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Abstract

The double field theory monopole solution by Berman and Rudolph is shown to reproduce

non-geometric backgrounds with non-vanishing Q- and R-flux upon an appropriate choice

of physical and dual coordinates. The obtained backgrounds depend non-trivially on dual

coordinates and have only trivial monodromies. Upon smearing the solutions along the

dual coordinates one reproduces the known 52
2 solution for the Q-brane and co-dimension 1

solution for the R-brane. The T-duality invariant magnetic charge is explicitly calculated

for all these backgrounds and is found to be equal to the magnetic charge of (unsmeared)

NS5-brane.
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1 Introduction

Double Field Theory (DFT) has been developed in a number of papers [1, 2, 3, 4] (for

reviews see [5, 6, 7]) as a T-duality covariant reformulation of Type II supergravity. It

is a general relativity-like theory with the local diffeomorphism symmetries generated by

the T-duality group O(d, d) rather than GL(d). To realise this symmetry one doubles the

dimension of the space on which the theory lives by adding new coordinates corresponding

to the winding modes of strings:

xµ → XM = (xµ, x̃µ) (µ = 1, . . . , d). (1.1)

Consistency of the algebra of local transformations, given by generalised Lie derivatives

[8, 9], requires a special constraint called (strong) section condition

(∂M A(X))ηMN(∂N B(X)) = 0 for any fields A(X), B(X) (1.2)

in terms of the O(d, d) invariant metric ηMN ≡ ( 0 1
1 0 ). The constraint effectively reduces

the number of coordinates leaving only those understood as the physical ones. One possi-

ble solution of the section condition is to drop all dependence on the ‘winding’ coordinates
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x̃µ and the theory then reproduces conventional supergravity. As a consequence of the

T-duality covariance of the theory and the section condition itself, one is allowed to choose

the physical subspace of the doubled space in multiple ways, that corresponds to choosing

a different T-duality frame.

From the point of view of DFT the space-time metric and Kalb–Ramond field are

components of the so-called generalised metric HMN , that is an element of the coset

space

HMN ∈
O(d, d)

O(d)×O(d)
, (1.3)

and HMN can be understood as a metric on the doubled space. The dilaton φ together

with determinant g of the space-time metric forms an O(d, d) scalar d = φ − 1/4 log g.

Components of the generalised metric corresponding to different choices of the physical

subspace (determined by a solution to the section condition) are related to each other by

Buscher rules [10] thus realising the notion of T-duality transformation in Double Field

Theory.

One of the most important applications of the DFT construction is the analysis of

non-geometric backgrounds. These are configurations of the supergravity fields defined

locally on patches of space-time that are glued together by T-duality transformations [11,

12, 13, 14]. Despite being consistent backgrounds for string theory, they look very exotic

from the point of view of supergravity. Although it is not completely clear how to define

such configurations within 10-dimensional supergravity, the result of its compactification

on non-geometric backgrounds can be consistently described by non-geometric fluxes and

gauged supergravities [15]. On the level of conventional supergravity non-geometric fluxes

cannot be defined as combinations of fields and their derivatives descending from the 10-

dimensional theory. However, one should note the approach of β-supergravity which

is formulated in terms of the metric, dilaton and a bivector field β ∈ ∧2TM , whose

derivative is related to the Q-flux [16, 17, 18]. In [19] it has been shown how exotic

backgrounds appear as solutions of β-supergravity written as a ten-dimensional action for

non-geometric fluxes.

In contrast, from the point of view of DFT all the fluxes are just components of

generalised torsion defined as an O(d, d)-covariant bracket of generalised vielbeins HMN =

EA
MEA

NHAB

[EA, EB]C = FAB
CEC . (1.4)

Explicit expressions for the generalised vielbein and components of the generalised torsion

can be found in Appendix B. Considering Scherk–Schwarz reductions of generalised geom-

etry for T- or U-duality groups one recovers half-maximal [20, 21] and maximal [22, 23, 24]

3



gauged supergravities, where the vielbein, now understood as a Scherk–Schwarz twist

matrix, is allowed to break the section condition as long as the gauge algebra itself is

consistent [25].

In contrast, to construct a 10-dimensional solution one must satisfy the section condi-

tion (1.2), however, one is still allowed to keep dependence on the ‘winding’ coordinates.

As long as the fields do not depend on mutually dual coordinates simultaneously this

respects the section condition. Moreover, from the expressions for the generalised flux

one concludes that dual coordinates play crucial role in the definition of non-geometric

fluxes, as they are proportional to derivatives of fields along dual coordinates. Hence,

one faces the problem of constructing an object, analogous to NS5- or D-branes, sourcing

non-geometric fluxes, that may be expected to depend on dual coordinates.

It is important to note here, that although dependence of a background on dual co-

ordinates may look rather exotic from the supergravity point of view, this is not a novel

situation in non-linear sigma model [26, 27]. Indeed, in the work [27] the background

of a Kaluza–Klein-monopole was considered, that is a solution of EOM’s of supergravity

compactified on a circle z̃ ∼ z̃ + 2πRz̃ with harmonic function

H(xi) = 1 +
h

(

(x1)2 + (x2)2 + (x3)2
)

1

2

, (1.5)

where {xi} are transverse space coordinates. This is a background with so-called non-zero

geometric τ -flux dual to NS5-brane smeared along z. To recover the version of the KK-

monopole localised along the z̃ direction one considers worldsheet instanton corrections

to the action of non-linear sigma model. These were shown to modify the background

precisely in such a way, that the corresponding harmonic function becomes unsmeared

and now depends on a new direction z (note the change of power in denominator)

H ′(xi, z) = 1 +
h′

z2 + (x1)2 + (x2)2 + (x3)2
, (1.6)

where z and z̃ have the meaning of mutually dual coordinates. Moreover, although the

coordinate z̃ is not an isometry direction anymore, by applying naive Buscher transfor-

mation along this direction one recovers the background of NS5-brane with transverse

coordinates {z, xi} and with the harmonic function given by H ′(z, xi). One should note,

that such a transformation is an allowed transformation in the framework of DFT, while

it is not a symmetry of supergravity solutions. This is the intuitive reason for the dual

coordinates to appear in this context.

These ideas were adopted in the papers [28, 29] where it was shown that the known

extended solutions of supergravity equations of motion are just plane waves or Taub–

NUT-like solutions from the DFT point of view. In this paper we are interested in the
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latter, which are referred to as DFT-monopoles. These are solutions of the DFT equations

of motion following from the O(d, d) invariant action [3] and reproducing the NS5-brane

and localised KK-monopole solutions upon a choice of physical coordinates.

In this paper we show that the same DFT-monopole can be used to describe non-

geometric backgrounds with non-vanishing Q- and R-fluxes upon yet another choice of

the physical slice. The corresponding harmonic function appears to depend on dual co-

ordinates, one for Q-monopole and two for R-monopole. This leads to non-vanishing

non-geometric fluxes according to the DFT definition of generalised flux. These fluxes

satisfy generalised Bianchi identities and can be used to define the notion of magnetic

charge of the DFT solution, which becomes equal to the magnetic charge of the corre-

sponding NS5-brane (unsmeared). This charge is the same for the whole T-duality orbit

H → τ → Q→ R.

The non-trivial dependence on dual coordinates can be in principle interpreted as a

result of the contribution of worldsheet instantons of the corresponding non-linear sigma

model. It has been shown in [30] that such instanton corrections to the background of

the 52
2-brane of de Boer and Shigemori [31] lead precisely to a background localised in a

dual coordinate. This background is shown to be a smeared version of our Q-monopole

solution.

