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A Deep Learning Approach to Visual Question Answering
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Abstract We address a question answering task on real-
world images that is set up as a Visual Turing Test. By com-
bining latest advances in image representation and natural
language processing, we propose Ask Your Neurons, a scal-
able, jointly trained, end-to-end formulation to this problem.
In contrast to previous efforts, we are facing a multi-modal
problem where the language output (answer) is conditioned
on visual and natural language inputs (image and question).
We provide additional insights into the problem by analyz-
ing how much information is contained only in the language
part for which we provide a new human baseline. To study
human consensus, which is related to the ambiguities in-
herent in this challenging task, we propose two novel met-
rics and collect additional answers which extend the origi-
nal DAQUAR dataset to DAQUAR-Consensus. Moreover,
we also extend our analysis to VQA, a large-scale ques-
tion answering about images dataset, where we investigate
some particular design choices and show the importance of
stronger visual models. At the same time, we achieve strong
performance of our model that still uses a global image rep-
resentation. Finally, based on such analysis, we refine our
Ask Your Neurons on DAQUAR, which also leads to a bet-
ter performance on this challenging task.
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1 Introduction

With the advances of natural language processing and image
understanding, more complex and demanding tasks have be-
come within reach. Our aim is to take advantage of the most
recent developments to push the state-of-the-art for answer-
ing natural language questions on real-world images. This
task unites inference of question intends and visual scene
understanding with a word sequence prediction task.

Most recently, architectures based on the idea of lay-
ered, end-to-end trainable artificial neural networks have im-
proved the state of the art across a wide range of diverse
tasks. Most prominently Convolutional Neural Networks have
raised the bar on image classification tasks (Krizhevsky et al,
2012) and Long Short Term Memory Networks (Hochreiter
and Schmidhuber, 1997) are dominating performance on a
range of sequence prediction tasks such as machine transla-
tion (Sutskever et al, 2014).

Very recently these two trends of employing neural ar-
chitectures have been combined fruitfully with methods that
can generate image (Karpathy and Fei-Fei, 2015) and video
descriptions (Venugopalan et al, 2015a). Both are condition-
ing on the visual features that stem from deep learning archi-
tectures and employ recurrent neural network approaches to
produce descriptions.

To further push the boundaries and explore the limits of
deep learning architectures, we propose an architecture for
answering questions about images. In contrast to prior work,
this task needs conditioning on language as well visual in-
put. Both modalities have to be interpreted and jointly rep-
resented as an answer depends on inferred meaning of the
question and image content.
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Fig. 1 Our approach Ask Your Neurons to question answering with a
Recurrent Neural Network using Long Short Term Memory (LSTM).
To answer a question about an image, we feed in both, the image (CNN
features) and the question (green boxes) into the LSTM. After the (vari-
able length) question is encoded, we generate the answers (multiple
words, orange boxes). During the answer generation phase the previ-
ously predicted answers are fed into the LSTM until the 〈END〉 symbol
is predicted. See subsection 3.1 for more details.

While there is a rich body of work on natural language
understanding that has addressed textual question answer-
ing tasks based on semantic parsing, symbolic representa-
tion and deduction systems, which also has seen applica-
tions to question answering about images (Malinowski and
Fritz, 2014a), there is evidence that deep architectures can
indeed achieve a similar goal (Weston et al, 2014). This mo-
tivates our work to seek end-to-end architectures that learn
to answer questions in a single holistic model.

We propose Ask Your Neurons, an approach to question
answering with a recurrent neural network. An overview
is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to produce
the correct answer to the question about the image. CNN
and LSTM are trained jointly and end-to-end starting from
words and pixels.

Contributions: In section 3 we present our novel approach
based on recurrent neural networks for the challenging task
of answering questions about images which was presented
originally in Malinowski et al (2015). The approach com-
bines a CNN with an LSTM into an end-to-end architec-
ture that predicts answers conditioning on a question and an
image. section 4 shows that the proposed approach signif-
icantly outperforms prior symbolic approach on this task –
doubling the performance of the prior symbolic approach.
We collect additional data to study human consensus on this
task, propose two new metrics sensitive to these effects, and
provide a new baseline, by asking humans to answer the
questions without observing the image. We demonstrate a
variant of our system that also answers question without ac-
cessing any visual information, which beats the human base-
line. We also frame the multimodal approach that combines
LSTM with CNN as a special case of an encoder-decoder

architecture in subsection 3.2. This modular perspective al-
lows us to study different design choices on a large scale vi-
sual question answering dataset VQA. section 5 shows our
analysis that leads to an improved visual question answering
architecture. A stronger visual component together with sev-
eral important design choices lead to a model that achieves
strong performance on VQA and DAQUAR datasets.

2 Related Work

Since we have proposed a modern approach to a Visual Tur-
ing Test (Malinowski and Fritz, 2014a,c, 2015), frequently
also referred to as “Visual Question Answering”, there has
been a strong interest in this task. In the following we first
discuss related tasks and subtasks, then approaches to tackle
the Visual Turing Test and datasets proposed for it. Finally,
we discuss the relations to our work.

2.1 Convolutional neural networks for visual recognition

One component to answer questions about images is to ex-
tract information from visual content. Since the proposal
of AlexNet (Krizhevsky et al, 2012), Convolutional Neu-
ral Networks (CNNs) have become dominant and most suc-
cessful approaches to extract relevant representation from
the image. CNNs directly learn the representation from the
raw image data and are trained on large image corpora, typi-
cally ImageNet (Russakovsky et al, 2014). Interestingly, af-
ter these models are pre-trained on ImageNet, they can typ-
ically be adapted for other tasks. In this work, we evaluate
how well the most dominant and successful CNN models
can be adapted for the Visual Turing Task. Specifically, we
evaluate AlexNet (Krizhevsky et al, 2012), VGG (Simonyan
and Zisserman, 2014), GoogleNet (Szegedy et al, 2014), and
ResNet (He et al, 2015). These models, reportedly, achieve
increasingly better accuracies on the ImageNet dataset, and
hence, arguably, serve as stronger models of visual percep-
tion.

2.2 Encodings for text sequence understanding

The other important component to answer a question about
an image is to understand the natural language question,
which means here building a representation of a variable
length sequence of words (or characters, but we will focus
only on the words in this work). The first approach is to en-
code all words of the question as a Bag-Of-Words (Manning
and Schütze, 1999), and hence ignoring an order in the se-
quence of words. Another option is to use, similar to the im-
age encoding, a CNN with pooling to handle variable length
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input (Kim, 2014; Kalchbrenner et al, 2014). Finally, Re-
current Neural Networks (RNNs) are methods developed to
directly handle sequences, and have shown recent success
on natural language tasks such as machine translation (Cho
et al, 2014; Sutskever et al, 2014). In this work we investi-
gate a Bag-Of-Words (BOW), a CNN, and two RNN vari-
ants (LSTM (Hochreiter and Schmidhuber, 1997) and GRU
(Cho et al, 2014)) to encode the question.

2.3 Combining RNNs and CNNs for description of visual
content.

The task of describing visual content like still images as
well as videos has been successfully addressed with a com-
bination of encoding the image with CNNs and decoding,
i.e. predicting the sentence description with an RNN (Don-
ahue et al, 2015; Karpathy and Fei-Fei, 2015; Venugopalan
et al, 2015b; Vinyals et al, 2014; Zitnick et al, 2013). This is
achieved by using the RNN model that first gets to observe
the visual content and is trained to afterwards predict a se-
quence of words that is a description of the visual content.
Our work extends this idea to question answering, where we
formulate a model trained to either generate or classify an
answer based on visual as well as natural language input.

2.4 Grounding of natural language and visual concepts.

Dealing with natural language input does involve the associ-
ation of words with meaning. This is often referred to as the
grounding problem - in particular if the “meaning” is asso-
ciated with a sensory input. While such problems have been
historically addressed by symbolic semantic parsing tech-
niques (Krishnamurthy and Kollar, 2013; Matuszek et al,
2012), there is a recent trend of machine learning-based ap-
proaches (Karpathy and Fei-Fei, 2015; Karpathy et al, 2014;
Akata et al, 2016; Kong et al, 2014; Hu et al, 2016; Rohrbach
et al, 2015a; Mao et al, 2016) to find the associations. An-
swering questions about images can be interpreted as first
grounding the question in the image and then predicting an
answer. Our approach thus is similar to the latter approaches
in that we do not enforce or evaluate any particular represen-
tation of “meaning” on the language or image modality. We
treat this as latent and leave it to the joint training approach
to establish an appropriate hidden representation to link the
visual and textual representations.

2.5 Textual question answering.

Answering on purely textual questions has been studied in
the NLP community (Berant and Liang, 2014; Liang et al,

2013) and state of the art techniques typically employ se-
mantic parsing to arrive at a logical form capturing the in-
tended meaning and infer relevant answers. Only recently,
the success of the previously mentioned neural sequence
models, namely RNNs, has carried over to this task (Iyyer
et al, 2014; Weston et al, 2014). More specifically Iyyer
et al (2014) use dependency-tree Recursive NN instead of
LSTM, and reduce the question-answering problem to a clas-
sification task. Weston et al (2014) propose different kind of
network - memory networks - that is used to answer ques-
tions about short stories. In their work, all the parts of the
story are embedded into different “memory cells”, and next
a network is trained to attend to relevant cells based on the
question and decode an answer from that. A similar idea has
also been applied to question answering about images, for
instance by Yang et al (2015).

