MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

R/32 Jan 1980

ACE - the AMOS Context Editor

- VERSION 1 -

Friedrich Hertweck
Ute Schneider

This document describes the philosophy and
the specification of the AMOS Context
Editor. ACE may be wused to generate and
modify 1labeled source file segments or
unlabeled card image file segments, or to
list or search for strings in print file
segments produced by formatted FORTRAN WRITE
statements.

Die nachstehende Arbeit wurde im Rabmen desVertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschafl iiber die
Zusammenarbeit anf dem Gebiete der Plasmaphysik durchgefiibrt.

Copyright @ 1980 by

Max—-Planck-Institut fuer Plasmaphysik

8046 Garching, GERMANY

Alle Rechte,

auch die des photomechanischen Nachdrucks, vorbehalten
All Rights Reserved

0. Introduction
1. General Considerations

1.1 Invoking the AMOS Context Editor
1.2 Prompting and ACE Responses
1.3 Command Format

2. ACE Commands

1 Display and Search Commands
2 Current Line Commands
.3 Line Replacement Commands
4 Delete a Contiguous Sequence of Lines
5 Btring Replacement Command

3. Line Variables, Procedures, and GOTO
1l Line Variables

2 Command Procedures

.3 GOTO Command

4 Remarks

4, Control and Status Commands

4,1 SET Command

4,2 NUMBER Command

4.3 QUERY and X Commands

4,4 END and OFF Commands

4,5 FORGET Command

4,6 Transition to the AMOS Line Editor

Appendix 1l: ACE Command Syntax

10
11
12

13

13
14
15
15

15

16
16
17
17
17
18

19

0. Introduction

The AMOS Context Editor ACE 1is designed to «create,
display, and modify S- or C-files or to display the contents
of P-files or search for strings in P-files. S-files are
AMOS file segments of records of 72 bytes of text plus a
numeric label in columns 73:80 ("source" records), C-files
are unlabeled "card image" file segments of 80 byte records
of text, and P-files are file segments of up to 132 bytes of
text, preceded by an ASA printer control character (i.e.
records produced by FORTRAN formatted WRITE statements or
job output spooled via remote station 13).

The ACE editor only contains the commands to achieve the
above goal. The NUMBER command may be wused to convert
S-files (source files of 1labeled 72-byte records) into
C-files and vice versa. '

1. General Considerations

The context editor has two modes of operation:

(a) read-only mode (initiated by AMOS command DISPLAY), 1in
which only commands are permitted that display the
contents of the file segment; in this mode the user may
access lines of the file segment in random order or he
may search for lines containing (or not containing) a
given string;

(b) update mode (initiated by AMOS command ACE), in which
all commands may be used, especially those modifying
the file segment; in this mode the file segment is
processed sequentially from beginning to end, i.e. with
increasing line numbers or labels.

When in update mode, a "current 1line" 1is activated by
positioning commands. It may be modified or deleted, and new
lines may be inserted right after the current line.

However, no line preceding the current line may be
modified (but the update process may be repeated). After the
update of the current line is completed, it is "pushed up"
and the next line from "below" (i.e. from not yet used lines
of the "o0ld" file) is made the current line.

For the convenience of the wuser, there 1is a "display
window" consisting of the 20 1lines preceding the current
line (provided there are that many l1ines preceding the
current line), and the current line. The contents of this
window may be listed at any time during the update process
thus enabling the user to review actions on the file.

If during the update process a line above the window is

AMOS Context Editor 2

indicated in a LIST command or a line above the current line
is indicated in a command intended to modify the 1line, the
current update process is automatically completed by ACE,
thereby producing a new version of the file segment. Then a
new update cycle is started and the line indicated 1in the
command is made the current 1line. This process may be
described as a "wrap around".

