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Highlights 

 Optimal behaviour is quintessentially belief based  
 Behaviour can be described as optimising expected free energy  
 Expected free energy entails pragmatic and epistemic value  
 Habits are learned by observing one's own goal directed behaviour  
 Habits are then selected online during active inference  

 

 



 

Abstract 

This paper offers an active inference account of choice behaviour and learning. It focuses on the 

distinction between goal-directed and habitual behaviour and how they contextualise each other. We 

show that habits emerge naturally (and autodidactically) from sequential policy optimisation when 

agents are equipped with state-action policies. In active inference, behaviour has explorative 

(epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, 

where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and 

the subsequent emergence of habits.  Although goal-directed and habitual policies are usually 

associated with model-based and model-free schemes, we find the more important distinction is 

between belief-free and belief-based schemes. The underlying (variational) belief updating provides a 

comprehensive (if metaphorical) process theory for several phenomena, including the transfer of 

dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active 

inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. 

Keywords: active inference; habit learning; Bayesian inference; goal-directed; free energy; 

information gain; Bayesian surprise; epistemic value; exploration; exploitation 



 

Introduction 

There are many perspectives on the distinction between goal-directed and habitual behaviour 

(Balleine and Dickinson 1998, Yin and Knowlton 2006, Keramati, Dezfouli et al. 2011, Dezfouli and 

Balleine 2013, Dolan and Dayan 2013, Pezzulo, Rigoli et al. 2013). One popular view rests upon 

model-based and model-free learning (Daw, Niv et al. 2005, Daw, Gershman et al. 2011). In model-

free approaches, the value of a state (e.g., being in a particular location) is learned through trial and 

error, while actions are chosen to maximise the value of the next state (e.g. being at a rewarded 

location). In contrast, model-based schemes compute a value-function of states under a model of 

behavioural contingencies (Gläscher, Daw et al. 2010). In this paper, we consider a related distinction; 

namely, the distinction between policies that rest upon beliefs about states and those that do not. In 

other words, we consider the distinction between choices that depend upon a (free energy) functional 

of beliefs about states, as opposed to a (value) function of states. 

Selecting actions based upon the value of states only works when the states are known. In other 

words, a value function is only useful if there is no ambiguity about the states to which the value 

function is applied. Here, we consider the more general problem of behaving under ambiguity 

(Pearson, Watson et al. 2014). Ambiguity is characterized by an uncertain mapping between hidden 

states and outcomes (e.g., states that are partially observed) – and generally calls for policy selection 

or decisions under uncertainty; e.g. (Alagoz, Hsu et al. 2010, Ravindran 2013). In this setting, optimal 

behaviour depends upon beliefs about states, as opposed to states per se. This means that choices 

necessarily rest on inference, where optimal choices must first resolve ambiguity. We will see that this 

resolution, through epistemic behaviour, is an emergent property of (active) inference under prior 

preferences or goals. These preferences are simply outcomes that an agent or phenotype expects to 

encounter (Friston, Rigoli et al. 2015). So can habits be learned in an ambiguous world? In this paper, 

we show that epistemic habits emerge naturally from observing the consequences of (one's own) goal-

directed behaviour. This follows from the fact that ambiguity can be resolved, unambiguously, by 

epistemic actions. 

To illustrate the distinction between belief-based and belief-free policies, consider the following 

examples: a predator (e.g., an owl) has to locate a prey (e.g., a field mouse). In this instance, the best 

goal-directed behaviour would be to move to a vantage point (e.g., overhead) to resolve ambiguity 

about the prey’s location. The corresponding belief-free policy would be to fly straight to the prey, 

from any position, and consume it. Clearly, this belief-free approach will only work if the prey reveals 

its location unambiguously (and the owl knows exactly where it is). A similar example could be a 

predator waiting for the return of its prey to a waterhole. In this instance, the choice of whether to wait 



depends on the time elapsed since the prey last watered. The common aspect of these examples is that 

the belief state of the agent determines the optimal behaviour. In the first example, this involves 

soliciting cues from the environment that resolve ambiguity about the context (e.g., location of a 

prey). In the second, optimal behaviour depends upon beliefs about the past (i.e., memory). In both 

instances, a value-function of the states of the world cannot specify behaviour, because behaviour 

depends on beliefs or knowledge (i.e., belief states as opposed to states of the world).  

Usually, in Markov decision processes (MDP), belief-based problems call for an augmented state-

space that covers the belief or information states of an agent (Averbeck 2015) – known as a belief 

MDP (Oliehoek, Spaan et al. 2005). Although this is an elegant solution to optimizing policies under 

uncertainty about (partially observed) states, the composition of belief states can become 

computationally intractable; not least because belief MDPs are defined over a continuous belief state-

space (Cooper 1988, Duff 2002, Bonet and Geffner 2014). Active inference offers a simpler approach 

by absorbing any value-function into a single functional of beliefs.  This functional is variational free 

energy that scores the surprise or uncertainty associated with a belief, in light of observed (or 

expected) outcomes. This means that acting to minimise free energy resolves ambiguity and realises 

unsurprising or preferred outcomes. We will see that this single objective function can be unpacked in 

a number of ways that fit comfortably with established formulations of optimal choice behaviour and 

foraging.  

In summary, schemes that optimise state-action mappings – via a value-function of states – could be 

considered as habitual, whereas goal-directed behaviour is quintessentially belief-based. This begs the 

question as to whether habits can emerge under belief-based schemes like active inference. In other 

words, can habits be learned by simply observing one's own goal-directed behaviour? We show this is 

the case; moreover, habit formation is an inevitable consequence of equipping agents with the 

hypothesis that habits are sufficient to attain goals. We illustrate these points, using formal 

(information theoretic) arguments and simulations. These simulations are based upon a generic 

(variational) belief update scheme that shows several behaviours reminiscent of real neuronal and 

behavioural responses. We highlight some of these behaviours in an effort to establish the construct 

validity of active inference. 

This paper comprises four sections. The first provides a description of active inference, which 

combines our earlier formulations of planning as inference (Friston, Schwartenbeck et al. 2014) with 

Bayesian model averaging (FitzGerald, Dolan et al. 2014) and learning (FitzGerald, Dolan et al. 

2015). Importantly, action (i.e. policy selection), perception (i.e., state estimation) and learning (i.e., 

reinforcement learning) all minimise the same quantity; namely, variational free energy. In this 

formulation, habits are learned under the assumption (or hypothesis) there is an optimal mapping from 



one state to the next, that is not context or time-sensitive1. Our key interest was to see if habit-learning 

emerges as a Bayes-optimal habitisation of goal-directed behaviour, when circumstances permit. This 

follows a general line of thinking, where habits are effectively learned as the invariant aspects of goal-

directed behaviour (Dezfouli and Balleine 2013, Pezzulo, Rigoli et al. 2013, Pezzulo, van der Meer et 

al. 2014, Pezzulo, Rigoli et al. 2015). It also speaks to the arbitration between goal-directed and 

habitual policies (Lee, Shimojo et al. 2014). The second section considers variational belief updating 

from the perspective of standard approaches to policy optimisation based on the Bellman optimality 

principle. In brief, we will look at dynamic programming schemes for Markovian decision processes 

that are cast in terms of value-functions – and how the ensuing value (or policy) iteration schemes can 

be understood in terms of active inference.  

The third section uses simulations of foraging in a radial maze to illustrate some key aspects of 

inference and learning; such as the transfer of dopamine responses to conditioned stimuli, as agents 

become familiar with their experimental contingencies (Fiorillo, Tobler et al. 2003). The final section 

considers context and habit learning, concluding with simulations of reversal learning, habit formation 

and devaluation (Balleine and Ostlund 2007). The aim of these simulations is to illustrate how the 

above phenomena emerge from a single imperative (to minimise free energy) and how they follow 

naturally from each other. 

