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1 Introduction

Conformal field theories (CFTs) play a distinguished role among relativistic quantum field

theories. It has long been realized that they arise as fixed point theories of renormalization

group flows and the study of their properties is clearly of interest. The enlarged symmetry

group helps to constrain e.g. the general structure of correlation functions beyond what is

already required by Poincaré invariance. Additional symmetries lead to further restrictions.
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One such symmetry which is very powerful in this respect is supersymmetry, in which case

one deals with superconformal field theories (SCFTs).

It has been known since the early days of supersymmetry that superconformal theories

can only exist in six or lower dimensions [1]. In six dimensions, where N = (p, q) Poincaré

superalgebras exist for any integer p, q ≥ 0, superconformal algebras only exist for either

p = 0 or q = 0. In fact, the only known non-trivial unitary CFTs in six dimensions are

supersymmetric and arise as world-volume theories of appropriate brane configurations in

string and M-theory and in F-theory, in the limit where gravity decouples. They realize

eitherN = (2, 0) orN = (1, 0) superconformal symmetry. For these theories no Lagrangian

description is known but they are believed to obey the axioms of quantum field theories.1

They should, in particular, have local conserved current operators and among them a local

conserved and traceless energy-momentum tensor [3, 4]. Evidence for the existence of

N = (2, 0) theories was first given in [5–7]; for N = (1, 0) theories we refer to [3, 4, 8–13].

As mentioned before, symmetries in quantum field theories lead to restrictions on

correlation functions which have to satisfy Ward identities. In correlation functions of

conserved currents one finds, however, that the naive Ward identities which would follow

from the symmetries cannot always be satisfied simultaneously. This happens in even

dimensions and leads to (super)conformal anomalies which express the fact that imposing

conservation and tracelessness of the energy-momentum tensor clashes in certain correlation

functions. The general structure of these conformal or Weyl anomalies was analyzed by

Deser and Schwimmer [14] who also introduced the classification into two types: type A

and type B. In any even dimension there is always one type A anomaly and starting in

four dimensions, an increasing number of type B anomalies. The easiest way to discuss

them is to couple the conformal field theory to a metric background which serves as a

source for the energy-momentum tensor. The anomalies then express the non-invariance

of the effective action (generating functional) under a local Weyl rescaling of the metric.

The anomalous variation of the non-local effective action results in anomalies which are

local diffeomorphism invariant functions of the metric and its derivative, i.e. functions of the

curvature and its covariant derivatives. The type A anomaly in any even dimension is given

by the Euler density of that dimension; the type B anomalies are Weyl invariant expressions

constructed from the curvature tensors and its covariant derivatives [14]. In four dimensions

there is one such expression, the square of the Weyl tensor; in six dimensions there are two

inequivalent contractions of three Weyl tensors and one Weyl invariant expression which

involves two covariant derivatives. If we work in a topologically trivial background, only

the type B anomalies contribute if one rescales the metric by a constant factor.

In any dimension the possible Weyl anomalies can be found by imposing the Wess-

Zumino consistency condition [15], which expresses the obvious fact that two consecutive

Weyl variations of the effective action must commute. Non-supersymmetric CFTs are then

characterized by as many anomaly coefficients as there are solutions to the Wess-Zumino

consistency condition: one in two, two in four and four in six dimensions, respectively.

1Here we are concerned with unitary SCFTs. For an example of a higher-derivative classical SCFT,

see [2].
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In SCFTs, the Weyl anomalies are accompanied by superconformal and R-symmet-

ry anomalies; altogether they constitute the so-called super-Weyl anomalies. They are

related by supersymmetry and various anomalies in bosonic and fermionic symmetry cur-

rents are packaged into anomaly supermultiplets. The most elegant way to exhibit this is

using a manifestly supersymmetric formulation, i.e. superspace. In four dimensions, the

super-Weyl anomalies were studied in [16, 17] in the N = 1 case and in [18] for N = 2.

Furthermore, supersymmetry might also reduce the number of independent anomaly co-

efficients by packaging several solutions of the Wess-Zumino consistency conditions into

one supermultiplet. This is the case for N = 4 supersymmetric Yang-Mills theory in four

dimensions where there is only one independent anomaly coefficient.

As Lagrangian descriptions of six-dimensional SCFTs are not known, it is rather diffi-

cult to study their dynamics. Interesting non-trivial information can, however, be obtained

from their symmetries. One can e.g. show that N = (2, 0) and N = (1, 0) SCFTs have

neither marginal nor relevant supersymmetry preserving deformations [19, 20]. Another

way to approach these theories is via their ’t Hooft and Weyl anomalies. This was done

in [21–27].

Due to supersymmetry one expects that the two types of anomalies are parametrized

by the same coefficients. This is known e.g. for N = 1 SCFT in four dimensions, where

the U(1) R-current anomalies are governed by linear combinations of the two independent

Weyl anomaly coefficients. It would be useful to know similar relations for SCFTs in six

dimensions and furthermore, to know the precise number of independent anomaly coef-

ficients. We consider the analysis of this paper as a first step towards answering these

questions for N = (1, 0) SCFTs. More precisely, we will construct supersymmetry invari-

ants which contain the solutions of the WZ consistency condition for the Weyl anomaly as

one of their bosonic components. By supersymmetry, these invariants should contain the

solutions to the supersymmetrized version of the WZ condition. Here we content ourselves

with the first step, the construction of the supersymmetric invariants and leave a detailed

analysis of the anomaly structure for the future. But the results of this paper already

show that the number of anomaly coefficients is reduced: while in the non-supersymmetric

case there are three independent type B Weyl anomalies, i.e. dimension six combinations

of curvature tensors and covariant derivatives which transform homogeneously under Weyl

transformations of the metric, there are only two independent superspace invariants which

contain them. In addition to their relevance for the anomaly structure, their arbitrary lin-

ear combination is the action for minimal conformal supergravity in six dimensions, which

will be the main focus of this paper.

To establish these results we develop a new off-shell superspace formulation of this

theory. We therefore start with a brief review of six-dimensional (6D) minimal conformal

supergravity and conformal superspace methods (see [28] for a review of conformal su-

pergravity theories in 4D). Its superconformal tensor calculus was formulated thirty years

ago by Bergshoeff, Sezgin and Van Proeyen [29]. In many respects, it is analogous to the

superconformal tensor calculus for 4D N = 2 supergravity [30–35], see [36] for a recent

pedagogical review. Soon after the 6D N = (1, 0) superconformal method [29] appeared, it

was applied to construct the off-shell supersymmetric extension of the Riemann curvature
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squared term [37–39]. More recently, the 6D N = (1, 0) superconformal techniques of [29]

have been refined [40, 41]. In particular, the complete off-shell action for minimal Poincaré

supergravity has been given in [40] (only the bosonic part of this action was explicitly

worked out in [29]). Gauged minimal 6D supergravity has been worked out in [41] by cou-

pling the minimal supergravity of [40] to an off-shell vector multiplet. The resulting theory

is an off-shell version of the dual formulation [42, 43] of the Salam-Sezgin model [44, 45].

Similar to the 4D N = 2 case, the 6D N = (1, 0) superconformal tensor calculus has

two limitations. Firstly, it does not provide tools to describe off-shell hypermultiplets.

Only on-shell hypermultiplets were used in [29] as well as in all later developments based

on [29]. Secondly, it does not offer insight as to how general higher-derivative supergravity

actions can be built, see [46] for a recent discussion. In particular, (off-shell) invariants for

6D N = (1, 0) conformal supergravity have never been constructed. In order to avoid these

limitations, one has to resort to superspace techniques. At this point, some comments are

in order about the superspace approaches to conformal supergravity in diverse dimensions.

There are two general approaches to describe N -extended conformal supergravity in

D ≤ 6 dimensions2 using a curved N -extended superspace MD|δ, where δ denotes the

number of fermionic dimensions. One of them, known as G
[D;N ]
R superspace, makes use of

the superspace structure group SO(D − 1, 1) ×G[D;N ]
R , where SO(D − 1, 1) is the Lorentz

group and G
[D;N ]
R is the R-symmetry group of the N -extended super-Poincaré algebra in

D dimensions.3 A fundamental requirement on the superspace geometry, which should

describe conformal supergravity, is that the constraints on the superspace torsion be in-

variant under a super-Weyl transformation generated by a real unconstrained superfield

parameter. This approach was pioneered in four dimensions by Howe [47, 48] who fully

developed the U(1) and U(2) superspace geometries [48] corresponding to the N = 1 and

N = 2 cases, respectively. The superspace formulation for 5D conformal supergravity (5D

SU(2) superspace) was presented in [49], and it was naturally extended to the 6D N = (1, 0)

case in [50] where 6D SU(2) superspace was formulated. In three dimensions, the SO(N )

superspace geometry was developed in [51, 52].

The other superspace approach to conformal supergravity is based on gauging the

entire N -extended superconformal group in D dimensions, of which SO(D− 1, 1)×G[D;N ]
R

is a subgroup. This approach, known as conformal superspace, was originally developed for

N = 1 and N = 2 supergravity theories in four dimensions by one of us (DB) [53, 54]. More

recently, it has been extended to the cases of 3D N -extended conformal supergravity [55]

and 5D conformal supergravity [56]. Conformal superspace is a more general formulation

than G
[D;N ]
R superspace in the sense that the latter is obtained from the former by partially

fixing the gauge freedom, see [53–56] for more details.

Unlike the superconformal tensor calculus, the superspace method offers off-shell for-

mulations for the most general supergravity-matter couplings with eight supercharges in

four, five and six dimensions. This includes off-shell formulations for hypermultiplets and

2The cases of five and six dimensions are rather special. Conformal supergravity exists only for N = 1

in five dimensions, and only for N = (p, 0) in six dimensions.
3The group G

[D;N ]
R coincides with SO(N ) for D = 3, U(N ) for D = 4, and SU(2) for the cases 5D N = 1

and 6D N = (1, 0).
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their most general locally supersymmetric sigma model couplings. The first such formula-

tions were developed using harmonic superspace [57–59] (see also [60]) and employed ex-

plicit supergravity prepotentials (but see [61, 62] for covariant approaches). Later, off-shell

geometric formulations were derived for 5D N = 1 supergravity-matter systems [49, 63] by

putting forward the novel concept of covariant projective multiplets. These supermultiplets

are curved-superspace extensions of the 4D N = 2 and 5D N = 1 superconformal projec-

tive multiplets [64, 65]. The latter reduce to the off-shell projective multiplets pioneered

by Lindström and Roček [66–68] in the 4D N = 2 super-Poincaré case. The 5D off-shell

formulations have been generalized to the 4D N = 2 [69, 70], 3D N = 4 [52] and 6D

N = (1, 0) [50] cases.4 All of these works made use of the appropriate G
[D;N ]
R superspace.

However, all the results are naturally lifted to conformal superspace.

Conformal superspace is an ideal setting to reduce the locally supersymmetric actions

from superspace to components [72, 73]. It also turns out to be an efficient formalism to

build general higher-derivative supergravity actions. Recent applications of the conformal

superspace approach have involved constructing (i) the N -extended conformal supergravity

actions in three dimensions for 3 ≤ N ≤ 6 [74, 75], and (ii) new higher-derivative invariants

in 4D N = 2 supergravity, including the Gauss-Bonnet term [76]. In the present paper,

we develop 6D N = (1, 0) conformal superspace and apply it to construct invariants for

conformal supergravity.

Before turning to the details of the six-dimensional case, it is worth recalling the

structure of conformal supergravity actions in four dimensions (see for example the re-

views [28, 77]). The invariants for N < 3 are supersymmetric extensions of the C2 term

and are described by chiral integrals of the form

IC2 :=

∫
d4x d2N θ EWα1...α4−NWα1...α4−N + c.c. , N = 1, 2, (1.1)

where E is the chiral integration measure. The covariantly chiral tensor superfield

Wα1...α4−N = W(α1...α4−N ) is the superspace generalization of the Weyl tensor (known as

the super-Weyl tensor). Thus the structure of 4D N -extended conformal supergravity is

remarkably simple for N < 3.

The case of 6D N = (1, 0) conformal supergravity has conceptual differences from

its 4D N = 2 cousin. First of all, there is no covariantly defined chiral subspace of

SU(2) superspace [50], and thus we cannot generalise the 4D N = 2 construction to six

dimensions. Of course, one could try and construct invariants for conformal supergravity

as full superspace integrals of the form

S =

∫
d6x d8θ E L , (1.2)

where the Lagrangian L is a real primary superfield of dimension 2 (in the sense of [50]).

