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Abstract

We develop a new off-shell formulation for six-dimensional conformal su-
pergravity obtained by gauging the 6D N = (1,0) superconformal algebra in
superspace. This formulation is employed to construct two invariants for 6D
N = (1,0) conformal supergravity, which contain C® and COC terms at the
component level. Using a conformal supercurrent analysis, we prove that these
exhaust all such invariants in minimal conformal supergravity. Finally, we show
how to construct the supersymmetric F'OF invariant in curved superspace.


http://arxiv.org/abs/1606.02921v1

Contents
1 Introduction

2 Conformal gravity in six dimensions
2.1 Conformal gravity in D > 3 spacetime dimensions . . . . . . . . . ..
2.2 The C3invariants . . . . . . . . . . . ...
2.3 The COC invariant . . . . . . . .. . . L

2.4 The Euler invariant . . . . . . . . . . ..

3 N =(1,0) conformal superspace
3.1 The superconformal algebra . . . . . .. ... ... ... ... ...
3.2  Gauging the superconformal algebra. . . . . . ... .. ... ... ..
3.3 Conformal supergravity . . . . . . . . .. ...

3.4 Introducing a compensator . . . . ... ..o

4 An action principle for the supersymmetric C? invariant
4.1 Flat superspace actions and their generalization . . . . . ... .. ..
4.2  Primary closed six-forms in superspace . . . . . . . ... .. ... ..
4.3 The supersymmetric C® invariant . . . . . . . . ... ... ... ...

4.4 Other invariants . . . . . . . . . . .

5 An action principle for the supersymmetric COC invariant
5.1 Non-primary closed forms in superspace . . . . .. .. .. ... ...

5.2 A non-primary six-form action principle . . . ... ... ...
6 Discussion
A Notation and conventions
B The conformal Killing supervector fields of R%®

C The Yang-Mills multiplet in conformal superspace

1

EEIR REIEIEIEIE]

ﬂ

El EI EI



1 Introduction

Conformal field theories (CFTs) play a distinguished role among relativistic quan-
tum field theories. It has long been realized that they arise as fixed point theories
of renormalization group flows and the study of their properties is clearly of interest.
The enlarged symmetry group helps to constrain e.g. the general structure of corre-
lation functions beyond what is already required by Poincaré invariance. Additional
symmetries lead to further restrictions. One such symmetry which is very powerful

in this respect is supersymmetry, in which case one deals with superconformal field
theories (SCFTs).

It has been known since the early days of supersymmetry that superconformal the-
ories can only exist in six or lower dimensions [1]. In six dimensions, where N' = (p, q)
Poincaré superalgebras exist for any integer p,q > 0, superconformal algebras only
exist for either p = 0 or ¢ = 0. In fact, the only known non-trivial unitary CFTs in
six dimensions are supersymmetric and arise as world-volume theories of appropriate
brane configurations in string and M-theory and in F-theory, in the limit where grav-
ity decouples. They realize either N' = (2,0) or N' = (1, 0) superconformal symmetry.
For these theories no Lagrangian description is known but they are believed to obey
the axioms of quantum field theories. They should, in particular, have local conserved
current operators and among them a local conserved and traceless energy-momentum
tensor [21[3]. Evidence for the existence of N' = (2,0) theories was first given in [4H6];
for N'= (1,0) theories we refer to [2[3,[7HI2].

As mentioned before, symmetries in quantum field theories lead to restrictions
on correlation functions which have to satisfy Ward identities. In correlation func-
tions of conserved currents one finds, however, that the naive Ward identities which
would follow from the symmetries cannot always be satisfied simultaneously. This
happens in even dimensions and leads to (super)conformal anomalies which express
the fact that imposing conservation and tracelessness of the energy-momentum ten-
sor clashes in certain correlation functions. The general structure of these conformal
or Weyl anomalies was analyzed by Deser and Schwimmer [I3] who also introduced
the classification into two types: type A and type B. In any even dimension there is
always one type A anomaly and starting in four dimensions, an increasing number of
type B anomalies. The easiest way to discuss them is to couple the conformal field
theory to a metric background which serves as a source for the energy-momentum
tensor. The anomalies then express the non-invariance of the effective action (gener-
ating functional) under a local Weyl rescaling of the metric. The anomalous variation

of the non-local effective action results in anomalies which are local diffeomorphism



invariant functions of the metric and its derivative, i.e. functions of the curvature
and its covariant derivatives. The type A anomaly in any even dimension is given
by the Euler density of that dimension; the type B anomalies are Weyl invariant
expressions constructed from the curvature tensors and its covariant derivatives [13].
In four dimensions there is one such expression, the square of the Weyl tensor; in
six dimensions there are two inequivalent contractions of three Weyl tensors and one
Weyl invariant expression which involves two covariant derivatives. If we work in a
topologically trivial background, only the type B anomalies contribute if one rescales

the metric by a constant factor.

In any dimension the possible Weyl anomalies can be found by imposing the Wess-
Zumino consistency condition [14], which expresses the obvious fact that two consec-
utive Weyl variations of the effective action must commute. Non-supersymmetric
CFTs are then characterized by as many anomaly coefficients as there are solutions
to the Wess-Zumino consistency condition: one in two, two in four and four in six

dimensions, respectively.

In SCFTs, the Weyl anomalies are accompanied by superconformal and R-symmet-
ry anomalies; altogether they constitute the so-called super-Weyl anomalies. They
are related by supersymmetry and various anomalies in bosonic and fermionic sym-
metry currents are packaged into anomaly supermultiplets. The most elegant way
to exhibit this is using a manifestly supersymmetric formulation, i.e. superspace. In
four dimensions, the super-Weyl anomalies were studied in [I5,[16] in the N' = 1 case
and in [I7] for N' = 2. Furthermore, supersymmetry might also reduce the number of
independent anomaly coefficients by packaging several solutions of the Wess-Zumino
consistency conditions into one supermultiplet. This is the case for N' = 4 super-
symmetric Yang-Mills theory in four dimensions where there is only one independent

anomaly coefficient.

As Lagrangian descriptions of six-dimensional SCFTs are not known, it is rather
difficult to study their dynamics. Interesting non-trivial information can, however, be
obtained from their symmetries. One can e.g. show that A/ = (2,0) and N = (1,0)
SCFTs have neither marginal nor relevant supersymmetry preserving deformations
[18,19]. Another way to approach these theories is via their 't Hooft and Weyl

anomalies. This was done in [20-26].

Due to supersymmetry one expects that the two types of anomalies are para-
metrized by the same coefficients. This is known e.g. for N/ = 1 SCFT in four
dimensions, where the U(1) R-current anomalies are governed by linear combina-

tions of the two independent Weyl anomaly coefficients. It would be useful to know



similar relations for SCFTs in six dimensions and furthermore, to know the precise
number of independent anomaly coefficients. We consider the analysis of this paper
as a first step towards answering these questions for N' = (1,0) SCFTs. More pre-
cisely, we will construct supersymmetry invariants which contain the solutions of the
WYZ consistency condition for the Weyl anomaly as one of their bosonic components.
By supersymmetry, these invariants should contain the solutions to the supersym-
metrized version of the WZ condition. Here we content ourselves with the first step,
the construction of the supersymmetric invariants and leave a detailed analysis of the
anomaly structure for the future. But the results of this paper already show that
the number of anomaly coefficients is reduced: while in the non-supersymmetric case
there are three independent type B Weyl anomalies, i.e. dimension six combinations
of curvature tensors and covariant derivatives which transform homogeneously under
Weyl transformations of the metric, there are only two independent superspace in-
variants which contain them. In addition to their relevance for the anomaly structure,
their arbitrary linear combination is the action for minimal conformal supergravity

in six dimensions, which will be the main focus of this paper.

To establish these results we develop a new off-shell superspace formulation of
this theory. We therefore start with a brief review of six-dimensional (6D) minimal
conformal supergravity and conformal superspace methods. Its superconformal tensor
calculus was formulated thirty years ago by Bergshoeff, Sezgin and Van Proeyen [27].
In many respects, it is analogous to the superconformal tensor calculus for 4D N = 2
supergravity [28-33], see [34] for a recent pedagogical review. Soon after the 6D
N = (1,0) superconformal method [27] appeared, it was applied to construct the
off-shell supersymmetric extension of the Riemann curvature squared term [35H37].
More recently, the 6D N = (1,0) superconformal techniques of [27] have been refined
[38,39]. In particular, the complete off-shell action for minimal Poincaré supergravity
has been given in [38] (only the bosonic part of this action was explicitly worked out
in [27]). Gauged minimal 6D supergravity has been worked out in [39] by coupling the
minimal supergravity of [38] to an off-shell vector multiplet. The resulting theory is
an off-shell version of the dual formulation [40,41] of the Salam-Sezgin model [42143].

Similar to the 4D N = 2 case, the 6D N = (1,0) superconformal tensor calculus
has two limitations. Firstly, it does not provide tools to describe off-shell hyper-
multiplets. Only on-shell hypermultiplets were used in [27] as well as in all later
developments based on [27]. Secondly, it does not offer insight as to how general
higher-derivative supergravity actions can be built, see [44] for a recent discussion. In
particular, (off-shell) invariants for 6D N = (1,0) conformal supergravity have never

been constructed. In order to avoid these limitations, one has to resort to super-

4



space techniques. At this point, some comments are in order about the superspace

approaches to conformal supergravity in diverse dimensions.

There are two general approaches to describe N -extended conformal supergravity
inD <6 dimension using a curved AN -extended superspace MP19 where § denotes

G[RD;N] superspace, makes

the number of fermionic dimensions. One of them, known as
use of the superspace structure group SO(D —1,1) x GE?;N], where SO(D —1,1) is the
Lorentz group and GE,?M is the R-symmetry group of the A-extended super-Poincaré
algebra in D dimensions A fundamental requirement on the superspace geometry,
which should describe conformal supergravity, is that the constraints on the super-
space torsion be invariant under a super-Weyl transformation generated by a real
unconstrained superfield parameter. This approach was pioneered in four dimensions
by Howe [45,46] who fully developed the U(1) and U(2) superspace geometries [46]
corresponding to the NV = 1 and N = 2 cases, respectively. The superspace formu-
lation for 5D conformal supergravity (5D SU(2) superspace) was presented in [47],
and it was naturally extended to the 6D N = (1,0) case in [48] where 6D SU(2)
superspace was formulated. In three dimensions, the SO(N') superspace geometry

was developed in [49,50].

The other superspace approach to conformal supergravity is based on gauging the
entire A/-extended superconformal group in D dimensions, of which SO(D — 1,1) x
G%)M is a subgroup. This approach, known as conformal superspace, was originally
developed for ' = 1 and N/ = 2 supergravity theories in four dimensions by one
of us (DB) [51,52]. More recently, it has been extended to the cases of 3D N-
extended conformal supergravity [53] and 5D conformal supergravity [54]. Conformal
superspace is a more general formulation than G%)M superspace in the sense that the
latter is obtained from the former by partially fixing the gauge freedom, see [51H54]

for more details.