 

Active inference and learning 

This section provides a brief overview of active inference. The formalism used in this paper builds 

upon our previous treatments of Markov decision processes (Schwartenbeck, Fitzgerald et al. 2013, 

Friston, Schwartenbeck et al. 2014, FitzGerald, Dolan et al. 2015, Friston, Rigoli et al. 2015, Pezzulo, 

Rigoli et al. 2015). Specifically, we extend sequential policy optimisation to include action-state 

policies of the sort optimised by dynamic programming and backwards induction (Bellman 1952, 

Howard 1960). Active inference is based upon the premise that everything minimises variational free 

energy. This leads to some surprisingly simple update rules for action, perception, policy selection, 

learning and the encoding of uncertainty (i.e., precision) that generalise established normative 

approaches. 

In principle, the following scheme can be applied to any paradigm or choice behaviour. Earlier 

applications have been used to model waiting games (Friston, Schwartenbeck et al. 2013) the urn task 

and evidence accumulation (FitzGerald, Schwartenbeck et al. 2015), trust games from behavioural 

                                                           
1 Here, we mean context insensitive in the sense of Thrailkill, E. A. and M. E. Bouton (2015). "Contextual 
control of instrumental actions and habits." J Exp Psychol Anim Learn Cogn 41(1): 69-80.. In other words, 
context refers to outcome contingencies; not the paradigmatic context. 



economics (Moutoussis, Trujillo-Barreto et al. 2014, Schwartenbeck, FitzGerald et al. 2015), 

addictive behaviour (Schwartenbeck, FitzGerald et al. 2015), two-step maze tasks (Friston, Rigoli et 

al. 2015) and engineering benchmarks such as the mountain car problem (Friston, Adams et al. 2012). 

Empirically, it is has been used in the setting of computational fMRI (Schwartenbeck, FitzGerald et 

al. 2015). More generally, in theoretical biology, active inference is a necessary aspect of any 

biological self-organisation (Friston 2013), where free energy reflects survival probability in an 

evolutionary setting (Sella and Hirsh 2005). 

In brief, active inference separates the problems of optimising action and perception by assuming that 

action fulfils predictions based upon perceptual inference or state-estimation. Optimal predictions are 

based on (sensory) evidence that is evaluated in relation to a generative model of (observed) 

outcomes. This allows one to frame behaviour as fulfilling optimistic predictions, where the inherent 

optimism is prescribed by prior preferences (Friston, Schwartenbeck et al. 2014). Crucially, the 

generative model contains beliefs about future states and policies, where the most likely policies lead 

to preferred outcomes. This enables action to realise preferred outcomes, based on the assumption that 

both action and perception are trying to maximise the evidence or marginal likelihood of the 

generative model, as scored by variational free energy.  

Figure 3, provides an overview of active inference in terms of the functional anatomy and processes 

implicit in the minimisation of variational free energy. In brief, sensory evidence is accumulated to 

form beliefs about the current state of the world. These beliefs are constrained by expectations of past 

(and future) states. This evidence accumulation corresponds to state estimation under each policy the 

agent entertainments. The quality of each policy is then evaluated in terms of its expected free energy. 

The implicit policy selection therefore depends on expectations about future states under each policy, 

where the encoding of future states lends the scheme an ability to plan and explore. After the free 

energies of each policy have been evaluated, they are used to predict the next state of the world, 

through Bayesian model averaging (over policies); in other words, policies that lead to preferred 

outcomes have a greater influence on predictions. This enables action to realise predicted states. Once 

an action has been selected, it generates a new observation and the perception-action cycle begins 

again. In what follows, we will see how these processes emerge naturally from the single imperative 

to minimise (expected) free energy, under a fairly generic model of the world. 

As noted above, the generative model includes hidden states in the past and the future. This enables 

agents to select policies that will maximise model evidence in the future by minimising expected free 

energy. Furthermore, it enables learning about contingencies based upon state transitions that are 

inferred retrospectively. We will see that this leads to a Bayes-optimal arbitration between epistemic 

(explorative) and pragmatic (exploitative) behaviour that is formally related to several established 

constructs; e.g., the Infomax principle (Linsker 1990), Bayesian surprise (Itti and Baldi 2009), the 



value of information (Howard 1966), artificial curiosity (Schmidhuber 1991), expected utility theory 

(Zak 2004) and so on. We start by describing the generative model upon which predictions and 

actions are based. We then describe how action is specified by (Bayesian model averages of) beliefs 

about states of the world, under different models or policies. This section concludes by considering 

the optimisation of these beliefs (i.e., inference and learning) through Bayesian belief updating. The 

third section illustrates the formalism of the current section, using an intuitive example. 

 

Notation: The parameters of categorical distributions over discrete states {0,1}s  are denoted by 

column vectors of expectations [0,1]s , while the ~ notation denotes sequences of variables over 

time; e.g., 
1( , , )Ts s s . The entropy of a probability distribution ( ) Pr( )P s S s  is denoted by 

( ) [ ( )] [ ln ( )]PH S H P s E P s   , while the relative entropy or Kullback-Leibler (KL) divergence is 

denoted by [ ( ) || ( )] [ln ( ) ln ( )]QD Q s P s E Q s P s  .  Inner and outer products are indicated by 

T
A B A B  , and T

A B AB   respectively. We use a hat notation lns s  to denote (natural) 

logarithms. Finally, ( | ) ( )P o s Cat A  implies Pr( | ) ( )ijo i s j Cat   A . 

Definition: Active inference rests on the tuple ( , , , , , , )O P Q R S T U : 

 A finite set of outcomes O  

 A finite set of control states or actions U  

 A finite set of hidden states S  

 A finite set of time sensitive policies T  

 A  generative process ( , , )R o s u that generates probabilistic outcomes o O  from (hidden) 

states s S and action u U  

 A generative model ( , , , )P o s    with parameters  , over outcomes, states and policies  

T  , where {0, , }K   returns a sequence of actions ( )tu t  

 An approximate posterior 
0( , , ) ( | ) ( | ) ( ) ( )TQ s Q s Q s Q Q       over states, policies 

and parameters with expectations 
0( , , , , )T

 s s π η  

 

Remarks: The generative process describes transitions among (hidden) states in the world that 

generate observed outcomes. These transitions depend upon actions, which depend on beliefs about 

the next state. In turn, these beliefs are formed using a generative model of how observations are 

generated. The generative model describes what the agent believes about the world, where beliefs 

about hidden states and policies are encoded by expectations. Note the distinction between actions 



(that are part of the generative process in the world) and policies (that are part of the generative model 

of an agent). This distinction allows actions to be specified by beliefs about policies, effectively 

converting an optimal control problem into an optimal inference problem (Attias 2003, Botvinick and 

Toussaint 2012). 

 

The generative model 

The generative model for partially observable Markov decision processes can be parameterised in a 

general way as follows, where the model parameters are { , , , , , }a b c d e  : 
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The role of each model parameter will be unpacked when we consider model inversion and worked 

examples. For reference, Table 1 provides a brief description of this model’s states and parameters. 

The corresponding (approximate) posterior over hidden states and parameters ( , , )x s    can be 

expressed in terms of their expectations 
0( , , , , )T

 x s s π η  and ( , , , , , )η a b c d e β  



 

1( ) ( | ) ( | ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

| ( )
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In this generative model, observations depend only upon the current state (Equation 1.a), while state 

transitions depend on a policy or sequence of actions (Equation 1.b). This (sequential) policy is 

sampled from a Gibbs distribution or softmax function of expected free energy  E G , with 

inverse temperature or precision   (Equation 1.e). Here E  corresponds to prior beliefs about 

policies, while G  is the free energy expected under each policy (see below). Crucially, policies come 

in two flavours: when 0   the state transitions do not depend on the policy and the next state is 

always specified (probabilistically) by the current state (Equation 1.c). In other words, there is one 

special policy that, if selected, will generate the same state transitions and subsequent actions, 

irrespective of time or context. This is the habitual or state-action policy. Conversely, when 0  , 

transitions depend on a sequential policy that entails ordered sequences of actions (Equation 1.b)..  