1.1 Invoking the AMOS Context Editor

The AMOS Context Editor ACE runs under the AMOS System as
a subsystem of the AMOS File Editor. After a user has
signed-on to the AMOS System, he may invoke the AMOS Context
Editor with either of the two commands:

ACE <segment designator>
DISPLAY <segment designator>

The response is a status display, including the £file type,
the sizes of LFIELD and SFIELD, the string delimiter, etc.
and finally the word "ready", followed by the number of
l1ines contained in the file segment. If the segment does not
exist, then a new segment of type C-file is created by the
ACE command. If the user inadvertantly created a segment by
typing a wrong name, he may delete it wusing the FORGET
command.

1.2 Prompting and ACE Responses

There are two prompt modes in ACE

- prompt for ACE commands with the symbol > (angle
bracket) in the first position of the line

- prompt for data input without a prompt symbol such that
80 characters may be typed in a line.

Because data input mode is ended by empty input, a blank
line must be input by at least one blank character followed
by a carriage return.

ACE responses other than the display of lines of the file

segment being processed will always start with the symbol !
in column 1.

1.3 Command Format

A1l ACE commands consist of a command verb (or a one
letter abbreviation) followed by one or more operands which
can be

- a line range

— a line selector

- a change specification

AMOS Context Editor 3

Only the operand syntax of the FIND command (which has no
verb) and that of the control and status commands differ
from that format.

More than one command can be put on an input line if the
commands are separated by semicolons:

<command list> ::= <command>
| <command list> ; <command>

A command input 1line may not exceed 80 characters
(including the prompt symbol >).

2. ACE Commands

Normal operation of ACE is in command mode in which the
user is prompted for input by an >, wusually after the
current line has been displayed:

{contents of current line}
>

The user may now enter one of several kinds of ACE commands:

o display and search commands (which in DISPLAY mode may
access lines in random order)

o commands that access the current line alone

o 1line replacement commands

o string replacement (CHANGE) command

o DELETE command

o control and status commands

o END and OFF commands

The syntactic description of the commands follows the
general rules of BNF notation. The complete syntax
specification is attached with Appendix 1.
Vocabulary

In the description below, the command verbs are displayed
in "full length, upper case" form. It is understood that for
each command verb the 1lower case form and a standard
abbreviation are also valid. For instance the possible forms
for a LIST command are:

LIST L list 1

The following special symbols are used in the syntax of
ACE:

J
1]

+ - * N | 4, . 1 e # &

=e

AMOS Context Editor 4

Strings

<string> ::= <pattern string>
| <word string>

Certain commands search for the occurrence of specified
strings of characters. A <pattern string> is any series of
legal (i.e. ASCII printable) characters. A <word string> 1is
a <pattern string> which is delimited in the text by special
characters (including line begin and line end) or blanks.
This distinction 1is useful as a means of referencing
variables in a source program. For example it allows finding
all occurrences of the FORTRAN variable A without
interferences from occurrences of the letter A in the
variable ALPHA or the command READ.

Strings must be enclosed between a pair of string
delimiters which must not appear in the string. The closing
string delimiter must always be the same as the opening
string delimiter.

The chosen string delimiter denotes whether a <pattern
string> or a <word string> is the subject of the search.

ACE uses three string delimiters: a primary string delimiter
" and an alternate string delimiter ' for pattern strings,
and # for word strings. The latter two may be changed by the
user (cf. SET command) to any of the symbols

$ /%!

The Field Parameter
With the field parameter
Jirk

the columns j, j+1, ..., k can be selected for display,
search, or modification. There are global field parameters
to control the character positions in the 1line ("card
columns") for listing and searching, and some commands may
have their individual local field indication.

2.1 Display and Search Commands
The display and search commands can be used for all types
of file segments: 8-, C-, and P-files. If the command

DISPLAY had been used to activate the file segment, it
cannot be modified.

LIST

All lines specified by the parameters are displayed at
the terminal. The current line pointer remains unchanged.