The paper is structured as follows. In Section 2 we consider NS5-brane and KK-

monopole as solutions of conventional supergravity and briefly review how worldsheet

instanton corrections change the background and introduce dual coordinates. Section 3

is devoted to the DFT-monopole solution and its non-geometric avatars, which we refer

to as Q- and R-monopoles. In Section 4 we calculate components of the generalised

flux and explicitly show that Q- and R-monopole indeed source non-geometric Q- and

R-fluxes. Finally, in Section 5 the notion of magnetic charge and Noether current for a

DFT solution are considered and the magnetic charge is shown to be precisely equal to

that of NS5-brane for DFT-monopole. Appendix A contains our conventions for index

ranges and other notation.

2 Dual coordinates from worldsheet instantons

In this section we briefly explain the idea of worldsheet instanton corrections to the

background of H- and KK-monopole. A detailed review of these ideas can be found in

[27, 30, 32] and in references therein.

The NS5-brane is a localised brane-like solution of supergravity equations of motion

in 10 dimensions sourcing a portion of H-flux of magnetic type. Its smeared version
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that is a solution of EOM’s of supergravity compactified along a circle coordinate, say

x4 = z, is called H-monopole. This is a 5-dimensional object, which from the point of

view of Euclidean transverse (3 + 1)-dimensional space with coordinates (xi, z) looks like

a monopole interacting with field strength Hzij of magnetic configuration, with i, j =

1, . . . , 3 in the transverse direction.

The background of the smeared NS5-brane that we refer to as an H-monopole has the

following form

ds2 = ds2
056789 + Hds2

1234,

B = A ∧ dz,

e−2(ϕ−ϕ0) = H−1.

(2.1)

The harmonic function H(r) = 1 + h/r is a solution of Laplace equation in 3 dimensions

and r2 = δijx
ixj . (H(r) should not be confused with the flux sourced by the B-field that

is also referred to as H-flux.) The one form A = Aidxi plays the role of a gauge field of a

magnetic configuration and is given by

2∂[iAj] = ǫijk∂kH (2.2)

One is able to calculate the magnetic charge of the H-monopole, that is equal to QH =

2πRzh, where Rz is radius of the z-circle. This is equal to the magnetic charge of the

unsmeared NS5-brane and the radius dependence appears from the smearing procedure.

1 2 3 4 5 6 7 8 9

NS5 · · · · × × × × ×
KKM · · · ⊙ × × × × ×

52
2 · · ⊙ ⊙ × × × × ×

Table 1: Under T-dualities an NS5-brane stretched in directions marked by × turns into a

Kaluza-Klein monopole and a 52
2-brane. Dotted circles denote special cycles along which

the T-duality acts, these are compactified.

Performing T-duality along the compact direction z one obtains the background of

KK-monopole

ds2 = ds2
056789 + Hds2

123 + H−1(dx4 + A)2,

B = 0.
(2.3)

Here, the magnetic gauge potential Ai is the gi4 component of the metric in the Kaluza-

Klein decomposition, hence the name KK-monopole. This background has non-zero geo-

metric flux τ z
ij .
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To do further T-dualities one has to compactify a coordinate, say x3, in order to intro-

duce an isometry direction and smear the monopole along that direction. The smearing

procedure reduces the number of transverse directions to 2 and the harmonic function

becomes logarithmically divergent, requiring a cut-off.1 The meaning of the cut-off be-

comes clear if one turns from smearing to solving the Laplace equation in 2 dimension,

that results in a dimensionful integration constant entering the logarithm:

H = 1 +
∑

n∈Z

h
√

ρ2 +
(

x3 − 2πR̃3n
)2
≈ 1 + h̃ log

µ

ρ
,

ρ2 = (x1)2 + (x2)2,

(2.4)

where h̃ is constructed from h and µ. Such a harmonic function implies A = −h̃θdx3,

where θ is the polar angle in the (1, 2)-plane. Going around the monopole θ → θ + 2π

requires the following gluing conditions that are just diffeomorphism transformations

x3 → x3 − 2πh̃x4,

x4 → x4.
(2.5)

Performing T-duality along the isometry direction x3 we then arrive at the following

background

ds2 = H(dρ2 + ρ2dθ2) +
H

H2 + h̃2θ2
ds2

34 + ds2
056789,

B(2) =
h̃θ

H2 + h̃2θ2
dx3 ∧ dx4,

e−2(ϕ−ϕ0) =
H

H2 + h̃2θ2
,

(2.6)

which is referred to as 52
2-brane and is non-geometric. Indeed, encircling the cycle θ

requires gluing the (x3, x4)-tori at the points θ = 0 and θ = 2π by a T-duality transfor-

mation, that in terms of the generalised metric reads

H(θ′ = θ + 2π) = OtrH(θ)O, (2.7)

where the matrix O encodes the non-geometric β-transform

O =





12 0

β(θ′) 12



 (2.8)

with β(θ) = h̃θ ∂3 ∧ ∂4. This suggests to turn to the β-frame of DFT (see Appendix B),

that gives the following background

ds2 = H(dρ2 + ρ2dθ2) + H−1ds2
34 + ds2

056789,

β = β34 ∂

∂x3
∧ ∂

∂x4
.

(2.9)

1A discussion involving symmetric arrangements of multiple smeared branes can be found in [33, 34].
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With such an expression at hand one is able to check, that the 52
2-brane is indeed a

source of Q-flux, that in this case is just a derivative of the bivector and has one non-zero

component Qθ
34 (for more details on this see [35, 17, 18]).

Note however, that the above solution has a logarithmic harmonic function and is a

co-dimension 2 object, which causes certain problems concerning it asymptotic behaviour.

Moreover, it is not clear how to confirm that the background of 52
2-brane indeed carries

Q-flux in the B-frame. DFT suggests that in order to see this one has to add dual

coordinates into the game, which can be done by considering instanton corrections.

Indeed, applying T-duality to a Kaluza–Klein monopole (a.k.a. Taub–NUT space)

along its S1 isometry direction produces an NS5-brane with an additional isometry that

is commonly referred to as a ‘smeared’ NS5-brane. This means that the NS5-brane is not

completely localised in its four-dimensional transverse space R3×S1 but has an additional

isometry in the transverse S1 direction along which its charge is smeared homogeneously.

However, one can also consider an NS5-brane that is localised in the S1 direction and

ask what the T-dual of this configuration in string theory is. This problem was raised

in [36, 37] and clarified in [32] where it was shown that worldsheet instantons play a

crucial role.

The simplest way of producing an NS5-brane localised in the S
1 direction is to start

with flat R4 as a transverse space and to consider a periodic arrangement of NS5-branes

along one of its directions that we call z. The harmonic function in this case will simply

be [36]

H(xi, z) = 1 +
∞
∑

k=−∞

h

r2 + (z + 2πk)2

= 1 +
h

2r

sinh r

cosh r − cos z
, (2.10)

where we have chosen the circle to be of unit radius and r2 =
∑3

i=1(x
i)2 is the distance

squared on R3. The solution is localised at z = 0 along the S1. The Fourier expansion of

this periodic function in z yields

H(xi, z) = 1 +
h

2r

(

1 +
∞
∑

k=1

e−kr+ikz +
∞
∑

k=1

e−kr−ikz

)

(2.11)

which suggests some instanton correction with instanton action Sinst = kr ± ikz to the

smeared NS5-brane with harmonic function H = 1 + h′

r
. This observation was made

precise by Tong [32] where he showed that the two-dimensional gauged linear sigma model

underlying the smeared NS5-brane (that is T-dual to the Kaluza–Klein monopole) receives
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worldsheet instanton corrections of precisely the type discussed above.2 In this way,

worldsheet instantons are related to localisation in the S1 direction of the transverse

space of the NS5-brane.

