
|F (k)(m)|

(c1 · r)i−kk!

i!
<

1

2K
.

Proof. We may assume that k ≥ 1. Write F (x) = G(x)H(x) with G(x) =∏k
i=1(x − zi) and H(x) =

∏n
j=k+1(x − zj). By induction, one shows that
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F (i)(x) =
∑i
j=0

(
i
j

)
G(i−j)(x)H(j)(x) and F (k)(x) = k!

∑
I∈([n]

k )
∏
i/∈I(x − zi) =

k! ·
∑
J∈( [n]

n−k)
∏
j∈J(x− zj). It follows that

|F (k)(m)| = k! ·
∣∣∣ ∑
J∈( [n]

n−k)

∏
j∈J

(m− zj)
∣∣∣ =

k! · |H(m)| ·
∣∣∣ ∑
J∈( [n]

n−k)

∏
j∈J(m− zj)∏n
i=k+1 |m− zi|

∣∣∣
≥ k! · |H(m)| ·

(
1−

∑
J∈( [n]

n−k):J 6={k+1,...,n}

∏
j∈J |m− zj |∏n
i=k+1 |m− zi|

)

≥ k! · |H(m)| ·
(

1−
min(k,n−k)∑

j=1

∑
J1,J2:J1⊂[k]:|J1|=j and J2⊂[n]\[k]:|J2|=n−k−j

∏
j∈J1
|m− zj |

(λr)j

)

≥ k! · |H(m)| ·
(

1−
min(k,n−k)∑

j=1

(
k

j

)(
n− k

n− k − j

)
rj

(λr)j

)
≥ k! · |H(m)| ·

(
2−

n∑
j=0

kj
(
n

j

)
1

λj

)
≥ k! · |H(m)| ·

(
2−

(
1 +

k

λ

)n )
≥ k! · |H(m)| ·

(
2− e 1

4

)
≥ k! · |H(m)|

2
.

For G, we have G(i)(x) = i!
∑
J∈([k]

i )
∏
j /∈J(x − zj), and thus |G(i)(m)| ≤

i!
(
k
i

)
rk−i. In addition,∣∣∣∣H(i)(m)

H(m)

∣∣∣∣ ≤ ∑
J∈([n]

i )

∏
j∈J

1

|m− zj |
≤ i! ·

(
n− k
i

)
1

(λr)i

and thus

|G(i−j)(m)H(j)(m)| ≤ |H(m)| · (i− j)!
(

k

i− j

)
rk−(i−j) · j!

(
n− k
j

)
1

(λr)j

= |H(m)| · (i− j)!j!
(

k

i− j

)(
n− k
j

)
· 1

λj
rk−i.
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Hence, it holds that (where we use that λ ≥ 16Kk2 · n and c1 ≥ k

ln(1+ 1
8K )

)

k−1∑
i=0

|F (i)(m)|
|F (k)(m)|

(c1r)
i−kk!

i!
≤
k−1∑
i=0

i∑
j=0

|G(i−j)(m)H(j)(m)|
|F (k)(m)|

(
i
j

)
(c1r)

i−kk!

i!

≤
k−1∑
i=0

i∑
j=0

|H(m)|
|F (k)(m)|

(i− j)!j!
(

k

i− j

)(
n− k
j

)(
i

j

)
ci−k1

λj
k!

i!

≤ 2c−k1

k−1∑
i=0

(
k

i

)
ci1 + 2

k−1∑
i=1

i∑
j=1

(
k

i− j

)(
n− k
j

)
ci−k1

λj

≤ 2c−k1

k−1∑
i=0

(
k

i

)
ci1 + 2

k−1∑
i=1

i∑
j=1

(
n− k
j

)
kj

λj
lnk−i

(
1 +

1

8K

)

= 2c−k
k−1∑
i=0

(
k

i

)
ci1 +

k − 1

8Kk
+

k−1∑
i=2

i∑
j=2

2

(16Kk)j

< 2

 k∑
j=0

(
k

j

)
c−j1 − 1

+
1

4K
≤ 2

(
ek/c1 − 1

)
+

1

4K
≤ 1

2K
.

7.2 Missing Proofs in Section 3.2

Theorem (Restatement of Theorem 3). Denote the roots of F by z1, . . . , zn,

then it holds that F [1](x) =
∑n
i=0 a

[1]
i x

i = a2
n ·
∏n
i=1(x− z2

i ). In particular, the
roots of the first Graeffe iterate F [1] are the squares of the roots of F . In addition,
we have

n2 ·max1(‖F‖∞)2 ≥ ‖F [1]‖∞ ≥ ‖F‖2∞ · 2−4n.

Proof. Notice that a
[1]
n = a2

n follows directly from the definition of F [1]. Further-
more, we have

F [1](z2
i ) = (−1)n · [Fe(z2

i )2 − z2
i · Fo(z2

i )2]

= (−1)n · [Fe(z2
i )− zi · Fo(z2

i )] · [Fe(z2
i ) + zi · Fo(z2

i )]

= (−1)n · [Fe(z2
i )− zi · Fo(z2

i )] · F (zi) = 0.