2.6 Visual Turing Test

Recently, a large number architectures have been proposed
to approach the Visual Turing Test (Malinowski and Fritz,
2014c), frequently also referred to as “Visual Question An-
swering”. They range from symbolic to neural based ap-
proaches. There are also architectures that combine both sym-
bolic and neural paradigms together. Some approaches use
explicit visual representation in the form of bounding boxes
surrounding objects of interest, while other use global full
frame image representation, or soft attention mechanism.
Yet others use an external knowledge base that helps in an-
swering questions.

Symbolic based approaches. In our first work on Visual Tur-
ing Test (Malinowski and Fritz, 2014a), we present a ques-
tion answering system based on a semantic parser on a var-
ied set of human question-answer pairs. Although it is the
first attempt to handle question answering on DAQUAR, and
despite its introspective benefits, it is a rule-based approach
that requires a careful schema crafting, is not that scalable,
and finally it strongly depends on the output of visual analy-
sis methods as joint training in this model is not yet possible.
Due to such limitations, the community has rather shifted to-
wards either neural based or combined approaches.

Deep Neural Approaches with full frame CNN. Most con-
temporary approaches use a global image representation, i.e.
they encode the whole image with a CNN. Questions are
then encoded with an RNN (Malinowski et al, 2015; Ren
et al, 2015; Gao et al, 2015) or a CNN (Ma et al, 2016).
In contrast to symbolic based approaches, neural based ar-
chitectures offer scalable and joint end-to-end training that
liberates them from ontological commitment that would oth-
erwise be introduced by a semantic parser. Moreover, such
approaches are not ‘hard’ conditioned on the visual input
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and therefore can naturally take advantage of different lan-
guage biases in question answer pairs, which can be inter-
pret as learning common sense knowledge.

Attention-based Approaches. Following Xu et al (2015), who
proposed to use spatial attention for image description, Yang
et al (2015); Xu and Saenko (2015); Zhu et al (2016); Chen
et al (2015); Shih et al (2016) predict a latent weighting
(attention) of spatially localized images features (typically
a convolutional layer of the CNN) based on the question.
The weighted image representation rather than the full frame
feature representation is then used as a basis for answering
the question. In contrast to the previous models using at-
tention, Dynamic Memory Networks (DMN) (Kumar et al,
2015; Xiong et al, 2016) first pass all spatial image features
through a bi-directional GRU that captures spatial informa-
tion from the neighboring image patches, and next retrieve
an answer from a recurrent attention based neural network
that allows to focus only on a subset of the visual features
extracted in the first pass. Another interesting direction has
been taken by Ilievski et al (2016) who run state-of-the-art
object detector of the classes extracted from the key words
in the question. In contrast to other attention mechanisms,
such approach offers a focused, question dependent, “hard”
attention.

Answering with an external knowledge base. Wu et al (2016)
argue for an approach that first represents an image as an in-
termediate semantic attribute representation, and next query
external knowledge sources based on the most prominent
attributes and relate them to the question. With the help of
such external knowledge base, such approach captures richer
semantic representation of the world, beyond what is di-
rectly contained in images.

Compositional approaches. A different direction is taken
by Andreas et al (2016a,b) who predict the most important
components to answer the question with a natural language
parser. The components are then mapped to neural modules,
which are composed to a deep neural network based on the
parse tree. While each question induces a different network,
the modules are trained jointly across questions. This work
compares to Malinowski and Fritz (2014a) by exploiting ex-
plicit assumptions about the compositionality of natural lan-
guage sentences. Related to the Visual Turing Test, Mali-
nowski and Fritz (2014b) have also combined a neural based
representation with the compositionality of the language for
the text-to-image retrieval task.

Dynamic parameters. Noh et al (2015) have an image recog-
nition network and a Recurrent Neural Network (GRU) that
dynamically change the parameters (weights) of visual rep-
resentation based on the question. More precisely, the pa-
rameters of its second last layer are dynamically predicted

from the question encoder network and in this way chang-
ing for each question. While question encoding and image
encoding is pre-trained, the network learns parameter pre-
diction only from image-question-answer triples.

2.7 Datasets for visual question answering

Datasets are a driving force for the recent progress in visual
question answering. A large number of visual question an-
swering datasets have recently been proposed. The first pro-
posed datasets is DAQUAR (Malinowski and Fritz, 2014a),
which contains about 12.5 thousands manually annotated
question-answer pairs about 1449 indoor scenes (Silberman
et al, 2012). While the dataset has originally contained a sin-
gle answer (that can consist of multiple words) per question,
in this work we extend the dataset by collecting additional
answers for each questions. This captures uncertainties in
evaluation. We evaluate our approach on this dataset and
discuss several consensus evaluation metrics that take the
extended annotations into account. In parallel to our Visual
Turing Test, Geman et al (2015) developed another Visual
Turing Test. Their work, however, focuses on yes/no type of
questions, and provide detailed object-scene annotations.

Shortly after the introduction of DAQUAR, three other
large-scale datasets have been proposed. All are based on
MS-COCO (Lin et al, 2014). Gao et al (2015) have anno-
tated about 158k images with 316k Chinese question answer
pairs together with their corresponding English translations.
Ren et al (2015) have taken advantage of the existing anno-
tations for the purpose of image description generation task
and transform them into question answer pairs with the help
of a set of hand-designed rules and a syntactic parser (Klein
and Manning, 2003). This procedure has approximately gen-
erated 118k question answer pairs. Finally, arguably nowa-
days the most popular, large scale dataset on question an-
swering about images is VQA (Antol et al, 2015). It has
approximately 614k questions about the visual content of
about 205k real-world images. Similarly to our Consensus
idea, VQA provides 10 answers per each image. For the pur-
pose of the challenge the test answers are not publicly avail-
able. We perform one part of the experimental analysis in
this paper on the VQA dataset, examining different variants
of our proposed approach.

Although simple, automatic performance evaluation met-
rics have been a part of building first visual question answer-
ing datasets (Malinowski and Fritz, 2014a,c, 2015), Yu et al
(2015) have simplified the evaluation even further by intro-
ducing Visual Madlibs - a multiple choice question answer-
ing by filling the blanks task. In this task, a question answer-
ing architecture has to choose one out of four provided an-
swers for a given image and the prompt. Formulating ques-
tion answering task in this way has wiped out ambiguities
in answers, and just a simple accuracy metric can be used
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to evaluate different architectures on this task. Yet, the task
requires holistic reasoning about the images, and despite of
simple evaluation, it remains challenging for machines.

The Visual7W (Zhu et al, 2016) extends canonical ques-
tion and answer pairs with additional groundings of all ob-
jects appearing in the questions and answers to the image
by annotating the correspondences. It contains natural lan-
guage answers, but also answers which require to locate the
object, which is then similar to the task of explicit ground-
ing discussed above. Visual7W builds part of the 1.7 million
question answer pairs in the Visual Genome dataset (Kr-
ishna et al, 2016). While not all question are grounded in
the Visual Genome datasets it forms the largest dataset with
respect to the number of questions. In contrast to others such
as VQA (Antol et al, 2015) or DAQUAR (Malinowski and
Fritz, 2014a) that has collected unconstrained question an-
swer pairs, the Visual Genome focuses on the six, so called,
Ws: what, where, when, who, why, and how, which can be
answered with a natural language answer. An additional 7th
question – which – requires a bounding box location as an-
swer. Similarly to Visual Madlibs (Yu et al, 2015), Visual7W
also contains multiple-choice answers.

Related to Visual Turing Test, Chowdhury et al (2016)
have proposed collective memories and Xplore-M-Ego - a
dataset of images with natural language queries, and a me-
dia retrieval system. This work focuses on a user centric, dy-
namic scenario, where the provided answers are conditioned
not only on questions but also on the geographical position
of the questioner.

Moving from asking questions about images to ques-
tions about video enhances typical questions with temporal
structure. Zhu et al (2015) propose a task which requires to
fill in blanks the captions associated with videos. The task
requires inferring the past, describing the present and pre-
dicting the future in a diverse set of video description data
ranging from cooking videos (Regneri et al, 2013) over web
videos (Trecvid, 2014) to movies (Rohrbach et al, 2015b).
Tapaswi et al (2016) propose MovieQA, which requires to
understand long term connections in the plot of the movie.
Given the difficulty of the data, both works provide multiple-
choice answers.

2.8 Relations to our work.

The original version of this work (Malinowski et al, 2015)
belongs to the category of “Deep Neural Approaches with
full frame CNN”, and is among the very first methods of this
kind (subsection 3.1). We extend (Malinowski et al, 2015)
by introducing a more general and modular encoder-decoder
perspective (subsection 3.2) that encapsulates a few different
neural approaches. Next, we broaden our original analysis
done on DAQUAR (section 4) to the analysis of different
neural based approaches on VQA showing the importance of

getting a few details right together with benefits of a stronger
visual encoder (section 5). Finally, we transfer lessons learnt
from VQA (Antol et al, 2015) to DAQUAR (Malinowski
and Fritz, 2014a), showing a significant improvement on this
challenging task (section 5).