This Lagrangian should be constructed in terms of the dimension-1 super-Weyl tensor

Wαβ = W βα [50] and its covariant derivatives. It is obvious that no L with the required

4In the 6D N = (1, 0) super-Poincaré case, the projective-superspace formalism was introduced in [71],

where it was used to construct off-shell actions for self-interacting linear multiplets.
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properties exists. In the case of 4D N = 2 supergravity, it was shown [78, 79] that the chiral

action principle can be reformulated as a special case of the 4D N = 2 projective-superspace

action [69, 70]. For supergravity theories with eight supercharges in diverse dimensions

(including the 3D N = 4 [52], 5D N = 1 [49] and 6D N = (1, 0) [50] cases), the projective-

superspace action principle is known to be universal in the sense that it can be used

to realize general off-shell supergravity-matter couplings. The same statement holds for

harmonic superspace (see [80] for the 6D N = (1, 0) case in particular). If the goal were to

build two-derivative supergravity-matter actions, either approach would suffice. However,

if one is interested in realizing the invariants for 6D N = (1, 0) conformal supergravity,

it proves to be impossible to construct any projective-superspace Lagrangian L(2) only in

terms of the super-Weyl tensor Wαβ , that is without introducing prepotentials for the

Weyl multiplet; and while 6D harmonic superspace furnishes such explicit prepotentials,

the problem of constructing the necessary higher derivative invariants (while respecting

the prepotential gauge transformations) remains a challenge unsolved even in the 4D case,

where the covariant actions are known. Therefore, if one is interested in constructing the

invariants for 6D N = (1, 0) conformal supergravity solely in terms of the covariant super-

Weyl tensor, a new action principle is required. The present paper addresses this problem

and demonstrates that there are two action principles which naturally support all the 6D

N = (1, 0) Weyl invariants.

This paper is organized as follows. Section 2 is a review on conformal gravity and

includes a simple derivation of the 6D Weyl invariants. In section 3 we describe 6D N =

(1, 0) conformal superspace. In section 4 an action principle is presented in conformal

superspace and it is shown how it can be used to describe a supersymmetric invariant

containing a C3 term. Application to other invariants is also discussed. Section 5 is

devoted to deriving another action principle which is used to describe a supersymmetric

invariant containing a C�C term and a higher derivative action based on the Yang-Mills

multiplet in conformal superspace. Concluding comments and a discussion are given in

section 6, where it is proved that the 6D N = (1, 0) Weyl invariants constructed exhaust

all such invariants in minimal conformal supergravity.

We have included a number of technical appendices. In appendix A we include a

summary of our notation and conventions. Appendix B is devoted to a derivation of

the superconformal algebra from the algebra of conformal Killing supervector fields of 6D

N = (1, 0) Minkowski superspace. Finally, in appendix C we give a description of the

Yang-Mills multiplet in conformal superspace.

2 Conformal gravity in six dimensions

The conformal invariants in six dimensions [14, 81, 82] have been constructed previously

and are well known. Since we will be concerned with their supersymmetric generalizations,

it is natural to first present their bosonic counterparts. In this section, we provide a simple

derivation of the conformal invariants. The formulation we use here will be naturally

generalized to the supersymmetric case in later sections and will serve as a prelude to the
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conformal superspace formulation in section 3. We begin by reviewing the formulation for

conformal gravity in D > 3 spacetime dimensions following [55].5

2.1 Conformal gravity in D > 3 spacetime dimensions

The conformal algebra in D > 2 spacetime dimensions, so(D, 2), is spanned by the gener-

ators Xa = {Pa,Mab,D,Ka}, which obey the commutation relations

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c , (2.1a)

[Mab, Pc] = 2ηc[aPb] , [D, Pa] = Pa , (2.1b)

[Mab,Kc] = 2ηc[aKb] , [D,Ka] = −Ka , (2.1c)

[Ka, Pb] = 2ηabD + 2Mab , (2.1d)

where Pa is the translation, Mab = −Mba is the Lorentz, D is the dilatation and Ka is the

special conformal generator.

To describe conformal gravity one begins with a D-dimensional manifold MD

parametrized by local coordinates xm, m = 0, 1, · · · , D − 1. Following the gauging proce-

dure in [55], the covariant derivatives are chosen to have the form

∇a = ea −
1

2
ωa

bcMbc − baD− fa
bKb . (2.2)

Here ea = ea
m∂m is the inverse vielbein, while ωa

bc is the Lorentz, ba is the dilation and

fa
b is the special conformal connection, respectively. The covariant derivatives may also be

cast in the framework of forms

∇ = ea∇a = d− 1

2
ωbcMbc − bD− faKa , (2.3)

where ea := dxmem
a is the vielbein, d is the exterior derivative and we have defined

ωbc := eaωa
bc, b := eaba and fa := ebfb

a.

The gravity gauge group is generated by local transformations which can be sum-

marised by6

δK∇a = [K,∇a] , K = ξa∇a + ΛaXa = ξa∇a +
1

2
Λ(M)abMab + σD + Λ(K)aKa (2.4)

provided we interpret

∇aξb := eaξ
b + ωa

cξdfdc
b , ∇aΛb := eaΛ

b + ωa
cξdfdc

b + ωa
cΛdfdc

b , (2.5)

where the structure constants are defined by

[Xa, Pb] = −fabcXc − fabcPc , [Xa, Xb] = −fabcXc . (2.6)

5Conformal gravity has been discussed elsewhere in many places, e.g. [36]. Our review here emphasizes

certain points relevant to our paper.
6One must take care in applying this formula since one can have Λa = 0 but ∇aΛb 6= 0.
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The gauging procedure ensures that the generators Xa act on the covariant derivatives

in the same way as they do on Pa, except with Pa replaced by ∇a, while the covariant

derivative algebra obeys commutation relations of the form

[∇a,∇b] = −Tabc∇c −
1

2
R(M)ab

cdMcd −R(D)abD−R(K)ab
cKc , (2.7)

where the curvatures and torsion are given by the form expressions:

T a =
1

2
ec ∧ eb Tbca = dea + ea ∧ b+ eb ∧ ωba , (2.8a)

R(M)cd =
1

2
eb ∧ eaR(M)ab

cd = dωcd + ωce ∧ ωed − 4e[c ∧ fd] , (2.8b)

R(D) =
1

2
eb ∧ eaR(D)ab = db+ 2ea ∧ fa , (2.8c)

R(K)a =
1

2
ec ∧ ebR(K)bc

a = dfa − fa ∧ b+ fb ∧ ωba . (2.8d)

The gravity gauge group acts on a tensor field U (with indices suppressed) as

δKU = KU . (2.9)

We call a field U satisfying KaU = 0 and DU = ∆U a primary field of dimension (or Weyl

weight) ∆.

To describe conformal gravity, one must impose some conformal constraints:

Tab
c = 0 , ηbcR(M)abcd = 0 , R(D)ab = 0 . (2.10)

For D > 3, the Bianchi identities constrain the covariant derivative algebra to be of the form

[∇a,∇b] = −1

2
Cab

cdMcd −
1

2(D − 3)
∇dCabcdKc , (2.11)

where Cabcd is the Weyl tensor satisfying7

Cabcd = C[ab][cd] , C[abc]d = 0 (2.12)

and the Bianchi identity

∇[aCbc]
de = − 2

D − 3
∇fC[ab

f [dδ
e]
c] . (2.13)

The Weyl tensor Cab
cd proves to be a primary field.8 This means that when the explicit

expression for ωa
bc is used dependence on ba drops out of the Weyl tensor.

One can always make use of the special conformal gauge freedom to choose a vanishing

dilatation connection, ba = 0. The covariant derivatives then take the form

∇a = Da − fa
bKb , Da := ea −

1

2
ωa

bcMbc . (2.14)

7The symmetry property Cabcd = Ccdab is not independent and follows from the others.
8This follows from considering [Ka, [∇b,∇c]] = 2[[Ka,∇[b],∇c]] = 0.
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In this gauge the Lorentz curvature

Rabcd := 2e[a
meb]

n∂mωn
cd − 2ω[a

cfωb]f
d (2.15)

may be expressed as

Rabcd = Cab
cd − 8δ

[c
[afb]

d] . (2.16)

One can then solve the special conformal connection in terms of the Lorentz curvature

fab = − 1

2(D − 2)
Rab +

1

4(D − 1)(D − 2)
ηabR , (2.17)

where we have defined

Rac := ηbdRabcd , R := ηabRab . (2.18)

We will often refer to the procedure of setting ba = 0 and introducing the covariant deriva-

tive Da as degauging.

It is worth mentioning that one can introduce new covariant derivatives by making use

of a compensator φ, which we choose to be primary and of dimension 2. One can construct

the following covariant derivatives using the compensator

Da = φ−
1
2

(
∇a +

1

2
(∇b lnφ)Mab −

1

2
(∇a lnφ)D

)
, (2.19)

which have the property that if U is some conformally primary tensor field of some dimen-

sion then DaU is as well. The covariant derivatives annihilate the compensator φ, Daφ = 0.

When acting on primary fields they satisfy the algebra

[Da,Db] = −1

2
Rab

cdMcd , (2.20)

where

Rab
cd := φ−1Cab

cd +
4

D − 2
δ

[c
[aRb]

d] − 2

(D − 1)(D − 2)
δ

[c
[aδ

d]
b] R (2.21)

and

Rab :=
1

2
φ−1/2

(
∇(a∇b) −

1

D
ηab�

)
φ−1/2 +

D − 1

D(D − 2)
ηabφ

−(D+2)/4�φ(D−2)/4 . (2.22)

Here we have introduced the conformal d’Alembert operator � := ∇a∇a. Upon degauging

and imposing the gauge conditions ba = 0 and φ = 1, one finds Rab
cd corresponds to the

Lorentz curvature Rabcd.
In what follows we will specialize to the six dimensional case. We will find that all

conformal gravity invariants can be constructed as

I =

∫
d6x eL , KaL = 0 , DL = 6L , (2.23)

where L is a function of Cabcd, its covariant derivatives and possibly a compensator φ (but

with I possessing no dependence on φ).
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2.2 The C3 invariants

Taking into account the symmetries of the Weyl tensor there are two inequivalent ways of

contracting indices in the product of three Weyl tensors. These are as follows:

L
(1)
C3 := CabcdC

aefdCe
bc
f , L

(2)
C3 := CabcdC

cdefCef
ab . (2.24)

These lead to two inequivalent invariants I
(i)
C3 :=

∫
d6x eL

(i)
C3 , i = 1, 2.

It is worth noting that a special combination of the above invariants can be written in

the following form:

− 1

8
εabcdefεa′b′c′d′e′f ′Cab

a′b′Ccd
c′d′Cef

e′f ′ = 4L
(2)
C3 + 8L

(1)
C3 . (2.25)

It will turn out that it is precisely this combination that permits a supersymmetric gener-

alization.

2.3 The C�C invariant

Considering the product of two Weyl tensors with two covariant derivatives, one finds the

following primary

LC�C := Cabcd�Cabcd +
1

2
∇eCabcd∇eCabcd +

8

9
∇dCabcd∇eCabce , (2.26)

which leads to the corresponding invariant IC�C =
∫

d6x eLC�C .

Making use of the identity

Cabcd�Cabcd +
1

2
∇eCabcd∇eCabcd +

8

9
∇dCabcd∇eCabce

=
1

6
Cabcd�Cabcd +

1

2
∇e
(
Cabcd∇eCabcd +

16

9
Cabce∇dCabcd

)
− 4

3
L

(1)
C3 +

1

3
L

(2)
C3 (2.27)

and upon degauging (and removing a total derivative) one finds

IC�C =
1

6

∫
d6x e

[
Cabce

(
δfeD2 − 4Ref +

6

5
δfeR

)
Cabcf − 8L

(1)
C3 + 2L

(2)
C3

]
, (2.28)

where D2 := DaDa.

2.4 The Euler invariant

The Euler invariant may be constructed most easily in the gauge ba = 0. In this gauge we

define the Euler invariant as

E6 := −1

8
εabcdefεa′b′c′d′e′f ′Raba

′b′Rcdc
′d′Ref e

′f ′

= 4L
(2)
C3 + 8L

(1)
C3 − 6CabcdCabceRde +

6

5
CabcdCabcdR

+ 3CabcdRbdRac +
3

2
RabRbcRca −

27

20
RabRabR+

21

100
R3 . (2.29)
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Although one can use the above expression, we will instead look for an alternative descrip-

tion for the Euler invariant that is manifestly primary.

To begin with one can show that the following field9

E6 :=

(
�3 − 8

3
(∇b∇dCabcd)∇a∇c

)
lnφ (2.30)

is primary. Furthermore, the corresponding invariant

IEuler :=

∫
d6x eE6 (2.31)

does not actually depend on the compensator. To see this we make a reparametrization

φ→ e−σφ , Dσ = 0 , (2.32)

which induces the shift

E6 → E6 −
(
�3 − 8

3
(∇b∇dCabcd)∇a∇c

)
σ . (2.33)

At this point it is tempting to think that the term involving �3σ is a total derivative. How-

ever, integration of ∇a is complicated by the presence of the special conformal connection

and it is usually easier to work in the gauge ba = 0 to arrange a total derivative. We now

proceed to do this and show that E6 shifts by a total derivative under the reprarametriza-

tion (2.32).