AMOS Context Editor 5

The LIST command has the syntax

<list> ::= LIST <lines>
| LIST <range>
| LIST <-range>
| LIST <selector>
|

LIST

<lines> ::

{range> ::= + <num>
| <num>

{-range> ::= - <num>
| - <num> : <num>

<gsel> <window>

{selector> 1=
| @ <num>

<sel>

{expr>

<term>
<expr> | <term> 2

<expr> :

—

<factor>

{term> S
| <term> & <factor>

se

<factor>

:= <primary>
| \ <primary>

= <pattern string>
| <word string>
| (<expr>)

{primary>

<window> ::= <range> <field>
| <range>
1
|

<field>

<field> ::= <num> : <num>

The <lines> specification may only be used 1in read-only
mode because the numbers specify absolute line numbers (not

"card labels"!) which are meaningless in an update
environment (an insert or delete effectively changes all the
line numbers below the current line). The construct =<num>

denotes the line with line number <num>, the constructs with
a colon a range of lines, and the asterisk the last line of

the file segment.

The <range>, if empty, specifies the current line; the
form +<num> specifies the sequence of 1lines ¥X,...,%x+<num>
where x is the current line number; the form <num> specifies
the lines x+1, ..., x+<num>. The <-range> specifies 1lines
from the "display window" plus possibly some lines

AMOS Context Editor 6

"down-file".

The <selector> is used to select those lines from a range
for which the boolean expression <sel> is true. The truth
value of <pattern string> and <word string> is determined by
their occurrence in the line. From there on, the normal
rules for evaluating boolean expressions are applied (&
denoting the AND operator, | denoting the OR operator). The
empty string (i.e. "") may be used to select all lines from
a range. The search for the strings involved in <sel> is
performed in the 1indicated range of lines, possibly
restricted by <field> which specifies the columns in which
the search is to be performed. An empty range specification
means all remaining lines of the file segment, an empty
field specification means all columns of a line.

The selector @<num> is used for S-files to denote the
label with numerical value <num>; it is equivalent to the
selector #<num># 73:80. The search is terminated when the
indicated line is found or at end-of-file.

FIND
The FIND command locates the line for which the selector

has the value "true". The line found 1is made the current
line and displayed. The FIND command has the syntax

<find> ::= <line spec>
| <selector>
<line spec> ::= = <num>
| + <num>
| = <num>
|+
[=
| *
| * = <num>
If a line specification =<num> is given, the 1line 1is
directly located. The specification +<num> indicates the
line x + <num>, where x is the current line pointer; - <num>
denotes the line x - <num>. The symbol + stands for +1 and
the symbol - for -1.

The asterisk denotes the last line of the file segment.

The selector indicates a search for the given string. The
search starts with the first line following the current line
and continues till the range is exhausted or the indicated
string is found, or end-of-file is reached. The 1line
containing the string is made the current line.

If the string was not found, the response is "lnot found"”
and the last line of the range is made the current line.

AMOS Context Editor ¢

2,2 Current Line Commands

One way of updating a file segment 1is by proceeding
through the file segment with FIND commands and replacing,
modifying or deleting the current 1line, or inserting new
lines right after the current line. Typing an = causes a
copy of the current line to be inserted (i.e. the current
line is duplicated). The difference between this mode of
updating and the update cycle controlled by the "line
replacement” commands described in the next section is that
only the current line is accessed by the command.

The commands to be used are

REPLACE
MODIFY
ALTER

DELETE -
INSERT

all without parameters, thus indicating the current line as
operand.

The first three commands put the ACE processor into
replace, modify, or alter mode, respectively. The subsequent
input is treated as a replacement 1line, a modification
directive, or a string alteration directive, respectively.
The format of these directives 1is described below. After
these commands have been given, ACE stays in the indicated
mode, thus permitting the current 1line to be updated
repeatedly. Updating of the current line 1is terminated by
empty input or by a single / or % sign. Entering a single
letter command "r", "m", or "a" will change the current mode
to the new mode.

During modification the current line CL is extended by an
auxiliary line AL of the same length. The wvalid 1linelength
is determined by the type of the file segment (i.e. 80 for
C-file and 72 for S-file segments). If an input line IL is
longer than CL, the AL receives the overflowing characters.
The contents of the auxiliary line can be made the subject
of further modification(s) described below.

If at the end of an update ©process the auxiliary 1line
contains non-blank characters, it is converted into a normal
line and inserted right after the current 1line (and
appropriately labeled in case of an S-file).