In the T-dual picture of the Kaluza–Klein monopole this localisation effect does not

occur in the usual ‘momentum’ space but in the dual ‘winding’ space of the string. This

point of view was emphasised in [26] and the corresponding double field theory interpre-

tation was given later in [27] where it was shown that the worldsheet instantons in this

language naturally provide an origin of dual coordinates after T-duality of a solution that

is localised and not smeared. This strategy was later extended to the 52
2-brane in [30]

where the smeared 52
2-brane has co-dimension two and can be obtained by performing a

further T-duality on the smeared Kaluza–Klein monopole [38, 39], see also [40, 41] for

further discussions of duality orbits of smeared co-dimension two objects.

3 DFT monopole

From the point of view of DFT the backgrounds of KK-monopole and H-monopole are

particular cases of the solution presented in [29] and called DFT-monopole. Its generalised

metric HMN has a Taub-NUT form and can be represented as a formal line element on

the full (10 + 10)-dimensional space

ds2
DF T = H(1 + H−2A2)dz2 + H−1dz̃2 + 2H−1Ai(dyidz̃ − δijdỹjdz)

+ H(δij + H−2AiAj)dyidyj + H−1δijdỹidỹj

+ ηrsdxrdxs + ηrsdx̃rdx̃s,

(3.1)

where the functions H, Ai and the invariant dilation are given by (i, j = 1, 2, 3)

H(y) = 1 +
h

√

δijyiyj
,

2∂[iAj] = ǫijk∂kH,

e−2d = He−2ϕ0,

(3.2)

and the conventions for indices are collected in Appendix A. Here ϕ0 and h are some

constants parametrizing the solution with h being related to the magnetic charge of the

solution. To address space-time properties of the DFT solution from the supergravity

point of view, one should choose a subset of physical coordinates. In other words, one

2The ‘instanton measure’ from the supergravity configuration (2.11) above comes out to be equal

to one for all instanton charges k. This has not been fully confirmed independently from a worldsheet

calculation.
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should agree on which subset of the 10 coordinates (z, yi, xr, z̃, ỹi, x̃r) are physical and

which are dual, i.e. corresponding to the winding modes of strings.

In general, the coordinates XM on the doubled space can be decomposed as follows

X
M = (xz, xi, xr, x̃z, x̃i, x̃r) (3.3)

and we will stick to the convention that xz,i,r will always denote physical coordinates,

while x̃z,i,r will be always the dual ones. However, this still does not tell anything about

the duality frame for the solution we are analysing, as one has to identify the parameters

z, yi, . . . with the coordinates above. Depending on the way this is done, the above

solution of DFT yields different solutions of Type II supergravity. For example, the

choice (xz, xi) = (z, yi) gives the conventional H-monopole solution of supergravity, while

the rule (xz, xi) = (z̃, yi) corresponds to KK-monopole.

To identify the supergravity fields gµν , Bµν (or βµν) and ϕ one considers DFT as a

Kaluza–Klein theory and writes the DFT line interval as

ds2
DF T = (gµν −Bµ

ρBρν)dxµdxν + 2Bµ
νdxµdx̃ν + gµνdx̃µdx̃ν . (3.4)

Choosing the subset of physical coordinates and comparing the DFT solution with the

above ansatz one uniquely identifies the 10-dimensional fields.

3.1 H- and KK-monopole

For completeness of the narration let us start with H- and KK-monopole, which are

conventional geometric backgrounds of Type II supergravity, and repeat the results of

[29]. As was discussed in the previous section, the H-monopole is a smeared version of the

NS5-brane while the KK-monopole solution is its T-dual along the smearing coordinate.

In the framework of DFT these are just two faces of the single DFT monopole solution.

Indeed, choosing the physical coordinates to be

xµ = (z, yi, xr) (3.5)

one obtains the NS5-brane solution smeared along the z direction

ds2 = ηrsdxrdxs + H(dz2 + δijdyidyj),

B = Aidyi ∧ dz,

e−2(ϕ−ϕ0) = H−1.

(3.6)

In the notation of the classification [31] this is the 50
2-brane. As will be shown in Section

4, this background interacts with H-flux with non-vanishing component being Hzij =

ǫijk∂kH .
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From the point of view of conventional supergravity smearing is necessary to make

connection between the NS5-brane and the KK-monopole (51
2-brane of [31]) via T-duality

along the (compact) direction z. This procedure allows to reproduce the harmonic func-

tion of the solution of compactified theory from the harmonic function of the full solution

without having to solve the equations of motion from the very beginning [42]. Physically

this is interpreted as putting an infinite number of branes with distance 2πRz between

them and summing all contributions to the harmonic function H . Sending Rz → 0 this

effectively corresponds to dropping any dependence on z.

Now, T-duality along z in the DFT picture corresponds to replacing xz by its dual x̃z,

i.e. to choosing the following set of coordinates to be physical

xµ = (z̃, yi, xr). (3.7)

This gives the background of the KK-monopole solution

ds2 = ηrsdxrdxs + H−1(dz̃ + Aidyi)2 + Hδijdyidyj,

B = 0,

e−2(ϕ−ϕ0) = 1.

(3.8)

It is important to note, that although we consider only the monopole versions of the

corresponding brane configurations (smeared along one direction), the full solution has

been presented in [29] as well. The authors refer to it as a localised KK-monopole, however

we would prefer to call it KK-brane (Q-brane, R-brane), reserving the word “localised” for

solutions living on compact xz, but with finite Rz. The corresponding harmonic function

still depends on xz and contains all Fourier modes in (2.11), in contrast to the smeared

solution, which contains only the zero mode. According to [32, 27, 30], this is precisely the

harmonic function that is recovered by considering instanton corrections. These naturally

require a periodic coordinate to contribute to the worldsheet action of the sigma model.

This is not necessary in the DFT picture, which naturally reproduces the desired harmonic

function upon compactification of a dual coordinate with finite radius.

3.2 Q-monopole

The non-geometric 52
2-brane of Shigemori and de Boer is obtained by smearing the 51

2-

brane solution presented in the previous section along, say, y3 and performing T-duality

along this (now) compact direction. However, we will act in a more direct way and obtain

it from the DFT monopole solution by choosing

xµ = (z̃, y1, y2, ỹ3, xr). (3.9)
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After some algebra reading off the components of the fields from the generalised met-

ric (3.4), one obtains the following 10-dimensional background

ds2 = ηrsdxrdxs +
H

H2 + A2
3

(

(dz̃ + Aαdyα)2 + dỹ2
3

)

+ Hδαβdyαdyβ,

B =
A3

H2 + A2
3

(dz̃ + Aαdyα) ∧ dỹ3,

e−2(ϕ−ϕ0) =
H

H2 + A2
3

,

(3.10)

where α, β = 1, 2 label the coordinates y1,2. Note that the harmonic function H depends

now on the winding coordinate y3

H = 1 +
h

√

δαβyαyβ + (y3)2
. (3.11)

Smearing this harmonic function along y3 with finite radius gives precisely the instanton-

corrected harmonic function of [30] smeared along X9 (z in our notations). For that one

considers an infinite array of Q-monopoles along y3 and writes

H = 1 +
∞
∑

k=−∞

h
√

δαβyαyβ + (y3 + 2πk)2

= 1 + h log
Λ +
√

Λ2 + ρ2

ρ2
≈ h0 + h log

µ

ρ

(3.12)

where ρ2 = δαβyαyβ. Here the divergent sum has been replaced by a divergent integral

and the cut-off Λ has been introduced. The first expression in the second line diverges as

Λ→∞ however it can be rewritten by introducing a bare quantity h0, which also diverges

in this limit, and a renormalization scale µ (see [31]). Hence, the harmonic function of

the Q-monopole recovers the harmonic function of the known 52
2-brane upon smearing.