3 Ask Your Neurons

Answering questions about images can be formulated as the
problem of predicting an answer a given an image x and a
question q according to a parametric probability measure:

â = argmax
a∈A

p(a|x, q;θ) (1)

where θ represent a vector of all parameters to learn and
A is a set of all answers. The question q is a sequence of
words, i.e. q = [q1, . . . , qn], where each qt is the t-th word
question with qn = “?” encoding the question mark - the
end of the question. In the following we describe how we
represent x, a, q, and p(·|x, q;θ) in more details.

In a scenario of multiple word answers, we consequently
decompose the problem to predicting a set of answer words
aq,x =

{
a1,a2, ...,aN (q,x)

}
, where at are words from a

finite vocabulary V ′, and N (q, x) is the number of answer
words for the given question and image. In our approach,
named Ask Your Neurons, we propose to tackle the prob-
lem as follows. To predict multiple words we formulate the
problem as predicting a sequence of words from the vocab-
ulary V := V ′ ∪ {$} where the extra token $ indicates the
end of the answer sequence, and points out that the question
has been fully answered. We thus formulate the prediction
procedure recursively:

ât = argmax
a∈V

p(a|x, q, Ât−1;θ) (2)

where Ât−1 = {â1, . . . , ât−1} is the set of previous words,
with Â0 = {} at the beginning, when our approach has not
given any answer word so far. The approach is terminated
when ât = $. We evaluate the method solely based on the
predicted answer words ignoring the extra token $. To ensure
uniqueness of the predicted answer words, as we want to
predict the set of answer words, the prediction procedure
can be be trivially changed by maximizing over V \ Ât−1.
However, in practice, our algorithm learns to not predict any
previously predicted words.

If we only have single word answers, or if we model
each multi-word answer as a different answer (i.e. vocabu-
lary entry), we directly use Equation 1.

In the following we first present a Ask Your Neurons
that models multi-word answers with a single recurrent net-
work for question and image encoding and answer predic-
tion (subsection 3.1) and then present a more general and
modular framework with question and image encoders, as
well as answer decoder as modules.
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ai-1
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...
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... ...

Fig. 2 Our approach Ask Your Neurons, see section 3 for details.

3.1 Method

As shown in Figure 1 and Figure 2, we feed our approach
Ask Your Neurons with a question as a sequence of words.
Since our problem is formulated as a variable-length input
output sequence, we decide to model the parametric distri-
bution p(·|x, q;θ) of Ask Your Neurons with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Ask Your Neurons is a deep network built of CNN
(LeCun et al, 1998) and Long-Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997). We decide on LSTM
as it has been recently shown to be effective in learning
a variable-length sequence-to-sequence mapping (Donahue
et al, 2015; Sutskever et al, 2014).

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât−1], i.e.
q̂t := [q, â1..t]. This means the question q and the previous
answer words are encoded implicitly in the hidden states of
the LSTM, while the latent hidden representation is learnt.
We encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input vt as a con-
catenation of [Φ(x), q̂t], where Φ(·) is the CNN encoding.

3.1.1 Long-Short Term Memory (LSTM)

As visualized in detail in Figure 3, the LSTM unit takes
an input vector vt at each time step t and predicts an out-
put word zt which is equal to its latent hidden state ht.
As discussed above zt is a linear embedding of the cor-
responding answer word at. In contrast to a simple RNN
unit the LSTM unit additionally maintains a memory cell

σ

σσ

vt
ht-1

ct-1

ht
 = zt

Output 
Gate

Input 
Gate

Forget Gate

Input Modulation Gate

LSTM Unit

ϕ +
ct

ϕ

Fig. 3 LSTM unit. See subsubsection 3.1.1, Equations (3)-(8) for de-
tails.

c. This allows to learn long-term dynamics more easily and
significantly reduces the vanishing and exploding gradients
problem (Hochreiter and Schmidhuber, 1997). More pre-
cisely, we use the LSTM unit as described in Zaremba and
Sutskever (2014). With the sigmoid nonlinearity σ : R 7→
[0, 1], σ(v) = (1 + e−v)

−1 and the hyperbolic tangent non-
linearity φ : R 7→ [−1, 1], φ(v) = ev−e−v

ev+e−v = 2σ(2v) − 1,
the LSTM updates for time step t given inputs vt, ht−1, and
the memory cell ct−1 as follows:

it = σ(Wvivt +Whiht−1 + bi) (3)

f t = σ(Wvfvt +Whfht−1 + bf ) (4)

ot = σ(Wvovt +Whoht−1 + bo) (5)

gt = φ(Wvgvt +Whght−1 + bg) (6)

ct = f t � ct−1 + it � gt (7)

ht = ot � φ(ct) (8)

where� denotes element-wise multiplication. All the weights
W and biases b of the network are learnt jointly with the
cross-entropy loss. Conceptually, as shown in Figure 3, Equa-
tion 3 corresponds to the input gate, Equation 6 the input
modulation gate, and Equation 4 the forget gate, which de-
termines how much to keep from the previous memory ct−1
state. As Figures 1 and 2 suggest, all the output predictions
that occur before the question mark are excluded from the
loss computation, so that the model is penalized solely based
on the predicted answer words.

3.2 Refined Ask Your Neurons

In the previous section we have described a way to model vi-
sual question answering with a single recurrent network for
question and image encoding and answering, in this section
we describe a modular framework where a question encoder
has to be combined with a visual encoder in order to produce
answers with an answer decoder (Figure 4). This conceptu-
ally modular representation is helpful in investigating the
behavior of the whole architecture while different encoders,
multimodal embeddings, and decoders are used.
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Question Encoder

Visual Encoder C Answer Decoder

Fig. 4 Our Refined Ask Your Neurons architecture for answering ques-
tions about images that includes the following modules: visual and
question encoders, and answer decoder. A multimodal embedding C
combines both encodings into a joint space that the decoder decodes
from. See subsection 3.2 for details.

3.2.1 Question encoders

The main goal of a question encoder is to capture a mean-
ing of the question, which we write here as Ψ(q). Such an
encoder can range from a very structured one like Seman-
tic Parser used in Malinowski and Fritz (2014a) and Liang
et al (2013) that explicitly model compositional nature of the
question, to structureless Bag-Of-Word (BOW) approaches
that temporarily sum up the input question words (Figure 6).
In this work, we investigate a few encoders within such spec-
trum. Two recurrent question encoders, LSTM (Hochreiter
and Schmidhuber, 1997) (see subsubsection 3.1.1) and GRU
(Cho et al, 2014), that assume a temporal ordering in ques-
tions, as well as the aforementioned BOW.

Gated Recurrent Unit (GRU). GRU is a simpler variant of
LSTM that also uses gates (a reset gate r and an update
gate u) in order to keep long term dependencies. GRU is
expressed by the following set of equations:

rt = σ(Wvrvt +Whrht−1 + br) (9)

ut = σ(Wvuvt +Whuht−1 + bu) (10)

ct =Wvcvt +Whcht−1 + bc (11)

ht = ut � ht−1 + (1− ut)� φ(ct) (12)

where σ is the sigmoid function, φ is the hyperbolic tangent,
and vt, ht are input and hidden state at time t. The repre-
sentation of the question q is the hidden vector at last time
step, i.e. ΨRNN(q) := hT .

Bag-Of-Word (BOW). Conceptually the simplest, the BOW
approach (Figure 6) sums up over the words embeddings:

ΨBOW(q) :=

n∑
t

We(qt). (13)

whereW e is a matrix and qt is one-hot binary vector of the
word with exactly one 1 pointing to a place of the ’word’
in the vocabulary (Figure 6). BOW rejects words ordering
in the question, so that especially questions with swapped
arguments of spatial prepositions become indistinguishable,
i.e.
ΨBOW(red chair left of sofa) = ΨBOW(red sofa left of chair)
in the BOW sentence representation.

What is behind the table?

Embeddings of one-hot 
question words’ vectors

Filter length 3  
(trigram model)

Filter length 2 
(bigram model)

Number of filters

Second viewThird view

Question’s representation 

Temporal aggregation 
(sum pooling, RNN)

Fig. 5 CNN for encoding the question that convolves word embed-
dings (learnt or pre-trained) with different kernels, second and third
views are shown, see section 3.2.1 and Yang et al (2015) for details.

pixels, and then take the features from the last pooling layer,
which therefore have a dimension of 512⇥14⇥14, as shown
in Fig. 2. 14⇥ 14 is the number of regions in the image and
512 is the dimension of the feature vector for each region.
Accordingly, each feature vector in fI corresponds to a 32⇥
32 pixel region of the input images. We denote by fi, i 2
[0, 195] the feature vector of each image region.