In the gauge ba = 0 we find the following results:

−8

3
(∇b∇dCabcd)∇a∇cσ =

32

3
fac(Dbσ)DdCabcd + total derivative , (2.34a)

�3σ = −32

3
fac(Dbσ)DdCabcd + total derivative , (2.34b)

where we made use of the identities

D[afb]c =
1

2
R(K)abc =

1

12
∇dCabcd , Dafbb = Dbfab . (2.35)

It is now straightforward to see that the shift in (2.33) is a total derivative and IEuler is

invariant under reparametrizations of φ.

Since IEuler does not depend on φ, we are free to set φ = 1, and since this condition

breaks dilatation symmetry it is natural to work in the gauge ba = 0. To do this consistently

one must first extract the special conformal connection as in (2.14) before imposing the

gauge conditions φ = 1 and ba = 0. Non-trivial terms survive which derive from where the

dilatation generator acts on ln φ. One finds the following:

−8

3
(∇b∇dCabcd)∇a∇c lnφ = −2LC�C − 2CabceCabcdRde +

2

5
CabcdCabcdR

+ CabcdRbdRac − 4L
(1)
C3 + L

(2)
C3 + total derivative , (2.36)

�3 lnφ =
1

2
RabRbcRca −

9

20
RabRabR+

7

100
R3

+ total derivative . (2.37)

9This can be compared with the result in [83] for primary covariants in six dimensions.
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Finally, it follows from the above that

E6 =
1

3
E6 −

20

3
L

(1)
C3 −

1

3
L

(2)
C3 − 2LC�C + total derivatives . (2.38)

Interestingly, we find that besides the construction (2.30) containing the Euler invariant

E6, E6 also involves the other conformal invariants.

3 N = (1, 0) conformal superspace

Conformal superspace in lower dimensions [53–56] possesses the following key properties:

(i) it gauges the entire superconformal algebra; (ii) the curvature and torsion tensors may

be expressed in terms of a single primary superfield; and (iii) the algebra obeys the same

basic constraints as those of super Yang-Mills theory. In this section, as in the lower

dimensional cases, we will make use of these properties to develop the conformal superspace

formulation for N = (1, 0) conformal supergravity in six dimensions. We will firstly give

the superconformal algebra and describe the geometric setup for conformal superspace.

We then constrain the geometry to describe conformal supergravity by constraining its

covariant derivative algebra to be expressed in terms of a single primary superfield, the

super-Weyl tensor.

3.1 The superconformal algebra

The 6D N = (1, 0) superconformal algebra naturally originates as the algebra of Killing

supervector fields of 6D N = (1, 0) Minkowski superspace [84], see appendix B for the tech-

nical details. Below we simply summarize the (anti-)commutation relations of generators

corresponding to the superconformal algebra.

The bosonic part of the 6D N = (1, 0) superconformal algebra contains the translation

(Pa), Lorentz (Mab), special conformal (Ka), dilatation (D) and SU(2) generators (Jij),

where a, b = 0, 1, 2, 3, 4, 5 and i, j = 1, 2. Their algebra is

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c , (3.1a)

[Mab, Pc] = 2ηc[aPb] , [D, Pa] = Pa , (3.1b)

[Mab,Kc] = 2ηc[aKb] , [D,Ka] = −Ka , (3.1c)

[Ka, Pb] = 2ηabD + 2Mab , (3.1d)

[J ij , Jkl] = εk(iJ j)l + εl(iJ j)k , (3.1e)

with all other commutators vanishing. The N = (1, 0) superconformal algebra is obtained

by extending the translation generator to PA = (Pa, Q
i
α) and the special conformal gener-

ator to KA = (Ka, Sαi ).10 The fermionic generator Qiα obeys the algebra

{Qiα, Q
j
β} = −2iεij(γc)αβPc , [Qiα, Pa] = 0 , [D, Qiα] =

1

2
Qiα , (3.2a)

[Mab, Q
k
γ ] = −1

2
(γab)γ

δQkδ , [J ij , Qkα] = εk(iQj)α . (3.2b)

10For our spinor conventions and notation we refer the reader to appendix A.
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while the generator Sαi obeys the algebra

{Sαi , S
β
j } = −2iεij(γ̃

c)αβKc , [Sαi ,Ka] = 0 , [D, Sαi ] = −1

2
Sαi , (3.3a)

[Mab, S
γ
k ] =

1

2
(γab)δ

γSδk , [J ij , Sαk ] = δ
(i
k S

j)
α . (3.3b)

Finally, the (anti-)commutators of KA with PA are

[Ka, Q
i
α] = −i(γa)αβS

βi , [Sαi , Pa] = −i(γ̃a)
αβQβi , (3.4a)

{Sαi , Q
j
β} = 2δαβ δ

j
iD− 4δjiMβ

α + 8δαβJi
j , (3.4b)

where we introduced Mα
β = −1

4(γab)α
βMab. Note that Mα

β acts on Qkγ and Sγk as follows

[Mα
β , Qkγ ] = −δβγQkα +

1

4
δβαQ

k
γ , [Mα

β , Sγk ] = δγαS
β
k −

1

4
δβαS

γ
k . (3.5)

3.2 Gauging the superconformal algebra

To perform the gauging of the superconformal algebra we follow closely the approach given

in [53–56]. Below we will give the salient details of the geometry.

We introduce a curved 6D N = (1, 0) superspace M6|8 parametrized by local bosonic

(x) and fermionic coordinates (θi), z
M = (xm, θµi ), where m = 0, 1, 2, 3, 4, 5, µ = 1, · · · , 4

and i = 1, 2. We associate with each generator Xa = (Mab, Jij ,D, Sγk ,K
c) a connection

one-form ωa = (Ωab,Φij , B,Fkγ ,Fc) = dzMωM
a and with PA the vielbein EA = (Eαi , E

a).

They are used to construct the covariant derivatives, which have the form

∇A = EA −
1

2
ΩA

abMab − ΦA
klJkl −BAD− FABK

B . (3.6)

Here EA = EA
M∂M is the inverse vielbein. The action of the generators on the covariant

derivatives resembles that for the PA generators given in (3.2).

The supergravity gauge group is generated by local transformations of the form

δK∇A = [K,∇A] , (3.7)

where K = ξC∇C + 1
2ΛcdMcd + ΛklJkl + σD + ΛAK

A, and the gauge parameters satisfy

natural reality conditions. In applying eq. (3.7), one interprets the following

∇AξB := EAξ
B + ωA

cξDfDc
B , ∇AΛb := EAΛb + ωA

cξDfDc
b + ωA

cΛdfdc
b , (3.8)

where the structure constants are defined as

[Xa, Xb} = −fabcXc , [Xa,∇B} = −faBC∇C − faBcXc . (3.9)

The covariant derivatives satisfy the (anti-)commutation relations

[∇A,∇B} = −TABC∇C −
1

2
R(M)AB

cdMcd −R(J)AB
klJkl

−R(D)ABD−R(S)AB
k
γS

γ
k −R(K)ABcK

c , (3.10)
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where the torsion and curvature tensors are given by

T a = dEa + Eb ∧ Ωb
a + Ea ∧B , (3.11a)

Tαi = dEαi + Eβi ∧ Ωβ
α +

1

2
Eαi ∧B − Eαj ∧ Φji − iEc ∧ Fβi(γ̃c)

αβ , (3.11b)

R(D) = dB + 2Ea ∧ Fa + 2Eαi ∧ Fiα , (3.11c)

R(M)ab = dΩab + Ωac ∧ Ωc
b − 4E[a ∧ Fb] + 2Eαj ∧ Fjβ(γab)α

β , (3.11d)

R(J)ij = dΦij − Φk(i ∧ Φj)
k − 8Eα(i ∧ Fj)α , (3.11e)

R(K)a = dFa + Fb ∧ Ωb
a − Fa ∧B − iFkα ∧ Fβk(γ̃

a)αβ , (3.11f)

R(S)iα = dFiα − Fiβ ∧ Ωα
β − 1

2
Fiα ∧B − Fjα ∧ Φj

i − iEβi ∧ Fc(γc)αβ . (3.11g)

The covariant derivatives satisfy the Bianchi identities

0 = [∇A, [∇B,∇C}}+ (graded cyclic permutations) . (3.12)

A superfield U is said to be primary if it is annihilated by the special conformal

generators, KAU = 0. From the algebra (3.3), we see that if a superfield is annihilated by

S-supersymmetry it is necessarily primary. The superfield U is said to have dimension (or

Weyl weight) ∆ if DU = ∆U .

3.3 Conformal supergravity

In the conformal superspace approach to supergravity in four [53, 54], three [55] and five

dimensions [56], the entire covariant derivative algebra may be expressed in terms of a

single primary superfield: the super-Weyl tensor for D > 3 and the super Cotton tensor

for D = 3. In six dimensions we will look for a similar solution in terms of a single primary

superfield, the super-Weyl tensor [50].

In the lower dimensional cases the appropriate constraints to describe conformal su-

pergravity were such that the covariant derivative algebra obeyed the same constraints as

the super Yang-Mills theory. Guided by the structure of 6D N = (1, 0) super Yang-Mills

theory [85–88], we constrain the covariant derivative algebra as

{∇iα,∇
j
β} = −2iεij(γa)αβ∇a , (3.13a)[

∇a,∇iα
]

= (γa)αβWβi , (3.13b)

where Wαi is some primary dimension 3/2 operator taking values in the superconformal

algebra. The Bianchi identities give the commutator

[∇a,∇b] = − i

8
(γab)α

β{∇kβ ,Wα
k } (3.14)

and the additional constraints

{∇(i
α ,Wβj)} =

1

4
δβα{∇(i

γ ,Wγj)} , {∇kγ ,W
γ
k } = 0 . (3.15)
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We constrain the form of the operator Wαi to be

Wαi = Wαβ∇iβ +
1

2
W(M)αiabMab +W(J)αijkJjk +W(D)αiD +W(K)αiBK

B , (3.16)

where Wαβ is the super-Weyl tensor [50] which is a symmetric primary superfield of di-

mension 1. One can show that the Bianchi identities (3.15) are identically satisfied for

Wαi = Wαβ∇iβ +∇iγWαβMβ
γ − 1

4
∇iγW βγMβ

α +
1

2
∇βjWαβJ ij +

1

8
∇iβWαβD

− 1

16
∇jβ∇

i
γW

αγSβj +
i

2
∇βγW γαSβi

− 1

12
(γab)β

γ∇b
(
∇iγW βα − 1

2
δαγ∇iδW βδ

)
Ka (3.17)

provided Wαβ satisfies

∇(i
α∇

j)
βW

γδ = −δ(γ
[α∇

(i
β]∇

j)
ρ W

δ)ρ , (3.18a)

∇kα∇γkW βγ − 1

4
δβα∇kγ∇δkW γδ = 8i∇αγW γβ . (3.18b)

It will be useful to introduce the dimension 3/2 superfields

Xk
γ
αβ = − i

4
∇kγWαβ − δ(α

γ X
β)k , Xαi := − i

10
∇iβWαβ , (3.19)

and the following higher dimension descendant superfields constructed from spinor deriva-

tives of Wαβ :

Yα
βij := −5

2

(
∇(i
αX

βj) − 1

4
δβα∇(i

γX
γj)
)

= −5

2
∇(i
αX

βj) , (3.20a)

Y :=
1

4
∇kγX

γ
k , (3.20b)

Yαβ
γδ := ∇k(αXβ)k

γδ − 1

6
δ

(γ
β ∇

k
ρXαk

δ)ρ − 1

6
δ(γ
α ∇kρXβk

δ)ρ . (3.20c)

Note that Xk
γ
αβ is traceless, Yα

β ij is symmetric in its SU(2) indices and traceless in its

spinor indices, and Yαβ
γδ is separately symmetric in its upper and lower spinor indices

and traceless.