Modification directives

When modification of the current line 1is requested (by
typing in a single "M"), the current line is extended by an
auxiliary line of the same length containing all blanks.

The current line and the auxiliary line will be treated
as one entity in the modification process. Any characters
inserted in the «current 1line will cause the remaining
characters to be shifted to the right. Characters shifted
from the current line will be saved in the auxiliary line,
shifting the contents of the auxiliary line to the right.

AMOS Context Fditor f

Any characters shifted from the auxiliary line will be lost.
If characters are deleted from the current line, the reverse
actions take place by supplying additional characters at the
end of the current line from the auxiliary line, the latter
being padded with blanks in turn.

Note that the modification directive acts on both the
current line and the auxiliary line. For instance, if the
input line is longer than 72 characters for an S-file, the
remaining input is used to modify the auxiliary line.

During the modification process the current line CL and
the input line IL are matched character by character. The
character in the input line determines what has to be done
and what character is to be placed into the result line PRL.

The following actions are performed if the input line
contains one of the indicated items:

blank (copy)
the CL character above the blank is moved to RL;

<string> (insert)
the string is moved to RL, then the characters of CL
above <string> (including the characters above the
string guotes) are copied to RL;

(delete)
the CL character above the underscore _ is skipped (anc
will therefore appear to be deleted from RL);

| (blank=-out)
the CL character above the stroke | is skipped and e
blank character is moved to RL;

! (split)
extend RL with blanks; the characters in CL above ! and
all characters to the right of the ! sign (including

the auxiliary line) are shifted to the auxiliary 1line
(any non-blank characters shifted from the auxiliary
line are lost);

'l (truncate)
the characters in CL above the first ! and all
following characters are deleted;

& (concatenate auxiliary line)
the CL character above & and all remaining characters
are skipped (i.e. they will appear to be deleted from
RL); the characters from the auxiliary line are copied
to RL; if the auxiliary line is blank, no concatenation
takes place;

&& (catenate auxiliary or next line)
the CL character above the firest & and the characters
following it are replaced by: the auxiliary line if it
is non-blank, or the next 1line from the old file
segment if the auxiliary line is blank (any overflowina
characters will be placed into the auxiliary line);

AMOS Context Editor 9

1& (delete auxiliary line, catenate next line)
the contents of the auxiliary line are discarded; the
CL character above the & and the characters following
it are replaced by the next 1line from the old file
segment (any overflowing characters will be placed into
the auxiliary line);

any other characters (replace)
the CL character is skipped, the input character 1is
moved to RL.

~

(activate auxiliary line)
the auxiliary line 1is made the <current 1line; this
command may be used to access the auxiliary 1line, for
instance for modification (Note: on the Siemens
terminals the symbol @ must be used);

\\ (restore)
a \ as single character input restores the previous
version of the current and auxiliary lines.

Modification of a line is terminated by entering empty input
or a / or % sign. In the first case ACE will return to
command mode and select the next line from an update cycle;
in the latter cases the update cycle is terminated and the
user is prompted by a > sign.

String alteration directive

The current line may also be modified by the ALTER
command. Subsequent input must be a

<string pair> ::= "<sequence of char>"<sequence of char>"

where the character sequence must not contain the string
guotes. Instead of the " the alternate string delimiters or
the word string delimiters may be used. In the current line
all occurrences of the first string are replaced by the
second string.

Delete current line

The DELETE command displays and deletes the current line,
followed by the message "!DELETED" and a command prompt > .

Insert new lines

The INSERT command places ACE into insert mode.
Subsequent input lines cause the current line to be pushed
up; the input line then becomes the current 1line. Thus a
sequence of new lines may be 1inserted right after the
current line.

Typing a = causes a copy of the current 1line to be
inserted (i.e. the current line is duplicated).

Typing in one of the letters "r", "m", or "a" permits the
last line that was inserted to be replaced, modified, or
altered, respectively. Typing an "i" returns to insert mode.

AMOS Context Editor 10

The insert mode normally is terminated by empty input.
Instead, a / or % may be used.

Typing a "d" will delete the last line inserted.

