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1 Introduction

Conformal field theories (CFTs) play a distinguished role among relativistic quantum field

theories. It has long been realized that they arise as fixed point theories of renormalization

group flows and the study of their properties is clearly of interest. The enlarged symmetry

group helps to constrain e.g. the general structure of correlation functions beyond what is

already required by Poincaré invariance. Additional symmetries lead to further restrictions.



One such symmetry which is very powerful in this respect is supersymmetry, in which case
one deals with superconformal field theories (SCEFTSs).

It has been known since the early days of supersymmetry that superconformal theories
can only exist in six or lower dimensions [1]. In six dimensions, where A = (p, ¢) Poincaré
superalgebras exist for any integer p,q > 0, superconformal algebras only exist for either
p =0 or g =0. In fact, the only known non-trivial unitary CFTs in six dimensions are
supersymmetric and arise as world-volume theories of appropriate brane configurations in
string and M-theory and in F-theory, in the limit where gravity decouples. They realize
either N' = (2,0) or N = (1, 0) superconformal symmetry. For these theories no Lagrangian
description is known but they are believed to obey the axioms of quantum field theories.!
They should, in particular, have local conserved current operators and among them a local
conserved and traceless energy-momentum tensor [3, 4]. Evidence for the existence of
N = (2,0) theories was first given in [5-7]; for N/ = (1,0) theories we refer to [3, 4, 8-13].

As mentioned before, symmetries in quantum field theories lead to restrictions on
correlation functions which have to satisfy Ward identities. In correlation functions of
conserved currents one finds, however, that the naive Ward identities which would follow
from the symmetries cannot always be satisfied simultaneously. This happens in even
dimensions and leads to (super)conformal anomalies which express the fact that imposing
conservation and tracelessness of the energy-momentum tensor clashes in certain correlation
functions. The general structure of these conformal or Weyl anomalies was analyzed by
Deser and Schwimmer [14] who also introduced the classification into two types: type A
and type B. In any even dimension there is always one type A anomaly and starting in
four dimensions, an increasing number of type B anomalies. The easiest way to discuss
them is to couple the conformal field theory to a metric background which serves as a
source for the energy-momentum tensor. The anomalies then express the non-invariance
of the effective action (generating functional) under a local Weyl rescaling of the metric.
The anomalous variation of the non-local effective action results in anomalies which are
local diffeomorphism invariant functions of the metric and its derivative, i.e. functions of the
curvature and its covariant derivatives. The type A anomaly in any even dimension is given
by the Euler density of that dimension; the type B anomalies are Weyl invariant expressions
constructed from the curvature tensors and its covariant derivatives [14]. In four dimensions
there is one such expression, the square of the Weyl tensor; in six dimensions there are two
inequivalent contractions of three Weyl tensors and one Weyl invariant expression which
involves two covariant derivatives. If we work in a topologically trivial background, only
the type B anomalies contribute if one rescales the metric by a constant factor.

In any dimension the possible Weyl anomalies can be found by imposing the Wess-
Zumino consistency condition [15], which expresses the obvious fact that two consecutive
Weyl variations of the effective action must commute. Non-supersymmetric CFTs are then
characterized by as many anomaly coefficients as there are solutions to the Wess-Zumino
consistency condition: one in two, two in four and four in six dimensions, respectively.

'Here we are concerned with unitary SCFTs. For an example of a higher-derivative classical SCFT,
see [2].



In SCFTs, the Weyl anomalies are accompanied by superconformal and R-symmet-
ry anomalies; altogether they constitute the so-called super-Weyl anomalies. They are
related by supersymmetry and various anomalies in bosonic and fermionic symmetry cur-
rents are packaged into anomaly supermultiplets. The most elegant way to exhibit this is
using a manifestly supersymmetric formulation, i.e. superspace. In four dimensions, the
super-Weyl anomalies were studied in [16, 17] in the N' = 1 case and in [18] for N' = 2.
Furthermore, supersymmetry might also reduce the number of independent anomaly co-
efficients by packaging several solutions of the Wess-Zumino consistency conditions into
one supermultiplet. This is the case for N' = 4 supersymmetric Yang-Mills theory in four
dimensions where there is only one independent anomaly coefficient.

As Lagrangian descriptions of six-dimensional SCFTs are not known, it is rather diffi-
cult to study their dynamics. Interesting non-trivial information can, however, be obtained
from their symmetries. One can e.g. show that A’ = (2,0) and /' = (1,0) SCFTs have
neither marginal nor relevant supersymmetry preserving deformations [19, 20]. Another
way to approach these theories is via their 't Hooft and Weyl anomalies. This was done
in [21-27].

Due to supersymmetry one expects that the two types of anomalies are parametrized
by the same coefficients. This is known e.g. for A/ = 1 SCFT in four dimensions, where
the U(1) R-current anomalies are governed by linear combinations of the two independent
Weyl anomaly coefficients. It would be useful to know similar relations for SCFTs in six
dimensions and furthermore, to know the precise number of independent anomaly coef-
ficients. We consider the analysis of this paper as a first step towards answering these
questions for N' = (1,0) SCFTs. More precisely, we will construct supersymmetry invari-
ants which contain the solutions of the WZ consistency condition for the Weyl anomaly as
one of their bosonic components. By supersymmetry, these invariants should contain the
solutions to the supersymmetrized version of the WZ condition. Here we content ourselves
with the first step, the construction of the supersymmetric invariants and leave a detailed
analysis of the anomaly structure for the future. But the results of this paper already
show that the number of anomaly coefficients is reduced: while in the non-supersymmetric
case there are three independent type B Weyl anomalies, i.e. dimension six combinations
of curvature tensors and covariant derivatives which transform homogeneously under Weyl
transformations of the metric, there are only two independent superspace invariants which
contain them. In addition to their relevance for the anomaly structure, their arbitrary lin-
ear combination is the action for minimal conformal supergravity in six dimensions, which
will be the main focus of this paper.

To establish these results we develop a new off-shell superspace formulation of this
theory. We therefore start with a brief review of six-dimensional (6D) minimal conformal
supergravity and conformal superspace methods (see [28] for a review of conformal su-
pergravity theories in 4D). Its superconformal tensor calculus was formulated thirty years
ago by Bergshoeff, Sezgin and Van Proeyen [29]. In many respects, it is analogous to the
superconformal tensor calculus for 4D N = 2 supergravity [30-35], see [36] for a recent
pedagogical review. Soon after the 6D A = (1, 0) superconformal method [29] appeared, it
was applied to construct the off-shell supersymmetric extension of the Riemann curvature



squared term [37-39]. More recently, the 6D N = (1,0) superconformal techniques of [29]
have been refined [40, 41]. In particular, the complete off-shell action for minimal Poincaré
supergravity has been given in [40] (only the bosonic part of this action was explicitly
worked out in [29]). Gauged minimal 6D supergravity has been worked out in [41] by cou-
pling the minimal supergravity of [40] to an off-shell vector multiplet. The resulting theory
is an off-shell version of the dual formulation [42, 43] of the Salam-Sezgin model [44, 45].
Similar to the 4D N = 2 case, the 6D N = (1,0) superconformal tensor calculus has
two limitations. Firstly, it does not provide tools to describe off-shell hypermultiplets.
Only on-shell hypermultiplets were used in [29] as well as in all later developments based
on [29]. Secondly, it does not offer insight as to how general higher-derivative supergravity
actions can be built, see [46] for a recent discussion. In particular, (off-shell) invariants for
6D N = (1,0) conformal supergravity have never been constructed. In order to avoid these
limitations, one has to resort to superspace techniques. At this point, some comments are
in order about the superspace approaches to conformal supergravity in diverse dimensions.
There are two general approaches to describe N-extended conformal supergravity in
2 using a curved N-extended superspace MP 9 where § denotes the
number of fermionic dimensions. One of them, known as G[}?;M
the superspace structure group SO(D — 1,1) x G%);M, where SO(D — 1,1) is the Lorentz
N

D dimensions.? A fundamental requirement on the superspace geometry, which should

D < 6 dimensions
superspace, makes use of

group and G[I?; is the R-symmetry group of the A-extended super-Poincaré algebra in
describe conformal supergravity, is that the constraints on the superspace torsion be in-
variant under a super-Weyl transformation generated by a real unconstrained superfield
parameter. This approach was pioneered in four dimensions by Howe [47, 48] who fully
developed the U(1) and U(2) superspace geometries [48] corresponding to the N/ =1 and
N = 2 cases, respectively. The superspace formulation for 5D conformal supergravity (5D
SU(2) superspace) was presented in [49], and it was naturally extended to the 6D N = (1,0)
case in [50] where 6D SU(2) superspace was formulated. In three dimensions, the SO(N)
superspace geometry was developed in [51, 52].

The other superspace approach to conformal supergravity is based on gauging the
entire N-extended superconformal group in D dimensions, of which SO(D —1,1) x GE?;N]
is a subgroup. This approach, known as conformal superspace, was originally developed for
N =1and N = 2 supergravity theories in four dimensions by one of us (DB) [53, 54]. More
recently, it has been extended to the cases of 3D N-extended conformal supergravity [55]
and 5D conformal supergravity [56]. Conformal superspace is a more general formulation
than GE?%N] superspace in the sense that the latter is obtained from the former by partially
fixing the gauge freedom, see [53-56] for more details.

Unlike the superconformal tensor calculus, the superspace method offers off-shell for-
mulations for the most general supergravity-matter couplings with eight supercharges in
four, five and six dimensions. This includes off-shell formulations for hypermultiplets and

2The cases of five and six dimensions are rather special. Conformal supergravity exists only for ' = 1
in five dimensions, and only for N' = (p,0) in six dimensions.

3The group GE?‘N] coincides with SO(N) for D = 3, U(W) for D = 4, and SU(2) for the cases 5D N/ =1
and 6D NV = (1,0).



their most general locally supersymmetric sigma model couplings. The first such formula-
tions were developed using harmonic superspace [57-59] (see also [60]) and employed ex-
plicit supergravity prepotentials (but see [61, 62] for covariant approaches). Later, off-shell
geometric formulations were derived for 5D N = 1 supergravity-matter systems [49, 63] by
putting forward the novel concept of covariant projective multiplets. These supermultiplets
are curved-superspace extensions of the 4D N = 2 and 5D N = 1 superconformal projec-
tive multiplets [64, 65]. The latter reduce to the off-shell projective multiplets pioneered
by Lindstrom and Rocek [66-68] in the 4D A = 2 super-Poincaré case. The 5D off-shell
formulations have been generalized to the 4D N = 2 [69, 70], 3D N = 4 [52] and 6D
N = (1,0) [50] cases.? All of these works made use of the appropriate GE%D;N] superspace.
However, all the results are naturally lifted to conformal superspace.

Conformal superspace is an ideal setting to reduce the locally supersymmetric actions
from superspace to components [72, 73]. It also turns out to be an efficient formalism to
build general higher-derivative supergravity actions. Recent applications of the conformal
superspace approach have involved constructing (i) the N-extended conformal supergravity
actions in three dimensions for 3 < N < 6 [74, 75], and (ii) new higher-derivative invariants
in 4D N = 2 supergravity, including the Gauss-Bonnet term [76]. In the present paper,
we develop 6D N = (1,0) conformal superspace and apply it to construct invariants for
conformal supergravity.

