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Spin-multipole effects in binary black holes and the test-body limit
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We discuss the Hamiltonian for the conservative dynamics of generic-orbit arbitrary-mass-ratio
spinning binary black holes, at the leading post-Newtonian orders at each order in an expansion
in spins, to all orders in the spins. The leading-order couplings can all be obtained from a map to
the motion of a test black hole (a test body with the spin-induced multipoles of a Kerr black hole)
in the Kerr spacetime, as is confirmed with direct post-Newtonian calculations for arbitrary mass
ratios. Furthermore, all of the couplings can be “deduced” from those of a pole-dipole test body in

Kerr.

Binary black holes (BBH’s) [or something very much
like them| have provided us with the first gravitational
waves detected at Earth [I, 2]. So far, the detected sig-
nals lie within the error bars of our expecations—that
black holes exist, that binaries of them emit gravitational
waves which become ever stronger as they spiral into one
another and eventually merge into one bigger black hole,
and that all of this is governed by Einstein’s theory of
general relativity (GR) [3].

Being able to make such statements requires that we
know exactly what it is that GR predicts. Decades of
work in numerical relativity (solving Einstein’s equations
directly on a supercomputer), combined with analytic ap-
proximation schemes for treating the two-body problem,
have led to the current understanding of BBH’s which has
allowed the analysis of the detected signals. Yet, there
are still many respects in which the relativistic two-body
problem is not yet solved (see e.g. Fig. |1)).

For analytic attacks, two complimentary approxima-
tion schemes are available: The post-Newtonian (PN)
approximation expands about the Newtonian (weak-field,
slow-motion) limit but is valid for arbitrary mass ra-
tios [4 5], while the extreme-mass-ratio approximation,
encompassing the “self-force paradigm” [6HI2], expands
about the test-body limit but is valid in the strong-field,
relativistic regime.

The claims made in this paper’s abstract point out an
interplay between the PN limit and the test-body limit,
which relies on very special properties (seemingly) spe-
cific to BBH’s in GR. This interplay ultimately allows
one to determine the leading-PN-order BBH dynamics,
to all orders in the BHs’ spins, using only information
from the test-body limit, in two different ways. This
points toward structure in the BBH dynamics which has
yet to be recognized.

The leading-PN-order, all-orders-in-spin BBH Hamil-
tonian is given explicitly by below. This result (with
its conceivable generalizations beyond leading order) is of
particular interest for the case of large BH spins, and is
thus relevant to LIGO’s ability to test GR with strong,
nonlinear spin/precession effects in BBH’s [3].

We can begin to explain and substantiate the above

claims by reviewing the results of PN calculations which
describe the conservative dynamics of binaries of compact
objects with spin-induced multipole moments.

In the PN approximation, we can describe a binary of
compact objects, bodies A = 1,2, in terms of

e their worldlines * = z4(t) in a post-Newtonian
spacetime with coordinates a# = (t,2%) = (t,x),
defining the relative position R = z5 — 21
and distance R = | R,

e their masses m4, defining the total mass M =
my + ma, the reduced mass p = mymso/M, and the
symmetric mass ratio v = u/M, taking my > ma,
with the “test-body limit” defined by ms — 0,

e their intrinsic angular momentum (or spin) vectors
54 =85, defining the rescaled spin vectors
ay = Sa/mac with dimensions of length,

e and their higher-order multipole moments, which
begin with the mass quadrupole tensors Q'7,

with appropriate definitions for these quantities, suffi-
cient for our purposes here, given e.g. in [I3] 14] or [T5].

In general, the bodies’ quadrupoles and higher-
order moments can be dynamical, depending on fur-
ther internal degrees of freedom [I6HI9]. But the
leading-order effects in the post-Newtonian regime
arise from (i) intrinsic spin-induced quadrupolar de-
formations scaling as the square of the spin, and
(ii) quadrupolar tidal deformations which are adiabati-
cally induced by the external field, which contribute to
the quadrupole tensors as follows [20],

i{ = f/{AmAajiaff - /\Agij(zA). (1)

Here, &;; is the electric tidal tensor, with &;; = —0;0;U in
the Newtonian limit, with U being the Newtonian poten-
tial with convention U = Gm/R for a monopole. Angle
brackets denote symmetric-tracefree (STF) projection.
The constants k4 and A4 are linear response coeffi-
cients, measuring the leading-order quadrupolar defor-
mation of body A, due to its rotation/spin and due to



the external tidal field, respectively. The values appro-
priate for a black hole,

kBH = 1, Apu = 0, (2)

have been established through several arguments and
derivations, e.g. [20H26].