One can check that only the superfields (3.20) together with (3.19) and their vector

derivatives appear upon taking successive spinor derivatives of Wαβ . Specific relations we
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will need later are given below:

∇iαXβj = −2

5
Yα

βij − 2

5
εij∇αγW γβ − 1

2
εijδβαY , (3.21a)

∇iαX
j
β
γδ =

1

2
δ(γ
α Yβ

δ)ij − 1

10
δ

(γ
β Yα

δ)ij − 1

2
εijYαβ

γδ − 1

4
εij∇αβW γδ

+
3

20
εijδ

(γ
β ∇αρW

δ)ρ − 1

4
εijδ(γ

α ∇βρW δ)ρ , (3.21b)

∇iαY = −2i∇αβXβi , (3.21c)

∇kγYαβij =
2

3
εk(i

(
− 8i∇γδXj)

α
δβ − 4i∇αδXj)

γ
δβ + 3i∇γαXβj)

+ 3iδβγ∇αδXδj) − 3i

2
δβα∇γδXδj)

)
, (3.21d)

∇iεYαβγδ = −4i∇ε(αX l
β)
γδ +

4i

3
δ

(γ
(α∇β)ρX

l
ε
δ)ρ +

8i

3
δ

(γ
(α∇|ερ|X

l
β)
δ)ρ

+ 8iδ(γ
ε ∇ρ(αX

l
β)
δ)ρ . (3.21e)

These equations guarantee that any number of spinor derivatives of Wαβ can always be

rewritten in terms of Wαβ , the superfields defined in (3.19) and (3.20), and their vector

derivatives. The descendant superfields transform under S-supersymmetry as follows:

Sαi X
j
β
γδ = −i δji δ

α
βW

γδ +
2i

5
δji δ

(γ
β W

δ)α, Sαi X
βj =

8i

5
δjiW

αβ , (3.22a)

SγkYα
βij = δ

(i
k

(
− 16Xj)

α
γβ + 2δβαX

γj) − 8δγαX
βj)
)
, (3.22b)

Sρj Yαβ
γδ = 24

(
δρ(αXβ)j

γδ − 1

3
δ

(γ
(αXβ)j

δ)ρ
)
, Sαi Y = −4Xα

i . (3.22c)

Expressing the covariant derivative algebra in terms of the descendant fields gives

{∇iα,∇
j
β} = −2iεij(γa)αβ∇a , (3.23a)[

∇a,∇iα
]

= (γa)αβ

(
W βγ∇iγ + 4iXi

δ
βγMγ

δ − i

2
XγiMγ

β − 5iXβ
j J

ij +
5i

4
XβiD

+
i

4
Yγ

βijSγj +
i

4
∇γδW δβSγi − 5i

16
Y Sβi

+
i

3
(γbc)δ

γ

(
∇bXi

γ
δβ − 3

4
δβγ∇bXδi

)
Kc

)
. (3.23b)

An explicit expression for the remaining commutator

[∇a,∇b] = −Tabγk∇
k
γ − Tabc∇c −

1

2
R(M)ab

cdMcd −R(J)ab
klJkl −R(D)abD

−R(S)ab
k
γS

γ
k −R(K)abcK

c (3.24)

follows from the Bianchi identities. For completeness, we provide the torsion and curvature
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components below:

Tab
c = −4Wab

c , (3.25a)

Tab
γ
k = (γab)β

α
(
Xαk

βγ − 3

4
δα
γXβ

k

)
, (3.25b)

R(M)ab
cd = Yab

cd − δc[aδ
d
b]Y − 4∇[aWb]

cd − 4∇fWf [b
[dδa]

c] , (3.25c)

R(J)ab
ij = Yab

ij , (3.25d)

R(D)ab = −2∇cWcab , (3.25e)

R(S)ab
i
γ = i(γab)β

α

(
3

16
∇αγXβi − 3

16
δβγ∇αδXδi − 1

6
∇αδXi

γ
βδ − 1

3
∇γδXi

α
βδ

)
, (3.25f)

R(K)abc =
1

8
(γcd[a)αβ∇b]∇dWαβ +

1

4
ηc[a∇b]Y +

1

24
(γab)α

β(γcd)γ
δ∇dYβδαγ

+
1

24
WαβYαβ

γδ(γabc)γδ −
1

8
WαβYαγ

δε(γc)βδ(γab)ε
γ

+
15i

32
XαkXβ

k (γabc)αβ +
5i

8
XαkXαk

βγ(γabc)βγ −
5i

4
XαkXβk

γδ(γc)αγ(γab)δ
β

+
i

3
Xk
α
βγXβk

αδ(γabc)γδ + iXαk
βγXβk

δε(γc)γδ(γab)ε
α

+
5

16
Wαβ(γc)βδ(γ[a)αγ∇b]W γδ − 1

32
Wαβ(γc)αγ(γabd)βδ∇dW γδ

+
3

32
Wαβ(γabc)βδ∇αγW γδ +

1

16
Wαβηc[a(γb])αγ∇βδW γδ . (3.25g)

The component structure of the supergravity multiplet described by this superspace

geometry can be identified with the standard Weyl multiplet of 6D N = (1, 0) conformal

supergravity [29]. The details of this will be presented in a future paper. Here we mainly

point out that the independent one-forms em
a, ψm

αi, bm, and Vm
ij in that approach co-

incide (up to conventions) with the θ = 0 parts of the superspace one-forms Em
a, Em

αi,

Bm and Φm
ij , respectively. Similarly, the independent covariant fields T−abc, χ

αi, and D are

given by the θ = 0 parts of Wabc = 1
8(γabc)αβW

αβ , Xαi, and Y . The other components

of the super-Weyl tensor Wαβ correspond to covariant curvatures; for example, the θ = 0

part of Yab
cd is the traceless part of R(M)ab

cd, which is the supercovariant Weyl tensor.

3.4 Introducing a compensator

An alternative formulation of conformal supergravity was given in [50], which we will refer

to as SU(2) superpace. The formulation does not gauge the entire superconformal algebra

and instead may be thought of as a gauge fixed version of the formulation introduced

in the previous sections. Instead of applying the method of degauging used in [54–56]

we will make contact with SU(2) superspace by utilizing a compensator. Here we will

develop the alternative approach advocated in lower dimensions in [72, 89], which makes

clear how SU(2) superspace may be understood as conformal supergravity coupled to some

compensator at the superspace level.

We introduce a primary superfield X of dimension 2,

DX = 2X , Sαi X = 0 . (3.26)
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The superfield can be used to furnish new spinor covariant derivatives,

D i
α = X−

1
4

(
∇iα +

(
∇iβ lnX

)
Mα

β − 2(∇jα lnX)Jj
i − 1

2
(∇iα lnX)D

)
. (3.27)

The covariant derivatives have been constructed to take a primary superfield to another

primary superfield of the same dimension. Note also that X is annihilated by D i
α, D i

αX = 0.

When acting on a primary superfield, the algebra of the covariant derivatives becomes11

{D i
α,D

j
β} = −2iεijDαβ − 4iεijW abc(γa)αβMbc − 4iεijN abc(γa)αβMbc + 6iεijCαβ

klJkl

+2iCa
ij(γabc)αβMbc − 16iNαβJ

ij , (3.28)

where

Dαβ = − i

4
{Dk

α,Dβk} − 2N bcd(γb)αβMcd − 2W bcd(γb)αβMcd + 3Cαβ
klJkl (3.29)

and we have introduced

Cαβ
ij := − i

4
X−

3
2∇(i

α∇
j)
β X , (3.30a)

Nαβ := − i

16
X

3
2∇k(α∇β)kX

−2 , (3.30b)

W αβ := X−
1
2Wαβ . (3.30c)

Here we have introduced W αβ which is a rescaling of Wαβ so that it is inert under dilata-

tions. The superfields Cαβ
ij and Nαβ are the only dimensionless primary combinations

involving two spinor derivatives acting on X. The super-Weyl transformations of [50]

correspond to a reparametrization of the compensator superfield, X → X e−2σ.

4 An action principle for the supersymmetric C3 invariant

Having developed conformal superspace in the previous section we are now in a position to

address the problem of constructing conformal supergravity invariants. This will require

an action principle capable of supporting such an invariant. In this section we expound

such an action principle and show that it may be used to construct a supersymmetric C3

invariant.

4.1 Flat superspace actions and their generalization

Before discussing curved superspace actions, it is useful to briefly review action princi-

ples with manifest N = (1, 0) Poincaré supersymmetry. The simplest is the full super-

space integral

S =

∫
d6x d8θL , (4.1)

where L is an unconstrained real superfield. Because the Grassmann coordinates θαi are

irreducible under the Lorentz and R-symmetry groups, there is no separate notion of chiral

11This agrees with the dimension 1 anticommutation relations of the covariant derivative algebra in [50].
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superspace as in four dimensions. To construct smaller superspaces involving a reduced

set of θ’s, additional structure is needed. The most well-known example is 6D N = (1, 0)

harmonic superspace [90, 91], R6|8 × S2, where additional bosonic coordinates ui± are

introduced to describe the coset space S2 = SU(2)/U(1).12 Introducing a new basis for the

Grassmann coordinates as θα± := u±i θ
αi, one may construct an invariant action

S =

∫
d6x du d4θ+ L+4 =

∫
d6x du (D−)4L+4|θ=0 , D+

αL+4 = 0 , (4.2)

where D±α := u±i D
i
α and du is the invariant measure for SU(2). A special case is when

L+4 is an O(4) multiplet C+4 with simple quartic dependence on the harmonics, C+4 ≡
u+
i u

+
j u

+
k u

+
l C

ijkl. Its component action is given by13

S =

∫
d6x du (D−)4C+4|θ=0 =

1

5

∫
d6x (D4)ijklC

ijkl|θ=0 ,

(D4)ijkl :=− 1

96
εαβγδD(i

αD
j
βD

k
γD

l)
δ , D(i

αC
jklp) = 0 . (4.3)

For the similar case of 4D N = 2 supersymmetry, the O(4) multiplet and associated action

were introduced by [94]. It is clear that any full superspace action can be rewritten in this

way using C+4 = (D+)4L. The converse is not always true within the family of local and

gauge-invariant operators. More specifically, given an O(4) multiplet C+4, there always

exists a harmonic-independent potential L such that C+4 = (D+)4L, as proved in appendix

G of [56] in the 5D N = 1 case. However, such a potential L cannot always be defined

as a local gauge-invariant operator. A simple example is when the O(4) multiplet is the

product of two O(2) multiplets.

Our task is to construct the conformal supergravity invariants, so a natural step would

be to generalize the above actions to curved superspace and to choose the appropriate La-

grangians. Both in SU(2) superspace [50] and in conformal superspace, it is straightforward

to generalize eq. (4.1) to

S =

∫
d6x d8θ E L , (4.4)

where E is the Berezinian (or superdeterminant) of the supervielbein. In order to be

invariant under the supergravity gauge transformations, L must be a conformal primary

scalar superfield of dimension two. Unfortunately, there is no suitable Lagrangian that can

be built directly from the covariant fields of the Weyl multiplet. Furthermore, there is no

obvious way to generalize (4.3) without introducing a compensator field. The reason is

C+4 should clearly have dimension four, but the analyticity condition ∇+
αC

+4 = 0 cannot

be conformally invariant, assuming C+4 is a primary, unless C+4 has dimension eight. A

natural step here would be to relax the assumption that C+4 is itself primary and instead

consider it as a descendant of some other primary superfield. One could imagine a number

12This superspace is a natural extension of the 4D N = 2 harmonic superspace [60, 92].
13One can also have an action principle with Cijkl obeying the weaker condition Di

(αD
j
β)C

klpq = 0. This

leads to the action discussed in eq. (4.72) of [93].
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of ways of doing this. In fact, we will discover an action principle in section 5 involving

such a non-primary C+4.

For the moment, however, we will follow a different approach and attempt to construct

the actions as six-forms directly rather than as superspace integrals.

4.2 Primary closed six-forms in superspace

While supersymmetric actions are frequently realized as integrals over the full superspace

or its invariant subspaces, there is an alternative construction involving the use of closed

super D-forms [95–97].14 For 6D N = (1, 0) superspace, we introduce a closed six-form J

J =
1

6!
dzM6 ∧ · · · ∧ dzM1 JM1···M6 , dJ = 0 . (4.5)

(The closure condition is trivial on the spacetime M6 since there a six-form is a top form,

but there are no top forms on the supermanifold M6|8 since dθµi commutes with itself.)

Such a closed superform leads immediately to the action principle

S =

∫
M6

i∗J =

∫
d6x e ∗J |θ=0 ,

∗J :=
1

6!
εmnpqrsJmnpqrs , (4.6)

where i :M6 →M6|8 is the inclusion map and i∗ is its pullback, the effect of which is to

project θµi = dθµi = 0. Closure of J guarantees that the action is invariant under general

coordinate transformations of superspace.15 In addition, the action must be invariant

under all gauge transformations: for conformal supergravity, this includes the standard

superconformal transformations, which form the subgroup H. This implies that J must

transform into an exact form

δHJ = dΘ(Λa) , Λ = ΛaXa . (4.7)

A special case is when the closed six-form is itself invariant, δHJ = 0. This implies

that if one instead decomposes J in the tangent frame,

J =
1

6!
EA6 ∧ · · · ∧ EA1JA1···A6 , (4.8)

the components JA1···A6 transform covariantly and obey the covariant constraints

∇[A1
JA2···A7} + 3T[A1A2

BJ|B|A3···A7} = 0 . (4.9)

In particular, their S and K transformations are given by

Sβj Ja1···an
i1
α1
· · ·i6−nα6−n = −in(γ̃[a1)βγJγja2···an]

i1
α1
· · ·i6−nα6−n , KbJA1···A6 = 0 . (4.10)

Such superforms are called primary.