Note that the policy is a random variable that has to be inferred. In other words, the agent entertains 

competing hypotheses or models of its behaviour, in terms of policies. This contrasts with standard 

formulations, in which one (habitual) policy returns an action as a function of each state ( )u s , as 

opposed to time, ( )u t . In other words, different policies can prescribe different actions from the 

same state, which is not possible under a state-action policy. Note also that the approximate posterior 

is parameterised in terms of expected states under each policy. In other words, we assume that the 

agent keeps a separate record of expected states – in the past and future – for each allowable policy. 

Essentially, this assumes the agents have a short term memory for prediction and postdiction. When 

interpreted in the light of hippocampal dynamics, this provides a simple explanation for phenomena 

like place-cell responses and phase precession (Friston and Buzsaki 2016). A separate representation 

of trajectories for each policy can be thought of in terms of a saliency map, where each location 

corresponds to a putative policy: e.g., a fixation point for the next saccade (Friston, Adams et al. 2012, 

Mirza, Adams et al. 2016). 

The predictions that guide action are based upon a Bayesian model average of policy-specific states. 

In other words, policies the agent considers it is more likely to be pursuing dominate predictions about 



the next outcome and the ensuing action. Finally, all the conditional probabilities – including the 

initial state – are parameterised in terms of Dirichlet distributions (FitzGerald, Dolan et al. 2015). The 

sufficient statistics of these distributions are concentration parameters that can be regarded as the 

number of [co]occurrences encountered in the past. In other words, they encode the number of times 

various combinations of states and outcomes have been observed, which specify their probability – 

and the confidence in that probability. In what follows, we first describe how actions are selected, 

given beliefs about the hidden state of the world and the policies currently being pursued. We will 

then turn to the more difficult problem of optimising the beliefs upon which action is based. 

 

Behaviour action and reflexes 

We associate action with reflexes that minimise the expected KL divergence between the outcomes 

predicted at the next time step and the outcome predicted after each action. Mathematically, this can 

be expressed in terms of minimising (outcome) prediction errors as follows: 
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      (3 

This formulation of action is considered reflexive by analogy to motor reflexes that minimise the 

discrepancy between proprioceptive signals (primary afferents) and descending motor commands or 

predictions. Heuristically, action realises expected outcomes by minimising the expected outcome 

prediction error. Expectations about the next outcome therefore enslave behaviour. If we regard 

competing policies as models of behaviour, the predicted outcome is formally equivalent to a 

Bayesian model average of outcomes, under posterior beliefs about policies (last equality above).  

 

Free energy and expected free energy 

In active inference, all the heavy lifting is done by minimising free energy with respect to 

expectations about hidden states, policies and parameters. Variational free energy can be expressed as 

a function of the approximate posterior in a number of ways:  



( )( ) arg min

( | )

E [ln ( ) ln ( , )]

E [ln ( ) ln ( | ) ln ( )]

E [ln ( ) ln ( | ) ln ( )]

[ ( ) || ( | )] ln ( )

[ ( ) || ( )]

Q x

Q

Q

Q

relative entropy log evidence

complexity

Q x F

P x o

F Q x P x o

Q x P x o P o

Q x P o x P x

D Q x P x o P o
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

 

  
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 

 E [ln ( | )]Q

accuracy

P o x

      (4 

where 
1( , , )to o o  denotes observations up until the current time. 

Because KL divergences cannot be less than zero, the penultimate equality means that free energy is 

minimised when the approximate posterior becomes the true posterior. At this point, the free energy 

becomes the negative log evidence for the generative model (Beal 2003). This means minimising free 

energy is equivalent to maximising model evidence, which is equivalent to minimising the complexity 

of accurate explanations for observed outcomes (last equality). 

With this equivalence in mind, we now turn to the prior beliefs about policies that shape posterior 

beliefs – and the Bayesian model averaging that determines action. Minimising free energy with 

respect to expectations ensures that they encode posterior beliefs, given observed outcomes. However, 

beliefs about policies rest on outcomes in the future, because these beliefs determine action and action 

determines subsequent outcomes. This means that policies should, a priori, minimise the free energy 

of beliefs about the future. Equation 1.e expresses this formally by making the log probability of a 

policy proportional to the free energy expected under that policy. The expected free energy of a policy 

follows from Equation 4 (Friston, Rigoli et al. 2015).  
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where ( , | ) ( | ) ( | ) ( , | , )Q Q o s P o s Q s P o s o            and ( | , ) ( | )Q o s P o s     . 

In the expected free energy, relative entropy becomes mutual information and log-evidence becomes 

the log-evidence expected under the predicted outcomes. If we associate the log prior over outcomes 

with utility or prior preferences: ( ) ln ( )U o P o  , the expected free energy can also be expressed in 

terms of epistemic and extrinsic value. This means extrinsic value corresponds to expected utility and 

can be associated with the log-evidence for an agent's model of the world expected in the future. 

Epistemic value is simply the expected information gain (mutual information) afforded to hidden 

states by future outcomes (or vice-versa). A final re-arrangement shows that complexity becomes 

expected cost; namely, the KL divergence between the posterior predictions and prior preferences; 

while accuracy becomes the accuracy, expected under predicted outcomes (i.e. negative ambiguity). 

This last equality shows how expected free energy can be evaluated relatively easily: it is just the 

divergence between the predicted and preferred outcomes, minus the ambiguity (i.e., entropy) 

expected under predicted states. 

In summary, expected free energy is defined in relation to prior beliefs about future outcomes. These 

define the expected cost or complexity and complete the generative model. It is these preferences that 

lend inference and action a purposeful or pragmatic (goal directed) aspect. There are several useful 

interpretations of expected free energy that appeal to (and contextualise) established constructs. For 

example, maximising epistemic value is equivalent to maximising (expected) Bayesian surprise 

(Schmidhuber 1991, Itti and Baldi 2009), where Bayesian surprise is the KL divergence between 

posterior and prior beliefs. This can also be interpreted in terms of the principle of maximum mutual 

information or minimum redundancy (Barlow 1961, Linsker 1990, Olshausen and Field 1996, 

Laughlin 2001). This is because epistemic value is the mutual information between hidden states and 

observations. In other words, it reports the reduction in uncertainty about hidden states afforded by 



observations. Because the KL divergence (or information gain) cannot be less than zero, it disappears 

when the (predictive) posterior is not informed by new observations. Heuristically, this means 

epistemic policies will search out observations that resolve uncertainty about the state of the world 

(e.g., foraging to locate a prey). However, when there is no posterior uncertainty – and the agent is 

confident about the state of the world – there can be no further information gain and epistemic value 

will be the same for all policies.  

When there are no preferences, the most likely policies maximise uncertainty or expected information 

over outcomes (i.e., keep options open), in accord with the maximum entropy principle (Jaynes 1957); 

while minimising the entropy of outcomes, given the state. Heuristically, this means agents will try to 

avoid uninformative (low entropy) outcomes (e.g., closing one's eyes), while avoiding states that 

produce ambiguous (high entropy) outcomes (e.g., a noisy restaurant) (Schwartenbeck, Fitzgerald et 

al. 2013). This resolution of uncertainty is closely related to satisfying artificial curiosity 

(Schmidhuber 1991, Still and Precup 2012) and speaks to the value of information (Howard 1966). It 

is also referred to as intrinsic value: see (Barto, Singh et al. 2004) for discussion of intrinsically 

motivated learning. Epistemic value can be regarded as the drive for novelty seeking behaviour 

(Wittmann, Daw et al. 2008, Krebs, Schott et al. 2009, Schwartenbeck, Fitzgerald et al. 2013), in 

which we anticipate the resolution of uncertainty (e.g., opening a birthday present). See also (Barto, 

Mirolli et al. 2013). 