2.3 Line Replacement Commands

The line replacement commands are used to replace or
modify a sequence of 1lines specified by a selector.
Alternatively, the 1lines selected may be deleted, or
additional lines may be inserted after the selected 1lines.
The command given to intitialize the replacement loop
(REPLACE, MODIFY, or ALTER) or the delete or insertion loop
sets the primary mode, thus establishing the rules for the
interpretation of the user's input. However, it is possible
to switch to any secondary mode, thus permitting the user
complete freedom of how to handle his file segment.

REPLACE, MODIFY, ALTER, DELETE, or INSERT loops

These commands are used to initialize the primary
replacement mode to replace a sequence of existing lines by
other lines (either typed in or produced by modifying the
existing lines). Some lines may also be 1left unchanged,
others may be deleted or additional lines may be inserted.

All these commands set up a loop of wupdate operations
over the lines specified by the selector. The syntax of the
commands is:

{replace> ::= REPLACE <selector>

<modify> = MODIFY <selector>
<alter> := ALTER <selector>
<delete> := DELETE <selector>

<insert> :: INSERT <selector>

One by one, ACE makes each line selected from the range the
current line, displays it, and goes into input mode. The
user may now enter

- in replace mode:
a new line which replaces the current line;

- in modify mode:
a modification directive (cf. 2.2) to modify the
current line;

- in alter mode:
an alteration directive to replace in the current 1line
all occurrences of the first string by the second
string.

These inputs may be entered repeatedly, thus modifying the
current line again and again. If the user inputs

AMOS Context Editor 11

- in insert mode:
a new line, it is inserted after the current line which
may be the one previously inserted.

Entering

- empty input:
if not in delete mode empty input will push the current
line up and make the next line selected from the range
the current line; if in delete mode the current line is
deleted, the message !DELETED is displayed and the next
line is selected and displayed;

However, the user may also switch into a secondary line
replacement mode by entering a single character

a to switch to alter mode for the current line;
subsequent input must be an alteration directive

m to switch to modify mode for the current line;
subsequent input must be a modification directive

r to switch to replace mode for the current line;
subsequent input is treated as a replacement line

d to delete the current 1line, display the message
IDELETED, select the next current line and display it,
at the same time returning to the primary 1line
replacement mode

i to switch to line input mode to insert new lines right
after the current line; the current line is pushed up
and the input line is made the current line

= to push the current line up, make an exact copy of it
which becomes the current line (duplication of current
line) and switch to modify mode, thus permitting the
duplicate to be modified.

Whenever an empty input is given in secondary replacement
mode, the primary replacement mode is re—established and the
next current line is selected and displayed.

Finally, the input of
/ or
$ terminates the input cycle before the range is exhausted;
the last line handled remains the current line; note that
in a DELETE cycle the current line is then not deleted.
2.4 Delete a Contiguous Sequence of Lines
With another form of the DELETE command a sequence of
contiguous lines can be deleted from the file segment. The

syntax is:

<delete> ::= DELETE <range> <go>
| DELETE <sel-range> <go>

AMOS Context Editor L2

<sel-range> ::= <selector> :: <selector>

{go> 1= empty
I !
1

Pl

The <range> specifies a contiguous sequence of lines that
are to be deleted. <sel-range> also specifies a contiguous
set of lines to be deleted, but the first is found with the
first selector in the specified window, the last 1line Iis
found with the second selector, starting from the next line
(i.e. the 1line following the one found by the first
selector) .

If <go> is empty the changes are performed in "verify
mode": if the range contains less than four 1lines, all of
them are listed; if the range contains more than 3 lines,
the first and the last lines of the range are listed and the
user is prompted to reply:

empty input effectuates the delete
\ as input cancels the command

If <go> is ! the user is not prompted but the deleted 1lines
are listed (as described above); if <go> is !! the command
is performed without prompting the user and without 1listing
anything.