Then for modeling convenience, we use a single layer
perceptron to transform each feature vector to a new vec-
tor that has the same dimension as the question vector (de-
scribed in Sec. 3.2):

vI = tanh(WIfI + bI), (2)

where vI is a matrix and its i-th column vi is the visual
feature vector for the region indexed by i.

3.2. Question Model

As [25, 22, 6] show that LSTMs and CNNs are powerful
to capture the semantic meaning of texts, we explore both
models for question representations in this study.

3.2.1 LSTM based question model

LSTM LSTM LSTM…

what are bicycle

We We We

Question:

…

…

Figure 3: LSTM based question model

The essential structure of a LSTM unit is a memory cell
ct which reserves the state of a sequence. At each step,
the LSTM unit takes one input vector (word vector in our
case) xt and updates the memory cell ct, then output a hid-
den state ht. The update process uses the gate mechanism.
A forget gate ft controls how much information from past
state ct�1 is preserved. An input gate it controls how much
the current input xt updates the memory cell. An output
gate ot controls how much information of the memory is
fed to the output as hidden state. The detailed update pro-
cess is as follows:

it =�(Wxixt + Whiht�1 + bi), (3)
ft =�(Wxfxt + Whfht�1 + bf ), (4)
ot =�(Wxoxt + Whoht�1 + bo), (5)
ct =ftct�1 + it tanh(Wxcxt + Whcht�1 + bc), (6)
ht =ot tanh(ct), (7)

where i, f, o, c are input gate, forget gate, output gate and
memory cell, respectively. The weight matrix and bias are
parameters of the LSTM and are learned on training data.

Given the question q = [q1, ...qT ], where qt is the one hot
vector representation of word at position t, we first embed
the words to a vector space through an embedding matrix
xt = Weqt. Then for every time step, we feed the embed-
ding vector of words in the question to LSTM:

xt =Weqt, t 2 {1, 2, ...T}, (8)
ht =LSTM(xt), t 2 {1, 2, ...T}. (9)

As shown in Fig. 3, the question what are sitting
in the basket on a bicycle is fed into the
LSTM. Then the final hidden layer is taken as the repre-
sentation vector for the question, i.e., vQ = hT .

3.2.2 CNN based question model

unigram
bigram

trigram
max pooling 

over time

convolution

w
hat

are

sitting

bicycle
…Question:

embedding

Figure 4: CNN based question model

In this study, we also explore to use a CNN similar
to [11] for question representation. Similar to the LSTM-
based question model, we first embed words to vectors
xt = Weqt and get the question vector by concatenating
the word vectors:

x1:T = [x1, x2, ..., xT ]. (10)

Then we apply convolution operation on the word embed-
ding vectors. We use three convolution filters, which have
the size of one (unigram), two (bigram) and three (trigram)
respectively. The t-th convolution output using window size
c is given by:

hc,t = tanh(Wcxt:t+c�1 + bc). (11)

The filter is applied only to window t : t + c � 1 of size c.
Wc is the convolution weight and bc is the bias. The feature
map of the filter with convolution size c is given by:

hc = [hc,1, hc,2, ..., hc,T�c+1]. (12)

Then we apply max-pooling over the feature maps of the
convolution size c and denote it as

h̃c = max
t

[hc,1, hc,2, ..., hc,T�c+1]. (13)
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Fig. 6 Bag-Of-Words (BOW) for encoding the question, see sec-
tion 3.2.1 for details.

Convolutional Neural Network (CNN). Convolutional Neu-
ral Network (CNN) that models language (Kim, 2014; Kalch-
brenner et al, 2014; Ma et al, 2016; Yang et al, 2015) is gain-
ing popularity due to its speed and good accuracy for the
language-oriented tasks. Since it considers a larger context,
it arguably maintains more structure than BOW but does not
model such long term dependencies as recurrent neural net-
works. Figure 5 depicts our CNN architecture, which is very
similar to Ma et al (2016) and Yang et al (2015), that con-
volves word embeddings (we either learn it jointly with the
whole model or use GLOVE (Pennington et al, 2014) in our
experiments) with three convolutional kernels of length 1,



8 Mateusz Malinowski et al.

2 and 3 (for the sake of clarity, we only show two kernels
in the Figure). We call such architecture with 1, ..., n ker-
nel lengths n views CNN. At the end, the kernel’s outputs
are temporarily aggregated for the final question’s represen-
tation. We use either sum pooling or a recurrent neural net-
work (CNN-RNN) to accomplish this step.

3.2.2 Visual encoders

The second important component of the encoder-decoder ar-
chitectures for Visual Turing Test is visual representation.
Nowadays, Convolutional Neural Networks (CNNs) become
the state-of-the-art framework that provide features from im-
ages. The typical protocol of using the visual models is to
first pre-train them on the ImageNet dataset (Russakovsky
et al, 2014), a large scale recognition dataset, and next use
them as an input for the rest of the architecture. Fine-tuning
the weights of the encoder to the task at hand is also pos-
sible. In our experiments, we use chronologically the oldest
CNN architecture fully trained on ImageNet – a Caffe im-
plementation of AlexNet (Jia et al, 2014; Krizhevsky et al,
2012) – as well as the recently introduced deeper networks
– Caffe implementations of GoogLeNet and VGG (Szegedy
et al, 2014; Simonyan and Zisserman, 2014) – to the most re-
cent extremely deep architectures – a Facebook implemen-
tation of 152 layered ResidualNet (He et al, 2015). As can
be seen from our experiments in section 5, a strong visual
encoder plays an important role in Visual Turing Test.

3.2.3 Multimodal embedding

The presented neural question encoders transform linguistic
question into a vector space. Similarly visual encoders en-
code images as vectors. A multimodal fusion module com-
bines both vector spaces into another vector space that de-
coding of answers is feasible. Let Ψ(q) be a question rep-
resentation (BOW, CNN, LSTM, GRU), and Φ(x) be a rep-
resentation of an image. Then C(Ψ(q), Φ(x)) is a function
which embeds both vectors. In this work, we investigate
three multimodal embedding techniques: Concatenation, piece-
wise multiplication, and summation. Since the last two tech-
niques require compatibility in the number of feature com-
ponents, we use additional visual embedding matrix Wve ∈
R|Ψ(q)|×|Φ(x)|. LetW be weights of an answer decoder. Then
we have WC(Ψ(q), Φ(x)), which is

WqΨ(q) +WvΦ(x) (14)

W (Ψ(q)�WveΦ(x)) (15)

WΨ(q) +WWveΦ(x) (16)

in concatenation, piecewise multiplication, and summation
fusion techniques respectively. In Equation 14, we decom-
poseW into two matricesWq andWv , that isW = [Wq;Wv].

In Equation 15, � is a piecewise multiplication. Similarity
between Equation 14 and Equation 16 is interesting as the
latter is the former with weight sharing and additional de-
composition into WWve.

3.2.4 Answer decoders

Answer words generation. The last component of the encoder-
decoder architecture for Visual Turing Test (Figure 4) is an
answer decoder. Malinowski et al (2015), inspired by the
work on the image description task (Donahue et al, 2015),
uses an LSTM as decoder that shares the parameters with
the encoder.

Classification. An alternative approach that cast answering
problem as a classification task, with answers as different
classes, has recently gained popularity, especially in VQA
task (Antol et al, 2015). Thorough this work, we investigate
both approaches.

4 Analysis on DAQUAR

In this section we benchmark our method on a task of an-
swering questions about images. We compare different vari-
ants of our proposed model to prior work in Section 4.1. In
addition, in Section 4.2, we analyze how well questions can
be answered without using the image in order to gain an un-
derstanding of biases in form of prior knowledge and com-
mon sense. We provide a new human baseline for this task.
In Section 4.3 we discuss ambiguities in the question an-
swering tasks and analyze them further by introducing met-
rics that are sensitive to these phenomena. In particular, the
WUPS score (Malinowski and Fritz, 2014a) is extended to
a consensus metric that considers multiple human answers.
All the material is available on the project webpage 1.

Experimental protocol We evaluate our approach from sec-
tion 3 on the DAQUAR dataset (Malinowski and Fritz, 2014a)
which provides 12, 468 human question answer pairs on im-
ages of indoor scenes (Silberman et al, 2012) and follow the
same evaluation protocol by providing results on accuracy
and the WUPS score at {0.9, 0.0}. We run experiments for
the full dataset as well as their proposed reduced set that re-
stricts the output space to only 37 object categories and uses
25 test images. In addition, we also evaluate the methods on
different subsets of DAQUAR where only 1, 2, 3 or 4 word
answers are present.