We will restrict attention to spin-induced multipoles,
as is appropriate for black holes at the PN orders dis-
cussed here. Spinning bodies (like black holes) generally
have

e even-order mass multipoles 7%,

quadrupole Q% = T hexadecapole Z¥*!,
..., 2%pole Tt = T+ with ¢ even, and

e odd-order current multipoles J L

dipole S* = J°, octupole J¥*,
..., 2bpole JE = Jh 4 with £ odd,

which are induced by their rotation, and which are gen-
erally proportional to STF outer products of ¢ copies of
the spin vector. L = i1 ...1y is a spatial multi-index. The
proportionality constants (like x for £ = 2) vary with the
composition and structure of the bodies. The multipoles
of a black hole (with certain normalizations), including
the mass monopole m = Z, are given by [21]

(IL + ZjL) _ i@ ma<L>7 (3)
¢ BH

where a<F> = q< ... a¥> = S<L>/(mc)¢, with ¢ =

0,1,...,00. With £ = 2, this reproduces (I}) with x = 1

(and XA = 0).

With only such spin-induced multipoles, the only de-
grees of freedom of the binary are the relative position
R(t) (in the center-of-mass frame) and the spins S (?)
and S3(t). The PN conservative dynamics can be en-
coded in a Hamiltonian H(R, P, Sy, .Ss), where P is the
linear momentum canonically conjugate to R, and the
equations of motion are determined from

. OH . oH .. .. OH
P~ po—__ it 2 gk 4
R=op "="pr Sa= ke @
with A =1,2.

The Hamiltonian, expanded in PN orders and in pow-
ers of the spins, takes the following form, H =

0PN
H{G's (5)
(1PN) (1.5PN) (2PN)
+ HNLO-SD + HLO—81 + HLO—82
(2PN) (2.5PN) (3PN) (3.5PN) (4PN)
+ HNNLO—SO + HNLO—Sl + HNLO—82 + HLO—S3 + HLO—S4
+ ...

Here, Hy,o.qo = Hy is the Newtonian (OPN) point-mass
(no-spin) Hamiltonian, and the other terms are at higher

LO even | NLO even | |

| LO odd |NLO odd| |

N | 1PN | 2PN | 3PN | 4PN

| LO SO | NLO SO |NNLOSO|NNNLOSO|

LO sA2 | NLO SA2 |NNLO SA2 [NNNLO S/2
| LO S*3 | NLO SA3 [NNLO S43
LO S”4 | NLO S*4 [NNLO S4
‘ LO S%5 | NLO §A5
LO $%6 | NLO S6
LO A7 nPN (n+1)PN

FIG. 1. Contributions to the two-body Hamiltonian in the
PN-spin expansion, for arbitrary-mass-ratio binaries with
spin-induced multipole moments (such as BBH’s). Terms in
red text are unknown. Terms in black text have been calcu-
lated, and confirmed by independent groups, all except for (i)
the recent NNLO S? calculations of [27], (ii) the recent 4PN
calculations of [283T], and (iii) the underlined LO-S™ terms
with n > 5, which are presented here for BBH’s.

orders in the PN parameter ¢ ~ Gm/c?R ~ v?/c?
and higher orders in the spin. The PN order count-
ing here, with an nPN contribution scaling as €"Hy,
assumes rapidly rotating bodies, with spin magnitudes
S ~ Gm?/c.

We now discuss in turn the contributions in . To
ease the notation, we henceforth set G = ¢ = 1 and
define new momenta rescaled by the reduced mass,

A= P==, L-Z_RxP, (5

H P L _
n I [t
where L = R x P is the orbital angular momentum.
We follow e.g. [32] [33] for the results summarized in the
following three subsections.