2.5 String Replacement Command

The string replacement command is used to change a string
where it occurs in a range of lines 1into another string
(which may be empty). Optionally, the search for and
replacement of the string may be restricted to a <field> of
columns of the line range. The syntax is:

<change> ::= CHANGE <rep> <string pair> <window> <go>
<rep> ::= <num> *
| empty

In all lines of the range the first string, in the order of
appearance, is replaced <num> times by the second string. IEf
the <field> specification of <window> is empty, the search
is performed in the whole 1line. If <rep> is empty, all
occurrences of the first string are replaced.

If <go> is empty the changes are performed in "verify
mode": for each line in which the search string 1is found,
the current line as it was before the change and the changed
line are displayed; then the secondary update mode is set to
"modify" and the wuser 1is prompted for a modification
directive:

AMOS Context Editor 13

empty input confirms the change
\ as input restores the original version of the line

a modification directive permits arbitrarily other modi-
fications

input of the single letters a, r, i, or d permits any
other desired modifications.

If <go> is ! the lines are displayed as described above; the
user is not prompted but ACE continues to find the next
line. If <go> is !! the display is suppressed also.

3. Line Variables, Procedures, and GOTO

In this section the more advanced concepts of 1line
variables and procedures are introduced. They serve to
automate update processes further.

3.1 Line Variables

A set of line variables V(1), V(2),..., V(19) may be used
to store lines that are used repeatedly. Each line wvariable
may hold a line of up to 80 characters (depending on the
file type).

There are two ways to specify the contents of a 1line
variable or a sequence of line variables:

<v def> ::= <v range> =
| <v range> = X

<v range> ::=V { <num>)

| V (<num> : <num>)
The first form of <v range> specifies Jjust one 1line, the
second form a contiguous sequence of lines.

If the first form of <v def> is used, then ACE goes into
input mode and the specified number of lines may be entered.
After the last line has been input, ACE returns into command
prompt mode.

In the second form of <v def>, the 1line wvariables are
filled with the current line and the 1lines following the
current line. The lines used are displayed.

The command

<v display> ::= <v range> ?

may be used to display the current contents of the specified
line variables.

The line variables may be used whenever line input |is

AMOS Context Editor 14

requested from the wuser (i.e. for REPLACE or INSERT
commands, string modification, or alteration directives).

As an example, the command sedquence
V(l:7)=X; D+6; "DO 12 K=1,N"; I V(1:7)

moves seven lines to another place further down in the file
(inserting an additional "=0;" after the DELETE moves the
lines up).

In general, <v range> may be used in any command where
input is requested. A range of more than one line may only
be used for insertions.

If <go> is !, no user response is necessary to proceed;
if <go> is 1!, in addition 1listing 1is restricted or
suppressed. The syntax is:

<command> ::= REPLACE <selector> <v range> <go>
| INSERT <selector> <v range> <go>
| MODIFY <selector> <v range> <go>
| ALTER <{selector> <v range> <go>

3.2 Command Procedures

The user may define procedures which consist of one or
more command lines. Each command line may hold up to 80
characters. They are denoted by P(l), P(2),...,P(19). They
are defined in the same way as line variables:

<p def> ::= <p range> =
| <p range> = X
{p range> ::= P (<num>)
| P (<num> : <num>)

The first form of <p range> specifies one command line, the
second form a contiguous sequence of command lines.

The specified command lines may be wused similarly to
procedures in an ordinary programming language:

<p call> ::= <p>
| <num> * <p>

<p> ::= P (<num>)
| P . <id>
The second form of <p call> causes the procedure to be
executed <num> times. In <p> the first line of "procedure"
is indicated. The second form is only used for predefined
library procedures where the identifier denotes the

procedure to be used (yet to be implemented) .

If during procedure execution an error mesSsage or a
warning is displayed, it is preceded by the display of the
current procedure command line. In some cases after the
message a command prompt is made with the prompt symbol

AMOS Context Editor 15

being an ! to indicate that the procedure execution is still
in process; then a command input can terminate procedure
execution.

Whenever during procedure execution input from the
terminal is requested, a single % sign serves as escape
character and stops procedure execution immediately.

The command

<p display> ::= <p range> ?

may be used to display the current contents of the specified
procedure lines.