The expected complexity or cost is exactly the same quantity minimised in risk sensitive or KL 

control (Klyubin, Polani et al. 2005, van den Broek, Wiegerinck et al. 2010), and underpins related 

(free energy) formulations of bounded rationality based on complexity costs (Braun, Ortega et al. 

2011, Ortega and Braun 2013). In other words, minimising expected complexity renders behaviour 

risk-sensitive, while maximising expected accuracy renders behaviour ambiguity-sensitive. 

Although the above expressions appear complicated, expected free energy can be expressed in a 

compact and simple form in terms of the generative model: 
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The two terms in the expression for expected free energy represent risk and ambiguity sensitive 

contributions respectively, where utility is a vector of preferences over outcomes. The decomposition 

of expected free energy in terms of expected cost and ambiguity lends a formal meaning to risk and 

ambiguity: risk is the relative entropy or uncertainty about outcomes, in relation to preferences, while 

ambiguity is the uncertainty about outcomes in relation to the state of the world. This is largely 

consistent with the use of risk and ambiguity in economics (Kahneman and Tversky 1979, Zak 2004, 

Knutson and Bossaerts 2007, Preuschoff, Quartz et al. 2008), where ambiguity reflects uncertainty 

about the context (e.g., which lottery is currently in play). 

In summary, the above formalism suggests that expected free energy can be carved in two 

complementary ways: it can be decomposed into a mixture of epistemic and extrinsic value, 

promoting explorative, novelty-seeking and exploitative, reward-seeking behaviour respectively. 

Equivalently, minimising expected free energy can be formulated as minimising a mixture of 

expected cost or risk and ambiguity. This completes our description of free energy. We now turn to 

belief updating that is based on minimising free energy under the generative model described above. 

 

Belief updating 

Belief updating mediates inference and learning, where inference means optimising expectations 

about hidden states (policies and precision), while learning refers to optimising model parameters. 

This optimisation entails finding the sufficient statistics of posterior beliefs that minimise variational 

free energy. These solutions are (see Appendix 1): 



 

1 1 1

0

nference

( )    

( ) I

( )   

o
    
     




       
    
    

s A B s B s

π E F γ G
β π π G

 

0

1( )
0

0 0
10

0 1

0

earning

( ) ( )
( ) ( )   

( ) ( )

L( ) ( )

( ) ( )

( ) ( )

u

a o

u b u

c

d

e

 

 
   

 

 
 
 
 
 





  
 

          
    

   







a s
A a a

b π s s
B b b

c s sC c c

D d d d s

E e e e π

   (7 

For notational simplicity, we have used: ( ( ))
  B B , 

0
 B C , 0 0

 D B s , 1γ β  and 

0 ( )  π E γ G .  

Usually, in variational Bayes, one would iterate the above self-consistent equations until convergence. 

However, we can also obtain the solution in a robust and biologically more plausible fashion by using 

a gradient descent on free energy (see Friston et al under review): Solving these equations produces 

posterior expectations that minimise free energy to provide Bayesian estimates of hidden variables. 

This means that expectations change over several timescales: a fast timescale that updates posterior 

beliefs about hidden states after each observation (to minimise free energy over peristimulus time) 

and a slower timescale that updates posterior beliefs as new observations are sampled (to mediate 

evidence accumulation over observations). See also (Penny, Zeidman et al. 2013). Finally, at the end 

of each sequence of observations (i.e., trial of observation epochs) the expected (concentration) 

parameters are updated to mediate learning over trials. These updates are remarkably simple and have 

intuitive (neurobiological) interpretations: 

Updating hidden states corresponds to state estimation, under each policy. Because each expectation 

is informed by expectations about past and future states, this scheme has the form of a Bayesian 

smoother that combines (empirical) prior expectations about hidden states with the likelihood of the 

current observation. Having said this, the scheme does not use conventional forward and backward 

sweeps, because all future and past states are encoded explicitly. In other words, representations 

always refer to the same hidden state at the same time in relation to the start of the trial – not in 

relation to the current time. This may seem counterintuitive but this form of spatiotemporal (place and 

time) encoding finesses belief updating considerably and has a degree of plausibility in relation to 

empirical findings, as discussed elsewhere. 



The policy updates are just a softmax function of their log probability, which has three components: a 

prior based on previous experience, the (posterior) free energy based on past outcomes and the 

expected (prior) free energy based on preferences about future outcomes. Note that prior beliefs about 

policies in the generative model are supplemented or informed by the (posterior) free energy based on 

outcomes. Because habits are just another policy, the arbitration among habits and (sequential) 

policies rests on their posterior probability, which is closely related to the proposals in (Daw, Niv et 

al. 2005, Lee, Shimojo et al. 2014) but introduces a risk and ambiguity trade-off in policy selection 

(FitzGerald, Dolan et al. 2014). Policy selection also entails the optimisation of expected uncertainty 

or precision. This is expressed above in terms of the temperature (inverse precision) of posterior 

beliefs about precision: 1β γ . One can see that temperature increases with expected free energy. In 

other words, policies that, on average, have a high expected free energy will influence posterior 

beliefs about policies with less precision.  

Interestingly, the updates to temperature (and implicitly precision) are determined by the difference 

between the expected free energy under posterior beliefs about policies and the expected free energy 

under prior beliefs. This endorses the notion of reward prediction errors as an explanation for 

dopamine responses; in the sense that if posterior beliefs based upon current observations reduce the 

expected free energy, relative to prior beliefs, then precision will increase (FitzGerald, Dolan et al. 

2015). This can be related to dopamine discharges that have been interpreted in terms of changes in 

expected reward (Schultz and Dickinson 2000, Fiorillo, Tobler et al. 2003). The role of the 

neuromodulator dopamine in encoding precision is also consistent with its multiplicative effect in the 

second update – to nuance the selection among competing policies (Fiorillo, Tobler et al. 2003, Frank, 

Scheres et al. 2007, Humphries, Wood et al. 2009, Humphries, Khamassi et al. 2012, Solway and 

Botvinick 2012, Mannella and Baldassarre 2015). We will return to this later. 

Finally, the updates for the parameters bear a marked resemblance to classical Hebbian plasticity 

(Abbott and Nelson, 2000). The transition or connectivity updates comprise two terms: an associative 

term that is a digamma function of the accumulated coincidence of past (postsynaptic) and current 

(presynaptic) states (or observations under hidden causes) and a decay term that reduces each 

connection as the total afferent connectivity increases. The associative and decay terms are strictly 

increasing but saturating functions of the concentration parameters. Note that the updates for the 

(connectivity) parameters accumulate coincidences over time because, unlike hidden states, 

parameters are time invariant. Furthermore, the parameters encoding state transitions have associative 

terms that are modulated by policy expectations. In addition to the learning of contingencies through 

the parameters of the transition matrices, the vectors encoding beliefs about the initial state and 

selected policy accumulate evidence by simply counting the number of times they occur. In other 

words, if a particular state or policy is encountered frequently, it will come to dominate posterior 



expectations. This mediates context learning (in terms of the initial state) and habit learning (in terms 

of policy selection). In practice, the learning updates are performed at the end of each trial or 

sequence of observations. This ensures that learning benefits from inferred (postdicted) states, after 

ambiguity has been resolved through epistemic behaviour. For example, the agent can learn about the 

initial state, even if the initial cues were completely ambiguous. 

