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Abstract

Rare weather and climate events, such as heat waves and floods, can bring tremendous social costs.
Climate data is often limited in duration and spatial coverage, and climate forecasting has often turned
to simulations of climate models to make better predictions of rare weather events. However very long
simulations of complex models, in order to obtain accurate probability estimates, may be prohibitively
slow. It is an important scientific problem to develop probabilistic and dynamical techniques to estimate
the probabilities of rare events accurately from limited data. In this paper we compare four modern
methods of estimating the probability of rare events: the generalized extreme value (GEV) method from
classical extreme value theory; two importance sampling techniques, geneaological particle analysis
(GPA) and the Giardina-Kurchan-Lecomte-Tailleur (GKLT) algorithm; as well as brute force Monte
Carlo (MC). With these techniques we estimate the probabilities of rare events in three dynamical mod-
els: the Ornstein-Uhlenbeck process, the Lorenz ’96 system and PlaSim (a climate model). We keep the
computational effort constant and see how well the rare event probability estimation of each technique
compares to a gold standard afforded by a very long run control. Somewhat surprisingly we find that
classical extreme value theory methods outperform GPA, GKLT and MC at estimating rare events.

1 Extremes and rare event computation.

Rare weather and climate events such as heat waves, floods, hurricanes, and the like, have enormous social
and financial consequences. It is important to be able to estimate as accurately as possible the probability
of the occurrence and duration of such extreme events. However the time series data available to predict
rare events is usually too short to assess with reasonable confidence the probability of events with very
long recurrence times, for example on the order of decades or centuries. In this regard, one may consider
return levels of exceedances which represent the level that is expected to be exceeded on average once every
100 years by a process. For example, a 100-year return level estimate of a time series of temperature or
precipitation data would tell us the temperature or amount of precipitation that is expected to be observed
only once in 100 years. It is common, however, that the amount of weather data available is limited in spatial
density and time range. As a result, climate forecasting has often turned to simulations of climate models
to make better predictions of rare weather events. These simulations are not without limitations; a more
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accurate model requires a large amount of inputs to take into account most of the environmental factors
which impact weather. With these more complex models, very long simulations may be required to obtain
probability estimates of rare events with long return times. These simulations may be very slow and have
motivated the study of statistical techniques which allow for more accurate rare event probability estimates
with lower computational cost.

One approach to estimate the probability of rare events or extremes is to use classical extreme value
theory, perhaps aided by clustering techniques or other statistical approaches suitable for the application at
hand. Other techniques to accurately estimate the probabilities of rare events include importance sampling
(IS) methods. In general, importance sampling is a probabilistic technique which allows us to choose those
trajectories or paths in a random or deterministic model which will most likely end in an extreme event.
This reduces the number of long trajectories that are required to obtain an estimate on the tail probabilities
of extremes and essentially changes the sampling distribution to make rare events less rare. The goal of
importance sampling is not only to estimate probabilities of rare events with less computational cost, but
also more accurately in that the ratio of the likely error in estimation to the probability of the event is
lessened.

Importance sampling algorithms have been successfully applied in many fields, especially in chemical
and statistical physics [28, 26, 3]. Recently these techniques have been applied to dynamical systems and
dynamical climate models [29, 27]. In this paper we will consider two similar types of IS techniques,
geneaological particle analysis (GPA) and the Giardina-Kurchan-Lecomte-Tailleur (GKLT) algorithm. The
GKLT algorithm is designed to estimate probabilities of events such as heatwaves as it considers time-
averaged quantities. GKLT is motivated by ideas from large deviations theory, though in its implementation
it does not explicitly require calculation of large deviation quantities such as rate functions.

The main goal of this paper is to compare the performance of the generalized extreme value (GEV)
method with GPA, GKLT and brute force Monte Carlo (MC) at estimating rare events of our test models:
the Ornstein-Uhlenbeck process, the Lorenz ’96 system and PlaSim (a climate model). We keep the compu-
tational effort constant and see how well the rare event probability estimation of each technique compares to
a gold standard afforded by a very long run control. Somewhat surprisingly we find that GEV outperforms
GPA, GKLT and MC at estimating rare events. Perhaps this advantage comes from the fact that GEV meth-
ods are parametric and maximum likelihood estimation, in practice, results in close to optimal parameters
and confidence intervals.

2 The Four Methods.

Extreme value theory is a well-established branch of statistics [8, 23, 5]. Over the last ten years or so the
theory has been investigated in the setting of chaotic dynamics, for a state of the art review see [2, Chapters
4 and 6]. The goal of extreme value theory is to estimate probabilities associated to rare events. Another
way to approach this problem is via importance sampling. Recently ideas from importance sampling have
been successfully applied to several dynamical models (a non-exhaustive list includes [16, 17, 19, 20]). How
do the methods compare, for a given computational cost, at accurately determining the probabilities of rare
events? We now describe the four methods we investigate in this paper.