Procedures or line variables are valid during a terminal
session as long as only the AMOS commands ACE or DISPLAY are
used; other AMOS commands may destroy the contents of
procedures or line variables.

3.3 GOTO Command

If a procedure consists of more than one command line,
the lines must be concatenated by GOTO commands:

<go to> ::= GOTO <num>
This command continues execution with procedure line
P(<num>), i.e. it should be the last command on a command

line.

If <num> in a GOTO command is zero, the current command
line is repeated. It is the only form of GOTO that may be
used outside procedure execution, i.e. it applies to the
command line that has been explicitly typed in.

Procedures may be nested up to 4 levels deep. Procedure
execution may be terminated by typing in a % whenever input
is requested. ACE then returns to command prompt mode.

3.4 Remarks

In order not to loose track of the state of procedure
execution, the user may use the remark command:

<remark> ::= [<sequence of characters>]
Whenever this command is encountered, it is printed

including the brackets [...].

4, Control and Status Commands

These commands are used to set certain environmental
parameters and to display them.

N

AMOS Context Editor 1

4,1 SET Command

The SET command is used to set the parameters LFIELD
(list field), SFIELD (search field), the boolean variables
LABEL and TEXT, and the alternate delimiters:

{set> SET <set list>

<set list> := <set parm>
| <set list>» , <set parm>

:= <set field>
| <{set bool>
| <set del>

{set parm>

{set bool> ::= <bool var>
| N\ <bool var>

<bool var> ::= TEXT
| LABEL

<set field> ::= <field var> = <num> : <num>
| <field wvar>

<field wvar> ::= LFIELD
| SFIELD

<set del> ::= DEL = ">
| WDEL = <">

<set bool> assigns the wvalue "true" or "false" to the
boolean variable, respectively; the second form of
<set field> resets the field to the default values:

| LFIELD | SFIELD
__________ +______.._.._____-+_.—____.__-.—
S-file | 1l: 80 | 1: 72
C-file | 1: 80 | l: 80
P-file | 2:133 | l:133

The default settings differ slightly for the different types
of terminal devices (linelength etc.).

The <set del> sets the alternate string delimiter to any
of the characters " S / # and ' . The characters ' and #
are the preset default values for pattern strings and word
strings, respectively.

4.2 NUMBER Command

This control command is wused to convert C-files into
S-files, and vice versa. The syntax is:

<number> = NUMBER <sequence>
| NUMBER
<sequence> ::= <num> . <num>

| . <num>

AMOS Context Editor 17

If the command is used with <sequence>, then the first form
of <sequence> is used to convert a C-file into an S-file, or
to renumber an S-file. The command must be given when the
file segment has just been opened or after a FIND command of
the form "=0" has been issued (i.e. the file segment has
been positioned at its beginning, just before the first
line). Numbering is then done by proceeding through the file
segment.

The second form is used to set the starting wvalue for the
label increment when inserting lines into an S-file. The
default value is 10, but it is gradually decreased, if
necessary, to 1 depending on the label of the next line and
the number of lines being inserted.

If NUMBER is used without an operand, then for both C-
and S-files columns 73:80 are set to blank and an S-file
becomes a C-file.

4,3 QUERY and X Commands

These commands are used to display the environmental
parameters (QUERY) and the current line pointer (X); the
syntax is:

{query> ::= QUERY
| X

4.4 END and OFF Commands

The END command completes the update process (if the ACE
command had been invoked) and returns to the AMOS line
editor. The file segment that has been used remains active.
The parameter TEXT retains its value. The syntax is:

<END> ::= END

The OFF command performs the same actions as END and
invokes the usual AMOS OFF in addition. The syntax is:

<OFF> ::= OFF

4.5 FORGET Command

The FORGET command discards all updates made since the
last backward positioning of the current line, i.e. -n,
where n>0, or =n, where n < current line pointer. In other
words, during an update process, the user steps through his
file segment, leaving modified 1lines "above" the current
line. The ACE system produces the new version of the file
segment during this process. The FORGET command simply
discards the updated version of the file segment and
positions the "old" file segment at the heginning. The
syntax is:

<FORGET> ::= FORGET

If a new file segment was created via the ACE command,

AMOS Context Editor 18

the FORGET command discards the file segment as a whole,
i.e. the file segment is purged and the session ~continues
with the AMOS line editor.