Before turning to the details of the six-dimensional case, it is worth recalling the
structure of conformal supergravity actions in four dimensions (see for example the re-
views [28, 77]). The invariants for A" < 3 are supersymmetric extensions of the C? term
and are described by chiral integrals of the form

Ice = /d4x dZNQEWal“‘o“l—NWal.__a%N +c.c., N =12, (1.1)

where & is the chiral integration measure. The covariantly chiral tensor superfield
Wai..as_ny = Wiay...au_n) 18 the superspace generalization of the Weyl tensor (known as
the super-Weyl tensor). Thus the structure of 4D A -extended conformal supergravity is
remarkably simple for N < 3.

The case of 6D N = (1,0) conformal supergravity has conceptual differences from
its 4D N = 2 cousin. First of all, there is no covariantly defined chiral subspace of
SU(2) superspace [50], and thus we cannot generalise the 4D A = 2 construction to six
dimensions. Of course, one could try and construct invariants for conformal supergravity
as full superspace integrals of the form

S:/d%dseEE, (1.2)

where the Lagrangian £ is a real primary superfield of dimension 2 (in the sense of [50]).
This Lagrangian should be constructed in terms of the dimension-1 super-Weyl tensor
WeB = Whe [50] and its covariant derivatives. It is obvious that no £ with the required

“In the 6D N = (1,0) super-Poincaré case, the projective-superspace formalism was introduced in [71],
where it was used to construct off-shell actions for self-interacting linear multiplets.



properties exists. In the case of 4D N = 2 supergravity, it was shown [78, 79] that the chiral
action principle can be reformulated as a special case of the 4D N = 2 projective-superspace
action [69, 70]. For supergravity theories with eight supercharges in diverse dimensions
(including the 3D N =4 [52], 5D N =1 [49] and 6D N = (1,0) [50] cases), the projective-
superspace action principle is known to be universal in the sense that it can be used
to realize general off-shell supergravity-matter couplings. The same statement holds for
harmonic superspace (see [80] for the 6D N = (1,0) case in particular). If the goal were to
build two-derivative supergravity-matter actions, either approach would suffice. However,
if one is interested in realizing the invariants for 6D A = (1,0) conformal supergravity,
it proves to be impossible to construct any projective-superspace Lagrangian £3 only in
terms of the super-Weyl tensor W?, that is without introducing prepotentials for the
Weyl multiplet; and while 6D harmonic superspace furnishes such explicit prepotentials,
the problem of constructing the necessary higher derivative invariants (while respecting
the prepotential gauge transformations) remains a challenge unsolved even in the 4D case,
where the covariant actions are known. Therefore, if one is interested in constructing the
invariants for 6D A = (1,0) conformal supergravity solely in terms of the covariant super-
Weyl tensor, a new action principle is required. The present paper addresses this problem
and demonstrates that there are two action principles which naturally support all the 6D
N = (1,0) Weyl invariants.

This paper is organized as follows. Section 2 is a review on conformal gravity and
includes a simple derivation of the 6D Weyl invariants. In section 3 we describe 6D N =
(1,0) conformal superspace. In section 4 an action principle is presented in conformal
superspace and it is shown how it can be used to describe a supersymmetric invariant
containing a C? term. Application to other invariants is also discussed. Section 5 is
devoted to deriving another action principle which is used to describe a supersymmetric
invariant containing a CUOC term and a higher derivative action based on the Yang-Mills
multiplet in conformal superspace. Concluding comments and a discussion are given in
section 6, where it is proved that the 6D A = (1,0) Weyl invariants constructed exhaust
all such invariants in minimal conformal supergravity.

We have included a number of technical appendices. In appendix A we include a
summary of our notation and conventions. Appendix B is devoted to a derivation of
the superconformal algebra from the algebra of conformal Killing supervector fields of 6D
N = (1,0) Minkowski superspace. Finally, in appendix C we give a description of the
Yang-Mills multiplet in conformal superspace.

2 Conformal gravity in six dimensions

The conformal invariants in six dimensions [14, 81, 82] have been constructed previously
and are well known. Since we will be concerned with their supersymmetric generalizations,
it is natural to first present their bosonic counterparts. In this section, we provide a simple
derivation of the conformal invariants. The formulation we use here will be naturally
generalized to the supersymmetric case in later sections and will serve as a prelude to the



conformal superspace formulation in section 3. We begin by reviewing the formulation for
conformal gravity in D > 3 spacetime dimensions following [55].°
2.1 Conformal gravity in D > 3 spacetime dimensions

The conformal algebra in D > 2 spacetime dimensions, so(D,2), is spanned by the gener-
ators X, = {P,, My, D, K, }, which obey the commutation relations

[Map, Meg] = 2010 Myjq — 2041 My , (2.1a)
[Map, Pe] = 2Py D, Po] = Pa, (2.1b)
[Map, K] = 204 Ky D, K] = —Ka, (2.1c)

[Ka, Py] = 216D + 2Mgp (2.1d)

where P, is the translation, M,, = —Mp,, is the Lorentz, ID is the dilatation and K, is the
special conformal generator.

To describe conformal gravity one begins with a D-dimensional manifold M?P
parametrized by local coordinates ™, m = 0,1,--- , D — 1. Following the gauging proce-
dure in [55], the covariant derivatives are chosen to have the form

1
Vo =eq— §wabchc — baD — K, (2.2)

Here e, = e,™0,, is the inverse vielbein, while w,® is the Lorentz, b, is the dilation and
f,* is the special conformal connection, respectively. The covariant derivatives may also be
cast in the framework of forms

1
V=e"V,=d-— §wbchC —bD — K, (2.3)

where e® := dax™e;,* is the vielbein, d is the exterior derivative and we have defined

Wb = %W, b := €%, and §* := b2,
The gravity gauge group is generated by local transformations which can be sum-
marised by®

6kVae =K, V], K=¢&"V,+A2X, =£°V, + %A(M)abMab + oD+ AK)*K, (2.4)
provided we interpret
Vot = eaf’ + wa e’ VoAl = cah? + 0o fal + watAfal,  (25)
where the structure constants are defined by

[(Xa, By) = —fao™Xe — fap" P, [Xo, Xp] = —far“Xc - (2.6)

Conformal gravity has been discussed elsewhere in many places, e.g. [36]. Our review here emphasizes
certain points relevant to our paper.
50One must take care in applying this formula since one can have A% = 0 but V,A% # 0.



The gauging procedure ensures that the generators X, act on the covariant derivatives
in the same way as they do on P,, except with P, replaced by V,, while the covariant
derivative algebra obeys commutation relations of the form

1
Va, V] = =TV — iR(M)adeMcd — R(D)pD — R(K) K, (2.7)

where the curvatures and torsion are given by the form expressions:

T = %ec/\ebTbc“ =de® +e* Ab+ e’ Awp®, (2.8a)
R(M)* = %eb A€ R(M)gp™ = dw + w A we? — 4ele 59 (2.8b)
R(D) = %eb Ae’R(D)gp = db + 2e% Af,, (2.8¢)
R(K)* = %ec A R(K)pe® = df* — f* Ab+ 2 Awp®. (2.8d)

The gravity gauge group acts on a tensor field U (with indices suppressed) as
oxlU = KU . (2.9)

We call a field U satisfying K,U = 0 and DU = AU a primary field of dimension (or Weyl
weight) A.
To describe conformal gravity, one must impose some conformal constraints:

T =0, 7"R(M)apea =0, R(D)a =0. (2.10)

For D > 3, the Bianchi identities constrain the covariant derivative algebra to be of the form

_ 1 cd ; d c
[Va, Vi = =5 Cap™ Mea 2D 3)V Cabea K, (2.11)
where Cypeq is the Weyl tensor satisfying”
Cabed = C[ab] [ed] » C[abc}d =0 (2.12)
and the Bianchi identity
€ 2 (&
ViaCog® = —?Vfo[abf[d(sc}]. (2.13)

The Weyl tensor Cpp°® proves to be a primary field.® This means that when the explicit

be is used dependence on b, drops out of the Weyl tensor.

expression for w,
One can always make use of the special conformal gauge freedom to choose a vanishing

dilatation connection, b, = 0. The covariant derivatives then take the form

1
Va=D,—§’Ky, Da:=eq— iwabchc. (2.14)

"The symmetry property Cuped = Cedab is not independent and follows from the others.
SThis follows from considering [Ka, [V, Ve]] = 2[[Ka, V], V] = 0.



In this gauge the Lorentz curvature
Rap® = 2e[ameb]”8mwn‘3d — 2w[acfwb}fd (2.15)

may be expressed as
Rap™ = Cup™ — 865, V. (2.16)

la

One can then solve the special conformal connection in terms of the Lorentz curvature

fab = - Rab + nabRu (217)

1
2(D — 2) 4(D - 1)(D - 2)

where we have defined
Rae := 1" Rapeds R :=n"Rap. (2.18)

We will often refer to the procedure of setting b, = 0 and introducing the covariant deriva-
tive D, as degauging.

It is worth mentioning that one can introduce new covariant derivatives by making use
of a compensator ¢, which we choose to be primary and of dimension 2. One can construct
the following covariant derivatives using the compensator

Dy = ¢ 2 <va + %(vb In ¢) My, — %(va In <;5)1D>> , (2.19)

which have the property that if U is some conformally primary tensor field of some dimen-
sion then Z,U is as well. The covariant derivatives annihilate the compensator ¢, Z,¢ = 0.
When acting on primary fields they satisfy the algebra

1
[@LM @b} = _5 adeMcda (220)

where

2 569 2 (2.21)

4
ced . -1 cd [ d _
‘%ab . d’ Cab +D_25 b] (D—]_)(D_Q) [a b]

la

and

1 _ 1 _ D — _ _
Hap = 50712 (%vb) - nabm) o+ o ¢~ (PHIAOP=A/ - (2.22)

1
D ( D — 2) Nab
Here we have introduced the conformal d’Alembert operator O := V*V,. Upon degauging
and imposing the gauge conditions b, = 0 and ¢ = 1, one finds %,,°? corresponds to the
Lorentz curvature Rq;,°%.
In what follows we will specialize to the six dimensional case. We will find that all
conformal gravity invariants can be constructed as

I:/d%eL, K,L=0, DL=6L, (2.23)

where L is a function of Cypeq, its covariant derivatives and possibly a compensator ¢ (but
with I possessing no dependence on ¢).



2.2 The C® invariants

Taking into account the symmetries of the Weyl tensor there are two inequivalent ways of
contracting indices in the product of three Weyl tensors. These are as follows:

Lgd = CaseaC*C s, LA

c3 c3 CabchCdefCefab . (224)

These lead to two inequivalent invariants [ C3 = f dSze LCI)37 i=1,2.
It is worth noting that a special combination of the above invariants can be written in
the following form:

1 11/ ! ! ! gl
_ ggabcdefga,b,c,d,e,f/Caba VOt Oyl = 4L(g§ + 8L(C}§ _ (2.25)

It will turn out that it is precisely this combination that permits a supersymmetric gener-
alization.