We use default hyper-parameters of LSTM (Donahue
et al, 2015) and CNN (Jia et al, 2014). All CNN models
are first pre-trained on the ImageNet dataset (Russakovsky
et al, 2014), and next we randomly initialize and train the

1 http://mpii.de/visual_turing_test

http://mpii.de/visual_turing_test
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Accu- WUPS WUPS
racy @0.9 @0.0

Malinowski and Fritz (2014a) 7.86 11.86 38.79

Ask Your Neurons (ours)
- multiple words 17.49 23.28 57.76
- single word 19.43 25.28 62.00
Human answers 2014a 50.20 50.82 67.27

Question-only (ours)
- multiple words 17.06 22.30 56.53
- single word 17.15 22.80 58.42
Human answers, no images 7.34 13.17 35.56

Table 1 Results on DAQUAR, all classes, single reference, in %.

last layer together with the LSTM network on the task. We
find this step crucial in obtaining good results. We have ex-
plored the use of a 2 layered LSTM model, but have consis-
tently obtained worse performance. In a pilot study, we have
found that GoogleNet architecture (Jia et al, 2014; Szegedy
et al, 2014) consistently outperforms the AlexNet architec-
ture (Jia et al, 2014; Krizhevsky et al, 2012) as a CNN model
for our task and model.

WUPS scores We base our experiments and the consensus
metrics on WUPS scores (Malinowski and Fritz, 2014a).
The metric is a generalization of the accuracy measure that
accounts for word-level ambiguities in the answer words.
For instance ‘carton’ and ‘box’ can be associated with a
similar concept, and hence models should not be strongly
penalized for this type of mistakes. Formally:

WUPS(A, T ) =
1

N

N∑
i=1

min{
∏
a∈Ai

max
t∈T i

µ(a, t),

∏
t∈T i

max
a∈Ai

µ(a, t)}

To embrace the aforementioned ambiguities, Malinowski and
Fritz (2014a) suggest using a thresholded taxonomy-based
Wu-Palmer similarity (Wu and Palmer, 1994) for µ. Smaller
thresholds yield more forgiving metrics. As in Malinowski
and Fritz (2014a), we report WUPS at two extremes, 0.0 and
0.9.

4.1 Evaluation of Ask Your Neurons

We start with the evaluation of our Ask Your Neurons on the
full DAQUAR dataset in order to study different variants and
training conditions. Afterwards we evaluate on the reduced
DAQUAR for additional points of comparison to prior work.

Accu- WUPS WUPS
racy @0.9 @0.0

Ask Your Neurons (ours) 21.67 27.99 65.11

Question-only (ours) 19.13 25.16 61.51

Table 2 Results of the single word model on the one-word answers
subset of DAQUAR, all classes, single reference, in %.

Results on full DAQUAR Table 1 shows the results of our
Ask Your Neurons method on the full set (“multiple words”)
with 653 images and 5673 question-answer pairs available
at test time. In addition, we evaluate a variant that is trained
to predict only a single word (“single word”) as well as a
variant that does not use visual features (“Question-only”).
Note, however, that “single word” refers to a training pro-
cedure. All the methods in Table 1 are evaluated on the full
DAQUAR dataset at test time. In comparison to the prior
work (Malinowski and Fritz, 2014a) (shown in the first row
in Table 1), we observe strong improvements of over 9%

points in accuracy and over 11% in the WUPS scores [sec-
ond row in Table 1 that corresponds to “multiple words”].
Note that, we achieve this improvement despite the fact that
the only published number available for the comparison on
the full set uses ground truth object annotations (Malinowski
and Fritz, 2014a) – which puts our method at a disadvantage.
Further improvements are observed when we train only on
a single word answer, which doubles the accuracy obtained
in prior work. We attribute this to a joint training of the lan-
guage and visual representations and the dataset bias, where
about 90% of the answers contain only a single word.

We further analyze this effect in Figure 7, where we
show performance of our approach (“multiple words”) in de-
pendence on the number of words in the answer (truncated
at 4 words due to the diminishing performance). The perfor-
mance of the “single word” variants on the one-word sub-
set are shown as horizontal lines. Although accuracy drops
rapidly for longer answers, our model is capable of produc-
ing a significant number of correct two words answers. The
“single word” variants have an edge on the single answers
and benefit from the dataset bias towards these type of an-
swers. Quantitative results of the “single word” model on the
one-word answers subset of DAQUAR are shown in Table 2.
While we have made substantial progress compared to prior
work, there is still a 30% points margin to human accuracy
and 25 in WUPS score [“Human answers” in Table 1].

Later on, in section 6, we will show improved results
on DAQUAR with a stronger visual model and a pre-trained
word embedding, with ADAM (Kingma and Ba, 2014) as
the chosen optimization technique. We also put the method
in a broader context, and compare with other approaches.

Results on reduced DAQUAR In order to provide perfor-
mance numbers that are comparable to the proposed Multi-
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Fig. 7 Question-only (blue bar) and Ask Your Neurons (red bar) “multi
word” models evaluated on different subsets of DAQUAR. We consider
1, 2, 3, 4 word subsets. The blue and red horizontal lines represent
“single word” variants evaluated on the answers with exactly 1 word.

World approach in Malinowski and Fritz (2014a), we also
run our method on the reduced set with 37 object classes
and only 25 images with 297 question-answer pairs at test
time.

Table 3 shows that Ask Your Neurons also improves
on the reduced DAQUAR set, achieving 34.68% Accuracy
and 40.76% WUPS at 0.9 substantially outperforming Ma-
linowski and Fritz (2014a) by 21.95% Accuracy and 22.6

WUPS. Similarly to previous experiments, we achieve the
best performance using the “single word” variant.

4.2 Answering questions without looking at images

In order to study how much information is already contained
in questions, we train a version of our model that ignores the
visual input. The results are shown in Table 1 and Table 3
under “Question-only (ours)”. The best “Question-only” mod-
els with 17.15% and 32.32% compare very well in terms of
accuracy to the best models that include vision. The latter
achieve 19.43% and 34.68% on the full and reduced set re-
spectively.

In order to further analyze this finding, we have collected
a new human baseline “Human answer, no image”, where
we have asked participants to answer on the DAQUAR ques-
tions without looking at the images. It turns out that hu-
mans can guess the correct answer in 7.86% of the cases
by exploiting prior knowledge and common sense. Interest-
ingly, our best “Question-only” model outperforms the hu-
man baseline by over 9%. A substantial number of answers
are plausible and resemble a form of common sense knowl-
edge employed by humans to infer answers without having
seen the image.

4.3 Human Consensus

We observe that in many cases there is an inter human agree-
ment in the answers for a given image and question and this

Accu- WUPS WUPS
racy @0.9 @0.0

Malinowski and Fritz (2014a) 12.73 18.10 51.47

Ask Your Neurons (ours)
- multiple words 29.27 36.50 79.47
- single word 34.68 40.76 79.54

Question-only (ours)
- multiple words 32.32 38.39 80.05
- single word 31.65 38.35 80.08

Table 3 Results on reduced DAQUAR, single reference, with a re-
duced set of 37 object classes and 25 test images with 297 question-
answer pairs, in %

is also reflected by the human baseline performance on the
question answering task of 50.20% [“Human answers” in
Table 1]. We study and analyze this effect further by ex-
tending our dataset to multiple human reference answers
in subsubsection 4.3.1, and proposing a new measure – in-
spired by the work in psychology (Cohen et al, 1960; Fleiss
and Cohen, 1973; Nakashole et al, 2013) – that handles dis-
agreement in subsubsection 4.3.2, as well as conducting ad-
ditional experiments in subsubsection 4.3.3.

4.3.1 DAQUAR-Consensus

In order to study the effects of consensus in the question
answering task, we have asked multiple participants to an-
swer the same question of the DAQUAR dataset given the
respective image. We follow the same scheme as in the orig-
inal data collection effort, where the answer is a set of words
or numbers. We do not impose any further restrictions on
the answers. This extends the original data (Malinowski and
Fritz, 2014a) to an average of 5 test answers per image and
question. We refer to this dataset as DAQUAR-Consensus.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that con-
tains multiple answers per question in order to compute an
expected score in the evaluation:

1

NK

N∑
i=1

K∑
k=1

min{
∏
a∈Ai

max
t∈T i

k

µ(a, t),
∏
t∈T i

k

max
a∈Ai

µ(a, t)}

(17)

where for the i-th questionAi is the answer generated by the
architecture and T ik is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
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Fig. 8 Study of inter human agreement. At x-axis: no consensus (0%),
at least half consensus (50%), full consensus (100%). Results in %.
Left: consensus on the whole data, right: consensus on the test data.

answersAi and T ik are sets of the words, and µ is a member-
ship measure, for instance WUP (Wu and Palmer, 1994). We
call this metric “Average Consensus Metric (ACM)” since,
in the limits, as K approaches the total number of humans,
we truly measure the inter human agreement of every ques-
tion.

Min Consensus: The Average Consensus Metric puts more
weights on more “mainstream” answers due to the summa-
tion over possible answers given by humans. In order to
measure if the result was at least with one human in agree-
ment, we propose a “Min Consensus Metric (MCM)” by re-
placing the averaging in Equation 17 with a max operator.
We call such metric Min Consensus and suggest using both
metrics in the benchmarks. We will make the implementa-
tion of both metrics publicly available.

1

N

N∑
i=1

K
max
k=1

min{
∏
a∈Ai

max
t∈T i

k

µ(a, t),
∏
t∈T i

k

max
a∈Ai

µ(a, t)}


(18)

Intuitively, the max operator uses in evaluation a human an-
swer that is the closest to the predicted one – which repre-
sents a minimal form of consensus.