Unlike the superconformal tensor calculus, the superspace method offers off-shell
formulations for the most general supergravity-matter couplings with eight super-
charges in four, five and six dimensions. This includes off-shell formulations for
hypermultiplets and their most general locally supersymmetric sigma model cou-
plings. Such off-shell formulations were derived for 5D N = 1 supergravity-matter
systems [55,/47] by putting forward the novel concept of covariant projective multi-

plets. These supermultiplets are curved-superspace extensions of the 4D N = 2 and

!The cases of five and six dimensions are rather special. Conformal supergravity exists only for
N =1 in five dimensions, and only for A" = (p,0) in six dimensions.

2The group G[}?;N] coincides with SO(N) for D = 3, U(N) for D = 4, and SU(2) for the cases
5D N =1 and 6D N = (1,0).



5D N = 1 superconformal projective multiplets [56,/57]. The latter reduce to the
off-shell projective multiplets pioneered by Lindstrém and Rocek [58H60] in the 4D
N = 2 super-Poincaré case. The 5D off-shell formulations have been generalized to
the 4D N = 2 [61,162], 3D A/ = 4 [50] and 6D N = (1,0) [48] cases. All of these
works made use of the appropriate G[RD;N] superspace. However, all the results are

naturally lifted to conformal superspace.

Conformal superspace is an ideal setting to reduce the locally supersymmetric
actions from superspace to components [63,[64]. It also turns out to be an efficient
formalism to build general higher-derivative supergravity actions. Recent applications
of the conformal superspace approach have involved constructing (i) the A -extended
conformal supergravity actions in three dimensions for 3 < N < 6 [6566], and (ii) new
higher-derivative invariants in 4D A = 2 supergravity, including the Gauss-Bonnet
term [67]. In the present paper, we develop 6D N = (1,0) conformal superspace and

apply it to construct invariants for conformal supergravity.

Before turning to the details of the six-dimensional case, it is worth recalling the
structure of conformal supergravity actions in four dimensions (see for example the
reviews [68,[69]). The invariants for N’ < 3 are supersymmetric extensions of the C?

term and are described by chiral integrals of the form
T2 = /d4x PN g wer-eaN e, N =1,2, (1.1)

where £ is the chiral integration measure. The covariantly chiral tensor superfield
Wai.asx = Wiar..as_) i the superspace generalization of the Weyl tensor (known as
the super-Weyl tensor). Thus the structure of 4D N-extended conformal supergravity
is remarkably simple for N < 3.

The case of 6D N = (1,0) conformal supergravity has conceptual differences from
its 4D N = 2 cousin. First of all, there is no covariantly defined chiral subspace of
SU(2) superspace [48], and thus we cannot generalise the 4D N = 2 construction
to six dimensions. Of course, one could try and construct invariants for conformal

supergravity as full superspace integrals of the form
S:/dedgeEﬁ, (1.2)

where the Lagrangian £ is a real primary superfield of dimension 2 (in the sense
of [48]). This Lagrangian should be constructed in terms of the dimension-1 super-
Weyl tensor W = WP [48] and its covariant derivatives. It is obvious that no £
with the required properties exists. In the case of 4D N = 2 supergravity, it was



shown [70,[71] that the chiral action principle can be reformulated as a special case
of the 4D N = 2 projective-superspace action [61,162]. For supergravity theories
with eight supercharges in diverse dimensions (including the 3D N = 4 [50], 5D
N =1 [47) and 6D N = (1,0) [48] cases), the projective-superspace action principle
is known to be universal in the sense that it can be used to realize general off-shell
supergravity-matter couplings. However, if one is interested in realizing the invariants
for 6D A = (1,0) conformal supergravity, it proves to be impossible to construct any
projective-superspace Lagrangian £ only in terms of the super-Weyl tensor We#,
that is without introducing prepotentials for the Weyl multiplet. If one is interested
in constructing the invariants for 6D N = (1,0) conformal supergravity solely in
terms of the super-Weyl tensor, a new action principle is required. The present paper
addresses this problem and demonstrates that there are two action principles which

naturally support all the 6D N = (1,0) Weyl invariants.

This paper is organized as follows. Section [2 is a review on conformal gravity
and includes a simple derivation of the 6D Weyl invariants. In section [3] we describe
6D N = (1,0) conformal superspace. In section [ an action principle is presented in
conformal superspace and it is shown how it can be used to described a supersymmet-
ric invariant containing a C® term. Application to other invariants is also discussed.
Section [l is devoted to deriving another action principle which is used to describe
a supersymmetric invariant containing a C'OC' term and a higher derivative action
based on the Yang-Mills multiplet in conformal superspace. Concluding comments
and a discussion are given in section [6, where it is proved that the 6D N = (1,0) Weyl

invariants constructed exhaust all such invariants in minimal conformal supergravity.

We have included a number of technical appendices. In Appendix [Al we include a
summary of our notation and conventions. Appendix [Blis devoted to a derivation of
the superconformal algebra from the algebra of conformal Killing supervector fields
of 6D N = (1,0) Minkowski superspace. Finally, in Appendix [C] we give a description

of the Yang-Mills multiplet in conformal superspace.

2 Conformal gravity in six dimensions

The conformal invariants in six dimensions [72L[I3][73] have been constructed pre-
viously and are well known. Since we will be concerned with their supersymmetric
generalizations, it is natural to first present their bosonic counterparts. In this sec-
tion, we provide a simple derivation of the conformal invariants. The formulation we

use here will be naturally generalized to the supersymmetric case in later sections and



will serve as a prelude to the conformal superspace formulation in section 3l We begin
by reviewing the formulation for conformal gravity in D > 3 spacetime dimensions
following [53]

2.1 Conformal gravity in D > 3 spacetime dimensions

The conformal algebra in D > 2 spacetime dimensions, so(D,2), is spanned by

the generators X, = {P,, Mu, D, K,}, which obey the commutation relations

[May, Mea) = 200(aMijg — 20410 My
[Mab,Pc] = 277c[apb] ) [D,Pa] =P,
[(Map, K] = 20cjo Ky . (D, K] = =K, , (2.1c
[Ka, Py = 20D + 2My (2.1d

where P, is the translation, M,, = —M,, is the Lorentz, I is the dilatation and K,

is the special conformal generator.

To describe conformal gravity one begins with a D-dimensional manifold M?P
parametrized by local coordinates 2™, m = 0,1,---,D — 1. Following the gauging

procedure in [53], the covariant derivatives are chosen to have the form

1
Vi=¢€,— §wabchc —b,D — §°K, (2.2)

Here e, = e,™0,, is the inverse vielbein, while w,’ is the Lorentz, b, is the dilation
and f§,% is the special conformal connection, respectively. The covariant derivatives

may also be cast in the framework of forms
1
V=eV,=d— §wbchc — oD — 'K, , (2.3)
where e® := dx"e,,* is the vielbein, d is the exterior derivative and we have defined
wb = e%w,’, b := e, and §¢ = ebfb“.

The gravity gauge group is generated by local transformations which can be sum-

marised b

1
0kVa =, Va], K ="Vt AXy = £Vt SAM)" Moy + 0D+ AK)" K, (24)

3Conformal gravity has been discussed elsewhere in many places, e.g. [34]. Our review here

emphasizes certain points relevant to our paper.
4One must take care in applying this formula since one can have A2 = 0 but V,A2 # 0.



provided we interpret
Vol = eal’ + w2 fu . VaAL = e AL+ w8 fach + WAL fal (2.5)
where the structure constants are defined by

[ng Pb] = _fgngg - fgbcpc ) [Xga XQ] = _fgngg . (2-6>

The gauging procedure ensures that the generators X, act on the covariant deriva-
tives in the same way as they do on P,, except with P, replaced by V,, while the

covariant derivative algebra obeys commutation relations of the form
1
[Vm Vb] = - abcvc - §R(M>adeMcd — R(]D))ab]D) — R(K>achc ) (27)

where the curvatures and torsion are given by the form expressions:

T = %ec/\ebTbc“:de“+e“/\b+eb/\wb“ , (2.8a)
R(M)* = %eb A eR(M) g = dw™ 4 w A w,? — 4el A §Y (2.8b)
R(D) = %eb Ne'R(D)g, = db+ 2e* A, , (2.8c¢)
R(K)* = %ec ANR(K)p® =df* —f2Ab+ o Awp® . (2.8d)

The gravity gauge group acts on a tensor field 7' (with indices suppressed) as
U = KU . (2.9)

We call a field U satisfying K,U = 0 and DU = AU a primary field of dimension (or
Weyl weight) A.

To describe conformal gravity, one must impose some conformal constraints:
Tabc =0 s nbcR(M)abcd =0, R(D)ab =0. (210)

For D > 3, the Bianchi identities constrain the covariant derivative algebra to be of

the form . .
Vi, V] = —=Cop® Moy — —————VCea K, 2.11
[Va, Vi 5 Lab 47 5 (D—3) bed ( )
where Cpeq is the Weyl tensor satisfyingﬁ
Cabcd = C[ab} [ed] 5 C[abc]d =0 (212)

5 The symmetry property Cuped = Cedap is not independent and follows from the others.



and the Bianchi identity

2 e
ViCha® = —rvfc[abf[dac} . (2.13)

The Weyl tensor Cp,® proves to be a primary ﬁeldH This means that when the

be

explicit expression for w,” is used dependence on b, drops out of the Weyl tensor.

One can always make use of the special conformal gauge freedom to choose a

vanishing dilatation connection, b, = 0. The covariant derivatives then take the form

Vo=D,— Ky, D,:=eq— %wabchC : (2.14)
In this gauge the Lorentz curvature
Rap™ 1= 2e," €t Omwn " — 2wi wyy (2.15)
may be expressed as
R = Cau — 86y . (2.16)

One can then solve the special conformal connection in terms of the Lorentz curvature

Rap +

fab = — N R | (2.17)

1
2(D - 2) AD—-1)(D-2)

where we have defined
Rac = 1""Rapea , R :=1"Ra . (2.18)

We will often refer to the procedure of setting b, = 0 and introducing the covariant

derivative D, as degauging.

It is worth mentioning that one can introduce new covariant derivatives by making
use of a compensator ¢, which we choose to be primary and of dimension 2. One can

construct the following covariant derivatives using the compensator
1 1
Du= "4 (Va+ 5(V' )My = 5(Valn@)D) | (2.19)

which have the property that if U is some conformally primary tensor field of some
dimension then Z,U is as well. The covariant derivatives annihilate the compensator
o, D¢ = 0. When acting on primary fields they satisfy the algebra

1
[-@aa 9{,] = _§%adeMcd s (220)

6This follows from considering [Kq, [Vs, V.]] = 2[[Kq, Vip], V] = 0.
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where

2 ssl (2.21)

4
%a cd = -1 5 cd 5[0% d
b Qb Cap™ + b] (D—l)(D—Q) [a¥b]

D -2l

and
ab - 2 (a b) Da 7D(D—2) a . .
Here we have introduced the conformal d’Alembert operator O := V*V,. Upon

degauging and imposing the gauge conditions b, = 0 and ¢ = 1, one finds %y,
corresponds to the Lorentz curvature R;.

In what follows we will specialize to the six dimensional case. We will find that

all conformal gravity invariants can be constructed as
l:/d%eL, K,L=0, DL=6L, (2.23)

where L is a function of Cyq, its covariant derivatives and possibly a compensator

¢ (but with I possessing no dependence on ¢).