2.3 The COC invariant

Considering the product of two Weyl tensors with two covariant derivatives, one finds the
following primary

1 8
Lene = CadeDCabcd + §vecabcdvecab8d + §vdcabcdvecabce ) (226)

which leads to the corresponding invariant Iogo = f dbze Lope.
Making use of the identity

1 8
CadeDCabcd + §Vecabcdvecab6d + §vd0abcdvecabce

1 1 16
— 6Cra,bcdDCvabcd + §ve <Cabcdvecabcd + 9Cabcevdcabcd> gL(l) + 3L( ) (227)

and upon degauging (and removing a total derivative) one finds

1 ) abce 6
Iooe = ¢ /d()xe [c b (55@2 4RI+ 55§R) Capes — 8LU) + Qng] . (2.28)

where D? := D*D,,.

2.4 The Euler invariant

The Euler invariant may be constructed most easily in the gauge b, = 0. In this gauge we
define the Fuler invariant as
1 IAN) ! ! J
Es = *gSadeefsa’b’c’d’e’f’Raba b Reod" d Refe f
6
= 4L8) +8LY) — 60U 5 Ry + 5cabcdcabcd7z
3 27

iRabRbcRca — —RPR4HR + 2 s, (2.29)

bdpac
+ 3Caped R7VRYC + 50 100

~10 -



Although one can use the above expression, we will instead look for an alternative descrip-
tion for the Euler invariant that is manifestly primary.
To begin with one can show that the following field”

8
Eg = <D3 — 3(vbvdcabcd)vav0> In ¢ (2.30)
is primary. Furthermore, the corresponding invariant
Teuler := /d%eEﬁ (2.31)
does not actually depend on the compensator. To see this we make a reparametrization
p—e ¢, Do=0, (2.32)
which induces the shift
3 8 byod axrc
E6 — E6 —(0O° - g(V Vv Cabcd)v v g. (233)

At this point it is tempting to think that the term involving (03¢ is a total derivative. How-
ever, integration of V, is complicated by the presence of the special conformal connection
and it is usually easier to work in the gauge b, = 0 to arrange a total derivative. We now
proceed to do this and show that Fg shifts by a total derivative under the reprarametriza-

tion (2.32).
In the gauge b, = 0 we find the following results:
8 32
—g(VdeCabcd)VaVCa = ?fac(Dba)DdCabcd + total derivative, (2.34a)
3 32 ac (Tyb d : :
%0 = —gf (D°0)D*Clapeq + total derivative, (2.34Db)
where we made use of the identities
1 1
D[afb]c = §R(K)abc - Edeabcda Dafbb = Dbfab . (2'35)

It is now straightforward to see that the shift in (2.33) is a total derivative and Igyer iS
invariant under reparametrizations of ¢.

Since Igyler does not depend on ¢, we are free to set ¢ = 1, and since this condition
breaks dilatation symmetry it is natural to work in the gauge b, = 0. To do this consistently
one must first extract the special conformal connection as in (2.14) before imposing the
gauge conditions ¢ = 1 and b, = 0. Non-trivial terms survive which derive from where the
dilatation generator acts on In ¢. One finds the following:

8 2
_g(vbvdcabcd)vavc In (yb = _2LCDC - 2Cabcecabcdee + gCadeCabcdR
+ Clopeg RYR — 4L8§ + L(gg + total derivative,  (2.36)
1 9 7
3 _ = bp cp a Y padb ' 13
[P’lng = 2Ra Ry“Re 2073 R R + 10072
+ total derivative. (2.37)

9This can be compared with the result in [83] for primary covariants in six dimensions.
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Finally, it follows from the above that

20 .
75 — §L(Cg), — ngg — 2Lcnce + total derivatives . (2.38)
Interestingly, we find that besides the construction (2.30) containing the Euler invariant
&g, Fg also involves the other conformal invariants.

3 N = (1,0) conformal superspace

Conformal superspace in lower dimensions [53-56] possesses the following key properties:
(i) it gauges the entire superconformal algebra; (ii) the curvature and torsion tensors may
be expressed in terms of a single primary superfield; and (iii) the algebra obeys the same
basic constraints as those of super Yang-Mills theory. In this section, as in the lower
dimensional cases, we will make use of these properties to develop the conformal superspace
formulation for A/ = (1,0) conformal supergravity in six dimensions. We will firstly give
the superconformal algebra and describe the geometric setup for conformal superspace.
We then constrain the geometry to describe conformal supergravity by constraining its
covariant derivative algebra to be expressed in terms of a single primary superfield, the
super-Weyl tensor.

3.1 The superconformal algebra

The 6D N = (1,0) superconformal algebra naturally originates as the algebra of Killing
supervector fields of 6D A = (1,0) Minkowski superspace [84], see appendix B for the tech-
nical details. Below we simply summarize the (anti-)commutation relations of generators
corresponding to the superconformal algebra.

The bosonic part of the 6D N = (1,0) superconformal algebra contains the translation
(P,), Lorentz (Mg,), special conformal (K,), dilatation (D) and SU(2) generators (J;;),
where a,b =0,1,2,3,4,5 and 4,5 = 1,2. Their algebra is

[Map, Mea) = 20cjaMyja — 2040 Mpe » (3.1a)
[Map, Pe] = 21¢a Py, D, Pa] = Pa s (3.1b)
[Map, K] = 2o Ky D, Ko] = —Ka, (3.1c)

[Kq, Py) = 277abD + 2Myy , (3.1d)
[J4, JH) = kgDl 4 L gk (3.1e)

with all other commutators vanishing. The N' = (1,0) superconformal algebra is obtained
by extending the translation generator to Ps = (P,, Q%) and the special conformal gener-
ator to K4 = (K® 8%).10 The fermionic generator Q, obeys the algebra

(@ Q)) = 29 )usPe, [QUPI=0,  DQ=3Qh,  (320)
(Map, @) =~ () Q% (79, Q) = 0. (3.20)

0For our spinor conventions and notation we refer the reader to appendix A.
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while the generator Si* obeys the algebra

1
{8757} = ~2ey;(7) P K., (7K =0, (D8] =357, (3:3)
1 . .y
(Map, S7) = 5 0a)s™SE, [77,S¢) = 682 (3.30)

Finally, the (anti-)commutators of K4 with P, are
[Kaa Qfx] = _i('Ya)a/J’SBi ) [Sia7 Pa] = _i(:ya)aﬁQ/D’i ) (3'43)
{S5, Q%Y = 2656D — 46] Mp® + 8557, (3.4b)

where we introduced M,? = —%('y“b)aﬁMab. Note that M,? acts on QEY and S,Z as follows
1 1
M., Q8] = —0Qk + 025, [M.", S]] = 3y — 23] (3.5)

3.2 (Gauging the superconformal algebra

To perform the gauging of the superconformal algebra we follow closely the approach given
in [53-56]. Below we will give the salient details of the geometry.

We introduce a curved 6D N = (1,0) superspace M6OI8 parametrized by local bosonic

(z) and fermionic coordinates (6;), 2 = (z™, 0!'), where m = 0,1,2,3,4,5, p=1,--- ,4

and ¢ = 1,2. We associate with each generator X, = (Mg, Jij,D, S;, K¢) a connection
one-form w?® = (Q%, %, B, §% ) = dzMwpy® and with Py the vielbein E4 = (E&, E).
They are used to construct the covariant derivatives, which have the form

1
Vai=E4— §QA“bMab — &g — BAD — GapKE. (3.6)

Here E4 = E4M9,, is the inverse vielbein. The action of the generators on the covariant
derivatives resembles that for the P4 generators given in (3.2).
The supergravity gauge group is generated by local transformations of the form

6xVa=I[K,Va], (3.7)

where K = ¢V + %ACndd + AR + oD + A4 K4, and the gauge parameters satisfy
natural reality conditions. In applying eq. (3.7), one interprets the following

Vac? = Eae® +wa%P ", VaA = BAN + wa%P fpc +waAlfal,  (3.8)
where the structure constants are defined as
[Xga XQ} = *fgnggv [ng VB} = *ngCVC - ngng' (3-9)

The covariant derivatives satisfy the (anti-)commutation relations

1
VA, VBt =-Tup"Ve - QR(M)ABCdMCd — R(J) 4™ T
— R(D)apD — R(S)aBES) — R(K)apK®, (3.10)
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where the torsion and curvature tensors are given by

T =dE*+ E° N+ E* A B, (3.11a)

T% = dES + E) A Q% + %Ef AB — EY N @5 — i E° A Fi(7e) (3.11b)
R(D) =dB +2E* AFa +2EX AT, (3.11c)
R(M)™ = dQ® + 0 A Q> — 4B AT + 2B A F (7)o", (3.11d)
R(J)Y = dd7 — &*0 A §7)) — 8E0 A FI) | (3.11e)
R(K)® = d§* + F° A" — §* A B — 1% A Fpr(39)7, (3.11f)
R(S), = dg:, — 85 A Q" — %SQ AB—FL A0 — B AF(Ve)as - (3.11g)

The covariant derivatives satisfy the Bianchi identities
0=[Va4,[Vg,Vc}} + (graded cyclic permutations) . (3.12)

A superfield U is said to be primary if it is annihilated by the special conformal
generators, K4U = 0. From the algebra (3.3), we see that if a superfield is annihilated by
S-supersymmetry it is necessarily primary. The superfield U is said to have dimension (or
Weyl weight) A if DU = AU.

3.3 Conformal supergravity

In the conformal superspace approach to supergravity in four [53, 54|, three [55] and five
dimensions [56], the entire covariant derivative algebra may be expressed in terms of a
single primary superfield: the super-Weyl tensor for D > 3 and the super Cotton tensor
for D = 3. In six dimensions we will look for a similar solution in terms of a single primary
superfield, the super-Weyl tensor [50].

In the lower dimensional cases the appropriate constraints to describe conformal su-
pergravity were such that the covariant derivative algebra obeyed the same constraints as
the super Yang-Mills theory. Guided by the structure of 6D N = (1,0) super Yang-Mills
theory [85-88], we constrain the covariant derivative algebra as

{V,Vi} = —2ie(v")apVa, (3.13a)
[vmvé] = (’Ya)aﬁwﬂiy (3.13b)

where W% is some primary dimension 3/2 operator taking values in the superconformal
algebra. The Bianchi identities give the commutator

i
[vaa vb] = _g('Yab)aﬁ{vg’a WI?} (3.14)
and the additional constraints
, . 1 . .
{VE WD} = 20{VE WD}, (VAW =0. (3.15)
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We constrain the form of the operator W to be
W — Waﬁv% + §W(M)ambMab + W(J)oﬂjkjjk + W(]D))MD + W(K)MBKB 7 (316)

where W8 is the super-Weyl tensor [50] which is a symmetric primary superfield of di-
mension 1. One can show that the Bianchi identities (3.15) are identically satisfied for

. . , 1_, 1 1,
W= WPV + VWM — SV WM™ 4 SV WJY 4 SV WD

1 J i miray ofb i a gpfi
= g VAV IIS) + 5V WS
1 a 7 [ 1 a7l
-0 Y5V, <V7WB — 257V5Wﬂ5> K, (3.17)

provided W satisfies

vivIW =~ vwor, (3.182)
1
VEV WHY — Zégvﬁvgkww = 8V, W, (3.18b)

It will be useful to introduce the dimension 3/2 superfields
1 ) i .
Xhe? = VAWl s XAk X = VW, (3.19)

and the following higher dimension descendant superfields constructed from spinor deriva-
tives of Web:

- 5 ) ) 1 . ) S ;
Bij . 2 (olixBi) _ Zs8vliyxy1i)) — _ ol yB9)
Yol = —2 (vax TUAYD ) VX, (3.20a)
|-
Y= VX, (3.20b)
1 1
Yag™? = VE, Xg), 7% — gdg”v’;xak(”ﬂ - gagyv’;xﬁkm. (3.20¢)

Note that X§a5 is traceless, Y,?¥ is symmetric in its SU(2) indices and traceless in its
spinor indices, and Yabﬂ‘; is separately symmetric in its upper and lower spinor indices
and traceless.