2.1 Generalized Extreme Value Distribution (GEV).

There are two main approaches for classical extreme value theory: peaks over threshold; and the block
maxima method. They are equivalent mathematically [5], but more research has been done on the block
maxima method in the setting of deterministic models (for a treatment of this topic and further references

2



see [2, Chapters 4 and 6]). We will use the block maxima method in this paper. In the context of modeling
extremes in dynamical models, Galfi et al [14] have used the peaks over threshold method to benchmark
their large deviations based analysis of heat-waves and cold spells in the PUMA model of atmospheric
circulation. Given a sequence of iid random variables {X1,X2, . . . ,Xn, . . .} it is known that the maxima
process Mn = max{X1,X2, . . . ,Xn} has only three possible non-degenerate limit distributions under linear
scaling: Types I (Gumbel), II (Fréchet) and III (Weibull) [13], no matter the distribution of X1. By linear
scaling we mean the choice of a sequence of constants An, Bn such that P(An(Mn−Bn) ≤ y)→ H(y) for a
nondegenerate distribution H. The extreme value distributions are universal and play a similar role to that
of the Gaussian distribution in explaining a wide variety of phenomena. These three distributions can be
subsumed into a Generalized Extreme Value (GEV) distribution

G(x) = exp
(
− [1+ζ

(x−µ

σ

)
]
−1
ζ

)
(∗)

defined for {x : 1+ζ
( x−µ

σ

)
> 0} with three parameters −∞ < µ < ∞, σ > 0, −∞ < ζ < ∞. The parameter

µ is the location parameter, σ the scale and ζ the shape parameter (the most important parameter as ζ deter-
mines the tail behavior). A type I distribution corresponds to the limit as ζ → 0, while Type II corresponds
to ζ > 0 and Type III to ζ < 0. The three types differ in the behavior of the tail of the distribution function
F for the underlying process (Xi). For type III the Xi are essentially bounded, while the tail of F decays
exponentially for Type I and polynomially (fat tails) for Type II.

The advantage of using GEV over brute force fitting a tail distribution by simulation or data collection
is that a statistical distribution is assumed, and only three parameters need to be determined (like fitting a
normal distribution, where only 2 parameters need to be estimated). This has enormous advantages over
methods which try to determine an a priori unknown form of distribution. The GEV parameters may be
estimated, for example, by the method of maximum likelihood. Once the parameters are known G(x) can be
used to make predictions about extremes. This is done for a time series of observations in the following way.
A sequence of observations are taken X1, X2, ... and grouped into blocks of length m (for example it could be
daily rainfall amounts clumped into blocks of one year length). This gives a series of block maxima Mm,1,
Mm,2, ... where Mm,` is the maximum of the observations in block ` (which consists of m observations).
Using parameter estimation like maximum likelihood, the GEV model is fitted to the sequence of Mm,` to
yield µ , σ and ζ . The probability of certain return levels of exceedance for the maximum of time-series of
length m are obtained by inverting (∗) and subtracting from 1. For example, m could correspond to a length
of one year made of m = 365 daily rainfall data points, then the result is the level of rainfall a that the yearly
maximum is expected to exceed once every 1/(1−G(a)) years.

One issue in the implementation of GEV is the possibly slow rate of convergence to the limiting distribu-
tion. There are some results [22, 12] on rates of convergence to an extreme distribution for chaotic systems,
but even in the the iid case rates of convergence may be slow [21]. Another is the assumption of indepen-
dence. Time-series from weather readings, climate models or deterministic dynamical systems are usually
highly correlated. There are conditions in the statistical literature [23, 6, 11, 15] under which the GEV distri-
butional limit holds for maxima Mn of observables φ(X j) which are “weakly dependent” i.e. the underlying
X j are correlated, and which ensure that Mn has the same extreme value limit law as an iid process with the
same distribution function. Usually two conditions are given, called Condition D2 (a decay of correlations
requirement), and Condition D

′
(which quantifies short returns) which need to be checked. Collet [6] first

used variants of Condition D2 and Condition D
′

to establish return time statistics and extremes for certain
dynamical systems. Recent results [2] have shown that maxima of time-series of Hölder observables on a
wide variety of chaotic dynamical systems (Lorenz models, chaotic billiard systems, logistic-type maps and
other classical systems) satisfy classical extreme value laws. The development of extreme value theory for
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deterministic dynamical systems has been an intensive area of research. For the current state of knowledge
we refer to “Extremes and Recurrence in Dynamical Systems” [2, Chapters 4 and 6].