2.2 The C? invariants

Taking into account the symmetries of the Weyl tensor there are two inequivalent

ways of contracting indices in the product of three Weyl tensors. These are as follows:

ng = Cabcdcaefdcebcf y L(ng = CabchCdefcefab . (224)

These lead to two inequivalent invariants I gi = [ d%eLg)S, i=1,2.

It is worth noting that a special combination of the above invariants can be written
in the following form:
1 AN} ! q! 1 £l
_ggadeefga’b’c’d’e’f’Caba b Ccdc d Cefe f - 4L(C2§ - SLS;,? . (225)

It will turn out that it is precisely this combination that permits a supersymmetric

generalization.

2.3 The COC invariant

Considering the product of two Weyl tensors with two covariant derivatives, one

finds the following primary
1 8
LCE\C = CadeDCabcd + QVeCabcdveCade + §Vdcabcdvecabce ) (226)

11



which leads to the corresponding invariant Icoc = [ d%ze Lege.

Making use of the identity

1 8
Cabcd O Cabcd + 5 VeCabcdve Cabcd 4 - deabcdve Cabce

9
1 1 16 4 1
— 6Cm,bcdljcvabcd + §Ve (Cabcdvecabcd + gcabcevdcabcd> — ngg + gL(C%’? (227)

and upon degauging (and removing a total derivative) one finds
L[ e abee [ 51192 5o G5y (1) (2)
Iooe = = [ dwe [C ((561) — 4R + 24 72) Claer — 8L + chg] ,(2.28)

where D? := DD,

2.4 The Euler invariant

The Euler invariant may be constructed most easily in the gauge b, = 0. In this

gauge we define the Euler invariant as

1 AN) ! ! 1!

& 1= _g5ab6def5a’b’c’d’e’f’Raba b Red” ¢ Refe d
6
= 4L(g§ — 8Lg§ — 6CadeCabceRde + gcadeCabcdR
3 27 27
bdac b c a ab 3
- abc a NVa (NN a . 22
3CuedRMR™ + SRR R = iR RuR + {55 R (2.29)

Although one can use the above expression, we will instead look for an alternative

description for the Euler invariant that is manifestly primary.

To begin with one can show that the following ﬁeldﬁ

8
Eo = (53 - g(vbvdcabcd)vavc) In ¢ (2.30)
is primary. Furthermore, the corresponding invariant
Tuler i= /ol%eE6 (2.31)
does not actually depend on the compensator. To see this we make a reparametriza-
tion
o—>e ¢, Do=0, (2.32)
which induces the shift
8
Fs — g — <D3 . g(VdeCabcd)V“VC>a . (2.33)

7 This can be compared with the result in [74] for primary covariants in six dimensions.

12



At this point it is tempting to think that the term involving O%0 is a total derivative.
However, integration of V, is complicated by the presence of the special conformal
connection and it is usually easier to work in the gauge b, = 0 to arrange a total
derivative. We now proceed to do this and show that Fj shifts by a total derivative

under the reprarametrization (2.32)).

In the gauge b, = 0 we find the following results:

— g(vbvdcabcd)vavca = %f“(DbU)DdCabcd + total derivative ,  (2.34a)
D30 = —%M(D%)Ddcabcd + total derivative , (2.34b)

where we made use of the identities
Diafoe = %R(K Jabe = 11_2vdcabcd , Daf’ = Dif" (2.35)

It is now straightforward to see that the shift in (2.33)) is a total derivative and Igyjer

is invariant under reparametrizations of ¢.

Since Igyer does not depend on ¢, we are free to set ¢ = 1, and since this condition
breaks dilatation symmetry it is natural to work in the gauge b, = 0. To do this
consistently one must first extract the special conformal connection as in (2.14]) before
imposing the gauge conditions ¢ = 1 and b, = 0. Non-trivial terms survive which

derive from where the dilatation generator acts on In¢. One finds the following:

8 2
—g(vbvdcabcd)vavc In¢ = —2Lcnc — 20%ClpeaR % + gcabcdcabcm

— CopeaRYR* — ALY) + LE) + total derivative , (2.36)

1 9 7
|:|31 _ ab c ca o ab N 3
no 27?, RyR 2OR RaR + IOOR
+ total derivative . (2.37)

Finally, it follows from the above that

1. 4 1
Ee = 58~ ngg - §L<§§ — 2Leoe + total derivatives . (2.38)

Interestingly, we find that besides the construction (2.30) containing the Euler invari-

ant &, Fg also involves the other conformal invariants.

3 N =(1,0) conformal superspace

Conformal superspace in lower dimensions [51H54] possesses the following key

properties: (i) it gauges the entire superconformal algebra; (ii) the curvature and

13



torsion tensors may be expressed in terms of a single primary superfield; and (iii) the
algebra obeys the same basic constraints as those of super Yang-Mills theory. In this
section, as in the lower dimensional cases, we will make use of these properties to
develop the conformal superspace formulation for N' = (1,0) conformal supergravity
in six dimensions. We will firstly give the superconformal algebra and describe the
geometric setup for conformal superspace. We then constrain the geometry to describe
conformal supergravity by constraining its covariant derivative algebra to be expressed

in terms of a single primary superfield, the super-Weyl tensor.

3.1 The superconformal algebra

The 6D N = (1,0) superconformal algebra naturally originates as the algebra of
Killing supervector fields of 6D N = (1,0) Minkowski superspace [75], see Appendix
Bl for the technical details. Below we simply summarize the (anti-)commutation

relations of generators corresponding to the superconformal algebra.

The bosonic part of the 6D A = (1, 0) superconformal algebra contains the trans-
lation (P,), Lorentz (My,), special conformal (K,), dilatation (D) and SU(2) genera-
tors (J;;), where a,b=10,1,2,3,4,5 and 4, j = 1,2. Their algebra is

[Map, Meg] = 2n¢(aMyja — 21qja My (3.1a)
[Map, Pe] = 2ncjaPyy , (D, Pa] = P, (3.1b)
[Map, Ke| = 20cja Ky, [D, Ko = =K, (3.1c)

(Ko, By = 20D + 2M,, (3.1d)
[J, JH] = kG gDt 4 G ik (3.1e)

with all other commutators vanishing. The A = (1,0) superconformal algebra is

obtained by extending the translation generator to Py = (FP,, Q") and the special

conformal generator to K4 = (K% S*)H The fermionic generator Q¢ obeys the
algebra
, : 1
{Qn Q4 = —2ie" (1)as P, [Qu P =0, [D,Qu] =505 . (3.2a)
1 y ,
[(Map, Q) = =5 (var)," @5, 177, Qe] = £"0Q2 . (3.2b)

while the generator Si* obeys the algebra

{52,87} = —2ie;,(3°) K., [S* K, =0, [D,S%]= _lge (3.3a)

(2R 227

8 For our spinor conventions and notation we refer the reader to Appendix [Al
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1 y P
(Map, 5] = 5 (va)?S} . 177, 5] = 6/80) (3:3b)

Finally, the (anti-)commutators of K4 with P4 are

[Kav Qla] = _i(va)aﬁsﬁi ) [quv Pa] = _i(fs/a)aﬁ@ﬁi ) (34&)
{S¢, Q%) = 20507 — 46] Mp™ + 855.J7 (3.4b)

where we introduced M,” = —1(y%),#M,,. Note that M,” acts on Q’f/ and S, as

1
follows . .
[Mo", Q4 = —05Q + 00Q% . [Mo® SI =010 — 005y . (35)

3.2 Gauging the superconformal algebra

To perform the gauging of the superconformal algebra we follow closely the ap-

proach given in [51H54]. Below we will give the salient details of the geometry.

We introduce a curved 6D A = (1,0) superspace MO parametrized by local
bosonic () and fermionic coordinates (6;), 2 = (z™, 6/), where m = 0,1,2,3,4,5,
p=1,---,4andi = 1,2. We associate with each generator X, = (M, J;;,D, S}, K°)
a connection one-form w? = (Q%°, dY B, 3’;, S.) = dzMwp® and with Py the vielbein
EA = (B¢, E%). They are used to construct the covariant derivatives, which have the
form

1
Va=FE,— §QA“bMab —®,M Ty — BaD — FapKP . (3.6)

Here E, = E,M0,, is the inverse vielbein. The action of the generators on the

covariant derivatives resembles that for the P4 generators given in (3.2)).

The supergravity gauge group is generated by local transformations of the form
V=K, V4|, (3.7)

where I = ¢V + %ACdMCd +AM i+ oD+ A4 K4, and the gauge parameters satisfy
natural reality conditions. In applying eq. (B.7)), one interprets the following

ValB = Eae8 +wp%P B, VAN = EAN +w P fpl 4+ waAif, .t (3.8)
where the structure constants are defined as

[XQ> XQ} = _fa_ngg ’ [Xga VB} = _ngCVC - ngng : (3'9)

The covariant derivatives satisfy the (anti-)commutation relations

1
[V, Vp}=-Tap“Ve — §R(M>ABCndd — R(J)a™ T
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— R(D)apD — R(S)apkS) — R(K)apcK* (3.10)
where the torsion and curvature tensors are given by

T =dE“+E" AN+ E“A B, (3.11a)
TS = dE® + EP AQp° + %Ef‘ AB—EY AN®;; —iE°AFpi(7.)*?,  (3.11b)
R(D) = dB + 2E* A, + 2E* AT | (3.11c)
R(M)® = dQ® + Q* AQ. — 4B A G+ 2B AFL(v)a" (3.11d)
J)i = ddV — oF A )y — 8RN FD) )
K)* = dg* + 3 A" — F*A B —igh A Fa(39)* )
R(S), = dF%, — F5 A Q7 — %Sg AB—=F AN —iE" AF(Ye)ap - (3.11g)

The covariant derivatives satisfy the Bianchi identities

0=[Va,[Vg,Vc}} + (graded cyclic permutations) . (3.12)

A superfield U is said to be primary if it is annihilated by the special conformal
generators, KU = 0. From the algebra (3.3), we see that if a superfield is annihi-
lated by S-supersymmetry it is necessarily primary. The superfield U is said to have
dimension (or Weyl weight) A if DU = AU.

3.3 Conformal supergravity

In the conformal superspace approach to supergravity in four [511(52], three [53]
and five dimensions [54], the entire covariant derivative algebra may be expressed in
terms of a single primary superfield: the super-Weyl tensor for D > 3 and the super
Cotton tensor for D = 3. In six dimensions we will look for a similar solution in terms

of a single primary superfield, the super-Weyl tensor [48].