Nonspinning. The Newtonian Hamiltonian [i.e. the
leading-order (LO) no-spin (LO-S°) Hamiltonian] reads

P2 M
Hy = — — — 7
NT TR (7)

and the 1PN point-mass Hamiltonian [i.e. the next-to-
leading-order (NLO) no-spin (NLO-SY) Hamiltonian], in
harmonic/ADM gauge, reads

_ p M P?
Hle = (*1 + 31/)? + (*3 — 21/) R
ML? M?

The Newtonian Hamiltonian could be said to be equal
to its test-body limit, in the sense that it has no depen-
dence on the mass ratio. The same is not true of Hipn,
and one can recover only the first terms in parentheses



from the test-body limit, with the terms o« v being “self-
force corrections” [GHIO].

More precisely, even Hy is not literally equal to its
test-body limit, if this is defined as the limit mo — 0,
because then we obtain only the my term in M = mq +
mgo [among other subtleties]. Rather, the arbitrary-mass-
ratio Newtonian dynamics in the center of mass frame is
equivalent to the dynamics of a test body with mass u
in the field of a stationary mass M, under the map M =
m1+ms and g = mymse /M. This map and this fortuitous
coincidence allow us to obtain from the test-body limit
what could be considered a self-force correction (the mq
in M) [and less handwavingly, the full exact Newtonian
dynamics].

Leading-order spin-orbit couplings. Next we have the
leading-order “spin-orbit” (linear-in-spin) Hamiltonian,
at 1.5PN,

_ 3 L-a 3 L-a
Hioqt = (2m1 + mg) ! + (m1 + 2m2> 2

2 R3 2 R3

The mo terms are self-force corrections which drop out
in the test-body limit. But under the map

S=54+85,=mia1 +meay = Ma,
Stes
et _ g = "5, + 28, — mias +maar = Mo,
v mao my
(10)

this can be rewritten exactly as the LO linear-in-spins
part of the Hamiltonian of a test body with mass 1 and
spin Stest = po = vS™ in the field of a stationary body
with mass M and spin S = Ma,

HLO—Sl (mlaa’lvaaaQ) = H]tjgfsl (M,(L/A,O’) (11)
= 3 M
_ 3 M
=-P 2 —-o|-0—
X ( a + 20’) R
where 8 = 0; = 9/OR".
Note that the dynamics defined by Hy, Hipn, and
Hi o.st (and more generally, through linear order in spin)
is universal, independent of the nature of the bodies.

Leading-order spin-squared couplings. The next con-
tribution in is the LO-S? Hamiltonian at 2PN,

Hiog = %(maia{ + 2dtal + figaéa%)@i@j%, (12)
which begins to depend on the bodies’ internal struc-
ture through the response coefficients x1 2. Note that
the x terms encode the coupling of the spin-induced
quadrupole of one body to the monopole of the other,
while the aj-as term encodes the (universal) coupling

between the bodies’ spins.

Remarkably, for the very special case of a binary black
hole, k1 = ko = 1, this factorizes into [33]

[ 1 ; . M

Hi5'% (ma, a1,ma, as) = 5(‘11 + az)z(al + ag)”aiajf
r7BBH tes 1 oM

:HLO—S2t t(M,G,,‘LL,O') = 5((014’0') 8) E (13)
BB, tes 1 M

= Hygga ™ (M, ag, 1,0) = 5 (ag - 8)° (14)

noting that spin vectors commute with spatial derivatives
0, and where

S+5° S

ay=a; +ay=a+ 0= i i

(15)

is the combination of the spins whose importance was
noted in [33, [34].

The LO-S? BBH Hamiltonian is equivalent to that of
a test-body in two different ways. On the one hand,
as in 7 it is the LO quadratic-in-spins part of the
Hamiltonian of a “test black hole” with mass p and spin
po (and quadrupole Q¥ = —puo<'¢’7>) in the field of a
stationary Kerr black hole with mass M and spin Ma.
On the other hand, as in , it is the LO-S? part of
the Hamiltonian of a structureless point mass (following
a geodesic) in the field of a Kerr black hole with mass M
and spin May [33] [34].