4.3.3 Consensus results

Using the multiple reference answers in DAQUAR-Consensus
we can show a more detailed analysis of inter human agree-
ment. Figure 8 shows the fraction of the data where the an-
swers agree between all available questions (“100”), at least
50% of the available questions and do not agree at all (no
agreement - “0”). We observe that for the majority of the
data, there is a partial agreement, but even full disagreement
is possible. We split the dataset into three parts according to
the above criteria “No agreement”, “≥ 50% agreement” and
“Full agreement” and evaluate our models on these splits
(Table 4 summarizes the results). On subsets with stronger
agreement, we achieve substantial gains of up to 10% and
20% points in accuracy over the full set (Table 1) and the

Accu- WUPS WUPS
racy @0.9 @0.0

Subset: No agreement
Question-only (ours)
- multiple words 8.86 12.46 38.89
- single word 8.50 12.05 40.94

Ask Your Neurons (ours)
- multiple words 10.31 13.39 40.05
- single word 9.13 13.06 43.48

Subset: ≥ 50% agreement
Question-only (ours)
- multiple words 21.17 27.43 66.68
- single word 20.73 27.38 67.69

Ask Your Neurons (ours)
- multiple words 20.45 27.71 67.30
- single word 24.10 30.94 71.95

Subset: Full Agreement
Question-only (ours)
- multiple words 27.86 35.26 78.83
- single word 25.26 32.89 79.08

Ask Your Neurons (ours)
- multiple words 22.85 33.29 78.56
- single word 29.62 37.71 82.31

Table 4 Results on DAQUAR, all classes, single reference in % (the
subsets are chosen based on DAQUAR-Consensus).

Accu- WUPS WUPS
racy @0.9 @0.0

Average Consensus Metric
Question-only (ours)
- multiple words 11.60 18.24 52.68
- single word 11.57 18.97 54.39

Ask Your Neurons (ours)
- multiple words 11.31 18.62 53.21
- single word 13.51 21.36 58.03

Min Consensus Metric
Question-only (ours)
- multiple words 22.14 29.43 66.88
- single word 22.56 30.93 69.82

Ask Your Neurons (ours)
- multiple words 22.74 30.54 68.17
- single word 26.53 34.87 74.51

Table 5 Results on DAQUAR-Consensus, all classes, consensus in %.

Subset: No agreement (Table 4), respectively. These splits
can be seen as curated versions of DAQUAR, which allows
studies with factored out ambiguities.

The aforementioned “Average Consensus Metric” gen-
eralizes the notion of the agreement, and encourages predic-
tions of the most agreeable answers. On the other hand “Min
Consensus Metric” has a desired effect of providing a more
optimistic evaluation. Table 5 shows the application of both
measures to our data and models.
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Accuracy WUPS WUPS
@0.9 @0.0

WUPS (Malinowski and Fritz, 2014a) 50.20 50.82 67.27

ACM (ours) 36.78 45.68 64.10
MCM (ours) 60.50 69.65 82.40

Table 6 Min and Average Consensus on human answers from
DAQUAR, as reference sentence we use all answers in DAQUAR-
Consensus which are not in DAQUAR, in %

Moreover, Table 6 shows that “MCM” applied to hu-
man answers at test time captures ambiguities in interpret-
ing questions by improving the score of the human base-
line from Malinowski and Fritz (2014a) (here, as opposed
to Table 5, we exclude the original human answers from the
measure). It cooperates well with WUPS at 0.9, which takes
word ambiguities into account, gaining an 18% higher score.

4.4 Qualitative results

We show predicted answers of different architecture variants
in Tables 17, 18, and 19. We chose the examples to highlight
differences between Ask Your Neurons and the “Question-
only”. We use a “multiple words” approach only in Table 18,
otherwise the “single word” model is shown. Despite some
failure cases, “Question-only” makes “reasonable guesses”
like predicting that the largest object could be table or an
object that could be found on the bed is a pillow or doll.

4.5 Failure cases

While our method answers correctly on a large part of the
challenge (e.g.≈ 35 WUPS at 0.9 on “what color” and “how
many” question subsets), spatial relations (≈ 21 WUPS at
0.9) which account for a substantial part of DAQUAR re-
main challenging. Other errors involve questions with small
objects, negations, and shapes (below 12 WUPS at 0.9). Too
few training data points for the aforementioned cases may
contribute to these mistakes. Table 19 shows examples of
failure cases that include (in order) strong occlusion, a pos-
sible answer not captured by our ground truth answers, and
unusual instances (red toaster).

4.6 Common Sense Knowledge

Although “Question-only” ignores the image, it is still able
to make “reasonable guesses” by exploiting biases captured
by the dataset that can be viewed as a type of common sense
knowledge. For instance, “tea kettle” often sits on the oven,
cabinets are usually “brown”, “chair” is typically placed in
front of a table, and we commonly keep a “photo” on a cab-
inet (Table 20, 22, 23, 26). This effect is analysed in Fig-
ure 9. Each data point in the plot represents the correlation

Fig. 9 Figure showing correlation between question and answer words
of the “Question-only” model (at x-axis), and a similar correlation of
the “Human-baseline” (Malinowski and Fritz, 2014a) (at y-axis).

between a question and a predicted answer words for our
“Question-only” model (x-axis) versus the correlation in the
human answers (y-axis). Despite the reasonable guesses of
the “Question-only” architecture, the “Ask Your Neurons”
predicts in average better answers (shown in Table 1. For
instance in Table 24 the “Question-only” model incorrectly
answers “6” on the question “How many burner knobs are
there ?” because it has seen only this answer during the train-
ing with exactly the same question but on different image.

5 Analysis on VQA

While section 4 analyses our original architecture (Mali-
nowski et al, 2015) on the DAQUAR dataset, in this section,
we analyze different variants and design choices for neural
question answering on the large-scale Visual Question An-
swering (VQA) dataset (Antol et al, 2015). It is currently one
of the largest and most popular visual question answering
dataset with human question answer pairs. In the following,
after describing the experimental setup (subsection 5.1), we
first describe several experiments which examine the differ-
ent variants of question encoding, only looking at language
input to predict the answer (subsection 5.1), and then, we
examine the full model (subsection 5.3).

5.1 Experimental setup

We evaluate on the VQA dataset (Antol et al, 2015), which
is built on top of the MS-COCO dataset (Lin et al, 2014). Al-
though VQA offers a different challenge tasks, we focus our
efforts on the Real Open-Ended Visual Question Answering
challenge. The challenge consists of 10 answers per question
with about 248k training questions, about 122k validation
questions, and about 244k test questions.

As VQA consist mostly of single word answers (over
89%), we treat the question answering problem as a classi-
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kernel length single view multi view
k = k ≤ k

1 47.43 47.43
2 48.11 48.06
3 48.26 48.09
4 48.27 47.86

Table 7 Results on VQA validation set, “Question-only” model: Anal-
ysis of CNN questions encoders with different filter lengths, accuracy
in %, see subsubsection 5.2.1 for discussion.

fication problem of the most frequent answers in the train-
ing set. For the evaluation of the different model variants
and design choices, we train on the training set and test on
the validation set. Only the final evaluations (Table 14) are
evaluated on the test set of the VQA challenge, we evalu-
ate on both parts test-dev and test-standard, where for the
latter the answers are not publicly available. As a perfor-
mance measure we use a Consensus variant of Accuracy
introduced in Antol et al (2015), where the predicted an-
swer gets score between 0 and 1, with 1 if it matches with at
least three human answers. We use ADAM (Kingma and Ba,
2014) throughout our experiments as we found out it per-
forms better than SGD with momentum. We keep default
hyper-parameters for ADAM. Employed Recurrent Neural
Networks maps input question into 500 dimensional vec-
tor representation. All the CNNs for text are using 500 fea-
ture maps in our experiments, but the output dimensionality
also depends on the number of views. In preliminary ex-
periments we found that removing question mark ’?’ in the
questions slightly improves the results, and we report the
numbers only with this setting. Since VQA has 10 answers
associated with each question, we need to consider a suit-
able training strategy that takes this into account. We have
examined the following strategies: picking an answer ran-
domly, randomly but if possible annotated as confidently
answered, all answers, or choosing the most frequent an-
swer. In the following, we only report the results using the
last strategy as we have found out little difference in accu-
racy between the strategies. To allow training and evaluating
many different models with limited time and computational
power, we do not fine-tune the visual representations in these
experiments, although our model would allow us to do so.
All the models, which are publicly available under https:
//github.com/mateuszmalinowski/Kraino, are
implemented in Keras (Chollet, 2015) and Theano (Bastien
et al, 2012).