In the lower dimensional cases the appropriate constraints to describe conformal
supergravity were such that the covariant derivative algebra obeyed the same con-
straints as the super Yang-Mills theory. Guided by the structure of 6D N = (1,0)
super Yang-Mills theory [76H79], we constrain the covariant derivative algebra as

{V.,Vi} = =2ieY(7")asVa (3.13a)
[Vaavfx] = (Va)aBWBi s (313b)
where W' is some primary dimension 3/2 operator taking values in the superconfor-

mal algebra. The Bianchi identities give the commutator

[Va, V] = —é(%b)aﬁ{vk, wel (3.14)
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and the additional constraints
(VU WY = iag{vgi,wm} , AVEwWir=o0. (3.15)
We constrain the form of the operator W% to be
Wei = WS ¢ %W(M)M“bMavaW(J)aiijjk WD D+ W(K) 5K | (3.16)

where W is the super-Weyl tensor [48] which is a symmetric primary superfield of
dimension 1. One can show that the Bianchi identities (B.I5]) are identically satisfied
for

at fe i 7 fe 1 i « 1 o 1] 1 i fe
W = WOV 4 VWM™ — VWM 4 VWP T 4 VW'D

1 Rwi) «a i a QB
— 5 VEViW 797+ SV S8
1 . 1 .
— 5 (V)8 Ve (VW — SOV K, (3.17)
provided W satisfies
VOVIW = —50 Vv (3.18a)
1

VEV  WHT — Zagv’;vgkww = 8iV,, W . (3.18b)

It will be useful to introduce the dimension 3/2 superfields
kaf __ 1 kyrraB a v B)k ai 1 ) af
XG0 = = VIS =GR X X = = VW (3.19)

and the following higher dimension descendant superfields constructed from spinor

derivatives of W*B:

Y, = —g (Vix iéﬁVEjX’m) = —gvgxﬁﬁ , (3.20a)
1
Y = Zv’;X,j : (3.20b)
1 1
Yos" 1= VE X" — gag”v’;xak‘”p - éagyv’;xﬁkf”ﬂ . (3.20c)

Note that X,’Y“O‘B is traceless, Y,7% is symmetric in its SU(2) indices and traceless in
its spinor indices, and Y, is separately symmetric in its upper and lower spinor

indices and traceless.

One can check that only the superfields (3.20) together with (BI9) and their
vector derivatives appear upon taking successive spinor derivatives of W%, Specific
relations we will need later are given below:

) ) 2 - 2 .. 1 ..
Vi XPI = —gYaﬁ” — gawvmwvﬁ — 55”551/ , (3.21a)
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| 1 1
iyIve o (v gl Y6 ij v
VL X7 = SO0V — oY — Y 5 VasW
1
230 160V, WP = 0V (3.21b)
VLY = —2iV, 3 X7 (3.21c)
. 2 , ) , ,
VAV = ZeH0 (= 8iV,5 X)) — 41V 05 XD + 31V, X
+3i68V 15 X0 — 3155V75X‘59 ) (3.21d)

ViYaﬁfy{g - _41Ve(aXl Al + gd(OlVB)pXé& P + 3 5EgV|5p‘Xé)5)p

+8I60V yo X7 (3.21¢)

These equations guarantee that any number of spinor derivatives of W# can always
be rewritten in terms of W, the superfields defined in (3.I9) and (B20), and their

vector derivatives. The descendant superfields transform under S-supersymmetry as

follows:
SPXI0 = —iglsgW’ + %5{5@%5)0‘, SeXPI = %gwaﬁ : (3.22a)
STV, P = 5};’( - 16X§)”’5 + 258X — sagxﬂﬁ) , (3.22b)
SPY,5" = 24 <5P X5, — %5§;Xﬁ)j5>ﬂ) ., SOV = —4X© (3.22¢)

Expressing the covariant derivative algebra in terms of the descendant fields as

gives

(v}, V]ﬁ} = —2ie"(v))osVa , (3.23a)

51

(Vo Vi] = (Ya)as (WBVVQ FAIXIBMLS %X%’Mﬁ — 51 X[ + 2 XPD

+iyﬁ,ﬁwsy + ivwwéﬁml - éysﬂl
i 3 |
#3157 (VX3 = JO0VX) K ) (3.23b)

An explicit expression for the remaining commutator

1
(Va, V| = aka ab Ve — iR(M)adeMcd — R(N)ap™ Ty — R(D) D
CR(S)aS} — R )K" . (3.24)

follows from the Bianchi identities. For completeness, we provide the torsion and

curvature components below:
T = —4Wa* (3.25a)
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3
Tabz = (7{1%})50{ <Xakﬁﬁ/ - i(saﬁ/X]f) s (325b)
R(M)ap® = Yo = 65,60 — AV Wy — AV W %5, (3.25¢)
R(N)a”? = Yy | (3.25d)
R(D)g = =2V Wy , (3.25¢)
R(S)a! = 1(7a0) 5" (%vmxﬁi — 350V s X
—1V X1 %vyaxgﬁé) , (3.25f)
1 1 1
R(K)abc = g(fYCd[a)aﬁvb}vdWQﬁ + ch[avb]y + ﬂ(f)/ab)aﬁ(fycd%/(svdyﬁéay
1 1
+ﬂWQBYaﬁ’Y(S(7ubC)'y6 - gWaBYaﬁ/(se(fyc)Bcg(fyab)e’y
151 531 531
+§XakaB(%bc)aﬁ + gXaankm(%bc)m - ZXakXBkw(%)m(’Yab)éB
i : € «
+§X§B "Xk (Yabe)ys + 1X ok Xar® (Ye) s (Yab e
5 . 1
_I'EW B(Vc)ﬂé(V[a)a'yvb]W’ya - @W B('VC)OC’Y(’Yabd)ﬁévdWVé
3 1
+3—2Wa5 (Yave) g5 Vary W + EW‘J‘%C[G(%])MVMWW‘; . (3.25g)

The component structure of the supergravity multiplet described by this super-
space geometry can be identified with the standard Weyl multiplet of 6D N = (1,0)
conformal supergravity [27]. The details of this will be presented in a future paper.
Here we mainly point out that the independent one-forms e,,%, ¥%, by, and V,,%
in that approach coincide (up to conventions) with the § = 0 parts of the superspace
one-forms F,,*, E,,*, B,, and ®,,”, respectively. Similarly, the independent covari-
ant fields T, ., x*, and D are given by the § = 0 parts of W = %(%bc)agWaﬁ, X
and Y. The other components of the super-Weyl tensor W# correspond to covariant
curvatures; for example, the § = 0 part of Y, is the traceless part of R(M).,%,

which is the supercovariant Weyl tensor.

3.4 Introducing a compensator

An alternative formulation of conformal supergravity was given in [48], which
we will refer to as SU(2) superpace. The formulation does not gauge the entire
superconformal algebra and instead may be thought of as a gauge fixed version of the
formulation introduced in the previous sections. Instead of applying the method of
degauging used in [52H54] we will make contact with SU(2) superspace by utilizing

a compensator. Here we will develop the alternative approach advocated in lower
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dimensions in [63[80], which makes clear how SU(2) superspace may be understood

as conformal supergravity coupled to some compensator at the superspace level.

We introduce a primary superfield X of dimension 2,
DX =2X, S’X=0. (3.26)
The superfield can be used to furnish new spinor covariant derivatives,
P = X"i (vg + (VI X)M,” — 2(ViIn X)J;' — %(vg lnX)]D) . (3.27)

The covariant derivatives have been constructed to take a primary superfield to an-
other primary superfield of the same dimension. Note also that X is annihilated by

P, FX =0

When acting on a primary superfield, the algebra of the covariant derivatives

become

{‘@i, é} = —218“ aBf — 4i€ij7/abc(’}/a)agMbc — 4i€ij</1/abc(’7a)a5Mbc + 6i€ij agkljkl
+2i6, (") 0p Mye — 1614557 | (3.28)

where
B 1 k bed bed kil
Dog = =7 {Da> Do} = 247 (W)as Mea = 297 () ap Mea + 3Gag™ T (3.29)

and we have introduced

Gog'l = _ix—%vgvgx : (3.30a)
Ny = —1—16X%V’(“avg)kX‘2 , (3.30b)
WP = X2 WP (3.30¢)

Here we have introduced #*® which is a rescaling of W so that it is inert un-
der dilatations. The superfields €,5” and 4,5 are the only dimensionless primary
combinations involving two spinor derivatives acting on X. The super-Weyl trans-
formations of [48] correspond to a reparametrization of the compensator superfield,
X = Xe 2,

9This agrees with the dimension 1 anticommutation relations of the covariant derivative algebra
in [48].

20



4 An action principle for the supersymmetric C°

invariant

Having developed conformal superspace in the previous section we are now in a
position to address the problem of constructing conformal supergravity invariants.
This will require an action principle capable of supporting such an invariant. In
this section we expound such an action principle and show that it may be used to

construct a supersymmetric C* invariant.

4.1 Flat superspace actions and their generalization

Before discussing curved superspace actions, it is useful to briefly review action
principles with manifest A' = (1, 0) Poincaré supersymmetry. The simplest is the full

superspace integral
S = /d% a*0 L , (4.1)

where L is an unconstrained real superfield. Because the Grassmann coordinates
0 are irreducible under the Lorentz and R-symmetry groups, there is no separate
notion of chiral superspace as in four dimensions. To construct smaller superspaces
involving a reduced set of s, additional structure is needed. The most well-known
example is 6D A = (1,0) harmonic superspace [81], R%® x 52 where additional

bosonic coordinates u'* are introduced to describe the coset space S? = SU(2)/ U(l)

Introducing a new basis for the Grassmann coordinates as #°* := 46 one may
construct an invariant action
5= / & dudig* £ = / Sodu(D )Ly,  DILT =0, (42)

where D := v D! and du is the invariant measure for SU(2). A special case is when

LT is an O(4) multiplet C** with simple quartic dependence on the harmonics,

O™ = wfufwfu C7M. Tts component action is given b

1 3
S = /dﬁx du (D7)*C™ ey = g/d% (DY) i C gy

g 1 . o
(DY) = =™ DEDLDIDY  DEC™P =0 (4.3)

10This superspace is a natural extension of the 4D N = 2 harmonic superspace [82}[83].
1 0One can also have an action principle with C**¥! obeying the weaker condition DzaDé)Oklpq =0.
This leads to the action discussed in eq. (4.72) of [84].
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For the similar case of 4D A = 2 supersymmetry, the O(4) multiplet and associated
action were introduced by [85]. It is clear that any full superspace action can be
rewritten in this way using C** = (DT)?L. The converse is not always true within
the family of local and gauge-invariant operators. More specifically, given an O(4)
multiplet C*%, there always exists a harmonic-independent potential £ such that
C™ = (DM)*L, as proved in Appendix G of [54] in the 5D N = 1 case. However,
such a potential £ cannot always be defined as a local gauge-invariant operator. A

simple example is when the O(4) multiplet is the product of two O(2) multiplets.

Our task is to construct the conformal supergravity invariants, so a natural step
would be to generalize the above actions to curved superspace and to choose the
appropriate Lagrangians. Both in SU(2) superspace [48] and in conformal superspace,

it is straightforward to generalize eq. (4.1]) to
S = /d% d*OEL, (4.4)

where E is the Berezinian (or superdeterminant) of the supervielbein. In order to
be invariant under the supergravity gauge transformations, £ must be a conformal
primary scalar superfield of dimension two. Unfortunately, there is no suitable La-
grangian that can be built directly from the covariant fields of the Weyl multiplet.
Furthermore, there is no obvious way to generalize (4.3]) without introducing a com-
pensator field. The reason is C*™* should clearly have dimension four, but the an-
alyticity condition VZC* = 0 cannot be conformally invariant, assuming C** is a

primary, unless C** has dimension eight.

For these reasons, we will follow a more general approach and attempt to construct

the actions as six-forms directly rather than as superspace integrals.