 

Summary 

By assuming a generic (Markovian) form for the generative model, it is fairly easy to derive Bayesian 

updates that clarify the relationships between perception, policy selection, precision and action – and 

how these quantities shape beliefs about hidden states of the world and subsequent behaviour. In brief, 

the agent first infers the hidden states under each model or policy that it entertains. It then evaluates 

the evidence for each policy based upon prior beliefs or preferences about future outcomes. Having 

optimised the precision or confidence in beliefs about policies, they are used to form a Bayesian 

model average of the next outcome, which is realised through action. The anatomy of the implicit 

message passing is not inconsistent with functional anatomy in the brain: see (Friston, Schwartenbeck 

et al. 2014) and Figures 1 and 2. Figure 2 reproduces the (solutions to) belief updating and assigns 

them to plausible brain structures. This functional anatomy rests on reciprocal message passing 

among expected policies (e.g., in the striatum) and expected precision (e.g., in the substantia nigra). 

Expectations about policies depend upon expected outcomes and states of the world (e.g., in the 

prefrontal cortex (Mushiake, Saito et al. 2006) and hippocampus (Pezzulo, van der Meer et al. 2014). 

Crucially, this scheme entails reciprocal interactions between the prefrontal cortex and basal ganglia 

(Botvinick and An 2008); in particular, selection of expected (motor) outcomes by the basal ganglia 

(Mannella and Baldassarre 2015). In the next section, we consider the formal relationships between 

active inference and conventional schemes based upon value functions. 

 

Relationship to Bellman formulations 

Hitherto, we have assumed that habits are based upon learned state transitions. However, it is possible 

that these transitions could be evaluated directly, under the assumption that an optimal (state-action) 

policy will be adopted in the future. Dynamic programming or backwards induction is the standard 

approach to optimising state-action policies under this assumption (Bellman 1952, Howard 1960). We 

can express dynamic programming using the above notation as follows: 
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The first pair of equations represents the two steps of dynamic programming. The second set of 

equations expresses the optimal policy in terms of our generative model, where 
sB  denotes the 

column of the matrix encoding the transitions from state s. In brief, the optimal policy returns the 

action that maximises utility ( )U s U  plus a value-function of states ( )V s V . The value-function 

is then evaluated under the optimal policy, until convergence. The value-function represents the 

expected utility (c.f., prior preference) integrated over future states. The close relationship between 

dynamic programming and backwards induction is highlighted by the final expression for value, 

which is effectively the utility over states propagated backwards in time by the optimal (habitual) 

transition matrix. 

Dynamic programming supposes that there is an optimal action that can be taken from every state, 

irrespective of the context or time of action. This is, of course, the same assumption implicit in habit 

learning – and we might expect to see a correspondence between the state transitions encoded by 

0C B  and B  (we will return to this in the last section). However, this correspondence will only 

arise when the (Bellman) assumptions of dynamic programming or backwards induction hold; i.e., 

when states are observed unambiguously, such that o s  and ( ) ( )U o U s U . In these cases, one 

can also use variational belief updating to identify the best action from any state. This is the action 

associated with the policy that minimises expected free energy, starting from any state: 
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This effectively composes a state-action policy by picking the action under the best policy from each 

state (assuming the current state is known). The key point here is that dynamic programming is a 

special case of this variational scheme. One can see this by substituting the expression for value above 

into the first step of dynamic programming. This is known as direct policy iteration (Williams 1992, 

Baxter, Bartlett et al. 2001). The ensuing policy iteration scheme can now be expressed, not in terms 

of value, but in terms of future states. 
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This is formally equivalent to the variational state-action policy with two differences. First, the policy 

iteration scheme simply maximises expected utility, as opposed to expected free energy. This means 

the risk and ambiguity terms disappear and free energy reduces to expected utility. The second 

difference pertains to the recursive iteration of future states: active inference uses variational updates 

to implement Bayesian smoothing, whereas the backward induction scheme imputes future states by 

recursive application of the optimal transition matrix. 

One might ask question the relative merits of iteratively evaluating the value-function of states 

(Equation 8), as opposed to the states per se (Equation 10). Clearly, if one wants to deal with the risk 

and ambiguity, then an evaluation of the states (and their entropy) is necessary. In other words, if one 

wanted to augment conventional utility functions with risk and ambiguity terms, it becomes necessary 

to evaluate beliefs about future states (as in Equation 10). This has a profound implication for 

schemes (such as dynamic programming, backwards induction and reinforcement learning) based on 

value functions. These schemes are, in essence, belief-free because the construction of value functions 

precludes a contribution from beliefs about the future (unless one uses a belief MDP). This is a key 

difference between (belief-based) active inference and (belief-free) schemes based upon the Bellman 

assumptions. In summary, belief-free schemes are limited to situations in which there is no ambiguity 

about hidden states (which are difficult to conceive in most interesting or real-world settings). We will 

see an example of this limitation in the next section. This completes our theoretical treatment of active 

inference and learning. In last section, we use simulations to revisit some key concepts above. 



 

Simulations of foraging 

This section considers inference and learning using simulations of foraging in a T-maze. This T-maze 

contains primary rewards (such as food) and cues that are not rewarding per se but disclose the 

location of rewards. The basic principles of this problem can be applied to any number of scenarios 

(e.g., saccadic eye movements to visual targets). This is the same setup used in (Friston, Rigoli et al. 

2015) and is as simple as possible, while illustrating some key behaviours. Crucially, this example can 

also be interpreted in terms of responses elicited in reinforcement learning paradigms by 

unconditioned (US) and conditioned (CS) stimuli. Strictly speaking, our paradigm is instrumental and 

the cue is a discriminative stimulus; however, we will retain the Pavlovian nomenclature, when 

relating precision updates to dopaminergic discharges. 

 

The setup 

An agent (e.g., a rat) starts in the centre of a T-maze, where either the right or left arms are baited with 

a reward (US). The lower arm contains a discriminative cue (CS) that tells the animal whether the 

reward is in the upper right or left arm. Crucially, the agent can only make two moves. Furthermore, 

the agent cannot leave the baited arms after they are entered. This means that the optimal behaviour is 

to first go to the lower arm to find where the reward is located and then retrieve the reward at the cued 

location.  

In terms of a Markov decision process, there are four control states that correspond to visiting, or 

sampling, the four locations (the centre and three arms). For simplicity, we assume that each action 

takes the agent to the associated location (as opposed to moving in a particular direction from the 

current location). This is analogous to place-based navigation strategies thought to be mediated by the 

hippocampus; e.g., (Moser, Kropff et al. 2008). There are eight hidden states: four locations times, 

two contexts (right and left reward) and seven possible outcomes. The outcomes correspond to being 

in the centre of the maze plus the (two) outcomes at each of the (three) arms that are determined by 

the context (the right or left arm is more rewarding). 

Having specified the state-space, it is now necessary to specify the ( , )A B  matrices encoding 

contingencies. These are shown in Figure 3, where the A  matrix maps from hidden states to 

outcomes, delivering an ambiguous cue at the centre (first) location and a definitive cue at the lower 

(fourth) location. The remaining locations provide a reward (or not) with probability 98%p   



depending upon the context. The ( )uB  matrices encode action-specific transitions, with the exception 

of the baited (second and third) locations, which are (absorbing) hidden states that the agent cannot 

leave.   

One could consider learning contingencies by updating the prior concentration parameters ( , )a b  of 

the transition matrices but we will assume the agent knows (i.e., has very precise beliefs about) the 

contingencies. This corresponds to making the prior concentration parameters very large. Conversely, 

we will use small values of ( , )c d  to enable habit and context learning respectively. The parameters 

encoding prior expectations about policies ( )e  will be used to preclude (the section) or permit (next 

section) the selection of habitual policies. Preferences in the vector ln ( )P o U  encode the utility 

of outcomes. Here, the utilities of a rewarding and unrewarding outcome were 3 and -3 respectively 

(and zero otherwise). This means, the agent expects to be rewarded exp(3) 20  times more than 

experiencing a neutral outcome. Note that utility is always relative and has a quantitative meaning in 

terms of preferred states. This is important because it endows utility with the same measure as 

information; namely, nats (i.e., units of information or entropy based on natural logarithms). This 

highlights the close connection between value and information. 