One can check that only the superfields (3.20) together with (3.19) and their vector
derivatives appear upon taking successive spinor derivatives of W8, Specific relations we
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will need later are given below:

. . 9 9 1 ..
Vi xP = —gyaﬁ” - EEUVOWW'Y'B - 55”55Y, (3.21a)
L 1 . 1 1 1 ..

VEXI = S60Yp09 — —60¥, D0 — SeliY g7 — 2V g WP

2 10 2 4

3 .. 1 ..
+ %sw(sg”vapww — eIV WO (3.21b)
VY = —2iV,3 X", (3.21c)

92 . . )
VEY, P = 35’““( — 8iV,5 X728 — 4iV 05 XD + 31V, X9

3i

+ 3107V 05 X — 255V75X5j)) , (3.21d)

: 4 8i
i 5 s 1 ~6 ( 1§ ( )
Vi¥as™ = ~4iV o Xb) " + SO0V, X190 1 25191 X1 0
+ 80V (o X )07 (3.21e)

These equations guarantee that any number of spinor derivatives of W8 can always be
rewritten in terms of W?, the superfields defined in (3.19) and (3.20), and their vector
derivatives. The descendant superfields transform under S-supersymmetry as follows:

SEXP = —ilagW0 + el WO, e %gf.waﬂ, (3.22a)
STV, P = 5,(;'( —16X0)78 4 268 x9) — 853)(@‘)) , (3.22b)
1
6 § ( § ays a
SiYas™® = 24(80, X7 = 200 X)), SPY = —4X7. (3.22¢)

Expressing the covariant derivative algebra in terms of the descendant fields gives

{Vi, V4} = =2ie" (¥")apVa, (3.23a)
(Va, Vi] = (Ya)as (W/SVVEY 4 XML — %XWMﬁ —5i X7 T ZlXﬁ’]D)
Ly sigy g Iy wesgni  Oly g
477 T g 16
i c % 3 %
+ 578 (vafﬁ A > K> : (3.23)

An explicit expression for the remaining commutator

1
[Va, Vo] = =T} VE — TV — §R(M)adeMcd — R(N)ap™ Jig — R(D) D
—R(S)wh S} — R(K)ape K* (3.24)

follows from the Bianchi identities. For completeness, we provide the torsion and curvature
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components below:

Top® = —4Wep©, (3.25a)
3
Tabk (’Yab)ﬁ <Xvozkﬁ’y - Z(sa’yxf) 5 (3.25b)
R(M) 4 — 07 0Y — AV Wyt — AVI W15, (3.25¢)
R(J)ab” = (3.25(1)
R(]D)) = —-2V°© Wcab; (3.256)
P af 3 i 3 8 si 1 igs 1 i B
R(‘s)aby - 1(7ab)ﬁ 16v X7 — E(SfyvaéX - évaéX.y — gvfy(;Xa s (325f)
1 1 1
R(K)abc = (’ch[a)a,@vb}vdwaﬂ + nc[avb]y + 57 24 ('7ab)o/3('ch)’y(svdyﬁéa7
1
+ ﬂwaﬁya67 (’Vabc)'yé - gWaBYa'y 6(70)5(5(7&1))67
151 51, o1,
+ 372X kX]f(’yabc)oaﬁ + gX kXoak'B’y(’Yabc)Bv - ZX kXBk’Y(S(’Yc)a’Y('Yab)&'B
ngmXﬁkaé(%bc)wa + 1X ok X 51 (Ve)rs (Vab) e
1 «
+ 16W P (ve) g5 (V) ay Vi) W — @W P (ve)ary (Yabd) gs VW
3 1 o
+ 32W (P)/abc),6’5VOC’YVV’WS + EW ﬁnc[a(’)/b])a'yvﬁtiw’ya . (3.25g)

The component structure of the supergravity multiplet described by this superspace
geometry can be identified with the standard Weyl multiplet of 6D N = (1,0) conformal
supergravity [29]. The details of this will be presented in a future paper. Here we mainly
point out that the independent one-forms e;,%, ¥m®, by, and V;,% in that approach co-
incide (up to conventions) with the § = 0 parts of the superspace one-forms E,,%, E,,**,
B,, and ®,,", respectively. Similarly, the independent covariant fields T e X, and D are
given by the 6 = 0 parts of Wy = %(*yabc)agwaﬂ, X and Y. The other components
of the super-Weyl tensor W# correspond to covariant curvatures; for example, the § = 0
part of Y, is the traceless part of R(M )ade, which is the supercovariant Weyl tensor.

3.4 Introducing a compensator

An alternative formulation of conformal supergravity was given in [50], which we will refer
to as SU(2) superpace. The formulation does not gauge the entire superconformal algebra
and instead may be thought of as a gauge fixed version of the formulation introduced
in the previous sections. Instead of applying the method of degauging used in [54-56]
we will make contact with SU(2) superspace by utilizing a compensator. Here we will
develop the alternative approach advocated in lower dimensions in [72, 89], which makes
clear how SU(2) superspace may be understood as conformal supergravity coupled to some
compensator at the superspace level.
We introduce a primary superfield X of dimension 2,

DX =2X, S*X =0. (3.26)
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The superfield can be used to furnish new spinor covariant derivatives,
‘ ‘ ‘ . 1.
i — X4 (v; + (ViinX) Mo = 2(V]In X)Jj' = 5(V, lnX)]DD) . (3.27)

The covariant derivatives have been constructed to take a primary superfield to another
primary superfield of the same dimension. Note also that X is annihilated by 2!, 2! X = 0

When acting on a primary superfield, the algebra of the covariant derivatives becomes!!

(D8, D)} = 206" Doy — H5ETW (10 3 Mpe — 46T (10 3 My + 61T s Ty

+2i%,7 (7)o g My — 1614550 (3.28)
where
Do = —i{@fj, Dar} — 282U ) apMeg — 27U V) 0 Med + 3C0s" Jii (3.29)
and we have introduced
Gl = —iX*%vgvj}X, (3.30a)
Ny = —%X%v’gavﬁ)kX*Q, (3.30D)
WP = X2 Wer (3.30¢)

Here we have introduced # 7 which is a rescaling of W*? so that it is inert under dilata-
tions. The superfields Cfaﬁij and 4,3 are the only dimensionless primary combinations
involving two spinor derivatives acting on X. The super-Weyl transformations of [50]

correspond to a reparametrization of the compensator superfield, X — X e~2.

4 An action principle for the supersymmetric C® invariant

Having developed conformal superspace in the previous section we are now in a position to
address the problem of constructing conformal supergravity invariants. This will require
an action principle capable of supporting such an invariant. In this section we expound
such an action principle and show that it may be used to construct a supersymmetric C3
invariant.

4.1 Flat superspace actions and their generalization

Before discussing curved superspace actions, it is useful to briefly review action princi-
ples with manifest A/ = (1,0) Poincaré supersymmetry. The simplest is the full super-
space integral

S = /d6xd80£, (4.1)

where £ is an unconstrained real superfield. Because the Grassmann coordinates 6% are
irreducible under the Lorentz and R-symmetry groups, there is no separate notion of chiral

"This agrees with the dimension 1 anticommutation relations of the covariant derivative algebra in [50].
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superspace as in four dimensions. To construct smaller superspaces involving a reduced
set of #’s, additional structure is needed. The most well-known example is 6D N = (1,0)
harmonic superspace [90, 91], ROl x §2. where additional bosonic coordinates u'® are
introduced to describe the coset space S% = SU(2)/U(1).!? Introducing a new basis for the

+

Grassmann coordinates as 0%F := 470" one may construct an invariant action
7 )

S = / dbz dudiet £ = / dbzdu (D)L 9=y, DL =0, (4.2)

where DF := uED! and du is the invariant measure for SU(2). A special case is when
L4 is an O(4) multiplet C** with simple quartic dependence on the harmonics, C*t4 =

+ 0 o vighl e o 13
U U Uy C"% . Tts component action is given by

_ 1 ij
S :/d%du (D)ACT gy = 5/d656 (DY)ijC™p_g

. 1 L o
Avigkl . aBy8 (i ki) i ~vjiklp) _
(DY 1= — e DYDiDEDY,  DYCIHP) =0, (4.3)

For the similar case of 4D N = 2 supersymmetry, the O(4) multiplet and associated action
were introduced by [94]. It is clear that any full superspace action can be rewritten in this
way using CT* = (D*)3L. The converse is not always true within the family of local and
gauge-invariant operators. More specifically, given an O(4) multiplet C™, there always
exists a harmonic-independent potential £ such that C*4 = (D)L, as proved in appendix
G of [56] in the 5D N = 1 case. However, such a potential £ cannot always be defined
as a local gauge-invariant operator. A simple example is when the O(4) multiplet is the
product of two O(2) multiplets.

Our task is to construct the conformal supergravity invariants, so a natural step would
be to generalize the above actions to curved superspace and to choose the appropriate La-
grangians. Both in SU(2) superspace [50] and in conformal superspace, it is straightforward
to generalize eq. (4.1) to

S = / A’z d*0E L, (4.4)

where FE is the Berezinian (or superdeterminant) of the supervielbein. In order to be
invariant under the supergravity gauge transformations, £ must be a conformal primary
scalar superfield of dimension two. Unfortunately, there is no suitable Lagrangian that can
be built directly from the covariant fields of the Weyl multiplet. Furthermore, there is no
obvious way to generalize (4.3) without introducing a compensator field. The reason is
C** should clearly have dimension four, but the analyticity condition VZC** = 0 cannot
be conformally invariant, assuming C** is a primary, unless C** has dimension eight. A
natural step here would be to relax the assumption that C** is itself primary and instead
consider it as a descendant of some other primary superfield. One could imagine a number

12 This superspace is a natural extension of the 4D N = 2 harmonic superspace [60, 92].
130ne can also have an action principle with C¥* obeying the weaker condition Dfa Dé)CMPq = 0. This
leads to the action discussed in eq. (4.72) of [93].
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of ways of doing this. In fact, we will discover an action principle in section 5 involving
such a non-primary C 4.

For the moment, however, we will follow a different approach and attempt to construct
the actions as six-forms directly rather than as superspace integrals.