4.2 Primary closed six-forms in superspace

While supersymmetric actions are frequently realized as integrals over the full
superspace or its invariant subspaces, there is an alternative construction involving
the use of closed super D-forms [86-88] '3 For 6D N = (1, 0) superspace, we introduce
a closed six-form J

1
J = gdsz‘ A A Ty, AT =0 (4.5)

(The closure condition is trivial on the spacetime M° since there a six-form is a top

form, but there are no top forms on the supermanifold MS® since d6¥ commutes with

12The approach proves equivalent to the rheonomic formalism [89)].
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itself.) Such a closed superform leads immediately to the action principle

S = itJ = /dﬁxe*ﬂgzg , *J = lem"pq’"sjmnpqrs ) (4.6)

M 6!
where i : M5 — MO8 is the inclusion map and * is its pullback, the effect of which
is to project 0! = df = 0. Closure of J guarantees that the action is invariant
under general coordinate transformations of superspace In addition, the action
must be invariant under all gauge transformations: for conformal supergravity, this
includes the standard superconformal transformations, which form the subgroup H.

This implies that J must transform into an exact form

S = dO(AY) , A= A%X, . (4.7)

A special case is when the closed six-form is itself invariant, d3J = 0. This implies
that if one instead decomposes J in the tangent frame,
1
J = gEAS/\'~'/\EA1JA1...A6 , (4.8)

the components Jy,...4, transform covariantly and obey the covariant constraints
Via,Jaga;y + 3T[A1A2BJ|B|A3...A7} =0. (4.9)

In particular, their S and K transformations are given by

ai--anaq Qag—n ag—n )

SJﬁJ h e = _in(f?[al)ﬁﬁ/‘]“/jaz"'an]g' e KbJAl"'Aﬁ =0. (4’10)

Such superforms are called primary.

It follows from eq. (£I0) that the component of a primary superform with lowest
dimension is a primary superfield, so it is natural to ask what primary constraints are
compatible with the closure conditions (£9). This general question was addressed
by Arias et al. [84] using 6D SU(2) superspace [48], and we will arrive at similar
results to theirs. First observe that the component of the superform J with lowest
dimension (which we will refer to as the lowest component of the superform) cannot
be a scalar without either that scalar being covariantly constant (which is forbidden
by the superconformal algebra due to its non-vanishing dimension) or the superform
being exact This means we have to allow for the possibility that the lowest com-

ponent carries some Lorentz and SU(2) indices. We let the lowest component of the

13Here we assume the general coordinate transformations are generated by a vector field & =

EAE, = ¢M ), which vanishes at the boundary of MS.
4This is unlike what happens in four dimensions, where one can construct the chiral action

principle.

23



superform be directly constructed in terms of the primary superfield

Ay, 1Bt Br-++Bm (k--+kp) (4.11)

A(Oq Q)

with dimension A. In analogy to the chiral action principle in 4D, we seek a primary
constraint involving one spinor derivative with totally symmetrized SU(2) indices,
VglAal...anﬁl“'ﬁmkl'”kp). Such constraints are natural: they appear in solving the first
non-trivial Bianchi identity (if it is not identically satisfied) since the part symmetric
in SU(2) indices cannot be countered by the term proportional to the superspace

torsion. We will suppose further that
v Aaz...%ﬂ)ﬁl"ﬂmkl...kp) — traces =0, (4.12)

where we subtract out all possible traces to render the result traceless in its spinor

indices. Requiring the constraint to be primary implies
2A+3n+m—4p =0, (4.13)

which can only have solutions for 2p > A. Notice that the upper Lorentz indices are
not assumed to be symmetric, which generalizes some of the corresponding results
of [84]. Remarkably, apart from the one degenerate case of the tensor multiplet, all

known closed primary superforms have underlying primary superfields satisfying a
constraint of the form (AI2) with the condition (Z.I13).

We now seek to find a primary closed superform to act as an action principle
supporting a supersymmetric C? invariant. Since we will want to set the superfield
to be cubic in W*# and its spinor derivatives, the underlying superfield should satisfy
A > 3+ £. Considering all the possible ways of embedding such a superfield into a
(non-exact) closed six form leads one to consider a primary dimension 9/2 superfield
of the form A,“* satisfying the constraint

Vi A =0 (4.14)

«

In fact, a superfield obeying this constraint was already used to construct a closed
six-form in [84] in the context of 6D SU(2) superspace [48]; such a superfield also
appeared in the context of the anomalous current multiplet [90,91]. The resulting

closed six-form is

1
J = gE’As A /\EAIJAl---AS 7 (415&)
Jabcg%ff = 3(7abc)(aBA'y)ijk 5 (415b)
iJ 1 e ij i e ~ ij
Jabedoy = — g avedes (7 N Sp" = g Cabedes (7 19)ap(39)" Epy”? , (4.15¢)
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i

Jabcdef = _EabcdefF s (4156)

)
Jabcdea =

and all other components vanish. Here we have introduced the descendant superfields

3 ; 3 y
SQBZ] = Zv(akAB)wk s EO!BZ] = Zv[akAB]”k s (4.16&)
- i - i -
g’ = 15 Vies VaAs”" = 75 Vai Vards 7" (4.16b)
1 S )
Fi= eV ol = ﬁgawvmvﬁjv%m”k . (4.16¢)

Reality of the action implies that A,%% = A, ;;x, and similarly for its descendants,
Eop = Eugijy Sap = Sapijs Qapr’ = Qapi, and F = F. These transform under

S-supersymmetry as follows:

SuSap? = =240, A8 (4.17a)

SBas”? = —186{,An" 1 | (4.17b)
: i ; i 2 i

SPQapl = —4i6),55," — 46}, Bzt + gaanB - (4.17¢)

SOF = =20, 5 . (4.17d)

Making use of these results one can check that the superform (4.I5]) is primary.

It is worth mentioning that the closed six-form (4.I5) may be derived by anal-
ogy with the construction of the closed four-form [92] which describes the chiral
action in 4D N = 2 supergravity [03]. Ref. [92] considered the closed four-form
w = F A F, where I is the two-form field strength of an on-shell U(1) vector mul-
tiplet. Under certain assumptions on the vector multiplet, it was shown that all
components of w are expressed in terms of a single chiral N' = 2 superfield W2, with
W the chiral field strength of the vector multiplet. In the 6D N = (1,0) case, one
can consider the topological term Tr(F A F A F), where F is the two-form field
strength of a YM multiplet, see Appendix Rewriting the superform in terms of
AgT* o £qpy5 Tr (WP Gy W‘;k)), where W is the field strength of the Yang-Mills
supermultiplet, and throwing away a covariantly exact piece one uncovers the struc-

ture of the superform J.

4.3 The supersymmetric C? invariant

In order to describe the supersymmetric C* invariant it is now necessary to con-

struct a composite A,”* out of the super-Weyl tensor. Since the invariant must
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contain a C? term and since the Weyl tensor is directly constructed out of the space-
time projection of the superfield Y,57, the composite 4,“* must be at least cubic
ijk

in W and its descendants. Taking into account the constraints on A,“* gives the

following unique solution:

.. - - N y ! / 64i 7 ! y / /
A% = Bieqs s XOOXT XM 8ic, g s X0 XTI X 4 ?EaﬁyéXé/Bﬁ X3, X[

+4€aﬁﬁ/5ypﬁ(in5)mW775 _ 380{575}/}5(“)(%)”/’)5 ) (4.18)

In particular, one can check that the above superfield is primary and satisfies the
constraint (4.14)).

The component reduction (although tedious) is straightforward and may be car-
ried out similarly as in [63]. Furthermore, one can readily verify that the action
contains a C® term proportional to the combination ([2.25). We leave the detailed

analysis of the component action to a forthcoming paper.

4.4 Other invariants

A natural question that one may ask is whether other invariants may be con-
structed using the same action principle. Specifically, can we construct another pri-
mary composite A,“* that is (for example) quadratic in the super-Weyl tensor W8?
Unfortunately, enumerating the possibilities it turns out that only the cubic solution
(418) is possible. There are however certain composite primary superfields that one

can construct at dimension 3. These are

5i o
L xlati xB1) (4.19a)

2
5 . :
H = YW + ?Ywaﬁww - %X“kX,f + $X§5(QX5,€B)V + HXTFX P (4.19b)

HeB — Wﬁ/[ayﬁfﬁ}ij + 8i X,Y‘S[a(iX(;BW) _

It turns out that the first may be used to generate another action, which will be
discussed in detail in the next section. Before moving on to the discussion there,
it is worth illustrating the existence of the other action principle using the primary

superform construction of this section.

The important property of eq. (4.19a]) (besides being primary) is that it satisfies
the differential constrain

ViBPIk) = —oi s AR (4.20)

5Notice that this constraint is a special case of eq. ([@I2).
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with B*%U = H*J for some non-primary A®7*. One can check that it is not possible
to construct a primary composite A,"* directly from B*?Y with various covariant
derivatives only. Despite this one can construct a composite A,"* out of B**% with
the use of a compensating supermultiplet. To demonstrate this we choose a compen-

sating tensor multiplet ®, which satisfies the constraint

Viv)e =0. (4.21)
Then using the results of section B.4] (with X = ®), one can construct the following
composite
ik _ _ L g30 ol ph) _ 9ig? G gouk) _ Slgpd (gt Bik)
Aa — _@¢4-@al-@ﬁ @'YB —21@4%6.@73 - §¢4(@ﬁ J%ya)B

HOT(ZUWP) Bog™ + a®7 90 P, B (4.22)

The last term involves a free parameter a and generates an exact six-form, which may
be removed. The composite A,“* is primary and satisfies the differential constraint
(A14). As a result we can associate an action with any primary superfield satisfying

eq. (E20), and we therefore have an action principle based on B

The action principle based on B*% eq. (#22), can be used immediately to
describe certain invariants. If we take B*J = H%PJ_ the component action will
contain a C'OC term. One can also construct a unique higher-derivative F'OF action

for a non-abelian gauge theory by taking
BoA = i Te(WelwPi)y | (4.23)

where W' is the field strength of the 6D N = (1,0) Yang-Mills multiplet [76H79],
see Appendix [C] for details. The corresponding component action will contain a term

of the form Tr(F,0F®) upon integrating by parts.

It should be mentioned that in the rigid supersymmetric case the supersymmetric
FOF action was constructed in [94] within the harmonic superspace approach. Their
result can also be recast as the O(4) multiplet action (43]) with

CUR o Tr(X W XM | (4.24)

where X* denotes the flat-superspace limit of the descendant (C.8). The interesting
feature of the model proposed in [94] is that the operator X“ is not a primary
superfield, but the action (43]) based on (4.24) is superconformal.

It is important to point out that the action principle based on B** may contain

dependence on ®. Although we do not explicitly show this here, we expect that the
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action principle will be independent of the compensator. In the the next section we
show that such an action principle based on B*?% exists without the need to introduce
any compensator.