It follows from eq. (4.10) that the component of a primary superform with lowest

dimension is a primary superfield, so it is natural to ask what primary constraints are

14The approach proves equivalent to the rheonomic formalism [98].
15Here we assume the general coordinate transformations are generated by a vector field ξ = ξAEA =

ξM∂M which vanishes at the boundary of M6.
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compatible with the closure conditions (4.9). This general question was addressed by Arias

et al. [93] using 6D SU(2) superspace [50], and we will arrive at similar results to theirs.

First observe that the component of the superform J with lowest dimension (which we

will refer to as the lowest component of the superform) cannot be a scalar without either

that scalar being covariantly constant (which is forbidden by the superconformal algebra

due to its non-vanishing dimension) or the superform being exact.16 This means we have

to allow for the possibility that the lowest component carries some Lorentz and SU(2)

indices. We let the lowest component of the superform be directly constructed in terms of

the primary superfield

Aα1···αn
β1···βmk1···kp = A(α1···αn)

β1···βm (k1···kp) (4.11)

with dimension ∆. In analogy to the chiral action principle in 4D, we seek a pri-

mary constraint involving one spinor derivative with totally symmetrized SU(2) indices,

∇(l
δ Aα1···αn

β1···βmk1···kp). Such constraints are natural: they appear in solving the first non-

trivial Bianchi identity (if it is not identically satisfied) since the part symmetric in SU(2)

indices cannot be countered by the term proportional to the superspace torsion. We will

suppose further that

∇(l
(α1
Aα2···αn+1)

β1···βmk1···kp) − traces = 0 , (4.12)

where we subtract out all possible traces to render the result traceless in its spinor indices.

Requiring the constraint to be primary implies

2∆ + 3n+m− 4p = 0 , (4.13)

which can only have solutions for 2p ≥ ∆. Notice that the upper Lorentz indices are not

assumed to be symmetric, which generalizes some of the corresponding results of [93]. Re-

markably, apart from the one degenerate case of the tensor multiplet, all known closed

primary superforms have underlying primary superfields satisfying a constraint of the

form (4.12) with the condition (4.13).

We now seek to find a primary closed superform to act as an action principle supporting

a supersymmetric C3 invariant. Since we will want to set the superfield to be cubic in Wαβ

and its spinor derivatives, the underlying superfield should satisfy ∆ ≥ 3 + p
2 . Considering

all the possible ways of embedding such a superfield into a (non-exact) closed six form

leads one to consider a primary dimension 9/2 superfield of the form Aα
ijk satisfying

the constraint

∇(i
(αAβ)

jkl) = 0 . (4.14)

In fact, a superfield obeying this constraint was already used to construct a closed six-form

in [93] in the context of 6D SU(2) superspace [50]; such a superfield also appeared in the

16This is unlike what happens in four dimensions, where one can construct the chiral action principle.
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context of the anomalous current multiplet [99, 100]. The resulting closed six-form is

J =
1

6!
EA6 ∧ · · · ∧ EA1JA1···A6 , (4.15a)

Jabc
i
α
j
β
k
γ = 3(γabc)(αβAγ)

ijk , (4.15b)

Jabcd
i
α
j
β = − i

6
εabcdef (γef )(α

γSβ)γ
ij − i

12
εabcdef (γefg)αβ(γ̃g)

ρηEρη
ij , (4.15c)

Jabcde
i
α =

i

2
εabcdef (γ̃f )βγ(Ωβγ,α

i + Ωαβ,γ
i) , (4.15d)

Jabcdef = −εabcdefF , (4.15e)

and all other components vanish. Here we have introduced the descendant superfields

Sαβ
ij :=

3

4
∇(αkAβ)

ijk , Eαβ
ij :=

3

4
∇[αkAβ]

ijk , (4.16a)

Ωαβ,γ
i :=

i

16
∇[αj∇β]kAγ

ijk =
i

16
∇αj∇βkAγijk , (4.16b)

F :=
1

4!
εαβγδ∇αiΩβγ,

i
δ =

i

244!
εαβγδ∇αi∇βj∇γkAδijk . (4.16c)

Reality of the action implies that Aαijk = Aα ijk, and similarly for its descendants,

Eαβij = Eαβ ij , Sαβij = Sαβ ij , Ωαβ,γ
i = Ωαβ,γ i, and F = F . These transform under

S-supersymmetry as follows:

SεmSαβ
ij = −24 δε(αAβ)

ij
m , (4.17a)

SεmEαβ
ij = −18 δε[αAβ]

ij
m , (4.17b)

Sδl Ωαβ,
k
γ = −4i δδ[αSβ]γ

i
l − 4i δδ[αEβ]γ

i
l +

2i

3
δδγEαβ

i
l , (4.17c)

Sαi F = −2 εαβγδΩβγ,δi . (4.17d)

Making use of these results one can check that the superform (4.15) is primary.

It is worth mentioning that the closed six-form (4.15) may be derived by analogy with

the construction of the closed four-form [101] which describes the chiral action in 4D N = 2

supergravity [102]. Ref. [101] considered the closed four-form ω = F ∧ F , where F is the

two-form field strength of an on-shell U(1) vector multiplet. Under certain assumptions

on the vector multiplet, it was shown that all components of ω are expressed in terms of a

single chiral N = 2 superfield W 2, with W the chiral field strength of the vector multiplet.

In the 6D N = (1, 0) case, one can consider the topological term Tr(F ∧F ∧F ), where F

is the two-form field strength of a YM multiplet, see appendix C. Rewriting the superform

in terms of Aα
ijk ∝ εαβγδ Tr

(
W β(iW γjW δk)

)
, where W αi is the field strength of the

Yang-Mills supermultiplet, and throwing away a covariantly exact piece one uncovers the

structure of the superform J .

4.3 The supersymmetric C3 invariant

In order to describe the supersymmetric C3 invariant it is now necessary to construct a

composite Aα
ijk out of the super-Weyl tensor. Since the invariant must contain a C3 term
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and since the Weyl tensor is directly constructed out of the spacetime projection of the

superfield Yαβ
γδ, the composite Aα

ijk must be at least cubic in Wαβ and its descendants.

Taking into account the constraints on Aα
ijk gives the following unique solution:

Aα
ijk = 5iεαβγδX

β(iXγjXδk) − 8iεαβγδX
β(iXj

α′
γβ′X

k)
β′
δα′ +

64i

3
εαβγδX

(i
α′
ββ′Xj

β′
γγ′X

k)
γ′
δα′

+4εαβγδYρ
β(ijXk)

η
ργW ηδ − 3εαβγδYρ

β(ijXγk)W ρδ . (4.18)

In particular, one can check that the above superfield is primary and satisfies the con-

straint (4.14).

The component reduction (although tedious) is straightforward and may be carried out

similarly as in [72]. Furthermore, one can readily verify that the action contains a C3 term

proportional to the combination (2.25). We leave the detailed analysis of the component

action to a forthcoming paper.

4.4 Other invariants

A natural question that one may ask is whether other invariants may be constructed using

the same action principle. Specifically, can we construct another primary composite Aα
ijk

that is (for example) quadratic in the super-Weyl tensor Wαβ? Unfortunately, enumerating

the possibilities it turns out that only the cubic solution (4.18) is possible. There are

however certain composite primary superfields that one can construct at dimension 3.

These are

Hαβ ij = W γ[αYγ
β]ij + 8iXγ

δ[α(iXδ
β]γj) − 5i

2
X [α(iXβ]j) , (4.19a)

Hαβ = YWαβ +
2

7
Yγδ

αβW γδ − i

2
XαkXβ

k +
8i

7
Xk
γ
δ(αXδk

β)γ + 4iXγkXγk
αβ . (4.19b)

It turns out that the first may be used to generate another action, which will be discussed in

detail in the next section. Before moving on to the discussion there, it is worth illustrating

the existence of the other action principle using the primary superform construction of

this section.

The important property of eq. (4.19a) (besides being primary) is that it satisfies the

differential constraint17

∇(i
αB

βγ jk) = −2i δ[β
α Λγ] ijk , (4.20)

with Bαβij = Hαβij for some non-primary Λαijk. One can check that it is not possible to

construct a primary composite Aα
ijk directly from Bαβij with various covariant derivatives

only. Despite this one can construct a composite Aα
ijk out of Bαβij with the use of

a compensating supermultiplet. To demonstrate this we choose a compensating tensor

multiplet Φ, which satisfies the constraint

∇(i
α∇

j)
β Φ = 0 . (4.21)

17Notice that this constraint is a special case of eq. (4.12).
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Then using the results of section 3.4 (with X = Φ), one can construct the following com-

posite

Aα
ijk = − 1

60
Φ

3
4 DαlD

(i
β D j

γB
βγkl) + 2iΦ

3
4 NαβD

(i
γ B

βγjk) − 8i

3
Φ

3
4 (D

(i
β Nγα)Bβγjk)

+
2i

3
Φ

1
4 (D (i

γ W
βγ)Bαβ

jk) + aΦ
3
4 D (i

αDβγB
βγjk) . (4.22)

The last term involves a free parameter a and generates an exact six-form, which may be

removed. The composite Aα
ijk is primary and satisfies the differential constraint (4.14).

As a result we can associate an action with any primary superfield satisfying eq. (4.20),

and we therefore have an action principle based on Bαβij .

The action principle based on Bαβij , eq. (4.22), can be used immediately to describe

certain invariants. If we take Bαβij = Hαβij , the component action will contain a C�C
term. One can also construct a unique higher-derivative F�F action for a non-abelian

gauge theory by taking

Bαβ ij = i Tr(W α(iW βj)) , (4.23)

where W αi is the field strength of the 6D N = (1, 0) Yang-Mills multiplet [85–88], see

appendix C for details. The corresponding component action will contain a term of the

form Tr(F ab�F
ab) upon integrating by parts.

It should be mentioned that in the rigid supersymmetric case the supersymmetric F�F
action was constructed in [2] within the harmonic superspace approach. Their result can

also be recast as the O(4) multiplet action (4.3) with

Cijkl ∝ Tr(X(ijXkl)) , (4.24)

whereXij denotes the flat-superspace limit of the descendant (C.8). The interesting feature

of the model proposed in [2] is that the operator Xij is not a primary superfield, but the

action (4.3) based on (4.24) is superconformal.

It is important to point out that the action principle based on Bαβij may contain

dependence on Φ. Although we do not explicitly show this here, we expect that the action

principle will be independent of the compensator. In the the next section we show that such

an action principle based on Bαβij exists without the need to introduce any compensator.

Before moving on we would like to mention one more application of the action principle

based on a composite Aα
ijk. Let V αi be a prepotential for the tensor multiplet,18

Φ = ∇αiV αi , ∇(i
αV

βj) =
1

4
δβα∇

(i
δ V

δj) , KAV αi = 0 . (4.25)

It is defined modulo gauge transformations of the form

V αi → V αi +Wαi , (4.26)

18The prepotential for the tensor multiplet was introduced by Sokatchev in the framework of his harmonic-

superspace formulation for 6D N = (1, 0) supergravity [80]. More recently this prepotential has been

described in SU(2) superspace in [50].
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where Wαi is the field strength of an abelian vector multiplet, see appendix C. Using V αi

one can construct the following primary composite

Aα
ijk = εαβγδV

β(iBγδjk) . (4.27)

It is simple to verify the differential constraint (4.14) by making use of (4.20) and (4.25).

The action corresponding to the composite (4.27) is invariant under arbitrary gauge trans-

formations (4.26) when Bαβij is further constrained as

[∇(i
α ,∇βk]Bαβj)k = −8i∇αβBαβij , (4.28)

which imposes a constraint on Bαβij to describe a closed 4-form [93]. Below we give two

examples of gauge-invariant actions.

Our first example of a gauge-invariant action corresponds to the choice (4.23). In this

case it is rather simple to see that a gauge transformation (4.26) shifts the invariant by

a topological term and the invariant contains the term Φ Tr(F abF
ab). Thus the action

describes the non-Abelian vector multiplet coupled to the dilaton Weyl multiplet. In the

flat-superspace limit, the prepotential of the tensor compensator may be chosen as V αi ∝
θαi. Then the top component (4.16c) of the closed six-form (4.15) becomes

F ∝ DαiDβj Tr(W α(iW βj)) , (4.29)

which is the Lagrangian for the 6D N = (1, 0) super Yang-Mills theory postulated in [88].

Here we derived this Lagrangian from a more general action principle.

Our second example, derives from the fact that the constraint (4.28) is satisfied for the

composite (4.19a). In the case where Bαβij = Hαβij , eq. (4.27) may be seen to describe a

supersymmetric Riemann curvature squared term [37, 39].