4.2 Primary closed six-forms in superspace

While supersymmetric actions are frequently realized as integrals over the full superspace
or its invariant subspaces, there is an alternative construction involving the use of closed
super D-forms [95-97].14 For 6D A/ = (1,0) superspace, we introduce a closed six-form .J

1

J6!

dzMo A AdM Ty, AT =0. (4.5)
(The closure condition is trivial on the spacetime M9 since there a six-form is a top form,
but there are no top forms on the supermanifold M8 since d6" commutes with itself.)
Such a closed superform leads immediately to the action principle

1
S = = /d6a;e*J|9:0, = —'5m"qu5Jmnpqrs, (4.6)

M6 6!
where i : M% — MO8 is the inclusion map and i* is its pullback, the effect of which is to
project 65 = d#! = 0. Closure of J guarantees that the action is invariant under general

15 In addition, the action must be invariant

coordinate transformations of superspace.
under all gauge transformations: for conformal supergravity, this includes the standard
superconformal transformations, which form the subgroup #H. This implies that J must

transform into an exact form
oyd =dO(A%), A=A%X,. (4.7)
A special case is when the closed six-form is itself invariant, dyJ = 0. This implies

that if one instead decomposes J in the tangent frame,

1

J6!

EASA - NEM T4 ag s (4.8)
the components J4,...4, transform covariantly and obey the covariant constraints

V[AlJA2~~-A7} +3T[A1AQBJ‘B‘A3...A7} =0. (4.9)
In particular, their S and K transformations are given by

S Ty anity oo = —in(31,)"J . do—n K%Ja,.2,=0. (4.10)

. i1,
ag—n ’Yjaz'“an]oq Qg—n ?

Such superforms are called primary.
It follows from eq. (4.10) that the component of a primary superform with lowest
dimension is a primary superfield, so it is natural to ask what primary constraints are

14The approach proves equivalent to the rheonomic formalism [98].
5Here we assume the general coordinate transformations are generated by a vector field £ = €4E, =
€M 9y which vanishes at the boundary of MS.
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compatible with the closure conditions (4.9). This general question was addressed by Arias
et al. [93] using 6D SU(2) superspace [50], and we will arrive at similar results to theirs.
First observe that the component of the superform J with lowest dimension (which we
will refer to as the lowest component of the superform) cannot be a scalar without either
that scalar being covariantly constant (which is forbidden by the superconformal algebra
due to its non-vanishing dimension) or the superform being exact.'® This means we have
to allow for the possibility that the lowest component carries some Lorentz and SU(2)
indices. We let the lowest component of the superform be directly constructed in terms of
the primary superfield

Aalmanﬁl“'ﬁmkl'“kp — B1--Bm (k1--kp) (4.11)

Alaran)
with dimension A. In analogy to the chiral action principle in 4D, we seek a pri-
mary constraint involving one spinor derivative with totally symmetrized SU(2) indices,
VglAal...anﬂl”'ﬁm k1kp) Such constraints are natural: they appear in solving the first non-
trivial Bianchi identity (if it is not identically satisfied) since the part symmetric in SU(2)
indices cannot be countered by the term proportional to the superspace torsion. We will
suppose further that

v! A

(g “702Ont1

)61"'5mk1"'k1’) — traces =0, (4.12)

where we subtract out all possible traces to render the result traceless in its spinor indices.
Requiring the constraint to be primary implies

2A +3n+m—4p=0, (4.13)

which can only have solutions for 2p > A. Notice that the upper Lorentz indices are not
assumed to be symmetric, which generalizes some of the corresponding results of [93]. Re-
markably, apart from the one degenerate case of the tensor multiplet, all known closed
primary superforms have underlying primary superfields satisfying a constraint of the
form (4.12) with the condition (4.13).

We now seek to find a primary closed superform to act as an action principle supporting
a supersymmetric C® invariant. Since we will want to set the superfield to be cubic in W?
and its spinor derivatives, the underlying superfield should satisfy A > 3+ £. Considering
all the possible ways of embedding such a superfield into a (non-exact) closed six form
leads one to consider a primary dimension 9/2 superfield of the form A,"* satisfying
the constraint

Vi Ag = 0. (4.14)

In fact, a superfield obeying this constraint was already used to construct a closed six-form
in [93] in the context of 6D SU(2) superspace [50]; such a superfield also appeared in the

16This is unlike what happens in four dimensions, where one can construct the chiral action principle.
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context of the anomalous current multiplet [99, 100]. The resulting closed six-form is

J = éEAG Ao NEM T s s (4.15a)
Taben 5t = 3(Yave) (asAy) 7", (4.15b)
Tabediy = _éeabcdef('yef)(a’ysﬁ)'yij - ésabcdef(’Yefg)aﬂ(:yg)anpnija (4.15¢)
Jabedet, = %5abcdef(:7f)6’y(gﬂfy,ai + Qaprt) (4.15d)
Jabedef = —EabedefF s (4.15¢)

and all other components vanish. Here we have introduced the descendant superfields

y 3 iy 3 y
Saﬂzj = EV(akAﬂ)Z]k, Eagw = EV[akAmUk, (4.16&)
Qo' = %v[ajvﬁ]kA’yijk = %vaijkAvijka (4.16b)
1 5 ‘ i 5 »
F = Iaaﬁv Vi, 5 = Mgaﬁv ViV Vo Asik. (4.16¢)
Reality of the action implies that A,“% = A, and similarly for its descendants,

Eo3 = Eugijs S = Sapijs Qaps’ = Qapyi, and F = F. These transform under
S-supersymmetry as follows:

S5uSas” = =246, A", (4.17a)
StaFap = =186, Ag" ., (4.17Db)
S Qupt = —4i 6,55, 1 — 4.6, Bap,1 + %&Eaﬁil, (4.17¢)

SOF = 2P0, 5. (4.17d)

Making use of these results one can check that the superform (4.15) is primary.

It is worth mentioning that the closed six-form (4.15) may be derived by analogy with
the construction of the closed four-form [101] which describes the chiral action in 4D N = 2
supergravity [102]. Ref. [101] considered the closed four-form w = F' A F, where F' is the
two-form field strength of an on-shell U(1) vector multiplet. Under certain assumptions
on the vector multiplet, it was shown that all components of w are expressed in terms of a
single chiral N = 2 superfield W2, with W the chiral field strength of the vector multiplet.
In the 6D N = (1,0) case, one can consider the topological term Tr(F A F' A F'), where F
is the two-form field strength of a YM multiplet, see appendix C. Rewriting the superform
in terms of A,%* Eapys Tr (W'B (i W‘Sk)), where W is the field strength of the
Yang-Mills supermultiplet, and throwing away a covariantly exact piece one uncovers the
structure of the superform J.

4.3 The supersymmetric C? invariant

In order to describe the supersymmetric C? invariant it is now necessary to construct a
composite A,7* out of the super-Weyl tensor. Since the invariant must contain a C3 term
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and since the Weyl tensor is directly constructed out of the spacetime projection of the

superfield Ya[ﬂ‘s, the composite A,“* must be at least cubic in W? and its descendants.

Taking into account the constraints on A,%* gives the following unique solution:

.. . . . . . : / ’ 641 1 / ; ’ /
Ao = Bicgys XPUXXE) — Sicq g5 XPUXT, 1 X 1) 4 ?EQMXS,BB X7, xk)e

+HeapsY, XYW — 3e,5.5Y, W XY (4.18)

In particular, one can check that the above superfield is primary and satisfies the con-
straint (4.14).

The component reduction (although tedious) is straightforward and may be carried out
similarly as in [72]. Furthermore, one can readily verify that the action contains a C? term
proportional to the combination (2.25). We leave the detailed analysis of the component
action to a forthcoming paper.

4.4 Other invariants

A natural question that one may ask is whether other invariants may be constructed using
the same action principle. Specifically, can we construct another primary composite A"
that is (for example) quadratic in the super-Weyl tensor WeB? Unfortunately, enumerating
the possibilities it turns out that only the cubic solution (4.18) is possible. There are

however certain composite primary superfields that one can construct at dimension 3.

These are
HOBi — yyley; i 4 g x dledi xB) _ % xlati x81) (4.192)
5 . .
H = yweP 4 ?YwaﬁwwS - %X""“X,f + ?X,’;MXMB)V +AXRX P (4.19D)

It turns out that the first may be used to generate another action, which will be discussed in
detail in the next section. Before moving on to the discussion there, it is worth illustrating
the existence of the other action principle using the primary superform construction of
this section.

The important property of eq. (4.19a) (besides being primary) is that it satisfies the

differential constraint!”

VEBA1IR) — _9islB Ak (4.20)

with B = H*PJ for some non-primary A®7*. One can check that it is not possible to
construct a primary composite A,“* directly from B with various covariant derivatives
only. Despite this one can construct a composite A% out of B* with the use of
a compensating supermultiplet. To demonstrate this we choose a compensating tensor
multiplet ®, which satisfies the constraint

viv)e =0. (4.21)

'"Notice that this constraint is a special case of eq. (4.12).
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Then using the results of section 3.4 (with X = @), one can construct the following com-

posite
A — — L adg 9ligipt) | et s gtiptik) _ Slgd gl g k)
a —_@ alZg Ly + 2194 afZ~ _g 4( B 'ya)
% ) . . .
+ glcpi (Z8WP)Bog™ + ad 9 9, BHIH) (4.22)

The last term involves a free parameter a and generates an exact six-form, which may be
removed. The composite A4,%* is primary and satisfies the differential constraint (4.14).
As a result we can associate an action with any primary superfield satisfying eq. (4.20),
and we therefore have an action principle based on B,

The action principle based on B eq. (4.22), can be used immediately to describe
certain invariants. If we take B%% = H®PJ the component action will contain a COC
term. One can also construct a unique higher-derivative FOF action for a non-abelian

gauge theory by taking
B — i Te(Welwh)) (4.23)

where W is the field strength of the 6D A = (1,0) Yang-Mills multiplet [85-88], see
appendix C for details. The corresponding component action will contain a term of the
form Tr(F ,,0F) upon integrating by parts.

It should be mentioned that in the rigid supersymmetric case the supersymmetric FUF
action was constructed in [2] within the harmonic superspace approach. Their result can
also be recast as the O(4) multiplet action (4.3) with

CR o Tr(X W XH)) | (4.24)

where X denotes the flat-superspace limit of the descendant (C.8). The interesting feature
of the model proposed in [2] is that the operator X 4 is not a primary superfield, but the
action (4.3) based on (4.24) is superconformal.

It is important to point out that the action principle based on B*?% may contain
dependence on ®. Although we do not explicitly show this here, we expect that the action
principle will be independent of the compensator. In the the next section we show that such
an action principle based on B*?% exists without the need to introduce any compensator.

Before moving on we would like to mention one more application of the action principle

based on a composite A,"*. Let V* be a prepotential for the tensor multiplet,'®

. a1 o ,
D=V, Vi, viyh) = Zagvf;V‘”) . KAV =9, (4.25)
It is defined modulo gauge transformations of the form

Vel e et (4.26)

18The prepotential for the tensor multiplet was introduced by Sokatchev in the framework of his harmonic-
superspace formulation for 6D A = (1,0) supergravity [80]. More recently this prepotential has been
described in SU(2) superspace in [50].
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where W is the field strength of an abelian vector multiplet, see appendix C. Using V¢
one can construct the following primary composite

AT = ,5,5VPE B (4.27)

It is simple to verify the differential constraint (4.14) by making use of (4.20) and (4.25).
The action corresponding to the composite (4.27) is invariant under arbitrary gauge trans-
formations (4.26) when B®%9 is further constrained as

[V V] Bk = _8iV 3 B (4.28)
which imposes a constraint on B*%% to describe a closed 4-form [93]. Below we give two
examples of gauge-invariant actions.