4.6 Transition to the AMOS Line Editor

In the command prompt mode (indicated by the > symbol)
the symbol % followed by an AMOS Line Editor command or
blanks completes the ACE update or display process. If a
command was specified, it is transferred to the AMOS Line
Editor and immediately executed.

AMOS Context Editor 19
Appendix l: ACE Command Syntax
In the following summary of the ACE command syntax, the
commands are grouped according to their purpose and the page
where they appear in the text is indicated.
General Rules and List Commands
Page
<command list> ::= <{command> 3
| <command list> ; <command>
<string> ::= <pattern string> 4
| <word string>
<list> ::= LIST <lines> 5
| LIST <range>
| LIST <-range>
| LIST <selector>
| LIST
<lines> ::= <num> : <num> 5
| <num> : *
| = <num>
| *
| * = <num>
| * — <num> : *
<range> ::= + <num> 5
| <num>
<{-range> ::= - <num> 5
| - <num> : <num>
<selector> ::= <sel> <window> B
| @ <num>
<sel> ::= <expr> B
<expr> 1= <term> 5
| <expr> | <term>
<term> ::= <factor> 5
| <term> & <factor>
¢factor> ::= <primary> 5
|\ <primary>
<primary> ::= <pattern string> 5
| <word string>
| (<expr>)
<window> ::= <range> <field> 5
| <range>
| <field>
|

<field> ::= <num> : <num> 5

AMOS Context Editor 20

Page
FIND Command 6
<find> ::= <line spec> 3
| <{selector>
<line spec>» ::= = <num> 5
| 4+ <num>
| = <num>
|+
| =
| *
| * — <num>
Line Replacement Commands 10
<replace> ::= REPLACE <selector> 10
<modify> := MODIFY <selector>
<alter> ::= ALTER <selector>
<{delete> := DELETE <selector>
<insert> ::= INSERT <selector>
Delete Command 11
{delete> ::= DELETE <range> <go> 11
| DELETE <del-range> <go>
¢sel-range> ::= <selector> :: <selector> 12
<go> ::= empty L2
|t
[11
String Replacement Command 12

<change> ::= CHANGE <rep> <string pair> <window> <go>

<rep> :t:= <num> ¥
| empty
Line Variables 13
<v def> ::= <v range> = 13
| <v range> = X
<v range> ::= V (<num>) 13
| Vv (<num> : <num>)

<v display> ::= <v range> ? 13

<command> ::= REPLACE <selector> <v range> <go> 14
| INSERT <selector> <v range> <go>
| MODIFY <selector> <v range> <go>
I

ALTER <selector> <v range> <go>

AMOS Context Editor 21
Page
Procedures, GOTO Command, and Remark 14, 15

<p def> ::= <p range> = 14
| <p range> = X
<p range> ::= P (<num>) 14
| P (<num> : <num>)
<p call> ::= <p> 14
| <num> * <p>
<p> ::= P (<num>) 14
| P . <id>
<p display> ::= <p range> ? 15
<go to> ::= GOTO <num> 15
<remark> ::= [<sequence of characters>] 15
Control, Status, and NUMBER Commands 15, 16, 17
<{set> = SET <set list> 15
<set list> ::= <set parm> 16
| <set list> , <set parm>
{set parm> := <set field> 16
| <set bool>
| <set del>
<set bool> ::= <bool var> 16
| \ <bool var>
<bool var> ::= TEXT 1A
| LABEL
¢<gset field> ::= <field var> = <num> : <num> 16
| <field var>
<field var> ::= LFIELD 16
| SFIELD
<set del> =::= DEL = <"> 16
| WDEL = <">
<number> ::= NUMBER <sequence> 16
| NUMBER
<sequence> ::= <num> . <num> 16
| . <num>
<query> ::= QUERY 17
| X
<end> = END 17
<eff> = OFF 17
<forget> = FORGET 17