Even using a parametric model like GEV there is still an issue of having enough data. There are several
approaches to extract the most information possible from given measurements. For example, in [1, 4]
sophisticated clustering techniques based on information theory ideas were used to group measurements
from different spatial locations and amplify time-series of temperature recordings to improve the validity of
GEV estimates for annual summer temperature extremes in Texas and Germany.

Despite these caveats this paper shows that GEV works very well in estimating probabilities of rare
events in realistic models such as PlaSim, performing better at the same computational cost than MC and
the two IS techniques we investigate.

2.2 Brute Force Monte Carlo.

Given a random variable X distributed according to a distribution ρ(x), we want to estimate the probability
of a rare event,

γA = P(X ∈ A)<< 1

As a naive approach, one could do this by a brute force Monte Carlo (MC) estimate,

γ̂A(N) =
1
N

N

∑
i=1

1A(Xi)

for some sequence of random variables Xi sampled from ρ(x). Here, E(γ̂A) = γA (as γ̂A is an unbiased
estimator) and for large enough N,

√
Nγ̂A(N)∼N (γA,σ

2(γ̂A))

by the central limit theorem (where valid). The relative error of an estimator is defined to be the standard
deviation of the estimator divided by the estimated quantity. As

σ
2(1A) = E((1A(X)− γA)

2) = E(1A(X))− γ
2
A = γA− γ

2
A ≈ γA

for small γA, and Varγ̂A(N) = VarγA
N , the relative error is estimated as

σ(γ̂A)(N)/γA ≈
1√
NγA

,

which is large for small γA. This analysis can be found in [16].

2.3 Importance Sampling Techniques

Importance sampling methods work to lower the relative error by a change of measure from ρ to another
measure ρ̃ . The idea is to change the distribution of X in a way that rare events are sampled more often under
ρ̃ and if the steps in the algorithm by which we do this are accounted for, we obtain an accurate estimate of
the probability of the rare event under ρ with a significantly decreased relative error in our estimator. In our
applications X is a real-valued random variable (distance from the origin in Ornstein-Uhlenbeck process,
energy level in the Lorenz ’96 model and temperature or averaged temperature in the PlaSim model) and
rare events will correspond to high values of X .
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We alter the probability of rare events by using a weight function whose goal is to perform a change of
measure. Provided X has tails which decay exponentially, the weight function can be chosen as an “expo-
nential tilt”. We now provide an illustration of the exponential tilt in the context of a normally distributed
random variable. Details for the following estimates are provided in [16].

Suppose we want to estimate the probability γA of a rare event A = {X > a} for X ∼N (0,1) so that
ρ(X) = e−x2/2. If we choose,

ρ̃(X) =
ρ(X)eCX

E(eCX)
=

1√
2π

exp[
−(X−C)2

2
] (2.1)

we obtain a shift of the average by C. The error of our estimate in the shifted distribution is given by its
variance,

σ
2(γ̃A) = PC,1(X > a)eC2− γ

2
A

where PC,1 denotes the probability under a normal distribution with mean C and variance 1. If we take a = 2
there is a unique minimum of the variance for a value of C close to 2. In this example a decrease of relative
error by a factor of roughly 4 is produced. Because of the scaling 1√

NγA
it would take a 16 times longer

brute force run to achieve this result. We remark that this exponential tilt of the original distribution results
in an optimal value of C(a) for each threshold a for which γA = P(X > a). Part of the finesse in using IS
techniques is to tune the parameter C.

We now describe the two importance sampling techniques we investigate.

2.3.1 Genealogical Particle Analysis

Genealogical particle analysis (GPA) [16, 17] is an importance sampling algorithm that uses weights to
perform a change of measure, by a weight function V (x) (in the previous example V (x) was taken to be Cx
but V(x) is application specific) the original distribution of particles xt under the dynamics. When we talk
of particles we may mean paths in a Markov chain model or trajectories in a dynamical model such as the
Ornstein-Uhlenbeck process or Lorenz ’96. These weights can be thought of as measuring the performance
of a particle’s trajectory. If the particle is behaving as though it comes from the distribution tilted by the
weight function V (x) then it is cloned, otherwise it is killed and no longer used in the simulation. The act of
killing or cloning based on weights is performed at specified time steps separated by length τ . We will refer
to τ as the resampling time. In theory, the resampling time can chosen between the limits of the Lyapunov
time, so as to not be too large that samples relax back to their original distribution and the decorrelation
time, so as to not be too small that all clones remain close to each other. In practice, the decorrelation rate of
a trajectory xt under the dynamics is calculated as the autocorrelation taken over a time lag and the sampling
time is then chosen as the smallest time lag that results in the autocorrelation of xt being close to zero at a
specified tolerance. A description of the algorithm is given below.