Leading-order couplings for binary black holes through
fourth order in spin. The LO-S* (3.5PN) and LO-S*
(4PN) contributions in (b)) have been computed and con-
firmed by a variety of methods in [35H39]. To the au-
thors’ knowledge, there are no previous results for the
PN dynamics of arbitrary-mass-ratio binaries at fifth or
sixth order in the spins (5.5PN or 6PN at LO) or be-
yond, though much is known (at least in principle) from
the test body limit.

The LO-S? contributions arise from (i) a body’s spin-
induced current octupole coupling to its companion’s
mass monopole, (ii) the mass quadrupole coupling to
the companion’s spin, and (iii) more subtle kinemati-
cal effects. These kinematical effects, like those encoun-
tered for the spin-orbit couplings which are linked
to Thomas precession [40], are related to the transport
of the local frame in which the spin is defined and its
interplay with the spin supplementary condition [41].

The LO-S* contributions arise from hexadecapole-
monopole, octupole-dipole, and quadrupole-quadrupole
couplings. As with the LO-S? couplings, there is no de-
pendence on P, only on R, and there are no subtle kine-
matical effects.

Like the LO-S? part, the LO-S? and LO-S* parts un-
dergo remarkable simplifications in the special case when
the spin-induced multipole moments match those of a
Kerr black hole.

Now we gather all of the results for the leading-PN-
order Hamiltonians at each order in spin, available from
[35H39] through fourth order in spin, specializing to the



BBH case. This is as in , but where we will neglect
the NLO terms HipN, Hyr,0.51, Hnr,o-g2 and (at NNLO)
Hopn, as well as all other NLO terms. Working from
the Hamiltonians of [37], after a canonical transformation
affecting only the S3 terms, and after some simplification,
using , the leading-order Hamiltonian can be written

as Hig" = HPS R en + HiShqa, With the even-in-spins
part
Pz M 1 M
HES oven = 5 "R g(ao -9)” 7 (16)
1 M 6
- I(ao -0) R + O(5%),

and the odd-in-spins part
_ 1 3 M
HPSoaa = —q P x <2a + 20) -8 = (17)

3!

Note that hidden within these “factorized” forms is a con-
siderable network of multipole-multipole couplings and
kinematical effects, as well as “self-force corrections.”

All of these LO PN results (for arbitrary mass ratios),
even and odd, are obtained from the test-body limit ac-
cording to

HBBH(m17a17m2;a2) = H]_]?OBH’teSt(Maanuﬂa-% (18)

with (10]), where HBBH:test j5 the Hamiltonian of a “test
black hole” with mass p and spin po—having all of the
spin-induced multipoles of a black hole, keeping o finite
as u — 0, noting that all of the LO couplings end up
with one factor of p which scales away as in @—in a
Kerr spacetime with mass M and spin Ma. The even
part has the further feature

BBH
HLO even(mh ai,msa, a2>

Hfg’lg‘,;;st (Ma Qao, M, 0)’

(19)
so that it is obtained from geodesic motion in a Kerr
spacetime with mass M and spin Mag; this is not true
of the odd part. These hold for the above results through
fourth order in spin, as can be confirmed from [42], and
we will see that they hold to all orders. Note that this
means that an effective-one-body Hamiltonian which uses
May as the spin for an effective (v-deformed) Kerr met-
ric entering the geodesic Hamiltonian (a recent example
being that in [43]) correctly encodes all of the LO even-
in-spin couplings.

To all orders in spin, at the leading post-Newtonian
orders, for binary black holes. There is a clear pattern
developing in the even part . In light of , one is
well-motivated to argue that this pattern continues,

even Z

_ M
H[E?(])S,Igven =5 = Z /! ao Z (20)

p? M
=5 - cos(ag - 0) =

+ |P X <2a+ ;a>-8(a0~8)2]\; +0O(8%).