Before moving on we would like to mention one more application of the action
principle based on a composite A,”*. Let V* be a prepotential for the tensor mul-
tiplet

. U B .
=V, Vo, vy — Zagvg Vi KAV =0, (4.25)
It is defined modulo gauge transformations of the form
Ve VO W (4.26)

where W% is the field strength of an abelian vector multiplet, see Appendix [Cl Using

Ve one can construct the following primary composite
A% = ey VPR (4.27)

It is simple to verify the differential constraint (£.I4]) by making use of (£20) and
(@28). The action corresponding to the composite ([L.27) is invariant under arbitrary

gauge transformations (£.26) when B%’¥ is further constrained as
[V V] BYDF = —8iV 3B | (4.28)

which imposes a constraint on B’¥ to describe a closed 4-form [84]. Below we give

two examples of gauge-invariant actions.

Our first example of a gauge-invariant action corresponds to the choice (£.23)). In
this case it is rather simple to see that a gauge transformation (£.26]) shifts the invari-
ant by a topological term and the invariant contains the term ® Tr(F,,F®). Thus
the action describes the non-Abelian vector multiplet coupled to the dilaton Weyl
multiplet. In the flat-superspace limit, the prepotential of the tensor compensator

may be chosen as V' o #*. Then the top component (£I6d) of the closed six-form
(EI5) becomes

F o< Dy;Dg; Te(WeUWA)y | (4.29)
which is the Lagrangian for the 6D N = (1,0) super Yang-Mills theory postulated
in [79]. Here we derived this Lagrangian from a more general action principle.

Our second example, derives from the fact that the constraint (£28) is satisfied
for the composite ([AI9al). In the case where BYW = HP  eq. ([A27) may be seen

to describe a supersymmetric Riemann curvature squared term [35,137].

16The prepotential for the tensor multiplet was introduced by Sokatchev in the framework of his
harmonic-superspace formulation for 6D N = (1,0) supergravity [95]. More recently this prepoten-
tial has been described in SU(2) superspace in [4§].
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5 An action principle for the supersymmetric COC

invariant

Although we have shown in the previous section that one can construct a su-
persymmetric C'OC action with an explicit compensator field, this has an obvious
disadvantage. One would have to show that terms involving the compensator could
be eliminated by integrating by parts in order for it to be an invariant for minimal
conformal supergravity. Due to the complexity involved in doing this, it would be bet-
ter to have a compensator-independent approach, but as we have already discussed,
it seems impossible to generate an appropriate primary closed six-form. This sug-
gests that we should consider non-primary six-forms instead; however, since these are

rather more difficult to deal with, it would be helpful to know where to start looking.

Let us return to a point we raised earlier. The full superspace action (4.4)) is always

a possible action principle, and it must correspond to some general six-form action

involving £ and its derivatives. It turns out that its six-form cannot be primary.

The reason is that if it were, then the lowest dimensional component would be S-

invariant and at least of dimension 3. Now it is straightforward to investigate the

S-transformation properties of all higher components of L£: the only primary aside
from L itself appears at the 62 level,

ij 1

B,"7 = BT

(In particular, there is no primary at dimension 9/2 corresponding to A,%* without

(3a)P VIV L (5.1)

introducing a compensator.) We have denoted this descendant as B,“ as it obeys the
same constraint (20) as the superfield B*?% = (32)*/ B,¥ introduced in the previous
section. Note however that it cannot be the bottom component of an invariant six-
form: it would have to be multiplied by six E{* to balance its dimension, but the
Lorentz and SU(2) indices cannot be contracted appropriately. This means that no
corresponding primary siz-form exists. Of course, it is not possible to construct an
invariant scalar £ from the superfields of the Weyl multiplet, so what purpose does
this observation serve? It turns out that one can build an action principle upon a
primary superfield B,*” obeying certain properties consistent with (but not implying)
its derivation from a scalar superfield £. In this way, B," will lead to something

analogous to the chiral action principle of four dimensions.

The argument goes as follows. Suppose we choose £ to be a tensor multiplet ®

subject to the constraint (L21]). Its superspace integral must vanish,

S:/d%df‘eEcb:o (5.2)
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since one can introduce the prepotential V' for the tensor multiplet, as in eq. (£27),
and then integrate by parts. Now the descendant B," precisely vanishes for a tensor
multiplet, so it must be that that the six-form associated with a general £ can be
written purely in terms of the superfield B,“ and its derivatives. This is analogous
to the situation in four dimensions, where a full N < 2 conformal superspace action
can always be converted first to a chiral superspace action using the chiral projection
operator. The converse is not true — there are chiral Lagrangians that do not come
from any full superspace Lagrangian (at least not without introducing compensators).
Taking this analogy seriously, we conjecture that any primary superfield B, obeying
the S-invariant constraint (£20), which is consistent with (5.1I), must lead to an

invariant action.

This proves to be precisely the action principle we need to describe the supersym-

metric COC invariant. As a consequence of (£20), one can show that
VAR = g, pCikt — wUoMP) =0 . (5.3)

for non-primary superfields A% and C%*. The superfield C¥* is a non-primary
version of the O(4) multiplet that we have already discussed in section 1] and its
S-transformation is exactly as needed to permit the second condition of (B3] to hold.

This suggests that the six-form action principle should begin with a term

1 1 7
J — g Eal A A E‘IG 5a1---a6 F + .. , F = g(v4)ijkl02]kl . (54)

As already mentioned, we should not expect that the full six-form is primary. Nev-
ertheless, starting from the top component, one can iteratively reconstruct the full
six-form in a straightforward (albeit laborious) way. The result turns out to include
explicit S and K connections, which makes .J transform into an exact form under

those respective gauge transformations.

We give the complete structure of this six-form in section However, in order
to better explain certain features of its construction, it helps to describe the general
properties of non-primary forms, especially if one wishes to verify gauge invariance of

the action. Section [5.1]is a self-contained discussion of this topic.

5.1 Non-primary closed forms in superspace

Let us begin with the following observation. It has become apparent that su-

performs that are not invariant under certain gauge symmetries nevertheless play
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an important role in constructing invariant actions. These frequently involve Chern-
Simons terms with bare connections: recent examples have included the 4D and 5D
linear multiplets [96,097,/54], 3D N < 6 conformal supergravity [65,/66], and non-
abelian N/ < 4 gauge theories [98]. However, such a geometric structure does not
seem to be a necessary requirement. For example, in the context of 4D N = 2 confor-
mal superspace, bare S and K connections were recently observed when constructing
actions involving projective [99] and harmonic superfields [I00]. These were asso-
ciated with closed four-forms J that transformed into exact forms under S and K
transformations. In this subsection, we will establish some general properties of such

non-primary closed forms in six dimensions.

Let J be a closed super p-form. We assume it is invariant under Lorentz, Weyl, and
SU(2) transformations, but that it transforms under K4 = (S&, K®) transformations
into an exact form. It is possible to expand J in terms of the vielbein £4 and the

K-connection § 4,

1 1
J=—=EM"N- - ANE% Jy a + T, NE2 A ANE T, 4,
p! ’ (p—1)! ’
1
_|_..._|_1;3A1/\.../\gAijp"'Al7 (5.5)

so that the coefficient functions Jy,...4 AnA1 gre covariant superfields. Let us derive

n+1

the conditions on these superfields so that dJ = 0.

Because J is assumed to be invariant under Lorentz, Weyl, and SU(2) transfor-

mations, it is equivalent to analyze DJ = 0 where
1 g
D:=d-— 5QabMab — BD — &7 J;; (5.6)

is covariant with respect to those symmetries. Using the definitions (B.I1]) of the
torsion tensor 74 and K-curvature R(K) 4, one verifies that

1

DE* = S E” NETes” + EP AJef5" . (5.7a)
1 1

DFa = iEB ANER(K)cpa+EP ANFofpa+ 533 AScfa, (5.7b)

where the constants f are the relevant structure constants appearing in the algebra

[KA, Vg] = —fABCVc — fABcKC + other generators ,
(K4 KP) = —fAP0KC . (5.8)

From the definition of V4 one also has

Ap-Ay _ 1B Ap-A B Ap-A
n+1 t= E VBJAp"'AnJrl ! +SBK ']Ap‘“An+1 ! ° (59>

DJa,...a
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Now it is straightforward to analyze the conditions for closure on J. These will
be somewhat involved, so it is helpful to give a shorthand approach that will allow us

to compactly consider all equations at once. We can introduce a generalized frame
one-form £4 = (E4,F4) and rewrite (5.5) a

1
J = HgAl Ao NEW JAp---Ai , (5.10)

with the superfields J4,..4, encapsulating those appearing in (5.5)) in the obvious
way. This expansion formally treats the one-forms E4 and F4 on the same footing.
Imposing this democracy in the relations (B.7) and (5.9]) leads respectively to

1
DEA = 553 NETes?,  DJaya, =EPVga,.a, (5.11)
where we have introduced V 4 := (Va, K4) and a tensor Tep? defined as

C C BC BC ABC
7?43 - TAB s 7?4 = fA ) T =0 )

Tasc = R(K)apc . TaPc = faPc, T"c=f"c. (5.12)
Now it is immediately apparent that the condition for closure on J becomes

p
V[Ap+1J~AP'“A1} + §7TAP+1A;;B‘]|B|AP71---A1} =0. (513)

The above structure suggests the interpretation that we are enlarging the super-
space and introducing new coordinates associated with K so that £ becomes the
new vielbein. From our perspective, this analogy is purely a formal one — we are
not introducing any new coordinates. However, because the structure of the trans-
formations is consistent with such a possibility many useful properties follow. For
example, the tensor 7 can be interpreted as the generalized torsion tensor of V 4,
that is

[V4, V5] = =T Ve + other generators . (5.14)

Similarly, the dx transformations of the connections £4 = (EA, §a) and the covariant

components J4,..4, precisely satisfy a covariant form of Cartan’s formula,

5K(A) =Dip + 15D , (515)

1"The notion of a generalized frame appeared naturally in the context of multiplets with central
charge coupled to N = 2 supergravity. There it facilitates the description of vector-tensor multiplets

[I01L102] and the construction of the linear multiplet action [96].
18Tn more formal language, we could choose to work on the total (super)space of the fiber bundle

associated with K-transformations.

32



where 12, is an antiderivation defined to act as
wSa=M1,  wBE'=0u(Va, Va.,Ja.a)=0. (5.16)
From these results, it is immediate to see that for a closed p-form (B.5])
Ok (AN)J = DipJ = dinJ (5.17)

which establishes that J transforms as an exact form.

It is obvious that the class of primary superforms, discussed in section 4.2 is
simply one for which no §4 appears within the decomposition (5.5). Then the closure

condition (5.I3)) amounts to two conditions:

ViagnJayay + gT[ApHApBJ\B\Apfl'"Al} =0, (5.18a)
K'CJAP...A1 —l—pr[ApB J\B\Ap,l---Al} =0. (5.18b)

The first is the usual covariant closure condition, and the second is the condition for
S and K-invariance (compare to eq. (AI0)). This illustrates how the single condition
(B13) concisely encodes both the conditions for closure and for gauge invariance

modulo an exact piece.