To investigate the metric and the B-field, we switch to polar coordinates on the (y1, y2)

plane for convenience

y1 = ρ cos θ,

y2 = ρ sin θ.
(3.13)

With this set up we have the following equations for the vectors Aα and A3

ρ∂ρH = ∂θA3,

0 = ∂ρAθ − ∂θAρ,

0 = ∂ρA3.

(3.14)

12



The second line above implies that the components {Ar, Aθ} are given by just a gauge

degree of freedom

Aρ = ∂ρλ,

Aθ = ∂θλ,
(3.15)

with λ = λ(r, θ) being an arbitrary function. The first line fixes the remaining component

to be A3 = hθ. Redefining the coordinate z̃ as z̃ → z̃ + λ we arrive at the familiar

background with nontrivial monodromy around θ

ds2 = ηrsdxrdxs + HK−1
(

dz̃2 + dỹ2
3

)

+ Hδαβdyαdyβ,

B = hθK−1dz̃ ∧ dỹ3,

e−2(ϕ−ϕ0) = HK−1,

K = H2 + (hθ)2.

(3.16)

There is a certain subtlety in understanding this background. In particular, although

it is in general accepted that this background generates a non-trivial Q-flux, the direct

calculation of Qmn
k using the B-frame of DFT gives a vanishing result. On the other

hand, performing the above steps in the β-frame we arrive at the following background

ds2 = ηrsdxrdxs + H(dz̃2 + dỹ2
3 + δαβdyαdyβ),

β = hθ∂z̃ ∧ ∂ỹ3
,

(3.17)

which clearly has a non-trivial component of the Q-flux, that is Qz3
θ = h. On the other

hand, the above background is completely geometric given the gauge transformations of

β-supergravity

δβµν = ωµν = const (3.18)

This suggests that the dropped winding coordinate y3 plays an important role in the

identification of the solution as carrying a portion of Q-flux.

Consider now the full solution not smeared along y3 with the fields depending on the

full set of coordinates {y1, y2, y3} and the coordinate y3 being understood as a winding

mode. In this case it is convenient to turn to cylindrical coordinates as

y1 = ρ cos θ,

y2 = ρ sin θ,

y3 = y3.

(3.19)

The equations defining the gauge field A then take the following form

ρ∂3H = ∂ρAθ − ∂θAρ

0 = ∂3Aρ − ∂ρA3,

ρ∂ρH = ∂θA3 − ∂3Aθ.

(3.20)
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As usual this is complemented by the conditions divA = 0 and △A = 0. The solution is

of the Taub-NUT type with the only non-vanishing component being

Aθ = h



1− y3

√

ρ2 + (y3)2



. (3.21)

The most interesting issue here is, that the resulting background is purely of the metric

type, i.e. the B- or the β-field vanish in either frame. In addition, in both frames the

metric is given by the same expression

ds2 = H−1
[

(

dz̃ + Aθdθ
)2

+ dỹ2
3

]

+ H
(

dρ2 + ρ2dθ2
)

. (3.22)

The solution is localised along the winding coordinate y3, which is of no surprise given

the above dicsussion of worldsheet instanton corrections. However, one should investigate

the additional information provided by the fact, that y3 is not periodic.

As the original Kaluza–Klein monopole, the above solution suffers from the Taub-

NUT singularity, which is a pure coordinate singularity in the case when z̃ is a compact

coordinate. This is actually the case, as we have started from the non-localised KK-

monopole solution, meaning the coordinate z̃ is compactified with small radius.

It is tempting to claim, that the Q-brane is just an analogue of the conventional KK-

monopole solution, but with one coordinate replaced by its winding counterpart. This is

also expected, as these are T-dual to each other, however the above shows that by a direct

computation from DFT. For this reason and in analogy with the H- and KK-monopole

solutions we will call this solution Q-monopole.

Note that the Q-monopole solution is completely geometric in the aspect of the

monodromy property, i.e. going around the monopole in the {y1, y2}-plane by shifting

θ → θ + 2π does not change the solution. Although, there are still signs of non-geometry

represented by the dependence on the winding coordinate y3 which lead to non-vanishing

Q-flux as we show further.

3.3 R-monopole

Backgrounds with R-flux are the most subtle in the T-duality orbit in question as

they correspond to codimension-1 objects that are obtained by a T-duality action along

a non-isometry direction. However, from the point of view of DFT a T-duality trans-

formation is just an O(d, d) rotation, that replaces a coordinate by its dual. Hence, one

may consistently consider such backgrounds by studying the following choice of physical

coordinates

xµ = (z̃, y1, ỹ2, ỹ3, xr). (3.23)
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Due to the reasons explained below this background should be considered in the β-frame,

that gives the following

ds2 = ηrsdxrdxs + H−1
(

(dz̃ + A1dy1)2 + dỹ2
α

)

+ H(dy1)2,

β = Aα∂ỹα
∧ ∂z̃ ,

e−2(ϕ−ϕ0) = 1,

(3.24)

where now α = 2, 3. As in the previous case the convenient choice of the coordinate

frame is the cylindrical coordinates, however now the distinguished coordinate is y1 and

the rules read
y2 = ρ cos θ,

y3 = ρ sin θ,

y1 = y1.

(3.25)

Taking again the Taub-NUT solution and adapting it to the chosen coordinate frame we

have

Aθ = h



1− y1

√

ρ̂2 + (y1)2



,

ρ̂2 = (y2)2 + (y3)2.

(3.26)

The solution now depends on two winding coordinates and the background becomes

ds2 = ηrsdxrdxs + H−1
(

dz̃2 + dρ̂2 + ρ̂2dθ2
)

+ H(dy1)2,

βθz = Aθ,

e−2(ϕ−ϕ0) = 1.

(3.27)

The solution looks like very similar to that of the NS5-brane, but with one distinguished

transverse direction. This can be interpreted by the R-brane being a co-dimension 1

object. In analogy to the NS5-brane one expects the above solution to have only Rθz1

flux.

One may wonder what happens if the above background is written in the B-frame.

Given the definition of the generalised flux the obvious answer is that the background will

no longer have R-flux. This is of no surprise, as for example the H-monopole background

written in the β-frame does not carry H-flux anymore.

Here we observe an interesting symmetry of the T-duality orbit H → τ → Q → R.

It tells us that the backgrounds at the H-node and R-node require a certain supergravity

frame to be consistently written down. However, the τ - and Q-nodes are purely metric

backgrounds which do not depend on the frame chosen. Hence, we may speculate that
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H-monopole and R-monopole are backgrounds with magnetic configurations of the B-field

or β-field respectively. However, it is unclear what this means for the bivector, as it does

not have the required gauge transformations for its component βzi to be interpreted as a

gauge potential.

The same applies to KK-monopole, that is understood as an object interacting with

the magnetic gauge field coming from the metric Ai = giz. It is tempting to interpret

the Q-monopole in a similar fashion but using the inverse (dual in a sense) metric gzi,

however we could not go much further in that direction.

4 Fluxes and Bianchi identities

The T-duality orbit that relates the backgrounds considered above consists of four

points represented by the following fluxes

Hmnk ←→ τm
nk ←→ Qm

nk ←→ Rmnk. (4.1)

In what follows we assume that the fluxes live in a four-dimensional space relevant for

our discussion, however all the arguments below are valid for any dimensions.