5 An action principle for the supersymmetric C�C invariant

Although we have shown in the previous section that one can construct a supersymmetric

C�C action with an explicit compensator field, this has an obvious disadvantage. One

would have to show that terms involving the compensator could be eliminated by inte-

grating by parts in order for it to be an invariant for minimal conformal supergravity.

Due to the complexity involved in doing this, it would be better to have a compensator-

independent approach, but as we have already discussed, it seems impossible to generate an

appropriate primary closed six-form. This suggests that we should consider non-primary

six-forms instead; however, since these are rather more difficult to deal with, it would be

helpful to know where to start looking.

Let us return to a point we raised earlier. The full superspace action (4.4) is always a

possible action principle, and it must correspond to some general six-form action involving

L and its derivatives. It turns out that its six-form cannot be primary. The reason is that

if it were, then the lowest dimensional component would be S-invariant and at least of

dimension 3. Now it is straightforward to investigate the S-transformation properties of
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all higher components of L: the only primary aside from L itself appears at the θ2 level,

Ba
ij = − i

16
(γ̃a)

αβ∇(i
α∇

j)
β L . (5.1)

(In particular, there is no primary at dimension 9/2 corresponding to Aα
ijk without in-

troducing a compensator.) We have denoted this descendant as Ba
ij as it obeys the same

constraint (4.20) as the superfield Bαβ ij ≡ (γ̃a)αβBa
ij introduced in the previous section.

Note however that it cannot be the bottom component of an invariant six-form: it would

have to be multiplied by six Eαi to balance its dimension, but the Lorentz and SU(2) indices

cannot be contracted appropriately. This means that no corresponding primary six-form

exists. Of course, it is not possible to construct an invariant scalar L from the superfields

of the Weyl multiplet, so what purpose does this observation serve? It turns out that one

can build an action principle upon a primary superfield Ba
ij obeying certain properties

consistent with (but not implying) its derivation from a scalar superfield L. In this way,

Ba
ij will lead to something analogous to the chiral action principle of four dimensions.

The argument goes as follows. Suppose we choose L to be a tensor multiplet Φ subject

to the constraint (4.21). Its superspace integral must vanish,

S =

∫
d6x d8θ E Φ = 0 (5.2)

since one can introduce the prepotential V αi for the tensor multiplet, as in eq. (4.25), and

then integrate by parts. Now the descendant Ba
ij precisely vanishes for a tensor multiplet,

so it must be that that the six-form associated with a general L can be written purely in

terms of the superfield Ba
ij and its derivatives. This is analogous to the situation in four

dimensions, where a full N ≤ 2 conformal superspace action can always be converted first to

a chiral superspace action using the chiral projection operator. The converse is not true —

there are chiral Lagrangians that do not come from any full superspace Lagrangian (at least

not without introducing compensators). Taking this analogy seriously, we conjecture that

any primary superfield Ba
ij obeying the S-invariant constraint (4.20), which is consistent

with (5.1), must lead to an invariant action.

This proves to be precisely the action principle we need to describe the supersymmetric

C�C invariant. As a consequence of (4.20), one can show that

∇(i
αΛβjkl) = δα

βCijkl , ∇(i
αC

jklp) = 0 . (5.3)

for non-primary superfields Λα ijk and Cijkl. The superfield Cijkl is a non-primary version

of theO(4) multiplet that we have already discussed in section 4.1, and its S-transformation

is exactly as needed to permit the second condition of (5.3) to hold. This suggests that

the six-form action principle should begin with a term

J =
1

6!
Ea1 ∧ · · · ∧ Ea6 εa1···a6 F + · · · , F =

1

5
(∇4)ijklC

ijkl , (5.4)

providing a covariant version of the action principle (4.3). As already mentioned, we should

not expect that the full six-form is primary. Nevertheless, starting from the top component,
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one can iteratively reconstruct the full six-form in a straightforward (albeit laborious) way.

The result turns out to include explicit S and K connections, which makes J transform

into an exact form under those respective gauge transformations.

We give the complete structure of this six-form in section 5.2. However, in order to

better explain certain features of its construction, it helps to describe the general properties

of non-primary forms, especially if one wishes to verify gauge invariance of the action.

Section 5.1 is a self-contained discussion of this topic.

5.1 Non-primary closed forms in superspace

Let us begin with the following observation. It has become apparent that superforms that

are not invariant under certain gauge symmetries nevertheless play an important role in

constructing invariant actions. These frequently involve Chern-Simons terms with bare

connections: recent examples have included the 4D and 5D linear multiplets [56, 103, 104],

3D N ≤ 6 conformal supergravity [74, 75], and non-abelian N ≤ 4 gauge theories [105].

However, such a geometric structure does not seem to be a necessary requirement. For

example, in the context of 4D N = 2 conformal superspace, bare S and K connections

were recently observed when constructing actions involving projective [106] and harmonic

superfields [107]. These were associated with closed four-forms J that transformed into

exact forms under S and K transformations. In this subsection, we will establish some

general properties of such non-primary closed forms in six dimensions.

Let J be a closed super p-form. We assume it is invariant under Lorentz, Weyl,

and SU(2) transformations, but that it transforms under KA = (Sαi ,K
a) transformations

into an exact form. It is possible to expand J in terms of the vielbein EA and the K-

connection FA,

J =
1

p!
EA1 ∧ · · · ∧ EAp JAp···A1 +

1

(p− 1)!
FA1 ∧ EA2 ∧ · · · ∧ EApJAp···A2

A1

+ · · ·+ 1

p!
FA1 ∧ · · · ∧ FAp J

Ap···A1 , (5.5)

so that the coefficient functions JAp···An+1
An···A1 are covariant superfields. Let us derive

the conditions on these superfields so that dJ = 0.

Because J is assumed to be invariant under Lorentz, Weyl, and SU(2) transformations,

it is equivalent to analyze DJ = 0 where

D := d− 1

2
ΩabMab −BD− ΦijJij (5.6)

is covariant with respect to those symmetries. Using the definitions (3.11) of the torsion

tensor TA and K-curvature R(K)A, one verifies that

DEA =
1

2
EB ∧ ECTCBA + EB ∧ FCf

C
B
A , (5.7a)

DFA =
1

2
EB ∧ ECR(K)CBA + EB ∧ FCf

C
BA +

1

2
FB ∧ FCf

CB
A , (5.7b)
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where the constants f are the relevant structure constants appearing in the algebra

[KA,∇B] = −fABC∇C − fABCKC + other generators ,

[KA,KB] = −fABCKC . (5.8)

From the definition of ∇A one also has

DJAp···An+1
An···A1 = EB∇BJAp···An+1

An···A1 + FBK
BJAp···An+1

An···A1 . (5.9)

Now it is straightforward to analyze the conditions for closure on J . These will be

somewhat involved, so it is helpful to give a shorthand approach that will allow us to

compactly consider all equations at once. We can introduce a generalized frame one-form

EA = (EA,FA) and rewrite (5.5) as19

J =
1

p!
EA1 ∧ · · · ∧ EAp JAp···A1 , (5.10)

with the superfields JAp···A1 encapsulating those appearing in (5.5) in the obvious way.

This expansion formally treats the one-forms EA and FA on the same footing. Imposing

this democracy in the relations (5.7) and (5.9) leads respectively to

DEA =
1

2
EB ∧ ECTCBA , DJAp···A1 = EB∇BJAp···A1 , (5.11)

where we have introduced ∇A := (∇A,KA) and a tensor TCBA defined as

TABC = TAB
C , TABC = fA

BC , T ABC = 0 ,

TABC = R(K)ABC , TABC = fA
B
C , T ABC = fABC . (5.12)

Now it is immediately apparent that the condition for closure on J becomes

∇[Ap+1
JAp···A1} +

p

2
T[Ap+1Ap

BJ|B|Ap−1···A1} = 0 . (5.13)

The above structure suggests the interpretation that we are enlarging the superspace

and introducing new coordinates associated with KA so that EA becomes the new vielbein.

From our perspective, this analogy is purely a formal one — we are not introducing any

new coordinates. However, because the structure of the transformations is consistent with

such a possibility,20 many useful properties follow. For example, the tensor T can be

interpreted as the generalized torsion tensor of ∇A, that is

[∇A,∇B] = −TABC∇C + other generators . (5.14)

19The notion of a generalized frame appeared naturally in the context of multiplets with central charge

coupled to N = 2 supergravity. There it facilitates the description of vector-tensor multiplets [108, 109]

and the construction of the linear multiplet action [103].
20In more formal language, we could choose to work on the total (super)space of the fiber bundle associated

with K-transformations.
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Similarly, the δK transformations of the connections EA = (EA,FA) and the covariant

components JAp···A1 precisely satisfy a covariant form of Cartan’s formula,

δK(Λ) = DıΛ + ıΛD , (5.15)

where ıΛ is an antiderivation defined to act as

ıΛFA = ΛA , ıΛE
A = ıΛ(∇An · · · ∇Ap+1JAp···A1) = 0 . (5.16)

From these results, it is immediate to see that for a closed p-form (5.5)

δK(Λ)J = DıΛJ = dıΛJ (5.17)

which establishes that J transforms as an exact form.

It is obvious that the class of primary superforms, discussed in section 4.2, is simply one

for which no FA appears within the decomposition (5.5). Then the closure condition (5.13)

amounts to two conditions:

∇[Ap+1
JAp···A1} +

p

2
T[Ap+1Ap

BJ|B|Ap−1···A1} = 0 , (5.18a)

KCJAp···A1 + p fC [Ap
B J|B|Ap−1···A1} = 0 . (5.18b)

The first is the usual covariant closure condition, and the second is the condition for S

and K-invariance (compare to eq. (4.10)). This illustrates how the single condition (5.13)

concisely encodes both the conditions for closure and for gauge invariance modulo an exact

piece.

5.2 A non-primary six-form action principle

Now we turn to our specific goal of finding a non-primary six-form that begins with the

term (5.4). Taking into account the closure conditions, one can deduce the structure of the

remaining terms. We use the definitions

Λαijk :=
i

3
∇β(iBβαjk) , Λαb

i :=
2i

3
∇αjBbij , (5.19a)

Cijkl :=
1

4
∇(i
αΛαjkl) , Cα

βij :=
3

4
∇αkΛβijk , Cab :=

1

8
(γ̃a)

αβ∇αkΛβbk , (5.19b)

ρα
ijk := −4i

5
∇αlCijkl , ραβ

γi := −2i

3
∇[αjCβ]

γij , (5.19c)

Ea
ij :=

3

16
(γ̃a)

αβ∇αkρβijk , (5.19d)

Ωαi :=
i

18
∇βjEβαij , F :=

1

8
∇αjΩαj =

1

5
(∇4)ijklC

ijkl , (5.19e)

with factors of i chosen so that all fields obey Ψij··· = Ψij··· where Ψ carries any number

of spinor indices. In terms of these components, the action six-form may concisely be

factorized as

J = J0 + Fiα ∧ JSαi + Fa ∧ JKa , (5.20)
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where the six-form J0 and the five-forms JS
α
i and JK

a involve only the supervielbein one-

forms EA. The non-vanishing tangent-space components of J0 are

J0 abc
i
α
j
β
k
γ = −3(γabc)(αβργ)

ijk ,

J0 abcd
i
α
j
β = −8i

3
(γ[abc)αβEd]

ij ,

J0 a1a2a3a4a5
i
α = −εa1a2a3a4a5c (γc)αβ

(
iΩβi − 8iBa

ij∇bXγ
j (γab)γ

β

+
32i

3
Ba

ij (γab)γ
δ∇bXδj

γβ − 3i Λγijk Yγ
β
jk

)
,

J0 a1a2a3a4a5a6 = −εa1a2a3a4a5a6
(
F + 4i Λαb

k(γbc)β
α∇cXβ

k −
16i

3
Λαb

k(γbc)β
γ∇cXγk

βα

+ 2Bb ij(γ
bc)α

β∇cYβαij −
4

3
Cβ

α
ijYα

βij

)
. (5.21)

Note that there are some similarities between components of J0 and those of the Aα
ijk

six-form (4.15). In particular, the lowest dimensional component ρα
ijk of J0 obeys the

same differential constraint (4.14) as Aα
ijk; the difference is that ρα

ijk is not primary

but transforms into Cijkl under S-supersymmetry. The non-vanishing components of the

five-forms JS
α
i and JK

a are simpler in structure and given by

JSabc
j
β
k
γ
α
i = 24i (γabc)βγΛα jki , (5.22a)

JSabcd
j
β
α
i =

8

3
εabcdef (γef )β

γ Cγ
αj
i , (5.22b)

JSabcde
α
i = εabcdef (γ̃f )βγρβγ

α
i , (5.22c)

and

JKbcd
i
α
j
β
a = −64i(γbcd)αβ B

a ij , (5.23a)

JKbcde
i
α
a = 8i εbcdefg (γfg)α

β Λβ
a i , (5.23b)

JKbcdef
a = εbcdefg(γ̃

g)γδCγδ
αβ (γa)αβ . (5.23c)

They are essentially determined by the requirement that the full six-form J should trans-

form as

δSJ = −d(ΛS
i
αJS

α
i ) , δKJ = −d(ΛKaJK

a) , (5.24)

under S and K transformations, consistent with (5.17). Note that since J is not primary,

we may freely add any exact form we choose to it. In particular, some of the terms in

JS and JK can be removed by choosing such a form appropriately; however, since it does

not seem possible to eliminate either JS or JK completely, we have not tried to simplify J

any further.