Having specified the state-space and contingencies, one can solve the belief updating equations 

(Equation 7) to simulate behaviour. The (concentration) parameters of the habits were initialised to 

the sum of all transition probabilities: ( )
u

c u B . Prior beliefs about the initial state were 

initialised to 8d   for the central location for each context and zero otherwise. Finally, prior beliefs 

about policies were initialised to 4e   with the exception of the habit, where 0e  . These 

concentration parameters can be regarded as the number of times each state, transition or policy has 

been encountered in previous trials. 

Figure 4 summarises the (simulated) behavioural and physiological responses over 32 successive 

trials using a format that will be adopted in subsequent figures. Each trial comprises two actions 

following an initial observation. The top panel shows the initial states on each trial (as coloured 

circles) and subsequent policy selection (in image format) over the 11 policies considered. The first 

10 (allowable) policies correspond to staying at the centre and then moving to each of the four 

locations, moving to the left or right arm and staying there, or moving to the lower arm and then 

moving to each of the four locations. The 11th policy corresponds to a habit (i.e., state-action policy). 

The red line shows the posterior probability of selecting the habit, which is effectively zero in these 

simulations because we set its prior (concentration parameter) to zero. The second panel reports the 

final outcomes (encoded by coloured circles) and performance. Performance is reported in terms of 

preferred outcomes, summed over time (black bars) and reaction times (cyan dots). Note that because 



preferences are log probabilities they are always negative – and the best outcome is zero2. The 

reaction times here are based upon the processing time in the simulations (using the Matlab tic-toc 

facility) and are shown after normalisation to a mean of zero and standard deviation of one. 

In this example, the first couple of trials alternate between the two contexts with rewards on the right 

and left. After this, the context (indicated by the cue) remained unchanged. For the first 20 trials, the 

agent selects epistemic policies, first going to the lower arm and then proceeding to the reward 

location (i.e., left for policy #8 and right for policy #9). After this, the agent becomes increasingly 

confident about the context and starts to visit the reward location directly. The differences in 

performance between these (epistemic and pragmatic) behaviours are revealed in the second panel as 

a decrease in reaction time and an increase in the average utility. This increase follows because the 

average is over trials and the agent spends two trials enjoying its preferred outcome, when seeking 

reward directly – as opposed to one trial when behaving epistemically. Note that on trial 12, the agent 

received an unexpected (null) outcome that induces a degree of posterior uncertainty about which 

policy it was pursuing. This is seen as a non-trivial posterior probability for three policies: the correct 

(context-sensitive) epistemic policy and the best alternatives that involve staying in the lower arm or 

returning to the centre.  

The third panel shows a succession of simulated event related potentials following each outcome. 

These are the rate of change of neuronal activity, encoding the expected probability of hidden states. 

The fourth panel shows phasic fluctuations in posterior precision that can be interpreted in terms of 

dopamine responses. Here, the phasic component of simulated dopamine responses corresponds to the 

rate of change of precision (multiplied by eight) and the tonic component to the precision per se 

(divided by eight). The phasic part is the precision prediction error (c.f., reward prediction error: see 

Equation 8). These simulated responses reveal a phasic response to the cue (CS) during epistemic 

trials that emerges with context learning over repeated trials. This reflects an implicit transfer of 

dopamine responses from the US to the CS. When the reward (US) is accessed directly there is a 

profound increase in the phasic response, relative to the response elicited after it has been predicted by 

the CS. 

The final two panels show context and habit learning: the penultimate panel shows the accumulated 

posterior expectations about the initial state D , while the lower panels show the posterior 

expectations of habitual state transitions, C . The implicit learning reflects an accumulation of 

evidence that the reward will be found in the same location. In other words, initially ambiguous priors 

over the first two hidden states come to reflect the agent’s experience that it always starts in the first 

                                                           
2 Utilities can only be only specified to within an additive constant (the log normalisation constant) because of the sum to 
one constraint of probabilities. This means that although preferred outcomes were specified with utilities between -3 and +3, 
the actual utilities are negative. 



hidden state. It is this context learning that underlies the pragmatic behaviour in later trials. We talk 

about context learning (as opposed to inference) because, strictly speaking, Bayesian updates to model 

parameters (between trials) are referred to as learning, while updates to hidden states (within trial) 

correspond to inference.  

Finally, the expected state transitions under a habitual policy show the emergence of an epistemic 

policy, in which the agent always goes to the lower (fourth) location from the central (first) location, 

irrespective of context. It then locates the appropriate (second or third) locations. It is more confident 

about vicarious transitions to the second location, because these predominate in its recent experience. 

The next section considers learning in more detail, looking first at context learning and then habit 

learning. 

 

Simulations of learning 

This section illustrates the distinction between context and habit learning. In the previous section, 

context learning enabled more informed and confident (pragmatic) behaviour as the agent became 

familiar with its environment. In this section, we consider how the same context learning can lead to 

perseveration and thereby influence reversal learning, when contingencies change. Following this, we 

turn to habit learning and simulate some cardinal aspects of devaluation. Finally, we turn to epistemic 

habits and close by comparing an acquired with and without ambiguous outcomes. This serves to 

highlight the difference between belief-based and belief-free schemes – and illustrate the convergence 

of active inference and belief-free schemes, when the world is fully observed. 

 

Context and reversal learning 

Figure 5 uses the format of Figure 4 to illustrate behavioural and physiological responses induced by 

reversal learning. In this example, 64 trials were simulated with a switch in context to a (consistent) 

reward location from the left to the right arm after 32 trials. The upper panel shows that after about 16 

trials the agent is sufficiently confident about the context to go straight to the rewarding location; 

thereby switching from an epistemic to a pragmatic policy. Prior to this switch, phasic dopamine 

responses to the reward (US) progressively diminish and are transferred to the discriminative cue (CS) 

(Fiorillo, Tobler et al. 2003). After adopting a pragmatic policy, dopamine responses to the US 

disappear because they are completely predictable and afford no further increase in precision. 



Crucially, after 32 trials the context changes but the (pragmatic) policy persists; leading to 4 trials in 

which the agent goes to the wrong location. After this, it reverts to an epistemic policy and, after a 

period of context learning, adopts a new pragmatic policy. Behavioural perseveration of this sort is 

mediated purely by prior beliefs about context that accumulate over trials. Here, this is reflected in the 

prior belief about the hidden states encountered at the beginning of each new trial (shown as a 

function of trials in the fifth panel). This context learning is illustrated in the right panel, which shows 

the number of perseverative trials before reversal, as a function of previous exposures to the original 

context. 

Note that this form of reversal learning reflects changes in prior expectations about the hidden states 

generating the first outcome. This should be contrasted with learning a reversal of contingencies 

encoded by the state transition parameters, or parameters mapping from states to outcomes. Learning 

these parameters would also produce reversal learning and a number of other phenomena in 

psychology; such as effect of partial reinforcement (Delamater and Westbrook 2014). However, in 

this paper, we focus on context and habit learning; as opposed to contingency learning. The above 

demonstration of reversal learning proceeded in the absence of habits. In the remaining simulations, 

we enabled habit learning by allowing its (concentration) parameter to accumulate over trials. 