5.2 Question-only

We start our analysis from “Question-only” models that do
not use images to answer on questions. Note that the “Question-
only” baselines play an important role in the question an-
swering about images tasks since it clearly studies effects

Question Word embedding
encoder learned GLOVE

BOW 47.41 47.91
CNN 48.26 48.53
GRU 47.60 48.11
LSTM 47.80 48.58

Table 8 Results on VQA validation set, “Question-only” model: Anal-
ysis of different questions encoders, accuracy in %, see subsection 5.2
for discussion.

top frequent answers
Encoder 1000 2000 3000

BOW 47.91 48.13 47.94
CNN 48.53 48.67 48.57
LSTM 48.58 48.86 48.65

Table 9 Results on VQA validation set, “Question-only” model: Anal-
ysis of the number of top frequent answer classes, with different
question encoders. All using GLOVE; accuracy in %; see subsubsec-
tion 5.2.4 for discussion.

of added vision. Hence, better overall performance of the
model is not obscured by a better language model. To un-
derstand better different design choices, we have conducted
our analysis along the different ’design’ dimensions.

5.2.1 CNN questions encoder

We first examine different hyper-parameters for CNNs to en-
code the question. We first consider the filter’s length of the
convolutional kernel. We run the model over different kernel
lengths ranging from 1 to 4 (Table 7, left column). We no-
tice that increasing the kernel lengths improves performance
up to length 3 were the performance levels out, we thus use
kernel length 3 in the following experiments for, such CNN
can be interpreted as a trigram model. We also tried to run
simultaneously a few kernels with different lengths. In Ta-
ble 7 (right column) one view corresponds to a kernel length
1, two views correspond to two kernels with length 1 and 2,
three views correspond to length 1, 2 and 3, etc. However,
we find that the best performance still achieve with a single
view and kernel length 3 or 4.

5.2.2 BOW questions encoder

Alternatively to neural network encoders, we consider Bag-
Of-Words (BOW) approach where one-hot representations
of the question words are first mapped to a shared embed-
ding space, and subsequently summed over (Equation 13),
i.e. Ψ(question) :=

∑
word We(word). Surprisingly, such a

simple approach gives very competitive results (first row in
Table 8) compared to the CNN encoding discussed in the
previous section (second row).

https://github.com/mateuszmalinowski/Kraino
https://github.com/mateuszmalinowski/Kraino
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no norm L2 norm

Concatenation 47.21 52.39
Summation 40.67 53.27
Piece-wise multiplication 49.50 52.70

Table 10 Results on VQA validation set, vision and language: Anal-
ysis of different multimodal techniques that combine vision with lan-
guage on BOW (with GLOVE word embedding and VGG-19 fc7), ac-
curacy in %, see subsubsection 5.3.1.

Method Accuracy

BOW 53.27
CNN 54.23
GRU 54.23
LSTM 54.29

Table 11 Results on VQA validation set, vision and language: Anal-
ysis of different language encoders with GLOVE word embedding,
VGG-19, and Summation to combine vision and language. Results in
%, see subsubsection 5.3.2 for discussion.

Recurrent questions encoder We examine two recurrent ques-
tions encoders, LSTM (Hochreiter and Schmidhuber, 1997)
and a simpler GRU (Cho et al, 2014). The last two rows of
Table 8 show a slight advantage of using LSTM.

5.2.3 Pre-trained words embedding

In all the previous experiments, we jointly learn the embed-
ding transformation W e together with the whole architec-
ture only on the VQA dataset. This means we do not have
any means for dealing with unknown words in questions at
test time apart from using a special token 〈UNK〉 to indicate
such class. To address such shortcoming, we investigate the
pre-trained word embedding transformation GLOVE (Pen-
nington et al, 2014) that encodes question words (technically
it maps one-hot vector into a 300 dimensional real vector).
This choice naturally extends the vocabulary of the ques-
tion words to about 2 million words extracted a large cor-
pus of web data – Common Crawl (Pennington et al, 2014)
– that is used to train the GLOVE embedding. Since the
BOW architecture in this scenario becomes shallow (only
classification weights are learnt), we add an extra hidden
layer between pooling and classification (without this em-
bedding, accuracy drops by 5%). Table 8 (right column)
summarizes our experiments with GLOVE. For all question
encoders, the word embedding consistently improves perfor-
mance which confirms that using a word embedding model
learnt from a larger corpus helps. LSTM benefits most from
GLOVE embedding, archiving the overall best performance
with 48.58% accuracy.

5.2.4 Top most frequent answers

Our experiments reported in Table 9 investigate predictions
using different number of answer classes. We experiment

Method Accuracy

AlexNet 53.69
GoogLeNet 54.52
VGG-19 54.29
ResNet-152 55.52

Table 12 Results on VQA validation set, vision and language: Differ-
ent visual encoders (with LSTM, GLOVE, the summation technique,
l2 normalized features). Results in %, see subsubsection 5.3.3 for dis-
cussion.

Question only + Vision

Learnt - GLOVE - word embedding

Question encoding ↓ Top 1000 answers Top 2000 answers

BOW 47.41 47.91 48.13 54.45
CNN 48.26 48.53 48.67 55.34
LSTM 47.80 48.58 48.86 55.52

Table 13 Results on VQA validation set, vision and language: Sum-
mary of our results, results in %, see subsection 5.4 for discussion.
Columns denote, from the left to right, word embedding learnt to-
gether with the architecture, GLOVE embedding that replaces learnt
word embedding, truncating the dataset to 2000 most frequent answer
classes, and finally added visual representation to the model (ResNet-
152).

with a truncation of 1000, 2000, or 4000 most frequent classes.
For all question encoders (and always using GLOVE word
embedding), we find that a truncation at 2000 words is best,
being apparently a good compromise between answer fre-
quency and missing recall.

5.2.5 Summary Question-only

We achieve the best “Question-only” accuracy with GLOVE
word embedding, LSTM sentence encoding, and using the
top 2000 most frequent answers. This achieves an perfor-
mance of 48.86% accuracy. In the remaining experiments,
we use these settings for language and answer encoding.

5.3 Vision and Language

Although Question-only models can answer on a substantial
number of questions as they arguably capture common sense
knowledge, for further development we also need images.

5.3.1 Multimodal fusion

Table 10 investigates different techniques that combine vi-
sual and language representations. To speed up training, we
combine the last unit of the question encoder with the visual
encoder, as it is explicitly shown in Figure 4. In the exper-
iments we use Concatenation, Summation, and Piece-wise
multiplication on the BOW language encoder with GLOVE
word embedding and features extracted from the VGG-19
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Test-dev Test-standard
Trained on Yes/No Number Other All Yes/No Number Other All

Training set 78.06 36.79 44.59 57.48 - - - 57.55
Training + Val set 78.39 36.45 46.28 58.39 78.24 36.27 46.32 58.43

Table 14 Results on VQA test set, our best vision and language model chosen based on the validation set: accuracy in %, from the challenge test
server. Dash ’-’ denotes lack of data

net. In addition, we also investigate using L2 normalization
of the visual features, which divides every feature vector by
its L2 norm. The experiments show that the normalization is
crucial in obtaining good performance, especially for Con-
catenation and Summation. In the remaining experiments,
we use Summation.

5.3.2 Questions encoders

Table 11 shows how well different questions encoders com-
bine with the visual features. We can see that LSTM slightly
outperforms two other encoders GRU and CNN, while BOW
remains the worst, confirming our findings in our language-
only experiments with GLOVE and 2000 answers (Table 9,
second column).

5.3.3 Visual encoders

Next we fix the question encoder to LSTM and vary differ-
ent visual encoders: Caffe variant of AlexNet (Krizhevsky
et al, 2012), GoogLeNet (Szegedy et al, 2014), VGG-19 (Si-
monyan and Zisserman, 2014), and recently introduced 152
layered ResNet (we use the Facebook implementation of He
et al (2015)). Table 12 confirms our hypothesis that stronger
visual models perform better.

5.3.4 Qualitative results

We show predicted answers using our best model on VQA
test set in Tables 28, 29 ,30, 31. We show chosen examples
with ’yes/no’, ’counting’, and ’what’ questions, where our
model, according to our opinion, makes valid predictions.
Moreover, Table 31 shows predicted compound answers.

5.4 Summary VQA results

Table 13 summarises our findings on the validation set. We
can see that on one hand methods that use contextual lan-
guage information such as CNN and LSTM are perform-
ing better, on the other hand adding strong vision becomes
crucial. Furthermore, we use the best found models to run
experiments on the VQA test sets: test-dev2015 and test-
standard. To prevent overfitting, the latter restricts the num-
ber of submissions to 1 per day and 5 submissions in to-
tal. Here, we also study the effect of larger datasets where

first we train only on the training set, and next we train for
20 epochs on a joint, training and validation, set. When we
train on the join set, we consider question answer pairs with
answers among 2000 the most frequent answer classes from
the training and validation sets. Training on the joint set have
gained us about 0.9%. This implies that on one hand having
more data indeed helps, but arguably we also need better
models that exploit the current training datasets more effec-
tively. Our findings are summarized in Table 14.

6 State-of-the-art on DAQUAR and VQA

In this section, we first put our findings on VQA in a broader
context, where we compare our refined version of Ask Your
Neurons with other, publicly available, approaches. Next,
guided by our findings on VQA, we re-run the experiments
on DAQUAR.