For the odd part, one could argue from the limited
data in that there is an analogous pattern develop-
ing, with only two new coefficients at each order in spin
(the coefficients of @ and o in the cross product). If we
were to assume that this pattern holds to all orders, then
these coefficients would all be fixed by matching to the
dynamics of a pole-dipole test body in the Kerr space-
time, obeying the Mathisson-Papapetrou-Dixon (MPD)
equations [44H46] to linear order in the spin of the test
body. The resultant coefficients are available in principle
from [42], [47] and are derived in detail in [48]. This yields

HE g0
odd .p_1
4 M
= ' _px (—Qa + 0'> 9 (ap-9)" 1 —
—~ ! R
_ sin(ag - 0)
=|—-2P _—
l: X ap o ag - )
1 - M
+2P><a-ﬁcos(ao-8)]R. (21)

The results and can also be derived without
relying on such seemingly unjustified extrapolation.

We show in [48] how these Hamiltonians
HEgH(ml, ai,mg,as) are obtained as the leading-
PN-order part of the Hamiltonian of a test black hole
with mass p = myms /M and spin puo = v(mias+mea;)
in a Kerr spacetime with mass M = my + my and spin
Ma = mia; + moas, as in .

We obtain the same results, and under the
map , from a direct PN calculation for arbitrary mass
ratios in [49].

The calculations of [48, [49] are both based on gen-
eralizations of the well-developed action description of
spinning bodies in general relativity [41, 50H54], which
results in a form of the MPD dynamics [44H46]. The ac-
tion encodes both the bodies’ motion in an effective ex-
ternal field and the effective stress-energy which sources
the field equations—at the least, in the leading-PN-order
context. In [48] 49], we draw in particular from the anal-
yses of spin-multipole effects in [39] 42, E5H57], and [41]
which derived all LO spin-induced multipole couplings.
We obtain all needed coupling constants in the action by
matching the effective black holes’ spin-multipole struc-
ture to that of a Kerr black hole, and by ensuring the
kinematical consistency of the MPD dynamics.

We can also present the results and in a sim-
ple explicit closed form by introducing new coordinates
on the (flat) 3-space; starting from Cartesian coordinates
(X,Y,Z), as illustrated in Fig. [2| we have

cylindrical (p,®,7), X =pcos®, Y =psin®, (22)
spherical (R,0,®), p=Rsin®, Z = RcosO,

spheroidal (r,0,®), p=/r?+a2sind, Z =rcosd.
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FIG. 2. Relationships between the coordinates on flat 3-
space, with (r, 0, ®) being oblate spheroidal coordinates with
“ring-radius” ag = |ag|. Shown here is a quadrant of a vertical
plane, with the Z-axis vertical and the p-axis horizontal. The
surfaces of constant r are oblate ellipsoids with foci on “the
ring” p?> = X? +Y? = a2 in the Z = 0 plane, with a cross-
section shown in red. The ring pierces this plane orthogonally
at the ® symbol, with its center at the origin. The locus r =0
is the disk Z = 0, p < ap bounded by the ring. The surfaces
of constant 6 are half- one-sheeted hyperboloids with foci on
the same ring, with a cross-section shown in blue; as r» — oo,
they asymptote to cones opening an angle 6 from the +Z-axis.
The locus @ = /2 is the plane Z = 0 minus the disk p < ao.
The ring represents the “ring singularity” of an effective Kerr
BH with rescaled spin ag.

The LO Hamiltonian, the sum of and (21]), can
then be written as [4§]

BBH _ P2 Mr (

2R x P'CLO
r? + a cos? 0

r? +ad

M - R+ iag
——P | .C. 23
i ((T+iaocos9)3+cc>’ 29)

where c.c. denotes the complex conjugate. The manip-
ulations linking 7 to are similar to those in
[58].

The dynamics defined by is likely to have to have
further unique properties, an exploration of which we
leave to future work. One is led to wonder, for exam-
ple, if it admits an analog of the Carter constant [59].

Conclusion. We have presented and argued for the
leading-PN-order, all-orders-in-spin Hamiltonian for a bi-
nary black hole, which is derived in detail [49]. This
Hamiltonian can also be obtained from the test-body
limit in Kerr in two different ways, as is demonstrated
in [48]. These results are clearly relevant to efforts to
develop effective-one-body Hamiltonians for BBH’s (see
e.g. [33, 34, [43] [60, [61]).
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