 

Habit formation and devaluation 

Figure 6 uses the same format as the previous figure to illustrate habit formation and the effects of 

devaluation. Devaluation provides a critical test for dissociable (goal-directed or contingency and 

habitual or incentive) learning mechanisms in psychology (Balleine and Dickinson 1998, Yin and 

Knowlton 2006). The left-hand panels show habit learning over 64 trials in which the context was 

held constant. The posterior probability of the habitual policy is shown in the upper panel (solid red 

line), where the habit is underwritten by the state transitions in the lower panels. This simulation 

shows that as habitual transitions are learnt, the posterior probability of the habit increases until it is 

executed routinely. In this case, the acquired habit corresponds to an epistemic policy (policy #8), and 

after the habit has been acquired, there is no opportunity for pragmatic policies. This means that 

although the behaviour is efficient in terms of reaction times, the habit has precluded exploitative 

behaviour (Dayan, Niv et al. 2006). The reason why this habit has epistemic components is because it 

was learned under prior beliefs that both contexts were equally likely; conversely, a habit acquired 

under a different prior could be pragmatic. 

One might ask why a habit is selected over a sequential policy that predicts the same behaviour. The 

habit is selected because it provides a better explanation for observed outcomes. This is because the 



joint distribution over successive states is encoded by the concentration parameters c   (see 

Equation 6). Technically, this means that habits have less complexity and free energy path integrals. 

One can see this anecdotally in the transition matrices on the lower left of Figure 6: if we were in the 

seventh state after the first move, we can be almost certain we started in the first state. However, 

under the model of transitions provided by the best sequential policy (policy #8), the empirical prior 

afforded by knowing we were in the seventh state is less definitive (we could have moved from the 

first state or we could have already been in the seventh). 

During the acquisition of the habit, the reaction times decrease with maintained performance and 

systematic changes in phasic dopamine responses (fourth panel). An important correlate of habit 

learning is the attenuation of electrophysiological responses (e.g., in the hippocampus). This reflects 

the fact that the equivalent belief updates for the habit (e.g., in the cerebellum, parietal cortex and 

dorsolateral striatum (Everitt and Robbins 2013), have been deliberately omitted from the graphics. 

This effective transfer of sequential processing (from hippocampus to cerebellar cortex) may provide 

a simple explanation for the putative transfer in real brains during memory consolidation; for 

example, during sleep (Buzsaki 1998, Kesner 2000, Pezzulo, van der Meer et al. 2014). 

Crucially, after the habit was acquired the reward was devalued by switching the prior preferences (at 

trial 48), such that the neutral outcome became the preferred outcome (denoted by the green shaded 

areas). Despite this switch, the habit persists and, indeed, reinforces itself with repeated executions. 

The right panels report exactly the same simulation when the rewards were devalued after 16 trials, 

before the habit was fully acquired. In this instance, the agent switches its behaviour immediately 

(before sampling the devalued outcome) and subsequently acquires a habit that is consistent with its 

preferences (compare the transition probabilities in the lower panels). In other words, prior to habit 

formation, goal directed behaviour is sensitive to devaluation – a sensitivity that is lost under habitual 

control. These simulations demonstrate the resistance of habitual policies to devaluation resulting in 

suboptimal performance (but faster reaction times: see second panel). See (Dayan, Niv et al. 2006) for 

a discussion of how habits can confound learning in this way. 

 

Epistemic habit acquisition under ambiguity 

Figure 7 illustrates the acquisition of epistemic habits under ambiguous (left panels) and unambiguous 

(right panels) outcome contingencies. In these simulations, the context switches randomly from one 

trial to the next. The left panels show the rapid acquisition of an epistemic habit after about 16 trials 

of epistemic cue-seeking. As the agent observes its own habitual behaviour, the prior probability of 

the habit increases (dotted red line in the upper panel). This prior probability is based upon the policy 



concentration parameters, e . The lower panels show the state transitions under the habitual 

policy; properly enforcing a visit to the cue location followed by appropriate reward seeking.  

This policy should be contrasted with the so-called optimal policy provided by dynamic programming 

(and the equivalent variational estimate) in the lower panels: these are the solutions to Equations 9 

and 10. Clearly, the ‘optimal’ policy is to go straight to the rewarding location in each context (or 

hidden state); however, this is no use when outcomes are ambiguous and the agent does not know 

which context it is in. This means the optimal (epistemic) state-action policy under active inference 

(left panel) is fundamentally different from the optimal (pragmatic) habit under dynamic 

programming (right panel). This distinction can be dissolved by making the outcomes unambiguous. 

The right panels report the results of an identical simulation with one important difference – the 

outcomes observed from the starting location unambiguously specify the context. In this instance, all 

state-action policies are formally identical (although transitions from the cue location are not 

evaluated under active inference, because they are never encountered). 

 

Summary 

 In summary, these simulations suggest that agents should acquire epistemic habits – and can only do 

so through belief-based learning. There is nothing remarkable about epistemic habits; they are entirely 

consistent with the classical conception of habits – in the animal learning literature – as chains of 

stimulus-response associations. The key aspect here is that they can be acquired (autodidactically) via 

observing epistemic goal-directed behaviour. 

 

Conclusion 

We have described an active inference scheme for discrete state-space models of choice behaviour 

that is suitable for modelling a variety of paradigms and phenomena. Although goal-directed and 

habitual policies are usually considered in terms of model-based and model-free schemes, we find the 

more important distinction is between belief-free versus belief-based schemes; namely, whether the 

current state is sufficient to specify an action or whether it is necessary to consider beliefs about states 

(e.g., uncertainty). Furthermore, we show that conventional formulations (based on the Bellman 

optimality principle) apply only in the belief-free setting, when cues are unambiguous. Finally, we 

show how habits can emerge naturally from goal-directed behaviour. 



To the extent that one accepts the variational (active inference) formulation of behaviour, there are 

interesting implications for the distinction between habitual and goal-directed behaviour. If we 

associate model-free learning with habit-learning, then model-free learning emerges from model-

based behaviour. In other words, model-based planning engenders and contextualises model-free 

learning. In this sense, active inference suggests there can be no model-free scheme that is learned 

autonomously or divorced from goal-directed (model-based) behaviour. There are further implications 

for the role of value-functions and backwards induction in standard approaches to model-based 

planning. Crucially, variational formulations do not refer to value-functions of states, even when 

optimising habitual (state-action) policies. Put simply, learning in active inference corresponds to 

optimising the parameters of a generative model. In this instance, the parameters correspond to state 

transitions that lead to valuable (preferred) states. At no point do we need to learn an intermediary 

value-function from which these transitions are derived. In sum, the important distinction between 

goal-directed and habitual behaviour may not be the distinction between model-based and model-free 

but the distinction between selecting policies that are and are not sensitive to context or ambiguity; i.e. 

belief-based versus belief-free. 

One might ask whether active inference makes any predictions about responses that have yet to be 

observed empirically. At the level of behavioural predictions, the answer is probably no. This follows 

from something called the complete class theorem (Brown 1981), which states that for any observed 

behaviour and utility function there exists a prior that renders the behaviour Bayes optimal. Because 

active inference absorbs utility functions into prior preferences, this means there is always a set of 

prior preferences that renders any behaviour (approximately) Bayes optimal. At first glance, this may 

seem disappointing; however, turning the argument on its head, the complete class theorem means 

that we can always characterise behaviour in terms of prior preferences. This is important because it 

means one can computationally phenotype any behaviour and start to quantify – and understand – the 

prior beliefs that subjects bring to any paradigm. This is a tenet of computational psychiatry (Huys, 

Moutoussis et al. 2011, Montague, Dolan et al. 2012, Wang and Krystal 2014), which motivates much 

of the work reported above. 

At the level of the particular (neuronal) process theory described in this paper, there are many 

predictions about the neuronal correlates of perception, evaluation, policy selection and the encoding 

of uncertainty associated with dopaminergic discharges. For example, the key difference between 

expected free energy and value is the epistemic component or information gain. This means that a 

strong prediction (which to our knowledge has not yet been tested) is that a mildly aversive outcome 

that reduces uncertainty about the experimental or environmental context will elicit a positive phasic 

dopaminergic response. 