The H- and R-fluxes belong to the irreducible representation 4 of SO(4), while the

fluxes τ ā
b̄c̄ and Qā

b̄c̄ can be in principle decomposed as

τ ā
b̄c̄ : 4⊗ 6̄ −→ 4̄⊕ 20

Qā
b̄c̄ : 4̄⊗ 6 −→ 4⊕ 20.

(4.2)

The trace part of the geometric flux is usually restricted to be zero, when considering com-

pact Calabi–Yau manifolds. However, when understood as full 10-dimensional quantities,

trace parts of both geometric and Q-flux are not necessarily zero.

From the DFT point of view these fluxes are components of the generalised torsion

FA
BC defined by (see Appendix B)

[EB, EC ]MC = FA
BCEM

A ,

FA
BC = 2EA

MEN
[B∂N EM

C] −EA
M ηMNηKL∂N EK

[B̄EL
C].

(4.3)

In addition to that one has the flux FA = ∂MEM
A + 2EM

A ∂Md, which vanishes for ordinary

compactification scenarios.

For completeness of the picture let us start with fluxes of the geometric backgrounds

of H and KK monopoles. For the H-monopole solution one has both the H-flux and the

trace part of the f -flux, their non-vanishing components being

H-monopole: Hz̄āb̄ = 2ez
z̄ek

āel
b̄∂[kAl], F ā

b̄c̄ = −δā
[b̄fc̄], Fā =

3

2
fā, (4.4)
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where fā = H−1∂āH . As expected, the H-monopole solution interacts with the field

strength Hzkl of a magnetic configuration, whose gauge potential is given by the Kalb-

Ramond field Bzk. Hence the name H-monopole.

For the KK-monopole we have the following non-vanishing fluxes

KK-monopole: F ā
b̄c̄ = 2eā

zek
b̄e

l
c̄∂[kAl] −

1

3
δā

[b̄fc̄], Fā = −3

2
fā. (4.5)

According to its name, the KK-monopole solution interacts with the field strength F z
ij

of the same magnetic configuration, whose gauge potential is given by the component

Ai = gzi of the metric.

Although the Q-monopole solution does not contain non-trivial gauge fields, depen-

dence on the winding coordinate y3 makes the Q-flux non-zero. The following non-

vanishing components

Qᾱ
3̄z̄ = ǫᾱβ̄H−1∂β̄H, F ᾱ

1̄2̄ =
1

2
ǫᾱβ̄H−1∂β̄

Qᾱ
β̄3̄ = −1

2
δβ̄

ᾱH− 3

2 ∂3H, F 3̄
ᾱ3̄ =

1

2
H−1∂ᾱH,

Q-monopole: Qz̄
z̄3̄ =

1

2
H− 3

2 ∂3H, F z̄
ᾱβ̄ = −ǫᾱβ̄H− 3

2 ∂3H,

F z̄
ᾱz̄ =

1

2
H−1∂ᾱH,

F 3̄ =
3

2
H−3/2∂3H Fᾱ =

3

2
H−1∂ᾱH.

(4.6)

where one should note that ∂3 is the derivative along a winding mode coordinate. These

are the most general expressions for the fluxes of the Q-monopole background which do

not depend on the coordinates adopted to solve the equations for Am. One immediately

notices, that the flux components Qᾱ
3̄z̄ are the same as in the case of the 52

2 background

up to the explicit form of the harmonic function. After smearing along the winding

coordinate y3 this gives in curved indices the only component Qθ
z3 = h.

Let us finally turn to the R-monopole background that turns on the R-flux. Together

with other non-vanishing flux components we have

Rz̄ᾱβ̄ = ǫᾱβ̄H− 3

2 ∂1H, Qz̄
z̄ᾱ = Q1̄

1̄ᾱ = −1

2
H−1∂̃ᾱH,

R-monopole: Fā
b̄c̄ = δ1

[b̄δā
c̄]H− 3

2 ∂1H, Qᾱ
β̄γ̄ =

1

2
ǫβ̄γ̄ǫᾱδ̄H

−1∂̃δ̄H,

Q1̄
z̄ᾱ = ǫᾱβ̄H−1∂̃β̄H

F ᾱ =
3

2
H−1∂̃ᾱH F1̄ =

3

2
H− 3

2 ∂1H.

(4.7)

where α, β take the values 2 and 3. Hence, there is a non-trivial Q-flux and R-flux sourced

by the background, while the geometric flux Fā
b̄c̄ only has a trace part. Again by formally
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smearing the solution along the winding coordinates {y2, y3} the Q-flux components vanish

and one ends up with only the R-flux and the geometric flux.

To make things more manifest the R-flux can be rewritten as

Rz̄ᾱβ̄ = −2 0ez̄
ze

ᾱ
αeβ̄

β∂̃[αββ]z. (4.8)

This is consistent with the interpretation of the R-flux as a field strength for the β-field.

Hence, the R-monopole interacts with a “magnetic” part of the Rzij component of this

field strength. The corresponding gauge transformation is given by δβµν = 2∂̃[µλν].

All these flux components satisfy the generalised Bianchi identities of [43] which are

explicitly written out in the Appendix C.

5 Charges and currents

5.1 Magnetic charge

Before proceeding with the DFT construction let us look at how the notion of magnetic

and electric charges is defined in conventional electromagnetism. We write

4πq =
∫

∂iE
idV =

∫

Σ
EidΣi =

∫

Σ
F0idΣ0i =

∫

FµνdΣµν =
∫

Σ
∗F,

4πµ =
∫

∂iB
idV =

∫

Σ
BidΣi =

∫

Σ
Fklǫ

0ikldΣ0i =
∫

Fµνdxµ ∧ dxν =
∫

Σ
F,

(5.1)

where Σ is a spacelike surface surrounding the charge, say a 2-sphere, dxµ ∧ dxν =

ǫµνρσdΣρσ, and F = dA is the gauge field strength (flux). Hence, the magnetic charge can

be defined as an integral of the flux along a 2-cycle.

Motivated by this we adopt the definition of the DFT magnetic charge from [44] and

write

4πµ =
∫

Σ
FMNKdXM ∧ dXN ∧ dXK , (5.2)

with appropriately chosen 3-cycle Σ which is a three-dimensional surface surrounding

a monopole considered as a point in the 4-dimensional doubled space parametrised by

{xz, xi}. Here, xµ should be properly identified with the coordinates of the doubled space

according to a solution of the section condition.

This immediately tells us that the surface cannot be non-trivially defined by varying

two mutually dual coordinates, say z and z̃, as this clearly breaks the section condition.

This naturally removes the components of generalised flux of the type Fa
aM (no sum). The

remaining components themselves suggest which surface to choose to get a non-vanishing

result (see Table 2). Since all the solutions we consider here are smeared along xz the
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topology of the 3-cycle is restricted to be of the type S2×S1 instead of a 3-sphere, which one

should expect in the localised case. It is important to note here, that although the surface

spans different coordinates for different solutions, the S2 part is always parametrised by

the equation

(y1)2 + (y2)2 + (y3)2 = R2 = const. (5.3)

This is due to the identification of (some of) the coordinates {yi} with either {xi} or {x̃i}.

Σ x1 x2 x3 xz x̃1 x̃2 x̃3 x̃z

H × × × •
KK × × × •
Q × × × •
R × × × •

Table 2: The 3-cycle Σ ≡ S2×S1 is a product of a 1-circle and a 2-sphere. Here the bullet

• denotes the direction of the 1-circle, while the crosses × denote the directions in which

the 2-sphere lives.

With all this in hands let us turn to explicit computations and start with the H-

monopole solution which has the only relevant flux component Fzij = 2∂[iAj] = ǫijk∂kH .