Our first example of a gauge-invariant action corresponds to the choice (4.23). In this
case it is rather simple to see that a gauge transformation (4.26) shifts the invariant by
a topological term and the invariant contains the term @TT(FabF“b). Thus the action
describes the non-Abelian vector multiplet coupled to the dilaton Weyl multiplet. In the
flat-superspace limit, the prepotential of the tensor compensator may be chosen as V¥
6°*. Then the top component (4.16¢) of the closed six-form (4.15) becomes

F  Do;Dg; Te(WGWAI) (4.29)

which is the Lagrangian for the 6D N = (1,0) super Yang-Mills theory postulated in [88].
Here we derived this Lagrangian from a more general action principle.

Our second example, derives from the fact that the constraint (4.28) is satisfied for the
composite (4.19a). In the case where B®% = %% eq. (4.27) may be seen to describe a

supersymmetric Riemann curvature squared term [37, 39].

5 An action principle for the supersymmetric CUJC invariant

Although we have shown in the previous section that one can construct a supersymmetric
COC action with an explicit compensator field, this has an obvious disadvantage. One
would have to show that terms involving the compensator could be eliminated by inte-
grating by parts in order for it to be an invariant for minimal conformal supergravity.
Due to the complexity involved in doing this, it would be better to have a compensator-
independent approach, but as we have already discussed, it seems impossible to generate an
appropriate primary closed six-form. This suggests that we should consider non-primary
six-forms instead; however, since these are rather more difficult to deal with, it would be
helpful to know where to start looking.

Let us return to a point we raised earlier. The full superspace action (4.4) is always a
possible action principle, and it must correspond to some general six-form action involving
L and its derivatives. It turns out that its six-form cannot be primary. The reason is that
if it were, then the lowest dimensional component would be S-invariant and at least of
dimension 3. Now it is straightforward to investigate the S-transformation properties of
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all higher components of £: the only primary aside from L itself appears at the 62 level,

ij L~ \aByligi
B, = —— () vivic. (5.1)

(In particular, there is no primary at dimension 9/2 corresponding to A,*“* without in-
troducing a compensator.) We have denoted this descendant as B," as it obeys the same
constraint (4.20) as the superfield B*%% = (3%)*’ B, introduced in the previous section.
Note however that it cannot be the bottom component of an invariant six-form: it would
have to be multiplied by six E¢ to balance its dimension, but the Lorentz and SU(2) indices
cannot be contracted appropriately. This means that no corresponding primary siz-form
exists. Of course, it is not possible to construct an invariant scalar £ from the superfields
of the Weyl multiplet, so what purpose does this observation serve? It turns out that one
can build an action principle upon a primary superfield B,” obeying certain properties
consistent with (but not implying) its derivation from a scalar superfield £. In this way,
B," will lead to something analogous to the chiral action principle of four dimensions.
The argument goes as follows. Suppose we choose L to be a tensor multiplet ® subject

to the constraint (4.21). Its superspace integral must vanish,
S:/dﬁdeQEcl):O (5.2)

since one can introduce the prepotential V' for the tensor multiplet, as in eq. (4.25), and
then integrate by parts. Now the descendant B," precisely vanishes for a tensor multiplet,
so it must be that that the six-form associated with a general £ can be written purely in
terms of the superfield B,% and its derivatives. This is analogous to the situation in four
dimensions, where a full N < 2 conformal superspace action can always be converted first to
a chiral superspace action using the chiral projection operator. The converse is not true —
there are chiral Lagrangians that do not come from any full superspace Lagrangian (at least
not without introducing compensators). Taking this analogy seriously, we conjecture that
any primary superfield B, obeying the S-invariant constraint (4.20), which is consistent
with (5.1), must lead to an invariant action.

This proves to be precisely the action principle we need to describe the supersymmetric
COC invariant. As a consequence of (4.20), one can show that

VUABIKD) = 5 BCiik  ylicike) — ¢ (5.3)

for non-primary superfields A*“* and C%* . The superfield C** is a non-primary version
of the O(4) multiplet that we have already discussed in section 4.1, and its S-transformation
is exactly as needed to permit the second condition of (5.3) to hold. This suggests that
the six-form action principle should begin with a term

1

1
J=—=FE"N-- - NE%¢eq g F+---, F:5

6! (V)i CHR (5.4)

providing a covariant version of the action principle (4.3). As already mentioned, we should
not expect that the full six-form is primary. Nevertheless, starting from the top component,
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one can iteratively reconstruct the full six-form in a straightforward (albeit laborious) way.
The result turns out to include explicit S and K connections, which makes J transform
into an exact form under those respective gauge transformations.

We give the complete structure of this six-form in section 5.2. However, in order to
better explain certain features of its construction, it helps to describe the general properties
of non-primary forms, especially if one wishes to verify gauge invariance of the action.
Section 5.1 is a self-contained discussion of this topic.

5.1 Non-primary closed forms in superspace

Let us begin with the following observation. It has become apparent that superforms that
are not invariant under certain gauge symmetries nevertheless play an important role in
constructing invariant actions. These frequently involve Chern-Simons terms with bare
connections: recent examples have included the 4D and 5D linear multiplets [56, 103, 104],
3D N < 6 conformal supergravity [74, 75], and non-abelian N' < 4 gauge theories [105].
However, such a geometric structure does not seem to be a necessary requirement. For
example, in the context of 4D N = 2 conformal superspace, bare S and K connections
were recently observed when constructing actions involving projective [106] and harmonic
superfields [107]. These were associated with closed four-forms J that transformed into
exact forms under S and K transformations. In this subsection, we will establish some
general properties of such non-primary closed forms in six dimensions.

Let J be a closed super p-form. We assume it is invariant under Lorentz, Weyl,
and SU(2) transformations, but that it transforms under K4 = (S&, K¢) transformations
into an exact form. It is possible to expand J in terms of the vielbein E4 and the K-
connection §4,

1
J=—EY N NE Jy 4 +

= 1S4, A EY2 N NE Ty,

_
(r—1)

1
_‘_..._i_]ngl/\.../\S'APJAZLHAI? (5_5)

An-
n+1

the conditions on these superfields so that dJ = 0.

so that the coefficient functions Ja,...4 “A1 are covariant superfields. Let us derive

Because J is assumed to be invariant under Lorentz, Weyl, and SU(2) transformations,
it is equivalent to analyze DJ = 0 where

1 L
D:=d-— 5QO“’MM, — BD — &Y J;; (5.6)

is covariant with respect to those symmetries. Using the definitions (3.11) of the torsion
tensor T and K-curvature R(K) 4, one verifies that

1
DEA = 5EB NECTep® + EB AGofCB4, (5.7a)

1 1
DFa = 5EB ANE°R(K)cpa+ EP AFcfCpa+ 588 A ScfPa, (5.7b)
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where the constants f are the relevant structure constants appearing in the algebra

(K4, V] = —fA5°Ve — fABcKY + other generators,
(K4 KP) = - fAPoKC. (5.8)

From the definition of V 4 one also has

DJAP---A AnAr EBVBJAP...A AnAr —l—SBKBJAP...A AnsAr (5.9)

n+1 n+1 n+1

Now it is straightforward to analyze the conditions for closure on J. These will be
somewhat involved, so it is helpful to give a shorthand approach that will allow us to
compactly consider all equations at once. We can introduce a generalized frame one-form
EA = (E4,F4) and rewrite (5.5) as'®

1
J= 17!5«41 A NEA JAPMA“ (5.10)

with the superfields J4,..4, encapsulating those appearing in (5.5) in the obvious way.
This expansion formally treats the one-forms E4 and §4 on the same footing. Imposing
this democracy in the relations (5.7) and (5.9) leads respectively to

1
DEA = 553 A SC'TCBA, DJAp"'Al = EBVBJAP...AI , (5.11)

where we have introduced V 4 := (V4, K A) and a tensor Tep? defined as

c c BC BC ABC
Ta” =TaB", Ta"" =fa”", T =0,

Tasc = R(K)apc, TaPc=fa"c, Tc="c. (5.12)
Now it is immediately apparent that the condition for closure on J becomes

b
V[Aerl‘]Ap"'-Al} + §7IAP+1APBJ\B|AP71-~A1} =0. (5.13)

The above structure suggests the interpretation that we are enlarging the superspace
and introducing new coordinates associated with K4 so that £4 becomes the new vielbein.
From our perspective, this analogy is purely a formal one — we are not introducing any
new coordinates. However, because the structure of the transformations is consistent with
such a possibility,?® many useful properties follow. For example, the tensor 7 can be
interpreted as the generalized torsion tensor of V 4, that is

[Va,V5] = —Tas%Ve + other generators . (5.14)

9The notion of a generalized frame appeared naturally in the context of multiplets with central charge
coupled to N/ = 2 supergravity. There it facilitates the description of vector-tensor multiplets [108, 109]
and the construction of the linear multiplet action [103].

20Tn more formal language, we could choose to work on the total (super)space of the fiber bundle associated
with K-transformations.
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Similarly, the dx transformations of the connections A = (EA,&' 4) and the covariant
components J4,..4, precisely satisfy a covariant form of Cartan’s formula,

O (A) =Dip +14D, (5.15)
where 7, is an antiderivation defined to act as
wSa=Ax, WE =15(Va,  Va,Ja,.a)=0. (5.16)
From these results, it is immediate to see that for a closed p-form (5.5)
O (N)J =DipnJ =dipJ (5.17)

which establishes that J transforms as an exact form.

It is obvious that the class of primary superforms, discussed in section 4.2, is simply one
for which no § 4 appears within the decomposition (5.5). Then the closure condition (5.13)
amounts to two conditions:

p
Vg apeaiy + 5 Tapra, i, 1may =0, (5.18a)
KJayen, + 20,7 Jipja, 1ay = 0. (5.18D)

The first is the usual covariant closure condition, and the second is the condition for S
and K-invariance (compare to eq. (4.10)). This illustrates how the single condition (5.13)
concisely encodes both the conditions for closure and for gauge invariance modulo an exact
piece.