Using this non-primary six-form, we can immediately construct the invariants corre-

sponding respectively to the supersymmetric C�C invariant and the supersymmetric F�F
actions. The first, as already mentioned, involves choosing Bαβ ij = Hαβ ij in (4.19a). The
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leading components of the action can be deduced by observing that the non-primary de-

scendant O(4) superfield is simply

Cijkl = −1

2
Yα

β(ijYβ
αkl) (5.25)

from which the leading contributions to F = 1
5(∇4)ijklC

ijkl may be determined. The term

associated with the Weyl tensor is straightforward to derive:

F =
2

9
(∇dYabcd)2 + · · · = 2

9
(∇dR(M)abcd)

2 + · · · . (5.26)

Note that even this leading term is not K-invariant, as one must include the explicit K-

connection terms in the six-form. Removing a total derivative and higher order terms in

the Weyl tensor leads to

F = − 1

12
R(M)abcd�R(M)abcd + · · · . (5.27)

The second case, the supersymmetric F�F action, involves the composite (4.23). Here

one finds the non-primary O(4) descendant superfield is Cijkl = Tr(X(ijXkl)). As we

have already noted, this is precisely the harmonic superspace Lagrangian used in [2] to

construct this invariant in flat space. At leading order, one finds the top component of the

multiplet is

F = 2 Tr(∇bF ba∇cF ca) + · · · = −Tr(F ab�F
ab) + · · · , (5.28)

where we have discarded a total derivative and higher order terms.

The details of the component action corresponding to the supersymmetric C�C and

F�F invariants will appear in a forthcoming paper.

6 Discussion

In this paper we have constructed two invariants for minimal conformal supergravity in

six dimensions. These include the supersymmetric C3 invariant described by the compos-

ite (4.18) together with the action principle (4.15), as well as the supersymmeric C�C
invariant described by the composite (4.19a) together with the action principle (5.20). The

number of invariants constructed is consistent with the expectation that there should only

be two in the case of N = (1, 0) local supersymmetry, see e.g. [110]. However, it would

be good to confirm that there does not remain another invariant. A rather simple way to

answer this question is to consider possible supercurrents of the Weyl multiplet.

In supersymmetric field theory, the supercurrent is a supermultiplet containing the

energy-momentum tensor and the supersymmetry current(s), along with some additional

components such as the R-symmetry current. In the case of 6D N = (1, 0) superconformal

field theory, the supercurrent was described in [88] in Minkowski superspace. Its gener-

alization to the curved case is described by a scalar primary superfield J of dimension 4

satisfying the differential constraint21

∇(i
[α∇

j
β∇

k)
γ]J = 0 . (6.1)

21This is the only possible curved extension of the flat case description in [88] provided J is primary.
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When the superconformal theory is coupled to conformal supergravity, the lowest com-

ponent of J matches the variational derivative of the action with respect to the highest

dimension independent field of the Weyl multiplet, which is the scalar auxiliary field D as

mentioned in section 3.3.

We may now ask the following question: how many possible supercurrents can be built

purely from the super-Weyl tensor and its covariant derivatives? The most general possible

ansatz is

J = c1∇a∇aY + c2Y
2 + i c3X

αi∇αβXβ
i + i c4X

i
α
βγ∇γδXβi

αδ + c5 Yα
βijYβ

α
ij

+c6 Yαβ
γδYγδ

αβ + c7W
αγ∇αβ∇γδW δβ + c8∇βαWαγ∇γδW δβ

+c9εα1···α4εβ1···β4W
α1β1 · · ·Wα4β4 , (6.2)

where cn, n = 1, · · · 9, are real coefficients. Requiring that J be primary and satisfy the

constraint (6.1) yields a two-parameter family of possibilities,

c3 = −8

3
c2 − 5c1 , c4 = −32

15
c2 − 16c1 , c5 =

2

15
c2 +

6

5
c1 ,

c6 =
2

45
c2 +

1

3
c1 , c7 = − 2

15
c2 −

1

5
c1 , c8 =

1

2
c7 = − 1

15
c2 −

1

10
c1 ,

c9 = 0 , (6.3)

given here in terms of the coefficients c1 and c2. The family with c1 = 0 corresponds to a

supercurrent built from the cubic Weyl invariant, whereas a combination with nonzero c1

must correspond to the quadratic Weyl invariant. There are no other possibilities, so the

two invariants we have constructed are the only ones.

In section 2.4 we discussed the Euler invariant, eq. (2.29). Here we briefly comment on

its extension to the supersymmetric case. It can naturally be introduced by first using the

special conformal (and S-supersymmetry) transformations to gauge away the dilatation

connection entirely, BA = 0. It is now natural to perform the degauging procedure as

in [53–56], and extract the special conformal connection FA by introducing the degauged

covariant derivatives DA := ∇A + FABK
B, with SO(5, 1)× SU(2) being the corresponding

structure group. They satisfy (anti-)commutation relations of the form22

[DA,DB} = −TABCDC −
1

2
RABcdMcd −RABklJkl , (6.4)

where TABC is the torsion, and RABcd andRABkl are the Lorentz and SU(2) curvatures, re-

spectively. A detailed analysis of the torsion and curvature tensors will be given elsewhere.

The Euler invariant is defined to be the closed six-form

E6 =
1

8
Rab ∧Rcd ∧Refεabcdef , dE6 = 0 , (6.5)

where Rcd = 1
2E

B ∧ EARABcd.
22The reader should be made aware that our notation for the curvature tensor coincides with the bosonic

case, but they are not to be confused.
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It may be seen that E6 contains the same C3 combination (2.25) (modulo an overall

coefficient) which originates in the closed six-form JC3 describing the supersymmetric C3

invariant, eq. (4.15). As a result, the closed six-form

E6 + 12JC3 , (6.6)

does not contain any term involving only the Weyl tensor. All bosonic structures in the

above invariant involve the Ricci tensor. However, it is not actually an independent invari-

ant since we have only added a total derivative.

It was shown in section 2 that there exists a primary construction in terms of the

logarithm of a compensator. Upon degauging the compensator it contains a linear combi-

nation of the conformal invariants. Although outside of the scope of this work it would be

interesting to construct its supersymmetric extension.

A detailed analysis of the component structure of the supergravity multiplet, as well

as of the invariants for 6D N = (1, 0) conformal supergravity constructed, will be given in

a forthcoming publication [111].
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A Notation and conventions

We follow similar 6D notations and conventions as [50], with a few minor modifications.

All relevant details are summarized here.

The Lorentzian metric is ηab = diag(−1, 1, 1, 1, 1, 1), the Levi-Civita tensor εabcdef
obeys ε012345 = −ε012345 = 1, and the Levi-Civita tensor with world indices is given by

εmnpqrs := εabcdefea
meb

nec
ped

qee
ref

s.
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We exclusively use four component spinors in the body of the paper, but it is useful to

link these to eight component spinor conventions. Our 8× 8 Dirac matrices Γa and charge

conjugation matrix C obey

{Γa,Γb} = −2ηab1 , (Γa)† = −Γa , CΓaC
−1= −ΓTa ,

C†C = 1 , C = CT = C∗ . (A.1)

In particular, ΓaC
−1 is antisymmetric. The chirality matrix Γ∗ is defined by

Γ[aΓbΓcΓdΓeΓf ] = εabcdefΓ∗ . (A.2)

As a consequence of the above conditions, one can show that

Γa = B(Γa)∗B−1 , B = Γ∗Γ0C
−1 . (A.3)

The charge conjugate Ψc of a Dirac spinor is conventionally defined by

Ψ̄ ≡ Ψ†Γ0 =: (Ψc)TC =⇒ Ψc = −Γ0C
−1Ψ∗ = −Γ∗BΨ∗ . (A.4)

Because B∗B = −1, charge conjugation is an involution only for objects with an even

number of spinor indices, so it is not possible to have Majorana spinors in six dimensions.

One can instead have a symplectic Majorana condition when the spinors possess an SU(2)

index. Conventionally this is denoted

(Ψi)
c = Ψi =⇒ Ψi = −Γ0C

−1(Ψi)
∗ = −Γ∗B(Ψi)

∗ (A.5)

for a spinor of either chirality. We raise and lower SU(2) indices i = 1, 2 using the conven-

tions

Ψi = εijΨj , Ψi = εijΨ
j , ε12 = ε21 = 1 . (A.6)

We employ a Weyl basis for the gamma matrices so that an eight-component Dirac

spinor Ψ decomposes into a four-component left-handed Weyl spinor ψα and a four-

component right-handed spinor χα so that

Ψ =

(
ψα

χα

)
, Γ∗ =

(
δαβ 0

0 −δαβ

)
, α = 1, · · · , 4 . (A.7)

The spinors ψα and χα are valued in the two inequivalent fundamental representations of

su∗(4) ∼= so(5, 1). We further take

Γa =

(
0 (γ̃a)αβ

(γa)αβ 0

)
, C =

(
0 δα

β

δαβ 0

)
. (A.8)

The Pauli-type 4× 4 matrices (γa)αβ and (γ̃a)αβ are antisymmetric and related by

(γ̃a)αβ =
1

2
εαβγδ(γa)γδ , (γa)∗ = γ̃a , (A.9)
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where εαβγδ is the canonical antisymmetric symbol of su∗(4). They obey

(γa)αβ(γ̃b)βγ + (γb)αβ(γ̃a)βγ = −2ηabδγα , (A.10a)

(γ̃a)αβ(γb)βγ + (γ̃b)αβ(γa)βγ = −2ηabδαγ , (A.10b)

and as a consequence of (A.3),

(γa)αβ = Bα
γ̇Bβ

δ̇
(
(γa)γδ

)∗
, (γ̃a)αβ = Bα

γ̇B
β
δ̇

(
(γ̃a)γδ

)∗
, B =

(
Bα

β̇ 0

0 Bα
β̇

)
. (A.11)

A dotted index denotes the complex conjugate representation in su∗(4). It is natural to

use the B matrix to define bar conjugation on a four component spinor via

ψ̄α = Bα
β̇(ψβ)∗ , χ̄α = Bα

β̇(χβ)∗ , (A.12)

with the obvious extension to any object with multiple spinor indices. For example,

(γa)αβ = (γa)αβ using (A.11) and similarly for γ̃a. Note that ψα = −ψα and similarly

for any object with an odd number of spinor indices as a consequence of B∗B = −1.

A symplectic Majorana spinor Ψi, decomposed as in (A.7) and obeying (A.5), has Weyl

components that obey

ψαi = ψαi , χαi = χiα . (A.13)

The Grassmann coordinates θαi and the parameters ηiα of S-supersymmetry are both sym-

plectic Majorana-Weyl using this definition.