Hence, we write

4πµH =
∫

Fzijdxz ∧ dyi ∧ dyj =
∫

Fzijdz ∧ dyi ∧ dyj = 2πRz

∫

sin θdθdϕR2∂rH(r)
∣

∣

∣

∣

r=R

= 8π2Rzh = 4πQ,

(5.4)

where Q = 2πRzh is the charge of the unsmeared NS5 brane defined by the harmonic

function

Hunsm = 1 +
Q

r2
. (5.5)

Note that all other components of the generalised flux do not contribute to a magnetic

charge defined this way.

The same calculation for the KK-monopole with the relevant flux component F z
ij =

ǫijk∂kH gives

4πµKK =
∫

F z
ijdx̃z ∧ dyi ∧ dyj =

∫

Fzijdz ∧ dyi ∧ dyj = 8π2Rzh. (5.6)

The important change here is that now one integrates over x̃z which for the chosen section

condition frame is still z, and hence the integral itself does not change. A similar effect will

take place for non-geometric Q- and R-monopoles. The 3-dimensional surface Σ is now

partially stretched in the dual space, i.e. along the coordinate x̃z. However, as expected,
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the magnetic charge for H- and KK-monopole is the same as these belong to the same

T-duality orbit, while the definition of µ is T-duality invariant.

The relevant flux components (in curved indices) for the Q-monopole are given by

F z
12 = −∂3H −A1H−1∂2H + A2H−1A2∂1H,

F1
3z = ∂2H − A1H

−1∂3H,

F2
3z = −∂1H −A2H−1∂3H.

(5.7)

The magnetic charge then reads

4πµQ =
∫

F z
12dx̃z ∧ dx1 ∧ dx2 +

∫

F1
3zdx1 ∧ dx̃3 ∧ dx̃z +

∫

F2
3zdx2 ∧ dx̃3 ∧ dx̃z

=
∫

F z
12dz ∧ dy1 ∧ dy2 +

∫

F1
3zdy1 ∧ dy3 ∧ dz +

∫

F2
3zdy2 ∧ dy3 ∧ dz

=
∫ [

− ρ∂3Hdz ∧ dρ ∧ dθ + ρ
(

−A1∂2H + A2∂1H
)

dz ∧ dρ ∧ dθ

+
(

∂2Hdy1 − ∂1Hdy2
)

∧ dy3 ∧ dz −
(

A1dy1 + A2dy2
)

H−1∂3H ∧ dy3 ∧ dz
]

=
∫

(

ρ∂3Hdρ− ρ∂ρHdy3
)

dzdθ − ρAθ

(

∂ρHdρ + ∂3Hdy3
)

dzdθ

=−
∫

(

y3∂3H + ρ∂ρH
)

dzdy3dθ = 8π2Rzh,

(5.8)

where we have used that ∂ρHdρ + ∂3Hdy3 = dH = 0 and the constraint ρdρ + y3dy3 = 0

on the integration surface.

As before, due to a different identification of dual and physical coordinates, the integral

is reduced to an integral in the {z, y1, y2, y3} space. However, now the 2-sphere S2 is

partially lying in the dual space. This result is to be expected as will be discussed further

below.

Finally, for the R-monopole we have the following relevant flux components (remember

that A1 = 0)

F z23 = −∂1H,

F1
3z = ∂2H,

F1
2z = −∂3H,

(5.9)

which gives the following integral

4πµR =
∫

F z23dx̃z ∧ dx̃2 ∧ dx̃3 +
∫

F1
3zdx1dx̃3dx̃z +

∫

F1
2zdx1dx̃2dx̃z

=
∫

F z23dz ∧ dy2 ∧ dy3 +
∫

F1
3zdy1dy3dz +

∫

F1
2zdy1dy2dz

=
∫

−∂1Hdz ∧ dy2 ∧ dy3 + ∂2Hdy1 ∧ dy3 ∧ dz − ∂3Hdy1 ∧ dy2 ∧ dz

=
∫

(

ρ̂∂1Hdρ̂− ρ̂∂ρ̂Hdy1
)

dzdθ = 8π2Rzh,

(5.10)
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where we used ρ̂dρ̂ + y1dy1 = 0 in the last line. Recall that in the case of the R-monopole

a convenient parametrisation of the solution reads

y1 = y1,

y2 = ρ̂ cos θ,

y3 = ρ̂ sin θ,

(5.11)

and we use another notation for ρ̂ to avoid confusion between coordinate choices.

The net result is that the magnetic charge defined by (5.2) is given by µ = 2πRzh

which does not depend on the solution chosen, i.e. is T-duality invariant. The magnetic

charge is equal to the magnetic charge Q of the unsmeared NS5-brane solution.

5.2 Noether current

Invariance of the DFT action under generalised diffeomorphisms implies the existence

of conserved charges from boundary integrals. The corresponding Noether procedure has

been worked out in [44, 45] and the resulting conserved charge was found to give the mass

of various solutions after reduction to d = 10, as expected. A notable observation was

made in [45], that there is no contribution to the charge of the 52
2-brane from the bulk

part of the DFT action. A boundary term in the action is required in order to obtain

nonvanishing value of the time component of the Noether current, J0.

Following [46, 45] we consider such a boundary contribution to the Hull–Hohm–

Zwiebach action that turns it into a full Gibbons–Hawking type action upon section

condition:

SB =
∫

∂M

(

e−2dKM
)

,

KM = 4HMN∂N d− ∂NHMN .
(5.12)

The contribution to the Noether current from this term reads

JM = ∂N (2e−2dK [MξN ]) + e−2dKN∂M ξN . (5.13)

Assuming that the generalised Killing vector ξM is constant we find the time component

of the current for the monopole solutions constructed in the section 3:

J0 = ξ0H−2 (∂iH∂iH −H∂i∂iH) = −ξ0∂i

(

H−1∂iH
)

, (5.14)

where summation over i ∈ {1, 2, 3} is done with a Kronecker delta, and H is defined

in (3.2). This result is the same for the H, KK, Q, and R-monopoles. In fact, K0 = 0 for

these solutions, which together with ξM = const implies

J0 = ξ0∂M (e−2dKM ), (5.15)
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coincident with the boundary term in the Lagrangian that we started with. In order

to compute the corresponding conserved charge one may act in the way similar to the

conventional electrodynamics

0 =
∫

V

∂M JM =
∫

∂V
J0 = Q(tf )−Q(ti),

Q(t) =
∫

St

J0dS,
(5.16)

where V is the full (10 + 10)-dimensional doubled space, while St is its 19-dimensional

slice at constant time t. This formally shows that the charge Q(t) is the same at any

two moments tf and ti and hence it is conserved, however, the procedure itself may not

be well-defined. The subtlety is in the naive use of the Stokes’ theorem, which in the

case of extended space needs additional justification. As has been shown in [47] one may

employ the naive generalization of the Stokes theorem and then make use of the section

condition, that constrains the normal vector to the boundary. However, it is still not clear

how to overcome the issue that the integration surface extends independently along both

the dual and the ordinary coordinates, not to mention the issue of the dual time.

Defining the integration correctly is especially nontrivial for non-geometric solutions

such as Q and R-monopoles, because in those cases some of the coordinates that the

harmonic function H(y1, y2, y3) depends on are unphysical. Unless we integrate over the

complete 19-dimensional space, it would be desirable to have integration over the physical

space only, which for the Q-monopole is given by (3.9). Restricting the integration to a

subspace of physical variables can be naturally done by inserting a delta-function in the

integral. That is, instead of (5.16) one would define

Q =
∫

dxphysdxdual J0(xphys, xdual)δ(xdual) =
∫

dxphys J0(xphys, 0). (5.17)

Alternatively, one may try defining a dual coordinate dependent charge by

Q(xdual) =
∫

dxphys J0(xphys, xdual), (5.18)

which is arguably an acceptable property for a solution that itself depends on a dual

coordinate (3.10). However, both definitions (5.17), (5.18) fail when applied to the Q or

R-monopole as the corresponding integrals diverge for J0 given by (5.14).