5.2 A non-primary six-form action principle

Now we turn to our specific goal of finding a non-primary six-form that begins
with the term (5.4). Taking into account the closure conditions, one can deduce the

structure of the remaining terms. We use the definitions

i

AR — gvgﬁBﬁaﬂﬂ . A= %vaij"j , (5.19a)
ikl — ivg/\aﬂ"f” . G = Zvak/\ﬁiﬂf , Cupi= %(%)aﬁvamﬁb’f . (5.19b)
Pk = —%ValCijkl , Papl = —%V[angﬂij , (5.19¢)
B/ = %(~a)aﬁvakpgijk : (5.19d)
Q= %vﬁjEﬁaij : F = évajmﬂ' = %(v‘*)ijklcijkl : (5.19¢)
with factors of i chosen so that all fields obey Wi = W, ;... where U carries any number

of spinor indices. In terms of these components, the action six-form may concisely be
factorized as

J=Jo+F N JTsS+Ta AT, (5.20)
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where the six-form Jy and the five-forms Jg§* and Jx* involve only the supervielbein

one-forms E4. The non-vanishing tangent-space components of .J; are

Joabenss = 3(Yabe) sy 7"
Jo[zbcd% — —%(V[abc)aﬁEd]ij ;
Jomasasarasts = ~Earasasasase (1 )as (107 = 81 BLIV,X] (),
+ %Baij (Y%),” Vi X5;7 — 3i APVE ijk) :
Toamesssasssss = ~orssmsass (F+ 41 A ()52 VXE — A ()50 X
+ 2By (179)a PV Y5 — %Cgaijyaﬁij) . (5.21)

Note that there are some similarities between components of J, and those of the A,%“*
six-form (AI5). In particular, the lowest dimensional component p,“* of J, obeys the
same differential constraint (£I4) as A,Y*; the difference is that p,“* is not primary
but transforms into C%* under S-supersymmetry. The non-vanishing components of

the five-forms Jg§* and Jx are simpler in structure and given by

JSabc%Ij{(ix =24 ('Vabc)ﬁ'yAajki 3 (522&)
8 ‘
JSabedly; = gkfabcdef(vef)ﬁV C,%; (5.22b)
Jsabedel = Eaeder (V) psr (5.22¢)
and
JKbcdfxz;a = —64i(Ypea)ap B " (5.23a)
JKbcdefxa = 81 <C:bcclefg (’}/fg)aﬁ Aﬁai y (523b)
Tkbede® = Enedesg(77)°Cr6® (V") ap - (5.23c¢)

They are essentially determined by the requirement that the full six-form J should

transform as
0sJ = —d(Asi Js®) . OxJ = —d(AgaJK®) (5.24)

under S and K transformations, consistent with (5.I7). Note that since J is not
primary, we may freely add any exact form we choose to it. In particular, some of the
terms in Jg and Jx can be removed by choosing such a form appropriately; however,
since it does not seem possible to eliminate either Jg or Jx completely, we have not

tried to simplify J any further.
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Using this non-primary six-form, we can immediately construct the invariants cor-
responding respectively to the supersymmetric COC' invariant and the supersymmet-
ric FOF actions. The first, as already mentioned, involves choosing B*?% = [P
in (419al). The leading components of the action can be deduced by observing that
the non-primary descendant O(4) superfield is simply

Czykl — _§Yaﬁ(ljyﬁakl) (525)

from which the leading contributions to F' = (V*);;,,C*”*" may be determined. The

term associated with the Weyl tensor is straightforward to derive:

2
F — §(deabcd)2 + °

2

9(vdR(M)M)2 +o (5.26)
Note that even this leading term is not K-invariant, as one must include the explicit
K-connection terms in the six-form. Removing a total derivative and higher order

terms in the Weyl tensor leads to
1
F = —ER(M)abcdDR(M)abcd e (5.27)

The second case, the supersymmetric F'OF action, involves the composite (£23)).
Here one finds the non-primary O(4) descendant superfield is C7* = Tr(X 4 X*),
As we have already noted, this is precisely the harmonic superspace Lagrangian used
in [94] to construct this invariant in flat space. At leading order, one finds the top

component of the multiplet is
F =2Tr(VPFyV F) + - = —Tr(F40F") 4 - (5.28)

where we have discarded a total derivative and higher order terms.

The details of the component action corresponding to the supersymmetric C'OC

and F'OF invariants will appear in a forthcoming paper.

6 Discussion

In this paper we have constructed two invariants for minimal conformal super-
gravity in six dimensions. These include the supersymmetric C? invariant described
by the composite ([ALI8) together with the action principle (L.IH), as well as the su-
persymmeric COC' invariant described by the composite (AI9al) together with the

action principle (5.20). The number of invariants constructed is consistent with the
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expectation that there should only be two in the case of N' = (1,0) local supersymme-
try, see e.g. [103]. However, it would be good to confirm that there does not remain
another invariant. A rather simple way to answer this question is to consider possible
supercurrents of the Weyl multiplet.

In supersymmetric field theory, the supercurrent is a supermultiplet containing
the energy-momentum tensor and the supersymmetry current(s), along with some
additional components such as the R-symmetry current. In the case of 6D N = (1,0)
superconformal field theory, the supercurrent was described in [79] in Minkowski
superspace. Its generalization to the curved case is described by a scalar primary

superfield J of dimension 4 satisfying the differential constraint
(ixgiok) 7 _
V[QVJBV%j =0. (6.1)

When the superconformal theory is coupled to conformal supergravity, the lowest
component of 7 matches the variational derivative of the action with respect to
the highest dimension independent field of the Weyl multiplet, which is the scalar
auxiliary field D as mentioned in section

We may now ask the following question: how many possible supercurrents can
be built purely from the super-Weyl tensor and its covariant derivatives? The most
general possible ansatz is

T = a1VVY 4 Y2 4+ics XUV X +icy XV 15X 5% 4 ¢5 Yo P9V
+c6 Yo Y5 + o WOV 05V sWOP 4 gV s WV s WP
- CoEay €y g WP TP (6.2)

where ¢,, n = 1,---9, are real coefficients. Requiring that J be primary and satisfy

the constraint (6.1]) yields a two-parameter family of possibilities,

32 2
c3 = —§02 —5¢c1 Cy = _ECQ —16c1, c5 = ECQ + 501 ,
2 1 2 1 1 1 1
Ce = ECQ + 501 ; cr = _ECQ - gcl , (= 507 = —1—502 - Ecl ,
cg =0, (6.3)

given here in terms of the coefficients ¢; and ¢y. The family with ¢; = 0 corresponds
to a supercurrent built from the cubic Weyl invariant, whereas a combination with
nonzero ¢; must correspond to the quadratic Weyl invariant. There are no other

possibilities, so the two invariants we have constructed are the only ones.

In section 2.4] we discussed the Euler invariant, eq. (2.29). Here we briefly
comment on its extension to the supersymmetric case. It can naturally be intro-

duced by first using the special conformal (and S-supersymmetry) transformations
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to gauge away the dilatation connection entirely, B4 = 0. It is now natural to per-
form the degauging procedure as in [51H54], and extract the special conformal con-
nection §4 by introducing the degauged covariant derivatives Dy = V4 + SapK?,
with SO(5,1) x SU(2) being the corresponding structure group. They satisfy (anti-

Jcommutation relations of the form
1
[Da,Dp} = —Tap“Dc — §RABCndd — Ras™ it (6.4)

where Typ" is the torsion, and R5° and R " are the Lorentz and SU(2) curva-
tures, respectively. A detailed analysis of the torsion and curvature tensors will be

given elsewhere. The Euler invariant is defined to be the closed six-form
1
56 = gRab A RCd A Refgabcdef ) dgﬁ =0 ) (65)

where R = 1E8 N EAR 45

It may be seen that  contains the same C® combination ([2.25) (modulo an overall
coefficient) which originates in the closed six-form Jes describing the supersymmetric
C? invariant, eq. (£I5). As a result, the closed six-form

&+ 12J0s | (6.6)

does not contain any term involving only the Weyl tensor.

It was shown in section 2] that there exists a primary construction in terms of the
logarithm of a compensator. Upon degauging the compensator it contains a linear
combination of the conformal invariants. Although outside of the scope of this work

it would be interesting to construct its supersymmetric extension.

A detailed analysis of the component structure of the supergravity multiplet, as
well as of the invariants for 6D N = (1,0) conformal supergravity constructed, will

be given in a forthcoming publication.
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A Notation and conventions

We follow similar 6D notations and conventions as [48], with a few minor modifi-

cations. All relevant details are summarized here.

The Lorentzian metric is 7, = diag(—1,1,1,1,1,1), the Levi-Civita tensor €pedef

obeys £p12315 = —23% = 1, and the Levi-Civita tensor with world indices is given

by cmnpars . — gabcdefeamebnecpedqeerefs.

We exclusively use four component spinors in the body of the paper, but it is
useful to link these to eight component spinor conventions. Our 8 x 8 Dirac matrices

['* and charge conjugation matrix C' obey

{Faarb} = _277ab1 ) (FQ)T =1y, Crao_l = _Fz ’
cic=1, oc=Cc"=cC". (A1)

In particular, I';C~?! is antisymmetric. The chirality matrix I', is defined by
Lol Ll g = €apederl's - (A.2)
As a consequence of the above conditions, one can show that
r*=BI*)*B, B=T,T,C". (A.3)
The charge conjugate W¢ of a Dirac spinor is conventionally defined by
U =0T, = (v9)7C = U= -T,0"'0* = -I,BY* . (A.4)

Because B*B = —1, charge conjugation is an involution only for objects with an

even number of spinor indices, so it is not possible to have Majorana spinors in six
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dimensions. One can instead have a symplectic Majorana condition when the spinors

possess an SU(2) index. Conventionally this is denoted
(U) =0 = VU'=-T,C )" =-TI.B(¥)" (A.5)

for a spinor of either chirality. We raise and lower SU(2) indices ¢ = 1,2 using the

conventions

\I]i = €ij\I]j y \IJZ = &fij\llj y 82 — &91 = 1. (A6)

We employ a Weyl basis for the gamma matrices so that an eight-component
Dirac spinor ¥ decomposes into a four-component left-handed Weyl spinor ¥ and a

four-component right-handed spinor y, so that

v= (Y . L= % O . a=1---4. (A7)
Xa 0 —4,"

The spinors ¥ and x, are valued in the two inequivalent fundamental representations
of su*(4) = so0(5,1). We further take

a __ 0 (:ya)ocﬁ _ O 5046
() e (28)

The Pauli-type 4 x 4 matrices (7*),s and (7%)*° are antisymmetric and related by

1

(59 =500 () = (A.9)

where €277 is the canonical antisymmetric symbol of su*(4). They obey

(Y")as(7")
vy

(3)7(+")

and as a consequence of (A3),

= 257 (A.10a)

+(7")ap(7)
Y)ay = —20"6% (A.10b)

By B By
sy + (A ()84

0 B,
(A.11)

(V)as = Ba;yBBS((VG)w)* . (3 =B%B((3")°)", B= <BQB 0 ) '

A dotted index denotes the complex conjugate representation in su*(4). It is natural

to use the B matrix to define bar conjugation on a four component spinor via
'J}a = BQB(¢B)* ) on = BaB(XB)* ) (A12)
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with the obvious extension to any object with multiple spinor indices. For example,
(7)as = (7")ap using (AII) and similarly for 32. Note that ﬁ = —¢® and similarly
for any object with an odd number of spinor indices as a consequence of B*B = —1.
A symplectic Majorana spinor ¥;, decomposed as in (A7) and obeying (A.3]), has
Weyl components that obey

ot = o Xai = X, - (A.13)
The Grassmann coordinates 6 and the parameters 1", of S-supersymmetry are both
symplectic Majorana-Weyl using this definition.