 
Appendices 

Appendix 1: Belief updating: variational updates are a self-consistent set of equalities that minimise 

variational free energy, which can be expressed as the (time-dependent) free energy under each policy 

plus the complexity incurred by posterior beliefs about (time-invariant) policies and parameters, 

where (ignoring constants and using { , , , , , }a b c d e  ); 
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Using the standard result: ( ) ( )B B d d d D , we can differentiate the variational free energy with 

respect to the sufficient statistics (with a slight abuse of notation and using : ( , )F F
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Finally, the solutions to these equations give the variational updates in the main text (Equation 7). 
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Figure legends 

Figure 1 – The functional anatomy of belief updating: sensory evidence is accumulated to optimise 

expectations about the current state, which are constrained by expectations of past (and future) states. 

This corresponds to state estimation under each policy the agent entertainments. The quality of each 

policy is evaluated in the ventral prefrontal cortex – possibly in combination with ventral striatum 

(van der Meer, Kurth-Nelson et al. 2012) – in terms of its expected free energy. This evaluation and 

the ensuing policy selection rest on expectations about future states. Note that the explicit encoding of 

future states lends this scheme the ability to plan and explore. After the free energy of each policy has 

been evaluated, it is used to predict the subsequent hidden state through Bayesian model averaging 

(over policies). This enables an action to be selected that is most likely to realise the predicted state. 

Once an action has been selected, it generates a new observation and the cycle begins again. Figure 2 

illustrates the formal basis of this computational anatomy, in terms of belief updating. 

Figure 2 – Overview of belief updates for discrete Markovian models: the left panel lists the 

solutions in the main text, associating various updates with action, perception, policy selection, 

precision and learning. The right panel assigns the variables (sufficient statistics or expectations) to 

various brain areas to illustrate a rough functional anatomy – implied by the form of the belief 

updates. Observed outcomes are signed to visual representations in the occipital cortex. State 

estimation has been associated with the hippocampal formation and cerebellum (or parietal cortex and 

dorsal striatum) for planning and habits respectively (Everitt and Robbins 2013). The evaluation of 

policies, in terms of their (expected) free energy, has been placed in the ventral prefrontal cortex. 

Expectations about policies per se and the precision of these beliefs have been assigned to striatal and 

ventral tegmental areas to indicate a putative role for dopamine in encoding precision. Finally, beliefs 

about policies are used to create Bayesian model averages of future states (over policies) – that are 

fulfilled by action. The blue arrows denote message passing, while the solid red line indicates a 

modulatory weighting that implements Bayesian model averaging. The broken red lines indicate the 

updates for parameters or connectivity (in blue circles) that depend on expectations about hidden 

states (e.g., associative plasticity in the cerebellum). Please see the appendix for an explanation of the 

equations and variables. The large blue arrow completes the action perception cycle, rendering 

outcomes dependent upon action.  

Figure 3 – The generative model used to simulate foraging in a three-arm maze (insert on the 

upper right). This model contains four control states that encode movement to one of four locations 

(three arms and a central location). These control the transition probabilities among hidden states that 

have a tensor product form with two factors: the first is place (one of four locations), while the second 

is one of two contexts. These correspond to the location of rewarding (red) outcomes and the 



associated cues (blue or green circles). Each of the eight hidden states generates an observable 

outcome, where the first two hidden states generate the same outcome that just tells the agent that it is 

at the centre. Some selected transitions are shown as arrows, indicating that control states attract the 

agent to different locations, where outcomes are sampled. The equations define the generative model 

in terms of its parameters ( , )A B , which encode mappings from hidden states to outcomes and state 

transitions respectively. The lower vector corresponds to prior preferences; namely, the agent expects 

to find a reward. Here,   denotes a Kronecker tensor product.  

Figure 4 – Simulated responses over 32 trials: this figure reports the behavioural and (simulated) 

physiological responses during successive trials. The first panel shows, for each trial, the initial state 

(as blue and red circles indicating the context) and the selected policy (in image format) over the 11 

policies considered. The policies are selected in the first two trials correspond to epistemic policies 

(#8 and #9), which involve examining the cue in the lower arm and then going to the left or right arm 

to secure the reward (depending on the context). After the agent becomes sufficiently confident that 

the context does not change (after trial 21) it indulges in pragmatic behaviour, accessing the reward 

directly. The red line shows the posterior ability of selecting the habit, which is was set to zero in 

these simulations. The second panel reports the final outcomes (encoded by coloured circles: cyan and 

blue for rewarding outcomes in the left and right arms) and performance measures in terms of 

preferred outcomes, summed over time (black bars) and reaction times (cyan dots). The third panel 

shows a succession of simulated event related potentials following each outcome. These are taken to 

be the rate of change of neuronal activity, encoding the expected probability of hidden states. The 

fourth panel shows phasic fluctuations in posterior precision that can be interpreted in terms of 

dopamine responses. The final two panels show context and habit learning, expressed in terms of 

( , )C D : the penultimate panel shows the accumulated posterior beliefs about the initial state, while 

the lower panels show the posterior expectations of habitual state transitions. Here, each panel shows 

the expected transitions among the eight hidden states (see Figure 3), where each column encodes the 

probability of moving from one state to another.  Please see main text for a detailed description of 

these responses. 

Figure 5 – Reversal learning: this figure uses the format of Figure 4 to illustrate behavioural and 

physiological responses induced by reversal learning. In this example, 64 trials were simulated with a 

switch in context from one (consistent) reward location to another. The upper panel shows that after 

about 16 trials the agent is sufficiently confident about the context to go straight to the rewarding 

location; thereby switching from an epistemic to a pragmatic policy. After 32 trials the context 

changes but the (pragmatic) policy persists; leading to 4 trials in which the agent goes to the wrong 

location. After this, it reverts to an epistemic policy and, after a period of context learning, adopts a 

new pragmatic policy. Behavioural perseveration of this sort is mediated purely by prior beliefs about 



context that accumulate over trials. This is illustrated in the right panel, which shows the number of 

perseverations after reversal, as a function of the number of preceding (consistent) trials. 

Figure 6 – Habit formation and devaluation: this figure uses the same format as the previous figure 

to illustrate habit formation and the effects of devaluation. The left panels show habit learning over 64 

trials in which the context was held constant. The posterior probability of the habitual policy is shown 

in the upper panel (solid red line), where the habit is underwritten by the state transitions shown in the 

lower panels. The simulation shows that as the habitual transitions are learnt, the posterior probability 

of the habit increases until it is executed routinely. After the habit had been acquired, we devalued the 

reward by switching the prior preferences such that the neutral outcome became the preferred 

outcome (denoted by the green shaded areas). Despite this preference reversal, the habit persists. The 

right panels report the same simulation when the reward was devalued after 16 trials, before the habit 

was fully acquired. In this instance, the agent switches immediately to the new preference and 

subsequently acquires a habit that is consistent with its preferences (compare the transition 

probabilities in the lower panels). 

Figure 7 – Epistemic habit acquisition under ambiguity: this figure uses the same format as Figure 

6 to illustrate the acquisition of epistemic habits under ambiguous (left panels) and unambiguous 

(right panels) outcomes. The left panels show the rapid acquisition of an epistemic habit after about 

16 trials of epistemic cue-seeking, when the context switches randomly from one trial to the next. The 

lower panels show the state transitions under the habitual policy; properly enforcing a visit to the cue 

location followed by appropriate reward seeking. This policy should be contrasted with the so-called 

optimal policy provided by dynamic programming (and the equivalent variational estimate) in the 

lower panels. The optimal (epistemic) state-action policy is fundamentally different from the optimal 

(pragmatic) habit under dynamic programming. This distinction can be dissolved by making the 

outcomes unambiguous. The right panels report the results of an identical simulation, where outcomes 

observed from the starting location specify the context unambiguously. 
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