As noted earlier, for the exotic monopole solutions (5.14) gives both the current com-

ponent J0 and the boundary term of the Lagrangian. This allows to directly compute the

contribution of the DFT monopole into the full action, given that the bulk part of the
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action vanishes. Hence, we have

SB =
∫

V

∂M

(

e−2dKM
)

=
∫

V

1

H2

(

∂iH∂iH −H∂i∂iH
)

= k
∫

d3y ∂i

(

H−1∂iH
)

= k
∫

S2
∞

H−1∂iHd2Σi = 4πk
h

1 + h
R

∣

∣

∣

∣

R→∞

= 4πkh,

(5.19)

where S2
∞ is a sphere of the infinite radius R→∞ defined as (y1)2 + (y2)2 + (y3)2 = R2.

The constant k is related to the volume and for different solutions is given by

H and KK : k = Vol(x̃1, x̃2, x̃3),

Q : k = Vol(x̃1, x̃2, x3),

R : k = Vol(x̃1, x2, x3).

(5.20)

This comes from the integration over the coordinates that the harmonic function does not

depend on. Such a volume pre-factor is to be expected, as similar contributions come from

the HHZ action when the section condition is imposed. Note that some of the integration

variables in (5.19) are actually dual coordinates in DFT and integration over these ensures

finiteness of the result.

On the other hand, for the smeared Q-monopole (the 52
2-brane) one uses the harmonic

function H = 1 + h log µ/ρ with some cutoff µ (3.12), which yields zero after integration:

SB =
2πh

1 + h log µ
ρ

∣

∣

∣

∣

∣

∣

ρ→∞

= 0. (5.21)

The same result has been obtained in [45] where the regularization procedure of [31] was

then employed in order to obtain finite expression for the ADM mass. In contrast we do

not recover this result for the full computation as the external directions {xi, x̃i} are not

toroidal.

In principle, it would be interesting to consider toroidal external space but keeping the

dependence on the winding coordinates (localisation) and compute the charge. However,

this falls beyond the scope of the present paper.

6 Discussion and speculations

The DFT-monopole solution of [29] is one of the first explicit solutions of the DFT

equations of motion. This solution was known to reproduce the background of NS5-brane
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Figure 1: Systematics of backgrounds with H, geometric τ and Q fluxes and their relations.

Note that in [30] Q-monopole localised in both X8 and X9 has been constructed with both

these directions being compact.

24



and KK-monopole depending on the identification of the physical subset of coordinates

among 10+10 coordinates of DFT. The harmonic function of this solution depends only

on 3 coordinates (or in the localised case, 4), which are a priori not identified neither with

physical nor with winding coordinates.

In this work we have shown that certain choices of physical coordinates give rise to

backgrounds, which can be understood as Q- and R-monopoles. As a source of Q-flux we

obtain a background whose harmonic function depends on one winding coordinate while R-

flux corresponds to a harmonic function that depends on two winding coordinates. As an

explicit check we have shown that smearing the Q-monopole along the winding coordinate

gives just the known 52
2-brane of [31]. Interestingly, the Q-monopole solution does not

have nontrivial monodromies and shows its non-geometric nature only via dependence on

winding coordinates. Alternatively, in the case of the 52
2-brane the non-geometry manifests

itself via non-trivial monodromy properties when going around the (smeared) brane.

Dependence of supergravity fields on winding coordinates has been discussed before in

the literature [26, 27, 30]. This effect is due to taking into account worldsheet instantons

of the (1 + 1)-dimensional sigma model understood as a gauge theory. These instanton

corrections modify the backgrounds of the H-monopole, KK-monopole and 52
2-brane by

contributing to the 4-point interactions in such a way that the form of the background re-

mains the same, but the harmonic function acquires dependence on a winding coordinate.

It is important to mention that although our harmonic function does have dependence

on a winding coordinate, say x̃1, this does not break the section condition of DFT as the

function does not depend on the dual coordinate x1 at the same time. Another point

to be mentioned here is that the coordinate added by instanton corrections is circular

and the corresponding harmonic function includes hyperbolic cosines and sines or Bessel

functions. In our case these coordinates in principle can be kept noncompact and the

harmonic function is just some power of the distance r. However, this returns us back

to the discussion on whether DFT with section condition imposed lives on a torus or on

a space of general topology. In any case, the solutions presented above are valid up to

an appropriate choice of the harmonic function (smearing). With all these reservations

we may present a diagram showing systematics of the backgrounds with H, geometric

τ and Q fluxes from the point of view of DFT, see figure 1. Although the R-monopole

background can be trivially included into the diagram, we intentionally keep it off the

picture as it does not connect to any known node as 52
2-brane, for example.

As a check that the obtained backgrounds indeed source the desired fluxes we have

computed them explicitly using the notion of the DFT generalised flux. Indeed, we show

that H-, KK-, Q- and R-monopole source H-, τ , Q- and R-fluxes respectively, which satisfy
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generalised Bianchi identities. The computed components of the generalised flux allow us

to consider the notion of the magnetic charge for these solutions. Following [44] this is

defined to be

4πµ =
∫

Σ
FMNKdXM ∧ dXN ∧ dXK , (6.1)

and explicit calculation shows that µ = 2πRzh = Q, where Rz is the radius of the

compactified z direction and Q is the magnetic charge of the full (unsmeared) NS5-brane.

Since µ is the same for all solutions, one may call it the magnetic charge of DFT monopole.

One should note here, that the generalised flux for KK- and Q-monopoles has not only

the expected components of the form τ z
12 or Qz

12, but also components with two indices

equal τa
ab and Qa

ab (no sum) as well as components of the gaugings FM . Although these

are not welcome in the models of conventional supergravity compactifications, they in

principle can be present in the 10-dimensional theory. However, given the definition of

the magnetic charge above, they do not contribute to µ.

Although certain properties of Q- and R-monopole have been revealed, the present

work can not be viewed as an exhaustive study of non-geometric branes. There still are

many open questions left. Firstly, one may be interested to look at the equations of motion

of conventional supergravity and to what extent the presented solutions solve them. This

may give a hint to the meaning of the dual coordinates inside the harmonic function.

From the DFT point of view it is interesting to see how many supersymmetries these

backgrounds preserve and whether the resulting Killing spinors depend on dual coordi-

nates. We expect these backgrounds to preserve half of the maximal supersymmetry

in analogy with the 52
2-brane background. Also one may study non-commutativity and

non-associativity of the doubled NLSM on such backgrounds in the spirit of [48].

The most obvious extension of the presented work is to consider the localised version

of the DFT-monopole of [29]. Following the same logic one considers other choices of the

set of physical coordinates inside the doubled space to get

xµ = (z, y1, y2, ỹ3, xr), localised KK-monopole

xµ = (z, y1, ỹ2, ỹ3, xr), localised Q-monopole

xµ = (z̃, ỹ1, ỹ2, ỹ3, xr), constant background

xµ = (z, ỹ1, ỹ2, ỹ3, xr), localised R-monopole.

(6.2)

Also here one may look into the monopole solutions of exceptional field theory (EFT)

which encode the M5-brane according to [29]. Other choices of the physical subset may

reproduce the exotic branes of M-theory classified in [31].