VQA. Table 15 compares our Refined Ask Your Neurons model
with other approaches. Some methods, likewise to our ap-
proach, use global image representation, other attention mech-
anism, yet other dynamically predict question dependent weights,
external textual sources, or fuse compositional question’s
representation with neural networks. Table 15 shows a few
trends: better visual representation helps, attention based mod-
els (e.g. DMN+, FDA, SAN) have a slight advantage over
models with a global image representation (e.g. Refined Ask
Your Neurons, LSTM Q+I), encoding longer dependencies
in questions indeed helps (e.g. Refined Ask Your Neurons
and iBOWIMG), using external textual resources is benefi-
cial (AMA).

DAQUAR. Based on the VQA experiments, we have also
applied the best model to DAQUAR significantly outper-
forming Malinowski et al (2015) presented in section 4. In
the experiments, we first choose last 10% of training set
as a validation set in order to determine number of train-
ing epochs K, and next we train the model for K epochs.
We evaluate model on two variants of DAQUAR: all data
points (‘all’ in Table 16), and a subset (‘single word’ in Ta-
ble 16) containing only single word answers, which consists
of about 90% of the original dataset. As Table 16 shows,
our model, Vision + Language with GLOVE and Residual
Net that sums visual and question representations, outper-
forms the model of Malinowski et al (2015) by 5.05, 4.5, 0.8
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Test-dev Test-standard
Yes/No Number Other All Yes/No Number Other All

DMN+ (Xiong et al, 2016) 80.5 36.8 48.3 60.3 - - - 60.4
FDA (Ilievski et al, 2016) 81.1 36.2 45.8 59.2 - - - 59.5
AMA (Wu et al, 2016) 81.0 38.4 45.2 59.2 81.1 37.1 45.8 59.4
SAN(2, CNN) (Yang et al, 2015) 79.3 36.6 46.1 58.7 - - - 58.9
Refined Ask Your Neurons 78.4 36.4 46.3 58.4 78.2 36.3 46.3 58.4
SMem-VQA (Xu and Saenko, 2015) 80.9 37.3 43.1 58.0 80.9 37.5 43.5 58.2
D-NMN (Andreas et al, 2016a) 80.5 37.4 43.1 57.9 - - - 58.0
DPPnet (Noh et al, 2015) 80.7 37.2 41.7 57.2 80.3 36.9 42.2 57.4
iBOWIMG (Zhou et al, 2015) 76.5 35.0 42.6 55.7 76.8 35.0 42.6 55.9
LSTM Q+I (Antol et al, 2015) 78.9 35.2 36.4 53.7 - - - 54.1
Comp. Mem. (Jiang et al, 2015) 78.3 35.9 34.5 52.7 - - - -

Table 15 Results on VQA test set, comparison with state-of-the-art: accuracy in %, from the challenge test server. Dash ’-’ denotes lack of data.

Accuracy on subset WUPS@0.9 on subset WUPS@0 on subset
all single word all single word all single word

Global

Ask Your Neurons 19.43 21.67 25.28 27.99 62.00 65.11
Refined Ask Your Neurons 24.48 26.67 29.78 32.55 62.80 66.25
Refined Ask Your Neurons ∗ 25.74 27.26 31.00 33.25 63.14 66.79
IMG-CNN (Ma et al, 2016) 21.47 24.49 27.15 30.47 59.44 66.08

Attention

SAN (2, CNN) (Yang et al, 2015) - 29.30 - 35.10 - 68.60
DMN+ (Xiong et al, 2016) - 28.79 - - - -
ABC-CNN (Chen et al, 2015) - 25.37 - 31.35 - 65.89
Comp. Mem. (Jiang et al, 2015) 24.37 - 29.77 - 62.73 -

Table 16 Comparison with state-of-the-art on DAQUAR. Refined Ask Your Neurons architecture: LSTM + Vision with GLOVE and ResNet-152.
Ask Your Neurons architecture: originally presented in Malinowski et al (2015), results in %. In the comparison, we use original data (all), or a
subset with only single word answers (single word) that covers about 90% of the original data. Asterisk ’∗’ after the method denotes using a box
filter that smooths the otherwise noisy validation accuracies. Dash ’-’ denotes lack of data.

of Accuracy, WUPS at 0.9, and WUPS at 0.0 respectively.
This shows how important a strong visual model is, as well
as the aforementioned details used in training. Likewise to
our conclusions on VQA, we are also observing an improve-
ment with attention based models (comparison in Attention
and Global sections in Table 16).

7 Conclusions

We have presented a neural architecture for answering natu-
ral language questions about images that contrasts with prior
efforts based on semantic parsing and outperforms prior sym-
bolic based approach by doubling performance on this chal-
lenging task. A variant of our model that does not use the
image to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense and prior knowledge that humans
use to accomplish this task. We observe that indoor scene
statistics, spatial reasoning, and small objects are not well

captured by the global CNN representation. We have ex-
tended our existing DAQUAR dataset to new DAQUAR-
Consensus, which now provides multiple reference answers
which allows to study inter-human agreement and consen-
sus on the question answer task. We propose two new met-
rics: “Average Consensus”, which takes into account human
disagreement, and “Min Consensus” that captures disagree-
ment in human question answering. Finally, we extend our
analysis to a large-scale dataset VQA showing competitive
performance, yet still using global visual model, and train-
ing the model solely on the provided question answer image
triples. Our analysis also shows the importance of strong vi-
sual model. Guided by our findings on VQA, we re-train our
model from scratch on DAQUAR and show a significant im-
provement of about 5% and 4.5% in Accuracy and WUPS
at 0.9 respectively.
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What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Ask Your Neurons: bed 3 bed

Question-only: bed 6 table

Table 17 Examples of questions and answers on DAQUAR. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Ask Your Neurons: magnet, paper blue, white bed sheets, pillow

Question-only: magnet, paper blue, green, red, yellow doll, pillow

Table 18 Examples of questions and answers on DAQUAR with multiple words. Correct predictions are colored in green, incorrect in red.

How many chairs are there? What is the object fixed on the window? Which item is red in colour?

Ask Your Neurons: 1 curtain remote control

Question-only: 4 curtain clock

Ground truth answers: 2 handle toaster

Table 19 Examples of questions and answers on DAQUAR - failure cases.
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What are the objects close to the wall? What is on the stove? What is left of sink?

Ask Your Neurons: wall decoration tea kettle tissue roll

Question-only: books tea kettle towel

Ground truth answers: wall decoration tea kettle tissue roll

Table 20 Examples of compound answer words on DAQUAR.

How many lamps are there? How many pillows are there on the bed? How many pillows are there on the sofa?

Ask Your Neurons: 2 2 3

Question-only: 2 3 3

Ground truth answers: 2 2 3

Table 21 Counting questions on DAQUAR.

What color is the towel? What color are the cabinets? What is the colour of the pillows?

Ask Your Neurons: brown brown black, white

Question-only: white brown blue, green, red

Ground truth answers: white brown black, red, white

Table 22 Questions about color on DAQUAR.
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What is hanged on the chair? What is the object close to the sink? What is the object on the table in the corner?

Ask Your Neurons: clothes faucet lamp

Question-only: jacket faucet plant

Ground truth answers: clothes faucet lamp

Table 23 Correct answers by our “Ask Your Neurons” architecture on DAQUAR.

What are the things on the cabinet? What is in front of the shelf? How many burner knobs are there?

Ask Your Neurons: photo chair 4

Question-only: photo basket 6

Ground truth answers: photo chair 4

Table 24 Correct answers by our “Ask Your Neurons” architecture on DAQUAR.

What is the object close to the counter? What is the colour of the table and chair? How many towels are hanged?

Ask Your Neurons: sink brown 3

Question-only: stove brown 4

Ground truth answers: sink brown 3

Table 25 Correct answers by our “Ask Your Neurons” architecture on DAQUAR.
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What is on the right most side on the table? What are the things on the coffee table? What is in front of the table?

Ask Your Neurons: lamp books chair

Question-only: machine jacket chair

Ground truth answers: lamp books chair

Table 26 Correct answers by our “Ask Your Neurons” architecture on DAQUAR.

What is on the left side of What are the things on the cabinet? What color is the frame
the white oven on the floor and of the mirror close to the wardrobe?

on right side of the blue armchair?

Ask Your Neurons: oven chair, lamp, photo pink

Question-only: exercise equipment candelabra curtain

Ground truth answers: garbage bin lamp, photo, telephone white

Table 27 Failure cases on DAQUAR.

Are the dogs tied? Is it summer time? Is this a real person?

Ask Your Neurons: yes no no

Table 28 Examples of ’yes/no’ questions and answers produced by our the best model on test VQA.
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How many kites are only yellow? How many taps are on the sink? How many windows are lit?

Ask Your Neurons: 1 2 12

Table 29 Examples of ’counting’ questions and answers produced by our the best model on test VQA.

What is the man holding to his ear? What sport is this man enjoying? What brand is the laptop?

Ask Your Neurons: phone snowboarding apple

Table 30 Examples of ’what’ questions and answers produced by our the best model on test VQA.

Color of cow? What is the man doing? Where is the TV control?

Ask Your Neurons: brown and white playing wii on table

Table 31 Examples of ’compound answers’ questions and answers produced by our the best model on test VQA.
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