1. Initiate n = 1, . . . ,N particles with different initial conditions.

2. For i = 1, . . . ,Tf /τ where Tf is the final integration time.

2a. Iterate each trajectory from time ti−1 = (i−1)τ to time ti = iτ .

2b. At time ti, stop the simulation and assign a weight to each trajectory n given by,

Wn,i =
exp(V (xn,ti)−V (xn,ti−1))

Zi
(2.2)
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where

Zi =
1
N

N

∑
n=1

Wn,i (2.3)

is the normalizing factor that ensures the number of particles in each iteration remains constant.

2c. Determine the number of clones produced by each trajectory,

cn,i = bWn,i +unc (2.4)

where b·c is the integer portion and un are random variables generated from a uniform distribu-
tion on [0,1].

2d. The number of trajectories present after each iteration is given by,

Ni =
N

∑
n=1

cn,i (2.5)

Clones are used as inputs into the next iteration of the algorithm. For large N, the normalizing
factor ensures the number of particles Ni remains constant; however, in practice the number of
particles fluctuates slightly on each iteration i. To ensure Ni remains constant it is common to
compute the difference ∆Ni = Ni−N. If ∆Ni > 0, then ∆Ni trajectories are randomly selected
(without replacement) and killed. If ∆Ni < 0, then ∆Ni trajectories are randomly selected (with
replacement) and cloned.

3. Provided τ is chosen between the two bounds specified above, the final set of particles tends to the
new distribution affected by V (x) as N→ ∞,

p̃(x) =
p(x)eV (x)

E(eV (x))
. (2.6)

where p(x) is the original distribution of the sequence of realizations xn,0 and p̃(x) is the distribution
tilted by the weight function V (x).

Probability estimates for rare events γA = P(X > a) under p(x) are obtained by the reversibility of the
algorithm and dividing out the product of weight factors applied to the particles. Suppose A is the event
(X > a) for X ∼ p(x), then the expected value in the original distribution denoted by E0 is given by [16],

γA = E0(1A) =
1
N

N

∑
n=1

1A(xn,Tf /τ)e
V (xn,0)e−V (xn,Tf /τ )

Tf /τ

∏
i=1

Zi (2.7)

Since GPA weights consider the end distribution of particles, they result in a telescoping sum in the expo-
nential where the final rare event estimate is a function of the first and last weight terms only. For a detailed
proof of this equivalence, we refer the reader to [16]. For an illustration of this algorithm, see fig. 1.

As seen above, the change of measure is completely determined by the choice of weight function V (x)
in the algorithm.

Furthermore, the algorithm can be applied to any observable φ by considering the continuous random
variable Xt = φ(xt) and defining

Wn,i =
exp(V (φ(xn,ti))−V (φ(xn,ti−1))

Zi
.
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Το
ρ(χ)

Το + τ
~
Τƒ
ρ(χ)

Figure 1: Illustration of the GPA algorithm.

where xn(t) is one of our n = 1, . . . ,N realizations and xn,ti = xn(ti).
If we are interested in estimating rare event probabilities of a time-averaged quantity the weight Wn,i =

V (
∫ ti

ti−1
xn(t)dt)

Zi
is given by an integral rather than the difference Wn,i =

exp(V (xn,ti )−V (xn,ti−1 ))

Zi
and the increments

do not telescope. We next discuss a method, the GKLT algorithm, based on large deviations theory to
estimate probabilities of rare events for time-averaged quantities in the next section. We note here that the
GKLT algorithm in its implementation does not require explicit computation of large deviation quantities
such as rate functions.

2.3.2 Giardina-Kurchan-Lecomte-Tailleur (GKLT) algorithm

This technique was developed in a series of papers [19, 20, 7] and uses ideas from large deviations theory to
make estimates of extremes for time-averaged quantities, for example heatwaves lasting a couple of months
or more where the averaged maximal daily temperature over the two month period would be high. The
advantage is that over long periods of averaging large deviation theory gives a method which works well,
but a disadvantage is that the period of averaging needs to be long enough for the heuristic arguments
involving the rate function and other quantities from large deviations theory to be valid. In practice, to
calculate the probability of summer heatwave extremes in Europe, the duration of heatwaves has been set at
the order of 90 to 120 days in the literature [14, 18].

Suppose φ is an observable. We will consider time-averaged quantities 1
T

∫ ( j+1)T
t= jT φ(x(t)) dt over a fixed

time-window of length T , j = 1, . . . ,bTf /Tc. We may choose to apply the weight function V to the integral
of n = 1, . . . ,N realizations φ(xn(t)) by defining the set of weights as,

Wn,i =
V (
∫ ti

ti−1
φ(xn(t)) dt)

Zi
(2.8)
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with normalizing factor,

Zi =
1
N

N

∑
n=1

Wn,i

where the resampling time τ = ti−1− ti is chosen between the limits described in sec. 2.3.1 and may differ
from the choice of the time-average window length T .