Finally, it would be interesting to investigate near-horizon limit of the Q- and R-

monopole in the same way as the near-horizon limit of NS5-brane is studied [49].
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A Notation and conventions

The notation for indices used in this paper is as follows

M, N, K . . . = 1, . . . 20, curved indices for the doubled space;

A, B, C . . . = 1, . . . 20, flat indices for the doubled space;

µ, ν, ρ, σ, . . . = 0, . . . 9, space-time curved indices;

k, l, m, n . . . = 0, . . . 9, space-time flat indices;

i, j = 1, 2, 3 indices for transverse coordinates xi;

ā, b̄, c̄, . . . = z, 1, 2, 3 flat indices for transverse directions xz and x1,2,3;

r = 0, 5, 6, 7, 8, 9 index for transverse coordinates xr;

z̄, 1̄, 3̄ flat indices for directions 1,3 and z;

α, β run 1,2 for Q-monopole and 2,3 for R-monopole labelling;

some of the transverse coordinates

ᾱ, β̄ the same as above, but flat;

(A.1)

The O(d, d) invariant metric ηMN and the flat generalised metric are defined as

ηMN =





0 1

1 0



 , HAB =





δa
b 0

0 δb
a



 . (A.2)

The generalised Lie derivative of DFT and the C-bracket have the usual form

[V1, V2]
M
C =

1

2
(LV1

V2 − LV2
V1)M ,

LV1
V M

2 = 2V N
[1 ∂N V M

2] + ηMNηKL∂N V K
1 V L

2 .
(A.3)
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B Duality invariant formulation of fluxes

The conventional geometric τ -flux is defined via Maurer-Cartan forms as a torsion

dem = −1

2
τm

nken ∧ ek, (B.1)

where Latin indices are used for flat directions and em = em
µ dxµ is a 1-form that defines

the vielbein. This equation can be written in equivalent form by making use of the Lie

bracket of two vector fields

[em, en] = fk
mnek. (B.2)

Here the inverse vielbein is a vector field em = eµ
m ∂µ and fm

nk = 2em
µ eν

[n∂νeµ
k].

It was suggested in [50] to generalise the construction (B.2) to the case of Double Field

Theory using the C-bracket [, ]C , which is a natural multiplication of generalised vectors

in Double Field Theory

[EA, EB]MC = FC
ABEM

C , (B.3)

where EM
B is a generalised vielbein defined as

HMN = EM
A EN

BHAB. (B.4)

The diagonal form of the flat generalised metric HAB = diag[hmn, hmn] corresponds to the

two natural gauge choices for the generalised vielbein, called B- and β-frame. Each of these

corresponds to either non-zero Kalb–Ramond field B or the bivector β. Although having

both B and β non-vanishing is inconsistent with the counting of degrees of freedom, it is

convenient for calculational purposes to write the generalised vielbein in a (B, β)-frame

EM
A =









eµ
m −en

ρβρµ

−eρ
mBρν en

ν + en
ρ βρσBσν









, EA
M =









em
µ + em

ρ βρσBσµ −em
ρ βρν

−eρ
nBρν eν

n









. (B.5)

One can think of the generalised vielbein as Scherk–Schwarz twist matrices [20] and

the structure constants FA
BC are thus gaugings of the corresponding supergravity [51].

Given the definition of the C-bracket, the generalised flux and the additional gauging FA

can be written as

FA
BC = 2EA

MEN
[B∂N EM

C] − EA
MηMNηKL∂N EK

[BEL
C],

FA = ∂M EM
A + 2EM

A ∂Md.
(B.6)
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Using the notation of [43] flux components in terms of the fundamental fields can be

written as

Fmnk = 3
[

∇[mBnk] − Bl[m∇̃lBnk]

]

,

Fmn
k = 2Γ[mn]

k + ∇̃kBmn + 2Γlk
[mBn]l + βklFlmn ,

Fk
mn = 2Γ[ab]

k + ∂kβmn + Bkl∂̃
lβmn + 2Flk

[mβn]l − Flpkβlmβpn ,

Fmnk = 3
[

−βl[m∇lβ
nk] + ∇̃[mβnk] + Blp∇̃pβ [mnβk]l − βl[mβn|p|∇̃k]Blp

]

+ βmlβnpβkqFlpq,

Fm =− ∇̃nBmn − Γkl
mBkl − Γkm

k + 2Bmk∇̃kd + 2∇md ,

Fa =− Γkm
k + ∇̃kβmlBkl − Γlm

nβnkBkl − βmk∇̃lBkl + 2∇̃md + 2βmkBkl∇̃ld

+ 2βmn∇nd−∇nβmn − Γkl
mβkl.

(B.7)

Here the following conventions have been adopted

Bmn = em
µen

νBµν , ∂m = em
µ∂µ,

βmn = em
µen

νβµν , ∂̃m = em
µ∂̃µ.

(B.8)

The covariant derivatives are defined in the same way as in [43]

∇mBnk = ∂mBnk + 2Γm[n
lBk]l, ∇̃mBnk = ∂̃mBnk − 2Γml

[nBk]l,

∇mβbc = ∂mβnk − 2Γml
[nβk]l, ∇̃mβnk = ∂̃mβnk + 2Γm[n

lβ
k]l.

(B.9)

With Γ-symbols given by the following expressions

Γmn
k = em

µ∂µen
νek

ν ,

Γmn
k = em

µ∂̃µen
νek

ν .
(B.10)

Using the notations H, F, Q and R for the corresponding components of the generalised

flux one may write the equation (B.3) as follows

[Em, En] = F k
mnEk + HmnkEk,

[Em, En] = F m
nkEk + Qkm

nEk,

[Em, En] = Qmn
kEk + RmnkEk.

(B.11)

One should note, however, that the generalised vielbein used above is written in the

(B, β)-frame and hence contains 1/2d(d−1) more degrees of freedom than usual. For this

reason the above expression should be understood just as a convenient tool to incorporate

both B- and β-frames in a single expression. Before going to calculations one should

choose the frame to work in, taking into account that H-flux identically vanishes in the

β-frame, while R-flux vanishes in the B-frame.
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C Bianchi identities

It has been shown in [43] that the equations of motion of DFT and consistency of

the algebra impose certain conditions on the generalised flux which can be written in the

form of Bianchi identities on its components. Here we copy them from that work without

any derivation just to present the input used in the main text. Hence, the generalised

Bianchi identities come from the requirement that the generalised flux (with flat indices)

transform as a scalar under generalised diffeomorphisms:

D[mHnkl] −
3

2
Hp[mnτkl]

p = 0,

3D[mτnk]
l −DdHmnk + 3τ[mn

pτk]p
l − 3Q[m

lpHnk]p = 0,

2D[mQn]
kl + 2D[kτmn

l] − τmn
pQp

kl −HmnpR
pkl + 4Q[m

p[kτn]p
l] = 0,

3D[mQl
nk] −DlR

mnk + 3Qp
[mnQl

k]p − 3τlp
[mRnk]p = 0,

D[mRnkl] − 3

2
Rp[mnQp

kl] = 0;

(C.1)

the requirement that the DFT action transform as a scalar under local O(d) × O(d)

transformations:

DkHmnk +Dkτmn
k + 2D[mFn] − FkHmnk −Fkτmn

k = 0,

Dkτcm
n +DkQm

nk +DmFn −DnFm − Fkτcm
n − FkQm

nk = 0,

DkRmnk +DkQk
mn + 2D[mFn] − FkRmnk − FkQk

mn = 0;

(C.2)

and the strong constraint:

DmFm +DmFm − FmFm +
1

6
HmnkRmnk +

1

2
τmn

cQc
mn = 0. (C.3)

Note that all indices here are flat, and DA = EM
A ∂M , which is different from just (∂m, ∂̃m)

in the previous section.
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