We define the antisymmetric products of two or three Pauli-type matrices as

γab := γ[aγ̃b] :=
1

2
(γaγ̃b − γbγ̃a) , γ̃ab := γ̃[aγb] = −(γab)

T , (A.14a)

γabc := γ[aγ̃bγc] , γ̃abc := γ̃[aγbγ̃c] . (A.14b)

Note that γab and γ̃ab are traceless, whereas γabc and γ̃abc are symmetric. Further antisym-

metric products obey

γabc = − 1

3!
εabcdefγ

def , γ̃abc =
1

3!
εabcdef γ̃

def , (A.15a)

γabcd =
1

2
εabcdefγ

ef , γ̃abcd = −1

2
εabcdef γ̃

ef , (A.15b)

γabcde = εabcdefγ
f , γ̃abcde = −εabcdef γ̃f , (A.15c)

γabcdef = −εabcdef , γ̃abcdef = εabcdef . (A.15d)

Making use of the completeness relations

(γa)αβ(γ̃a)
γδ = 4 δ[α

γδβ]
δ , (A.16a)

(γab)α
β(γab)γ

δ = −8 δα
δδγ

β + 2 δα
βδγ

δ , (A.16b)

(γabc)αβ(γ̃abc)
γδ = 48 δ(α

γδβ)
δ , (A.16c)

(γabc)αβ(γ̃abc)γδ = (γabc)αβ(γ̃abc)
γδ = 0 , (A.16d)
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it is straightforward to establish natural isomorphisms between tensors of so(5, 1) and

matrix representations of su∗(4). Vectors V a and antisymmetric matrices Vαβ = −Vβα are

related by

Vαβ := (γa)αβVa ⇐⇒ Va =
1

4
(γ̃a)

αβVαβ . (A.17)

Antisymmetric rank-two tensors Fab are related to traceless matrices Fα
β via

Fα
β := −1

4
(γab)α

βFab , Fα
α = 0 ⇐⇒ Fab =

1

2
(γab)β

αFα
β = −Fba . (A.18)

Self-dual and anti-self-dual rank-three antisymmetric tensors T
(±)
abc ,

1

3!
εabcdefT

(±)
def = ±T (±)abc , (A.19)

are related to symmetric matrices Tαβ and Tαβ via

Tαβ :=
1

3!
(γabc)αβTabc = Tβα ⇐⇒ T

(+)
abc =

1

8
(γ̃abc)

αβTαβ , (A.20a)

Tαβ :=
1

3!
(γ̃abc)αβTabc = T βα ⇐⇒ T

(−)
abc =

1

8
(γabc)αβT

αβ . (A.20b)

Further irreducible representations of the Lorentz group take particularly simple forms

when written with spinor indices. For example, a gamma-traceless left-handed spinor two-

form Ψab
γ is related to a symmetric traceless Ψα

βγ ,

Ψα
βγ :=− 1

4
(γab)α

βΨab
γ = Ψα

γβ , Ψα
αγ = 0 ⇐⇒

Ψab
γ =

1

2
(γab)β

αΨα
βγ , (γb)δγΨab

γ = 0 , (A.21)

and a rank-four tensor Cabcd with the symmetries of the Weyl tensor is related to a sym-

metric traceless Cαγ
βδ via

Cαγ
βδ :=

1

16
(γab)α

β(γcd)γ
δ Cabcd = C(αγ)

(βδ) , Cαγ
βγ = 0 ⇐⇒

Cabcd =
1

4
(γab)β

α(γcd)δ
γ Cαγ

βδ = C[cd][ab] , C[abc]d = 0 . (A.22)

B The conformal Killing supervector fields of R6|8

Simple Minkowski superspace in six dimensions, R6|8, is parametrized by coordinates zA =

(xa, θαi ). The flat covariant derivatives DA = (∂a, D
i
α)

∂a :=
∂

∂xa
, Di

α :=
∂

∂θαi
− i(γa)αβθ

βi∂a , (B.1)

satisfy the algebra:

{Di
α, D

j
β} = −2iεij(γa)αβ∂a , [∂a, D

j
β ] = 0 , [∂a, ∂b] = 0 . (B.2)
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The conformal Killing supervector fields

ξ = ξ̄ = ξa∂a + ξαi D
i
α (B.3)

may be defined to satisfy

[ξ,Di
α] = −(Di

αξ
β
j )Dj

β , (B.4)

which implies the fundamental equation

Di
αξa = −2i(γa)αβξ

βi . (B.5)

From eq. (B.5) one finds

εij(γb)αβ∂bξa = (γa)αγD
j
βξ
γi + (γa)βγD

i
αξ

γj , (B.6)

which gives us the equation for a conformal Killing vector field,

∂(aξb) =
1

6
ηab∂

cξc , (B.7)

as well as the following useful identities:

D(i
α ξ

βj) =
1

4
δβαD

(i
γ ξ

γj) , (B.8a)

Dk
γξ
γ
k =

2

3
∂aξa , (B.8b)

Dk
αξ

β
k −

1

4
δβαD

k
γξ
γ
k = −1

2
(γab)α

β∂aξb . (B.8c)

The conformal Killing supervector field acts on the spinor covariant derivatives

as follows

[ξ,Di
α] = −ωαβDi

β + ΛijDαj −
1

2
σDi

α , (B.9)

where the parameters ωα
β , σ and Λij are given by the following expressions:

ωα
β := −1

4
(γab)α

β∂aξb , (B.10a)

σ :=
1

4
Dk
γξ
γ
k = −1

6
∂aξa , (B.10b)

Λij :=
1

4
D(i
γ ξ

γj) . (B.10c)

Using eq. (B.7) one finds that the parameters (B.10) satisfy

∂aωbc = −2ηa[b∂c]σ , (B.11a)

∂a∂bξc = ηab∂cσ − 2ηc(a∂b)σ , (B.11b)

while using eq. (B.5) one finds

Dk
γωα

β = 2δβγD
k
ασ −

1

2
δβαD

k
γσ , (B.12a)

Di
αΛjk = −4εi(jDk)

α σ , (B.12b)
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where σ obeys

Di
αD

j
βσ = −iεij∂αβσ , ∂aD

j
βσ = 0 . (B.13)

Finally, one can verify that the following holds

∂aξ
γ
k =

i

2
(γ̃a)

βγDβkσ . (B.14)

The above results tell us that we can parametrize superconformal Killing vectors as

ξ ≡ ξ(λ(P )a, λ(Q)αi , λ(M)ab, λ(J)ij , λ(D), λ(K)a, λ(S)iα) , (B.15)

where we have defined the parameters

λ(P )a := ξa|x=θ=0 , λ(Q)αi = ξαi |x=θ=0 , (B.16a)

λ(M)ab := ωab|x=θ=0 , λ(D) :=σ|x=θ=0 , λ(J)ij = Λij |x=θ=0 , (B.16b)

λ(K)a :=
1

2
∂aσ|x=θ=0 , λ(S)iα := ηiα|x=θ=0 , (B.16c)

and we have introduced

ηiα :=
1

2
Di
ασ . (B.17)

The commutator of two superconformal Killing vectors,

ξ = ξ(λ(P )a, λ(Q)αi , λ(M)ab, λ(J)ij , λ(D), λ(K)a, λ(S)iα) (B.18)

and

ξ̃ = ξ(λ̃(P )a, λ̃(Q)αi , λ̃(M)ab, λ̃(J)ij , λ̃(D), λ̃(K)a, λ̃(S)iα) , (B.19)

is another superconformal Killing vector given by

[ξ, ξ̃] = (ξa∂aξ̃
b − ξ̃a∂aξb + ξαi D

i
αξ̃

b − ξ̃αi Di
αξ

b + 2iξαk ξ̃
βk(γb)αβ)∂b

+ (ξa∂aξ̃
β
j − ξ̃

a∂aξ
β
j + ξαi D

i
αξ̃

β
j − ξ̃

α
i D

i
αξ

β
j )Dj

β

=
(
ξaω̃a

b + ξbσ̃ − ξ̃aωab − ξ̃bσ − 2iξαk ξ̃
βk(γb)αβ

)
∂b

+
(
− iξa(γ̃a)

βγ η̃γj +
1

2
ξβj σ̃ − ξ

α
j ω̃α

β + ξβi Λ̃ij

+ iξ̃a(γ̃a)
βγηγj −

1

2
ξ̃βj σ + ξ̃αj ωα

β − ξ̃βi Λij

)
Dj
β

≡ ξ(λ̂(P )a, λ̂(Q)αi , λ̂(M)ab, λ̂(J)ij , λ̂(D), λ̂(K)a, λ̂(S)iα) , (B.20)
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where

λ̂a(P ) := λ(P )bλ̃(M)b
a+λ(P )aλ̃(D)−2iλ(Q)αk λ̃(Q)βk(γa)αβ

− λ̃(P )bλ(M)b
a−λ̃(P )aλ(D) , (B.21a)

λ̂αi (Q) := −i(γ̃a)
αβλ(P )aλ̃(S)βi−λ(Q)βi λ̃(M)β

α+
1

2
λ(Q)αi λ̃(D)+λ(Q)αj λ̃(J)j i

+ i(γ̃a)
αβλ̃(P )aλ(S)βi+λ̃(Q)βi λ(M)β

α− 1

2
λ̃(Q)αi λ(D)−λ̃(Q)αj λ(J)j i , (B.21b)

λ̂(M)ab := 2λ(M)[a
cλ̃(M)b]c−4λ(P )[âλ̃(K)b̂]+4λ̃(P )[âλ(K)b̂]

+ 2(γab)α
βλ(Q)αk λ̃(S)kβ−2(γab)α

βλ̃(Q)αkλ(S)kβ , (B.21c)

λ̂(J)ij := 2λ(J)k
(iλ̃(J)j)k−8λ(Q)γ(iλ̃(S)j)γ +8λ̃(Q)γ(iλ(S)j)γ , (B.21d)

λ̂(D) := 2λ(P )aλ̃(K)a−2λ̃(P )aλ(K)a+2λ(S)iαλ̃(Q)αi −2λ̃(S)iαλ(Q)αi , (B.21e)

λ̂(K)a := λ(M)abλ̃(K)b+λ(D)λ̃(K)a+2i(γ̃a)
αβλ̃(S)kαλ(S)βk

− λ̃(M)abλ(K)b̂−λ̃(D)λ(K)a , (B.21f)

λ̂(S)iα := i(γa)αβλ(K)aλ̃(Q)βi+λ(S)iβλ̃(M)α
β− 1

2
λ(S)iαλ̃(D)−λ(S)jαλ̃(J)ij

− i(γa)αβλ̃(K)aλ(Q)βi−λ̃(S)iβλ(M)α
β+

1

2
λ̃(S)iαλ(D)+λ̃(S)jαλ(J)ij . (B.21g)

Representing the superconformal Killing vectors as

ξ = λ(P )aPa + λ(Q)αi Q
i
α +

1

2
λ(M)abMab + λ(J)ijJij + λ(D)D

+ λ(K)aKa + λ(S)iαS
α
i (B.22)

and comparing eq. (B.21) to the commutator

[ξ, ξ̃] = −λ̃bλa[Xa, Xb} (B.23)

gives the superconformal algebra.

C The Yang-Mills multiplet in conformal superspace

To describe a non-abelian vector multiplet, the covariant derivative ∇ = EA∇A has to be

replaced with a gauge covariant one,

∇ = EA∇A , ∇A := ∇A − iV A . (C.1)

Here the gauge connection one-form V = EAV A takes its values in the Lie algebra of

the (unitary) Yang-Mills gauge group, GYM, with its (Hermitian) generators commuting

with all the generators of the superconformal algebra. The algebra of the gauge covariant

derivatives is

[∇A,∇B} = −TABC∇C −
1

2
R(M)AB

cdMcd −R(J)AB
klJkl −R(D)ABD

−R(S)AB
γ
kS

k
γ −R(K)AB

cKc − iFAB , (C.2)
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where the torsion and curvatures are those of conformal superspace but with FAB corre-

sponding to the gauge covariant field strength two-form F = 1
2E

B ∧ EAFAB. The field

strength FAB satisfies the Bianchi identity

∇F = 0 ⇐⇒ ∇[AFBC} + T[AB
DF |D|C} = 0 . (C.3)

The Yang-Mills gauge transformation acts on the gauge covariant derivatives ∇A and a

matter superfield U (transforming in some representation of the gauge group) as

∇A → eiτ∇Ae−iτ , U → U ′ = eiτU , τ † = τ , (C.4)

where the Hermitian gauge parameter τ (z) takes its values in the Lie algebra of GYM. This

implies that the gauge one-form and the field strength transform as follows:

V → eiτ V e−iτ + i eiτ d e−iτ , F → eiτF e−iτ . (C.5)

Some components of the field strength have to be constrained in order to describe an

irreducible multiplet. The constraints are (see e.g. [88])

F i
α
j
β = 0 , F a

j
β = (γa)αβW

βi , (C.6a)

where W αi is a conformal primary of dimension 3/2, SγkW
αi = 0 and DW αi = 3

2W
αi. The

Bianchi identity (C.3) together with the constraints (C.6a) fix the remaining component

of the field strength to be

F ab = − i

8
(γab)β

α∇k
αW

β
k (C.6b)

and constrain W αi to obey the differential constraints

∇k
γW

γ
k = 0 , ∇(i

αW
βj) =

1

4
δβα∇(i

γW
γj) . (C.7)

It is helpful to introduce the following descendant superfield:

Xij :=
i

4
∇(i
γW

γj) . (C.8)

The superfield W αi and Xij , together with

F α
β = − i

4

(
∇k
αW

β
k −

1

4
δβα∇k

γW
γ
k

)
= − i

4
∇k
αW

β
k , (C.9)

satisfy the following useful identities:

∇i
αW

βj = −iδβαX
ij − 2iεijF α

β , (C.10a)

∇i
αF β

γ = −∇αβW
γi − δγα∇βδW

δi +
1

2
δγβ∇αδW

δi , (C.10b)

∇i
αX

jk = 2εi(j∇αβW
βk) . (C.10c)

The S-supersymmetry generator acts on these descendants as

SγkF α
β = −4iδγαW

β
k + iδβαW

γ
k , SγkX

ij = −4iδ
(i
kW

γj) . (C.11)
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