Applying the method described in algorithm 2.3.1 equipped with eq. 2.8 tilts the distribution of the inte-
gral

∫ ti
ti−1

φ(x(t)) dt by V (·). As a result, the distribution of the T -time average trajectory 1
T

∫ ( j+1)T
t= jT φ(x(t)) dt

is tilted in a similar way. For an illustration of this algorithm, see fig. (2).

Το Τƒ

τ τ τ

(a)

Το Τƒ

τ τ τ

(b)

Figure 2: (a) Illustration of the GKLT algorithm and (b) assembly of N backward trajectories. Although shifts in the
distribution of the integral are defined by the resampling time τ , reconstruction of backward trajectories allows for
estimates on T -time averaged trajectories after implementation of GKLT.

Since the weight is a function of segments of the trajectory (rather than the distribution of end particles),
the telescoping property no longer holds and estimates in the original distribution require the reconstruction
of N-backward trajectories φ̂(xn(t)), n = 1, . . . ,N.

Let E0 denote the expected value in the original distribution and suppose O is some functional of
φ(xn(t)). Then it can be shown [18],

E0(O({φ(xn(t))}0≤t≤Tf ))∼
1
N

N

∑
n=1

O({φ̂(xn(t))}0≤t≤Tf )e
−V (

∫ Tf
0 φ̂(xn(t))dt)

Tf /τ

∏
i=1

Zi. (2.9)

Often, O in eq. 2.9 is taken as some indicator function of a rare event so that, E0(O({φ(x(t))}0≤t≤Tf ))
provides some rare event probability estimate. For example, to obtain the rare event probability estimate
that the T -time averaged observable exceeds some threshold a, we may rewrite eq. 2.9 as,

E0

(
1{ 1

T
∫ ( j+1)T

jT φ(x(t))dt>a|0≤ j≤bTf /Tc}(φ(x(t)))
)

∼ 1
N

N

∑
n=1

E
(

1{ 1
T
∫ ( j+1)T

jT φ̂(xn(t))dt>a|0≤ j≤bTf /Tc}(φ̂(xn(t)))
)
· e−V (

∫ Tf
0 φ̂(xn)(t)dt)

Tf /τ

∏
i=1

Zi (2.10)
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A consequence of eq. 2.10 is that rare event probabilities P(Ψ◦φ(x(t))> a) for any functional Ψ of the
observed trajectory φ(x(t)) can be calculated in a similar way.

Hence, rare event probabilities for longer time-averages can be estimated at no further computational
expense. Different observables are considered in the next section. We end by remarking that a natural choice
is to take V (x) =Cx, if the rare event consists of exceedance of a certain level.

3 Numerical Results

IS algorithms hinge on their ability to shift the sampling distribution of a system to increase the probability
of the rare event. They open the possibility of reducing numerical cost while providing a more (or similarly)
accurate estimate over a brute force method. Shifting of the sampling distribution relies on a convergence
assumption to hold for a sufficiently large number N of initial particles. In [16] it is shown in certain
models that the relative error (also a quantity relying on the number of initial particles N) is smaller for
tail probability estimates obtained from IS methods if the shift is chosen optimally for a specific threshold.
For a set of thresholds ak, statistics on tail probabilities and return time estimates may be obtained by
averaging over a set of trials, as in [18]. However, this requirement adds to the true numerical cost of
the IS methods. Optimal values of a shift for any given threshold usually cannot be determined a priori.
Moreover, the magnitude of a shift in the sampling distribution cannot be chosen arbitrarily because of its
heavy dependence on the choice of observable, system and initial conditions. This dependence limits the
algorithm in practice to smaller shift choices, larger errors and hence, lower reliable return-time estimates.

We compare numerical results from two well-known IS methods (GPA and GKLT) with GEV and MC
under true numerical costs of obtaining statistical estimates for sequences of thresholds. In implementation
of IS methods, we choose shifting values as large as possible to obtain accurate return-time estimates and
illustrate the problems that occur with dependence on initial conditions. Following recent literature, we use
the Ornstein-Uhlenbeck process as a benchmark for our work and expand to the more complex Lorenz ’96
and PlaSim model. In all systems, we find that the GEV outperforms GPA, GKLT and MC under the same
numerical cost.