5.2 A non-primary six-form action principle

Now we turn to our specific goal of finding a non-primary six-form that begins with the
term (5.4). Taking into account the closure conditions, one can deduce the structure of the
remaining terms. We use the definitions

Acisk . %VB(ZBBW’“) o Ay i= glvaijU : (5.19a)
- 1, 3 . 1
Okl .= ZVE,}AC“J’“” . P = Zvak/\ﬁwk, Cop == g(%)aﬁvamﬂbk, (5.19Db)
ijk 4i ijkl i 2i ~ij
Po™ = _gvalc » Pap’ = —§V[aj05] ’ (5.19¢)
3 g
B, = E(%)aﬁvakp/;”’f, (5.19d)
. i y 1 1 y
0= %SVBJ-E&“J : Fi= oVo QY = g(v‘*)i]-,dcw’d, (5.19)
with factors of i chosen so that all fields obey W4 = W;;.. where ¥ carries any number

of spinor indices. In terms of these components, the action six-form may concisely be
factorized as

J=Jo+ 3 AN JTs¥ +Ta A JK®, (5.20)
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where the six-form Jy and the five-forms Jg§' and Jx involve only the supervielbein one-
forms E4. The non-vanishing tangent-space components of Jy are

JOabcf)éjgfli = _3(7abc)(a,8p'y)ijk )

JOQde% = —%(W[abc)aﬁEd]ij ;
Toarazosasash = ~Earazasasase (1°)ag (107 = 81 BTV, X] (47),7
+ 2B (1), 9, X5~ BAR Y0
Joarazasasasas = —Carazasasasas <F F A AP (17 50V X — %Aab’“w”wvemﬁa
+ 2By (779)a V. Y5 — gcﬁaijyaﬂij> . (5.21)

Note that there are some similarities between components of Jy and those of the A,7*
six-form (4.15). In particular, the lowest dimensional component p,*/* of Jy obeys the
same differential constraint (4.14) as A,“*; the difference is that p,“* is not primary
but transforms into C** under S-supersymmetry. The non-vanishing components of the

five-forms Jg¢ and Jx® are simpler in structure and given by

Tsabcst s = 241 (Yape) gy A7 (5.22a)
4 ] .
JSabed; = gé?abcdef(vef),éf7 CyYy, (5.22b)
JSabcde? = Eabcdef ('7f)ﬁ,yp6—y?7 (522(})
and
Tcbedis” = —64(Yea)ap B* | (5.23a)
JKbcdelaa = 8i Ebcdefg (’Yfg)aﬁ Aﬂal ) (523b)
Ticbedef” = Epedefg(79)°Crs™ (V)as - (5.23¢)

They are essentially determined by the requirement that the full six-form J should trans-
form as

05 = —d(AshJs8), Ok = —d(AkaJk®), (5.24)

under S and K transformations, consistent with (5.17). Note that since J is not primary,
we may freely add any exact form we choose to it. In particular, some of the terms in
Jg and Jx can be removed by choosing such a form appropriately; however, since it does
not seem possible to eliminate either Jg or Jx completely, we have not tried to simplify J
any further.

Using this non-primary six-form, we can immediately construct the invariants corre-
sponding respectively to the supersymmetric COC' invariant and the supersymmetric FOF
actions. The first, as already mentioned, involves choosing B*#% = H*%% in (4.19a). The
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leading components of the action can be deduced by observing that the non-primary de-
scendant O(4) superfield is simply

1

Cidkl — _§Ya5(ijy5a kl) (5.25)

from which the leading contributions to F' = %(V‘l)ljkl(]ijkl may be determined. The term
associated with the Weyl tensor is straightforward to derive:

2 2
F = S(VYaea)” + - = S(VIR(M)apea)* + -+ (5.26)

Note that even this leading term is not K-invariant, as one must include the explicit K-
connection terms in the six-form. Removing a total derivative and higher order terms in
the Weyl tensor leads to

1
F= —ER(M)abcdDR(M)ade SRR (5.27)

The second case, the supersymmetric FOF' action, involves the composite (4.23). Here
one finds the non-primary O(4) descendant superfield is C%* = Tr(X (i x kl)). As we
have already noted, this is precisely the harmonic superspace Lagrangian used in [2] to
construct this invariant in flat space. At leading order, one finds the top component of the
multiplet is

F =2Tr(VPFy, V. F) + - = —Tr(F o OF®) + - - - | (5.28)

where we have discarded a total derivative and higher order terms.
The details of the component action corresponding to the supersymmetric COC and
FOF invariants will appear in a forthcoming paper.

6 Discussion

In this paper we have constructed two invariants for minimal conformal supergravity in
six dimensions. These include the supersymmetric C® invariant described by the compos-
ite (4.18) together with the action principle (4.15), as well as the supersymmeric COC
invariant described by the composite (4.19a) together with the action principle (5.20). The
number of invariants constructed is consistent with the expectation that there should only
be two in the case of N' = (1,0) local supersymmetry, see e.g. [110]. However, it would
be good to confirm that there does not remain another invariant. A rather simple way to
answer this question is to consider possible supercurrents of the Weyl multiplet.

In supersymmetric field theory, the supercurrent is a supermultiplet containing the
energy-momentum tensor and the supersymmetry current(s), along with some additional
components such as the R-symmetry current. In the case of 6D N = (1,0) superconformal
field theory, the supercurrent was described in [88] in Minkowski superspace. Its gener-
alization to the curved case is described by a scalar primary superfield 7 of dimension 4
satisfying the differential constraint?!

VvV =0, (6.1)

21This is the only possible curved extension of the flat case description in [88] provided J is primary.
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When the superconformal theory is coupled to conformal supergravity, the lowest com-
ponent of J matches the variational derivative of the action with respect to the highest
dimension independent field of the Weyl multiplet, which is the scalar auxiliary field D as
mentioned in section 3.3.

We may now ask the following question: how many possible supercurrents can be built
purely from the super-Weyl tensor and its covariant derivatives? The most general possible

ansatz is

T = aViVY + Y2 +ie3 XUV XD +1ics X0OV5X 5% + ¢5 Yo"V
tc6 Vg V5P + 1 WOV 05V s WP 4 gV g, WOV, s WP
+69€a1...a4€51...54wa1’81 o W aba , (6.2)

where ¢,, n = 1,---9, are real coefficients. Requiring that J be primary and satisfy the
constraint (6.1) yields a two-parameter family of possibilities,

32 2
c3 = —502—561, cq4 = —1—502—1601, cy = 1—5024-501,
2 1 2 1 1 1 1
6 = gCQ‘FgCl? 072—1*502—5617 g = §C7Z_T582_E01,
Cg = O7 (63)

given here in terms of the coefficients ¢; and c3. The family with ¢; = 0 corresponds to a
supercurrent built from the cubic Weyl invariant, whereas a combination with nonzero ¢y
must correspond to the quadratic Weyl invariant. There are no other possibilities, so the
two invariants we have constructed are the only ones.

In section 2.4 we discussed the Euler invariant, eq. (2.29). Here we briefly comment on
its extension to the supersymmetric case. It can naturally be introduced by first using the
special conformal (and S-supersymmetry) transformations to gauge away the dilatation
connection entirely, B4 = 0. It is now natural to perform the degauging procedure as
in [53-56], and extract the special conformal connection §4 by introducing the degauged
covariant derivatives Dy := V4 + FapK P, with SO(5,1) x SU(2) being the corresponding

structure group. They satisfy (anti-)commutation relations of the form??

1
[Da, D} = —Tap“De — iRABCndd — Ras™ T, (6.4)
where T4 is the torsion, and R 4 5% and R 45" are the Lorentz and SU(2) curvatures, re-

spectively. A detailed analysis of the torsion and curvature tensors will be given elsewhere.
The Euler invariant is defined to be the closed six-form

1
S = gnab ARARY copedes,  d&6 =0, (6.5)

where R = 1EB N EAR 45

22The reader should be made aware that our notation for the curvature tensor coincides with the bosonic
case, but they are not to be confused.
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It may be seen that & contains the same C? combination (2.25) (modulo an overall
coefficient) which originates in the closed six-form Jgs describing the supersymmetric C3
invariant, eq. (4.15). As a result, the closed six-form

E+12J0s (6.6)

does not contain any term involving only the Weyl tensor. All bosonic structures in the
above invariant involve the Ricci tensor. However, it is not actually an independent invari-
ant since we have only added a total derivative.

It was shown in section 2 that there exists a primary construction in terms of the
logarithm of a compensator. Upon degauging the compensator it contains a linear combi-
nation of the conformal invariants. Although outside of the scope of this work it would be
interesting to construct its supersymmetric extension.

A detailed analysis of the component structure of the supergravity multiplet, as well
as of the invariants for 6D N = (1,0) conformal supergravity constructed, will be given in
a forthcoming publication [111].
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A Notation and conventions

We follow similar 6D notations and conventions as [50], with a few minor modifications.
All relevant details are summarized here.
The Lorentzian metric is n,, = diag(—1,1,1,1,1,1), the Levi-Civita tensor Eabedef

obeys egra345 = —e?121
emnpqrs . — Eabcdefeam

= 1, and the Levi-Civita tensor with world indices is given by

epecLeqles ef®.
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We exclusively use four component spinors in the body of the paper, but it is useful to
link these to eight component spinor conventions. Our 8 x 8 Dirac matrices I'* and charge
conjugation matrix C' obey

(T, Ty} = =291, (T =-I,, Cr,0'=-1T,
clc=1, c=ct=cr. (A.1)

In particular, I';C~! is antisymmetric. The chirality matrix I, is defined by
Pialolelalel' s) = €apedef L - (A.2)
As a consequence of the above conditions, one can show that
r“=pBIry*B=', B=I.I,C"'. (A.3)
The charge conjugate W€ of a Dirac spinor is conventionally defined by
U =vir, = (v9)TC = U= T, C 'V = -T,BU*. (A.4)

Because B*B = —1, charge conjugation is an involution only for objects with an even
number of spinor indices, so it is not possible to have Majorana spinors in six dimensions.
One can instead have a symplectic Majorana condition when the spinors possess an SU(2)
index. Conventionally this is denoted

(T) =" — U'=_-TC Y T)" = -T.B(V,)* (A.5)

for a spinor of either chirality. We raise and lower SU(2) indices ¢ = 1, 2 using the conven-
tions

\I/i = Eij\I/j, \IJZ = Eij\Ifj, EQ €91 — 1. (AG)

We employ a Weyl basis for the gamma matrices so that an eight-component Dirac
spinor ¥ decomposes into a four-component left-handed Weyl spinor %< and a four-
component right-handed spinor . so that

e 5% 0
U= T, = : =1,---,4. AT
(Xa), (0 ) (A7)

The spinors ¥® and y, are valued in the two inequivalent fundamental representations of
su*(4) 2 s0(5,1). We further take

o[ 0 (59 [ 0 87
b ((’Ya)aﬁ 0 > O (5“6 0 ) ' e

The Pauli-type 4 x 4 matrices (7%)as and (7%)*? are antisymmetric and related by

1

(39 = 58“’8”‘5(7“%57 (V)" =a, (A.9)
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where £*979 is the canonical antisymmetric symbol of su* (4). They obey

(Y)ap(3)7 + (1)ap (3 = —20"83, (A.10a)
P)ay + ()P (1) gy = 2065 (A.10b)

and as a consequence of (A.3),

oo « B*, 0
() = Ba®Bab (0)29)"s (9% = BB ((0)°)", B = ( . B) (A
(03
A dotted index denotes the complex conjugate representation in su*(4). It is natural to
use the B matrix to define bar conjugation on a four component spinor via

V0= BY(%) . Xa = Ba’(xs)", (A.12)

with the obvious extension to any object with multiple spinor indices. For example,
(Y)ap = (7)ap using (A.11) and similarly for 7%. Note that ¢ = —¢® and similarly
for any object with an odd number of spinor indices as a consequence of B*B = —1.
A symplectic Majorana spinor ¥;, decomposed as in (A.7) and obeying (A.5), has Weyl
components that obey

Yo = qp® Xai = X - (A.13)

The Grassmann coordinates % and the parameters 7’, of S-supersymmetry are both sym-
plectic Majorana-Weyl using this definition.