We define the antisymmetric products of two or three Pauli-type matrices as

IR . - -
5(%% —WYa) ,  Vab = VaW = —(va)" (A.14a)

Yabe ‘= 7[(15/1776] ) ’?abc = %ﬁb%} . (A14b)

Yab = VjaVp] =

Note that 7,, and 7,, are traceless, whereas v, and 4. are symmetric. Further

antisymmetric products obey

1 . 1
Yabe = 3'5abcdef7 Yabe = 3'5abcdef7 (A15a)
1 ) 1 .
Yabed = §€abcdef”yef ) Yabed = —ic":‘abcdef”y f 5 (A.15b)
“Yabede = 6abcdeff)/f s :Yabcde = _5abcdef;5/f s (A15C>
VYabedef = —Eabedef s f?abcdef = Eabedef - (A15d)

Making use of the completeness relations

(Y")as(7a)” = 46170g° , (A.16a)
(V)a" (Ya)y” = =88a°6," +284%6,° (A.16b)
(Y**)ap(Fabe) " = 48010 85)° (A.16¢)
(7 ) (7&bc)'y(5 (abc)aﬁ(’}/abc) :0, (A16d)

it is straightforward to establish natural isomorphisms between tensors of s0(5, 1) and
matrix representations of su*(4). Vectors V¢ and antisymmetric matrices V,3 = —Vjs,

are related by
a 1 g «
Vg = (1agVe = Vi= Z(%‘) Vs - (A.17)

Antisymmetric rank-two tensors F,;, are related to traceless matrices F,° via

F.P .= —1

1
4(7ab)aﬁFab ) Faa =0 <~ Fab = 5(7ab)ﬁaFaﬁ - _Fba . (A18)
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Self-dual and anti-self-dual rank-three antisymmetric tensors Ti;z),
1

55abcdefTCE::f) — p(E)abe ’ (Alg)

are related to symmetric matrices T,5 and T via

1

1 ~ «
Top = g(vabc)aﬁTabc =Tp, = T4 = g(%bc) "Tos (A.20a)
]' ~abc\ o [0 - ]' (0%
TP .— 5(7 NPT = TP = T, = g(%Lbc)aﬁT # . (A.20b)

Further irreducible representations of the Lorentz group take particularly simple forms
when written with spinor indices. For example, a gamma-traceless left-handed spinor
two-form W,," is related to a symmetric traceless ¥,*7,
1
\Daﬁﬂy = _Z(’yab)aﬁqjab’y = \Ijoﬂﬁ ) \Ijoeow =0 <=
1 «

Vo' = S0w)s" W (¥’ =0, (A:21)
and a rank-four tensor Cg.q with the symmetries of the Weyl tensor is related to a
symmetric traceless C’mﬁ‘S via

1

Cowm = 1_6(7[117)&5 (VCd)w(S Cabed = C'(cw)(ﬁ(g) ) Cawﬁfy =0 =
1
Cabcd - Z(’yab)ﬁa(’ycd)éﬂy Coryﬁé = C[cd}[ab] 3 C[abc]d =0. (A22)

B The conformal Killing supervector fields of RO

Simple Minkowski superspace in six dimensions, R%®, is parametrized by coordi-

nates 24 = (2, 0%). The flat covariant derivatives D4 = (9,, D?,)

0 . 0 .
L i TN Bi
Oy 1= e’ D: = —895‘ (7")ap0”" 04 (B.1)

satisfy the algebra:

{DZ,Dg} = —2ie" (") 050a (0, Dg] =0, [0, 0] =0 . (B.2)

«

The conformal Killing supervector fields
£=E=E9,+ & D), (B.3)

may be defined to satisfy
€. DL = (D& Dy . (B.4)
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which implies the fundamental equation
Diéa = —2i(Va)as€™ - (B.5)
From eq. (B.5) one finds
e7(V)asOba = (Ya)ary DR + (Ya) s DAY, (B.6)

which gives us the equation for a conformal Killing vector field,

1
a(agb) = gnabacgc 5 (B7)

as well as the following useful identities:

1

DE™) = J0iDie (B.8a)
2
Dfljglz = gﬁaga ) (ng)
1 1
Dlgcglf - iégD'Ijgg = _5(7ab)aﬁaa£b . (BSC)

The conformal Killing supervector field acts on the spinor covariant derivatives as
follows )
€, Dl] = —wo"Dj + A Dq; — 5aDg : (B.9)
where the parameters w,?, ¢ and A¥ are given by the following expressions:

ﬁ ].

Wo' = _Z(’yab)agaagb ’ (Bloa)
1 k 1 a
g = ED’yng = —68 ga y (BlOb)
. |
AY = DY (B.10¢)

Using eq. (B.7) one finds that the parameters (B.10) satisfy

OWhe = _27]a[b8c]a ) (Blla)
8@8(;50 = nabﬁca - 27]c(a8b)(7 5 (Bllb)

while using eq. (B.3]) one finds

1
Dljwaﬁ = 255[)20 - 55&[)50 : (B.12a)
DN = —4cUDP g | (B.12b)
where o obeys
D. Do = —ie" 0,50 , 0.D40 =0 (B.13)
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Finally, one can verify that the following holds

00§} = 5(3)" Do . (B.14)

The above results tell us that we can parametrize superconformal Killing vectors
as
£=EAP)LAQ)T MM )ap, M), AD), MK )ay A(S)g,) (B.15)

i) a

where we have defined the parameters

AP)* =& amo=0 . MQ)] = &' |a=0=0 , (B.16a)
)\(M)ab = wab|x:9:0 s )\(]D) = O’|x:9:0 s )\(J)Z] = Aij|x:9:0 s (B16b)
1 . .
)\(K)a = §aa0|x:0:0 ) )\(S)fx = 77;|:c:6:0 ) (B.16c)
and we have introduced .
nfl = iDga . (B.17)

The commutator of two superconformal Killing vectors,

5 = g(A(P)a> )‘(Q)a )‘(M)aba )‘(‘])Ua )‘(]D)> )‘(K)a’ )‘(S)Z ) (B18)

7

and

g = g(S‘(P)aa S‘(Q)?a S‘(M)aba 5‘(J)Ua )‘(]D)’ S‘(K)a’ S‘(S)Z ) 5 (Blg)
is another superconformal Killing vector given by
[€,€] = (£°0aE" — £°0,8" + 7 DLE" — 2 DLE" + 26767 (1) ap) Oy
+ (€°0a€) — £°0.8) + §7DLE] — £ DLE)) DS
= (60" + €5 — £, — & — HELEM(1)as )0y
1 _
(=16 iy + 586 — 8" + R
+ iga(’?a)ﬁﬂynw - %éfa + gywaﬁ - gzﬁAZ])Dé
= E(AMP)", MQ)F, A(M)ap, A(J)7, AD), ME)*, A(S)L) | (B.20)
where
M(P) := A(P)’A(M),* + A(P)*A(D) — 2IM(Q)FMQ) (1) ap
— AMP)°A(M),® — X(P)*A(D) , (B.21a)

32(Q) =~ AP A(S) 5~ NQIAM)" + ZAQIEAD) + AQ)EAL)
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1

+i(F2) P AP) A(S) g + AMQ)IAM)5* = ZMQ)IAD) — MQ)TA(JT) s

2
(B.21b)
A(M)ay == 2A(M)u N(M )i, — AA(P)aA(K )y, + AA(P)aA (K
+2(7a)a " MQ)FA(S)E = 2(Ya)a"MQ)FA(S)f | (B.21c)
M) = 20 () ON(T)PF = 8A(Q)CN(S)2) + 8AN(Q)UA(S)Y) (B.21d)
AD) := 2A(P)*A(K)q = 2X(P)* MK )q + 2M(S)oAQ)F = 2A(S),AQ)5 , (B.21e)
ME)™ = MM)PACK )y + AD)AK)" + 2i(30) M) EA(S) g
AM)®PA(K ), = MD)A(K)" (B.21f)
A8, = i(7a)ap AU MQ)T + A(S)EAM) o — %A(S)QX(D) = ASPA);
— (7a)ap () MQ)T = M(S)pAM)o” + %X(S)ZA(D) + AS)A)
(B.21g)
Representing the superconformal Killing vectors as
&= MNP)"P, + MQ)F Q% + %)\(M)“bMab + A(J)7 Jij + A(D)D
+AK)* K, + A(S)L,S (B.22)
and comparing eq. to the commutator
[€.€] = =AM, X} (B.23)

gives the superconformal algebra.

C The Yang-Mills multiplet in conformal super-
space
To describe a non-abelian vector multiplet, the covariant derivative V = E4V 4
has to be replaced with a gauge covariant one,
V=E'W,, Vi=V,—iV,. (C.1)

Here the gauge connection one-form V = E4V 4 takes its values in the Lie algebra
of the (unitary) Yang-Mills gauge group, Gy, with its (Hermitian) generators com-
muting with all the generators of the superconformal algebra. The algebra of the

gauge covariant derivatives is

1
Va4, Vp} = —Tup“Ve — iR(M)ABCndd — R(J)ag" Ty — R(D) 4D
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—R(S) 4B St — R(K)ap K. — iF 4 , (C.2)

where the torsion and curvatures are those of conformal superspace but with F 4p
corresponding to the gauge covariant field strength two-form F = %EB A EAF 4.
The field strength F' 4p satisfies the Bianchi identity

VF =0 — V[AFBC} + T[ABDF‘D‘C} =0. (C?))

The Yang-Mills gauge transformation acts on the gauge covariant derivatives V 4 and

a matter superfield U (transforming in some representation of the gauge group) as
Vi — TV e T, U - U =€TU, =7, (CA4)

where the Hermitian gauge parameter 7(z) takes its values in the Lie algebra of Gyy.

This implies that the gauge one-form and the field strength transform as follows:
V = @TVe T +ieTde T | F — TFe™ . (C.5)
Some components of the field strength have to be constrained in order to describe
an irreducible multiplet. In conformal superspace the right constraints are
Fil =0, FJ=)apW"”, (C.6a)

where W is a conformal primary of dimension 3/2, S,ZW‘” =0and DWW = %W“i.
The Bianchi identity (C.3) together with the constraints (C.Gal) fix the remaining
component of the field strength to be

i
F. = —g(%b)ﬁav’;wg (C.6b)
and constrain W to obey the differential constraints
i y_ 1 i j
VWl =0, Viw = ngvg w9 (C.7)
It is helpful to introduce the following descendant superfield:
i
4
The superfield W and X%, together with

X7 = -viw (C.8)

: 1 :
F. = —i (V’;Wf —~ Zaﬁv’;wg) - —iV';Wf ; (C.9)

satisfy the following useful identities:
ViWh = _igf X —2iciF P | (C.10a)
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) 7 % 1 7
ViFg = -V W — 5V 5 W + g(sgv,ﬁW‘S : (C.10b)
Vi Xk = 2607 s WHR (C.10¢)

The S-supersymmetry generator acts on these descendants as

SIF. = —4i) W +idfW) . SIXY = —4is{ W) (C.11)
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