3.1 The Generalized Extreme Value (GEV) Model for Numerical Comparison

3.1.1 GEV Model for Comparison to GPA Tail Estimates

Since the GPA algorithm considers only the distribution of end particles, tail probability estimates of a
trajectory Xt are provided at a sampling rate of Tf intervals denoted P(XTf > ak) for a sequence of thresholds
ak. Recall that in the case of considering an observable under the dynamics, Xt can be seen as the random
variable Xt = φ(xt) where xt is the trajectory under the dynamics at time t. To compare across methods, we
use the same sampling rate for MC brute force and GEV modeling. Following standard literature, we may
choose to consider one long trajectory Xt of length N̂ ·Tf , so that we obtain N̂ samples taken at Tf intervals
of Xt . From here, we define the subsequence of Xt taken at the sampling rate Tf to be X ĵ,Tf

for ĵ = 1, · · · , N̂.
We may then define the block maxima over blocks of length m taken over our subsequence Xi,Tf by,

M`,m = max`m≤i≤(`+1)m Xi,Tf

such that the number of total block maxima is bN̂/mc and `= 1, · · · ,bN̂/mc and m is chosen at a length that
ensures convergence of the block maxima. For the purposes of this paper, m = 10 and 100 were checked
with m chosen as the value providing the best fit to the control.
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Another option is to run many, say N̂ again, trajectories Xî,t for î = 1, · · · , N̂ up to time Tf . We denote
the sequence of end particles Xî,Tf

so that Xî,Tf
coincides with the appropriate fix sampling rate Tf for each

î. Then, we may define the block maxima over blocks of length m by,

M`,m = max`m≤î≤(`+1)m Xî,Tf

so that once again, ` = 1, · · · ,bN̂/mc and the total number of block maxima is bN̂/mc. In both cases, the
distribution of M`,m is theoretically the same, however we choose the latter to lower numerical error which
builds over long trajectories. An illustration of how the maxima are defined and their relationship to the
GPA algorithm outcome can be seen in fig. 3.

Το Τƒ

Xî,Το Xî,Τƒ...

B
lock of length m

Figure 3: Illustration of the block maxima for GEV to GPA comparison. Many trajectories are run under the dynamics
up to the sampling time Tf and the final values are used to form the block maxima (indicated by dashed boxes).

Classical results for fitting a GEV to the sequence of block maxima M`,m require the sequence Xî,Tf

to be independent and stationary. The choice of Tf >> τ ensures that samples taken at Tf intervals are
nearly independent. We may fit the generalized extreme value (GEV) distribution G(x) to the sequence M`,m
by maximum likelihood estimation of the shape, ζ , scale σ , and location µ parameters [5, Section 3.3.2].
Independence assumptions on the sequence Xî,Tf

allows for reversibility of the probability estimates of the
m-block maxima by the following relationship [5, Section 3.1.1],

G(x) = P(M`,m ≤ x)≈ (F(x))m

where G(x) is the GEV of the m-block maxima estimated by maximum likelihood estimation and F(x) is
the c.d.f. of the trajectory Xt sampled at a rate of Tf intervals. Hence,

P(XTf > x)≈ 1− m
√

G(x) (3.1)

In the event that independence of Xî,Tf
cannot be established, the dependence conditions D2 and D′ allow

for convergence of the sequence of m-block maxima to a GEV distribution.
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3.1.2 GEV Model for Comparison to GKLT Tail Estimates

In the GKLT algorithm, we consider the distribution of the T -time averages created from the N-backward
reconstructed trajectories Xn,t . That is, we consider the probability P(AT > ak) that the T -time average,
AT = 1

T

∫ T
0 X(t) dt is greater than some threshold (or sequence of thresholds) ak. Recall that Xn,t = φ(xn(t))

is some realization of a trajectory under the dynamics equipped with an observable φ . We run N̂ trajectories
under the dynamics up to time Tf and denote this sequence as Xî,t for 0≤ t ≤ Tf and î = 1, · · · , N̂. Then the
sequence of (non-overlapping) T -time averages created from the set of trajectories Xî,t is defined as,

AT,î, j =
1
T

∫ ( j+1)T

jT
Xî,t dt

for j = 1, · · · ,bTf −Tc. For each fixed j, we define the sequence of maxima taken over blocks of length m

Mh, j,m = max
hm≤î≤(h+1)m

AT,î, j

for h = 1, · · · ,bbTf − Tc/mc so that we have bbTf − Tc/mc · N̂ number of maxima in total. Defining the
maxima over trajectories for every fixed time step j, rather than over time steps of a single (long) realization,
allows us to keep the integration time small and minimize numerical error. Following previous logic, we
may also choose to consider one long trajectory Xt , break it up into a sequence of non-overlapping T -
time averages, and consider the sequence of maxima taken over blocks of length m taken from this long
sequence of averages. Once again, we note that T ≥ τ is chosen so that the sequence of averages is roughly
independent. Hence, the GEV G(x) can be fit by maximum likelihood estimation to the sequence Mh, j,m.
The independence of the sequence of T -time averages allows for reversibility of the probability estimates of
the m-block maxima by,

G(x) = P(Mh, j,m ≤ x)≈ (F(x))m

where G(x) is the maximum likelihood estimate for the GEV model of the sequence of m-block maxima
Mh, j,m and F(x) is the c.d.f. of the sequence of T -time averages taken from the trajectory Xt . Hence,

P(AT > x)≈ 1− m
√

G(x) (3.2)

An illustration of how the block maxima in estimating the GEV are defined in terms of the sequence of
T -time average trajectories for comparison to the GKLT algorithm can be found in fig. 4.