We define the antisymmetric products of two or three Pauli-type matrices as
1, - - -
5% = W)y Fab = VW) = —(Yab)" (A.l4a)
Yabe ‘= V[zz:ﬂﬂ/c} ) Yabe = :Y[a’Ybﬁ/c] . (A-14b)

Yab = V[a:}/b} =

Note that v, and 4, are traceless, whereas v,p. and 45, are symmetric. Further antisym-
metric products obey

1 . 1
Yabe = 3|5abcdef'7 f Yabe = 3,5abcdef’)/ f (A.lSa)
1 . 1
Yabed = §€abcdef'7€f ) Yabed = _§€abcd5f’)’ f (A.15b)
VYabcde = 5abcdef7f ) Yabede = _Eabcdef:}/ ) (A15C)
Yabedef = —Eabedef S/abcdef = Eabedef - (A15d)

Making use of the completeness relations

(Y)ap(Fa)"’ = 46,705, (A.16a)
(1)’ (Yab)y* = —804°8,7 + 26,75, (A.16b)
(V") (Fabe) " = 48612 "0)° , (A.16c)
(’7(1 )aﬁ('}/abc)’yé ( abc)aﬁ(')’abc) 9 = 0, (A16d)
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it is straightforward to establish natural isomorphisms between tensors of so(5,1) and
matrix representations of su*(4). Vectors V¢ and antisymmetric matrices V3 = —Vj, are
related by

1 ~ O\«
Vog = (1apVa = Vo= Z(%) Vs - (A.17)

Antisymmetric rank-two tensors Fy;, are related to traceless matrices F,P via

1 1
FP = —z(fy“b)aﬁFab, FA=0 < Fy= i(fyab)ﬁaFaﬁ = —F,. (A.18)

Self-dual and anti-self-dual rank-three antisymmetric tensors Tébic ),

1 +
5Eabcdeff]véef) — iT(i)abc, (Alg)
are related to symmetric matrices T,,3 and T via
1 1,
Top = 5 (7" VasTure = Tpa = T = g (Fav) T (A.20a)
1. - 1
T8 .— g(fyabC)aﬁTabc =7 = T = é(fyabc)aﬁTO@@’. (A.20b)

Further irreducible representations of the Lorentz group take particularly simple forms
when written with spinor indices. For example, a gamma-traceless left-handed spinor two-
form W,;7 is related to a symmetric traceless \IIQBV,

1

U, == Z(fyab)oﬁxpab7 =0, 7, T, =0 <+

1
\Ilabv = Q(yab)ﬁa\yaﬂy’ (’yb)(g,y\I/ab’y = 0, (A21)

and a rank-four tensor Cp.q with the symmetries of the Weyl tensor is related to a sym-
metric traceless C’Mﬁ‘S via

L 4 ¢
Cavﬁ§ ::E(V "o’ (7 d)76 Cabed = C(av)(ﬁé) ) Cavm =0 <=
1
Cabed = Z(Vab)ﬁOL(P)/cd)é’y OCWBJ - C[cd][ab] ’ C[abc]d =0. (A22)

B The conformal Killing supervector fields of R6I®

Simple Minkowski superspace in six dimensions, RS/®, is parametrized by coordinates z4 =

(z,0%). The flat covariant derivatives Dy = (9, D)

0 , 0 ~
— i TN B4
Oq : 5’ Dy, : 207 i(v")apt”"0a , (B.1)
satisfy the algebra:
{D},D}} = 2" (")apla, (02, D4 =0,  [04,0] =0. (B.2)
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The conformal Killing supervector fields

§=E=E0,+&D, (B.3)
may be defined to satisfy
¢, D}) = —(Di&)) DY, (B.4)
which implies the fundamental equation
Do = ~2i(va)aps™ - (B.5)
From eq. (B.5) one finds
e <7b>a68b§a = (’Ya)cwDi;{yi =+ (PYa)B'yD(ixf’yj ) (B'ﬁ)

which gives us the equation for a conformal Killing vector field,

1
a(afb) = 6”&1)80507 (B.7)

as well as the following useful identities:

1

Db — Zagpgi ) (B.8a)
Dher — 20 (B.8b)
'ng; - 5 faa .
1 1
D’;lf]f - ZfﬁDsfz = _i(fyab)aﬁaaéb . (B8C)
The conformal Killing supervector field acts on the spinor covariant derivatives
as follows 1
[€, D) = —wa” D + A Daj = oDy, (B.9)
where the parameters wo?, o and A” are given by the following expressions:
1
waﬁ = _Z(VGb)aﬁaafb, (Bloa‘)
1 5 1
g = ZD,yfz = —éaaga, (BlOb)
1
AT = ZDglgm . (B.10c)

Using eq. (B.7) one finds that the parameters (B.10) satisfy

OaWpe = —2n4p0,0 (B.11a)
8aabgc = nabaco' - 2770(aab)07 (Bllb)
while using eq. (B.5) one finds
1
Diw,” =268 Dko — 5551)’;0, (B.12a)
DIA* = —45U DR g | (B.12b)
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where o obeys

Di,Dlo = —ic" 0,30, 9aD%0 =0. (B.13)
Finally, one can verify that the following holds

i
0u) = i(ya)ﬁmﬁka. (B.14)

The above results tell us that we can parametrize superconformal Killing vectors as

§= g(/\(P)a7 )‘(Q)? ) )‘(M)aba )‘(J)ij7 )‘(D)7 )‘<K)a7 )‘(S)Z ) ) (B'15)

«

where we have defined the parameters

A(P)* = &% o=p=0 MQ)i =& |lz=0=0; (B.16a)

AM)ab = wWablo=6=0 AD) :=0lz=6-0, )\(J)Zj = Aij|g;:9:() ) (B.16D)
1 . )

A(K)a = 58040-|x=9=07 )\(S)fx ::n(l)(’x:9207 (B16C)

and we have introduced
. 1 .
Moy i= iDga. (B.17)

The commutator of two superconformal Killing vectors,

§= g(/\(P)a7 )‘(Q)za ) )‘(M)abv )‘(J)ija )‘(D)7 )‘(K)a7 )‘(S)Za) (B18)
and
€= EAP) M@)F MM )ap, A(J)7, MDY, AK)*, M(S)) (B.19)

is another superconformal Killing vector given by
[€,€) = (£"0a8" — €0 + €7 DLE" — €1 DLE" + 28676 (1)) Oy
+ (€90 — €°0.€] + §0DLE) — £ DLeT) DY,
= (%" + €5 - E%,” — &0 — AL (1)ap ) 0y
Ceas~ - 1.5 ~ T
+ (= i€°(Ga) iy + 5675 — " + A
sfa(x 1 o B j
+i€ ('Ya)ﬂfyn'yj - 55}60 + gj Waﬁ - fzﬁA J)Dé

= AP MQ)F A )ap, AT AD), A, A(S)G) (B.20)

70
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A(P) = MP)’AM)p® +A(P)*A(D) = 2N Q)R A(Q) ™ (1")agp
— A(P)’A(M)y" =A(P)*A(D) , (B.21a)

SAQEAD) XAV

i) PAP)A(S) i+ M@AM)s = SAQEAD) M@V, (B21b)

A(Q) = —i(Fa) P AP)A(S) i — MQ) A(M) 5~ +

~

MMy = 2N A e~ NP GA K )y AP MK
+200)a MQFEAS)~200)o” MQFAS)S (B.21c)
A = 2N —8A(Q)UA(S)) +8M(Q)UA(5)) (B.21d)
(D) = 2A(PPA)u 23 (P A K)o +2A(S) M@ 23 (S AQ)S (B.21¢)
M) = AM)PAK )y + ADIME) 4 230 PA(S)EA(S) st
— A(M)™N(K); = AD)A(K)*, (B.21f)
A8 = 1(70)as M) MQ)P -+ AGSEAM)® ~ S AS)AD) - NS
~ i()as M) NQ)P = ASYAM )+ ASIAD)+ASHAC)s - (B21g)

Representing the superconformal Killing vectors as
1 g
§ = AP)"Pa + NQ)7 Q4 + SAM)** May, + A(J)7 Jij + A(D)D
+ AMEK)* K, + A\(S)L,52 (B.22)
and comparing eq. (B.21) to the commutator
[€,€] = —AA%[Xy, X3} (B.23)

gives the superconformal algebra.

C The Yang-Mills multiplet in conformal superspace

To describe a non-abelian vector multiplet, the covariant derivative V = E4V 4 has to be
replaced with a gauge covariant one,

V=FEAV,, Vai:=Vs4—iV4. (C.1)

Here the gauge connection one-form V = EAV 4 takes its values in the Lie algebra of
the (unitary) Yang-Mills gauge group, Gym, with its (Hermitian) generators commuting
with all the generators of the superconformal algebra. The algebra of the gauge covariant

derivatives is
1
VA, Vp}=-Tap“Ve — *R(M)ABCndd — R(J)ap™ Ty — R(D) apD
—R(S)ABkSk R(K)ap°K. —iF 4p, (C.2)
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where the torsion and curvatures are those of conformal superspace but with F 4p corre-
sponding to the gauge covariant field strength two-form F = %EB A EAF 45. The field
strength F'4p satisfies the Bianchi identity

VF=0 <= VuFpey+Tap"Fipcy=0. (C.3)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives V 4 and a
matter superfield U (transforming in some representation of the gauge group) as

Vi — TV e T, U - U=¢TU, =7, (C4)

where the Hermitian gauge parameter 7(z) takes its values in the Lie algebra of Gyyr. This
implies that the gauge one-form and the field strength transform as follows:

V = &TVe T 4ieTde T, F — TFe T, (C.5)

Some components of the field strength have to be constrained in order to describe an
irreducible multiplet. The constraints are (see e.g. [88])

Fi3 =0, Fab= (s W, (C.62)

where W is a conformal primary of dimension 3/2, S,ZWM =0and DW® = %W"‘i. The
Bianchi identity (C.3) together with the constraints (C.6a) fix the remaining component
of the field strength to be .
i
8

and constrain W to obey the differential constraints

Fup = —=(yap)g* VEW? (C.6b)

Viw] =0, Vviwd) = iagvgiwm. (C.7)
It is helpful to introduce the following descendant superfield:
XU .= %V(jwm . (C.8)
The superfield W and X%, together with
F.f = —%(V’;Wf . i(sgvfng) - —%V’;Wﬁ, (C.9)

satisfy the following useful identities:

VIWH = _igf X9 — 21V F P (C.10a)
) ) 1 )

ViFg = -V, W — 51V 3sW + iénggW‘”, (C.10b)

Vi Xk = 20w sWHK) (C.10c)

The S-supersymmetry generator acts on these descendants as

STF,’ = —4is]Wo +i58Wy,  S)X9 = —4isi W), (C.11)
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