Going from F to an arbitrary small perturbation F̃ (which has only simple roots
and for which z̃2

i 6= z̃2
j for all pairs of distinct roots z̃i and z̃j of F̃ ), we conclude

that each root z2
i of F [1] has multiplicity mult(z2

i , F
[1]) =

∑
j:z2

j =z2
i

mult(zj , F ).

Hence, the first claim follows. For the second claim, notice that the left inequality
follows immediately from the fact that each coefficient of F [1] is the sum of at
most n2 many products of the form ±ai · aj , and each of these products has
absolute value smaller than or equal to max1(‖F‖∞)2. For the right inequality
we have to work harder: W.l.o.g., we may assume that |zi| < 2 for i = 1, . . . , k,
and that |zi| ≥ 2 for i = k + 1, . . . , n. Let zmax be a point in the closure of
the unit disk ∆(0, 1) such that |F (zmax)| = maxz:|z|≤1 |F (z)|. Since F takes
its maximum on the boundary of ∆(0, 1), we must have |zmax| = 1, and using
Cauchy’s Integral Theorem to write the coefficients of F in terms of an integral,
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we conclude that |F (zmax)| ≥ ‖F‖∞. In addition, it holds that |F (zmax)| ≤∑n
i=0 |ai| · |zmax|n =

∑n
i=0 |ai| ≤ (n+ 1) · ‖F‖∞, and thus

‖F‖∞ ≤ |F (zmax)| = max
z:|z|≤1

|F (z)| ≤ (n+ 1) · ‖F‖∞.

Applying the latter result to the polynomial g(x) :=
∏k
i=1(z − z2

i ) yields the
existence of a point z′ with |z′| = 1 and |g(z′)| ≥ 1. Hence, it follows that

|F [1](z′)| = |an|2
k∏
i=1

|z′ − z2
i |

n∏
i=k+1

|z′ − z2
i | ≥ |an|2

n∏
i=k+1

|(
√
z′ − zi) · (

√
z′ + zi)|

≥ |an|2 ·
k∏
i=1

|zmax − zi|2

9
·

n∏
i=k+1

|zmax − zi|2

9
≥ |F (zmax)|2

9n
,

where we used that |x − y| < 3 for arbitrary complex points x, y with |x| = 1

and |y| < 2, and that |x − z| ≥ |y−z|3 for arbitrary complex points x, y, z with
|x| = |y| = 1 and |z| ≥ 2. We conclude that

‖F [1]‖∞ ≥
|F [1](z′)|
n+ 1

≥ |F (zmax)|2

(n+ 1) · 9n
≥ ‖F‖2∞ · 2−4n.

7.3 Missing Proofs in Section 5.2

Lemma (Restatement of Lemma 11). Let ∆ := ∆(m, r) ⊂ C be a disk and K,
with K > 1, be a real number such that the enlarged disk ∆̂ := K ·∆ contains at
least two roots of F . Then, it holds that

max
z∈∆
|F (z)| > σF (zi) · |F ′(zi)| · (nK)−µ · 2−3n,

where zi is an arbitrary root of F contained in ∆̂, and µ denotes the number of
roots contained in ∆̂.

Proof. Consider a fixed i with zi ∈ ∆̂, and let m′ ∈ ∆(m, r/2) be a point such
that the distance from m to any root of F is at least r/(2n). Notice that such
a point exists because the union of all disks ∆(zi, r/(2n)) covers an area of at

most n · π · r
2

4n2 < π · (r/2)2, and thus there must be a point in ∆(m, r/2) that

is not contained in any disk ∆(zi, r/(2n)). If zj is a root not contained in ∆̂,

then
|zi−zj |
|m′−zj | ≤

|zi−m′|+|m′−zj |
|m′−zj | ≤ 1 + |zi−m′|

|m′−zj | ≤ 1 + 2Kr
Kr−r/2 ≤ 8. If zj ∈ ∆̂, then

|zi−zj |
|m′−zj | ≤

2Kr
r/(2n) = 4nK. Hence, we get

|F (m′)| = |Fn| ·
n∏
j=1

|m′ − zj | = |F ′(zi)| · |m′ − zi| ·
∏
j 6=i

|m′ − zj |
|zj − zi|

≥ |F ′(zi)| · |m′ − zi| · (4nK)−µ+1 · 8−n+µ

> |F ′(zi)| · |m′ − zi| · (nK)−µ+1 · 2−3n+2

> |F ′(zi)| ·
σF (zi)

4nK
· (nK)−µ+12−3n+2 = σF (zi) · |F ′(zi)| · (nK)−µ2−3n,

where, in the last inequality, we used that ∆̂ contains at least two roots, and
thus σF (zi) ≤ 2Kr.
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