3.1.3 Return Time Curves

We consider a long trajectory Xt such that Xt is sampled for over threshold probability estimates at time
Tf ≥ τ and a rare event threshold a such that Xt < a for most times t. We define the return time r(a) as the
average waiting time between two statistically independent events exceeding the value a.

Following the logic in [18] we divide the sequence Xt into pieces of duration ∆T and define ak =
max{Xt |(k−1)∆T ≤ t ≤ k∆T} and sk(a) = 1 if ak > a and 0 otherwise. Then the number of exceedances of
the maxima ak over threshold a can be approximated by a Poisson process with rate λ (a) = 1/r(a). Using
the return time c.d.f. F−1

T for the Poisson process, we have

F−1
T (

1
K

K

∑
k=1

sk(a)) =
− log(1− 1

K ∑
K
k=1 sk(a))

λ (a)
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Figure 4: Illustration of the block maxima for GEV to GKLT comparison. Many trajectories are run under the
dynamics up to time Tf . T -time average sequences are calculated from the trajectories. For each fixed time step j, the
block maxima (indicated by dashed boxes) are calculated. The τ interval is shown here to emphasize its difference to
T and does not represent any weighting done to trajectories used in the GEV model.

where 1
K ∑

K
k=1 sk(a) = FT (∆T ) is the probability of observing a return of the maxima ak above threshold

a in ∆T time steps. For any ak we have an associated probability pk. We denote the reordering of this
sequence (âk, p̂k) such that â1 ≥ â2 ≥ ·· · ≥ âK . Then the return time is given by,

r(âk) =−
1

log(1−∑
K
k=m p̂m)

(3.3)

where ∑
K
m=k p̂m gives an approximation of the probability of exceeding threshold âk.

Return time plots estimated from outcomes of importance sampling methods are the result of first aver-
aging return time estimates over a number of experiments for each C, then averaging over all C-return time
plots. See fig. (7) for an illustration. Only those return times corresponding to threshold values that fall
within 1/2 standard deviation of the tilted distribution are used in this averaging. For the remainder of this
paper, the term experiment will be used to describe a single run of an importance sampling algorithm.

3.2 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process given by,

dx =−λxdt +σdW

is a nice toy-example for importance sampling application because it is simple to implement, has low numer-
ical cost, the distribution of position x is approximately Gaussian, and it’s correlations decay exponentially.
We use this process with λ = 1 and σ = 1 as a benchmark for the following numerical investigation.

3.2.1 GKLT

The GKLT importance sampling algorithm is performed on the Ornstein-Uhlenbeck process with N = 100
initial trajectories, resampling time τ = 0.1, and a total integration time of Tf = 2.0. Here, the observable

12



of interest is the position. At each time step of the algorithm, a new value of noise W is sampled from
the standard normal distribution for each cloned trajectory to ensure divergence of the clones. Time average
trajectories are calculated by averaging the N = 100 backward-reconstructed trajectories over time-windows
of length T = 0.25 with step size equal to T so that no window has overlapping values.

Above threshold probabilities of the T -time average position P(AT > ak) where AT = 1
T

∫ T
0 x(t) dt are

estimated for C = [0.01,0.03,0.05,0.07]. We define the sequence of T -time averages obtained from realiza-
tions φ̂(xn(t)) of the N-backward reconstructed trajectories as,

An, j =
1
T

∫ ( j+1)T

jT
φ̂(xn(t))dt, (3.4)

for j = 1, · · · ,bTf /Tc. Then the probability estimate for P(AT (t)> a) above a threshold a from eq. 2.10 is
given as,

E0(1(x(t)){AT>a|0≤t≤Tf−T})∼
1
N

N

∑
n=1

E(1(φ̂(xn(t)){An, j>a| j=1····bTf /Tc})e
−C(

∫ Tf
0 φ̂(xn(t))dt)

Tf /τ

∏
i=1

Zi.

This approach results in a unique probability estimate for each predefined threshold a.
Return times are estimated for each value C and sequence of thresholds ak by eq. 3.3 resulting in four

return time curves. We perform 100 experiments under these conditions for a total of 400 return time curves
and average to obtain the result shown in fig. (5). This process is illustrated in fig (7). The total numerical
cost for this estimate is 4 · 104. Monte Carlo (MC) brute force and generalized extreme value (GEV) (eq.
3.1) probability estimates are obtained through numerical costs of the same order. We find that GEV and
MC brute force methods outperform GKLT by providing estimates of return times longer than 1 ·106.

Another option is to define the sequence corresponding to the maximum T -time average quantity of a
single realization φ̂(xn) given by,

an(T ) = max
1≤ j≤bTf /Tc

1
T

∫ ( j+1)T

jT
φ̂(xn(t))dt. (3.5)

This results in a sequence of maximum thresholds an(T ), one per each realization of φ̂(xn(t)). For each
threshold an(T ), there exists an associated probability estimate,

pn =
1
N

e−C
∫ Tf

0 φ̂(xn(t))dt
Tf /τ

∏
i=1

Zi,

which is the result of plugging the threshold values of eq. 3.5 into eq. 2.10 and noting that,

E(1(xn(t)){ 1
T
∫ ( j+1)T

jT φ̂(xn(t))dt>an(t,T )|0≤t≤Tf−T}) = 1.

The sequence (an(T ), pn) for 1≤ n≤ N is then reordered for decreasing values of an. We denote the ranked
sequence (ân(t), p̂n) where â1 ≥ â2 ≥ ·· · ≥ âN and associate a return time r(ân) defined by eq. 3.3 using
the reordered sequence p̂n. We refer to [18] for more details on this approach. Return time curves are then
obtained by linearly interpolating the pair (ân(T ),rn(ân)) over an equal spaced vector of return times. GKLT
is run with the same initial conditions as stated above. We refer to fig. (6) for this discussion. Choosing to
calculate return time curves in this way allows for estimates of longer times; however, this tends to be at the
expense of accuracy. Equation. 3.4 allows for more control over the choice of range of thresholds included
from the shifted distribution.
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GEV and MC estimates are obtained through numerical costs of the same order. Deviation statistics for
GKLT, GEV, and MC methods, represented by dashed lines in fig. (6), are calculated by finding the mini-
mum and maximum deviation in 100 experiments. Solid lines about the GEV represent the 95% confidence
intervals coming from the likelihood function for the GEV estimated from the corresponding MC simula-
tion. We compare all results against a long control run of order 1 ·106. We find that GEV and GKLT methods
provide more accurate estimates of return times longer than 1 ·105 compared to the MC method. Moreover,
the GEV outperforms the GKLT algorithm by providing surprisingly accurate return time estimates with
smaller deviation for all thresholds except in a small fraction of cases.

A possible explanation for the poor performance of the GKLT algorithm comes from the fact that the
tilting coefficient C cannot be chosen arbitrarily large to obtain longer return time estimates without some
change in the initial conditions (e.g. integration time, number of starting trajectories). Large choices of C
result in a lower number of parent trajectories (as many copies are killed) which causes the tilted distribution
to breakdown fig. (8). This breakdown results in increasingly inaccurate return time estimates, even for
thresholds sitting close to the center of the tilted distribution.

3.2.2 GPA

The GPA importance sampling algorithm is performed with N = 100 starting trajectories, resampling time
τ = 0.1, and a total integration time of Tf = 2.0. The final trajectories Xn,Tf from GPA with tilting constants
C = [2,3,4] are used to estimate the above threshold probabilities P(XTf > ak) and return time curves. To
begin, we perform 10 experiments, with the initial conditions described above, resulting in a total of 30
return time curves (10 experiments for each value of C) and average to obtain the result shown in fig. (9).
The total numerical cost for this estimate is 3 ·103 compared to the long control run of 1 ·106. We find that
GPA and GEV methods provide nearly equivalent results fro return times up to 1 ·104 with GPA and GEV
methods outperform Monte Carlo brute force estimates for return times longer than 1 · 104. On average,
GPA provides a slightly closer approximation to the control curve than that of the GEV method for longer
return times; however, the deviation of this estimate is much larger than that of GEV.

Next, we consider larger values of C to test whether reliable estimates can be obtained for thresholds
exceeding the control run. We run 30 experiments for 10 different values of C = [1,2, . . . ,10] under the same
initial conditions as stated above for a total numerical cost of 3 · 104. We average the resulting return time
curves shown in fig. (7) to obtain the final return time plot fig. (10). As seen in the estimates for GKLT,
higher values of C with unchanged initial conditions provide less accurate return-time results even for those
thresholds which sit at the center (e.g. have the highest probability of occurrence) of the tilted distribution.
On the other hand, GEV methods with the same numerical cost of 3 · 104 show surprisingly reasonable
estimates for return times longer than the control method can provide at numerical costs of 1 ·106.

3.2.3 Relative error estimates.

We now discuss relative error estimates on return probabilities across GPA, GEV, and MC methods. The

relative error is estimated as
√

∑
K
j=1

1
K (γ̂− γ)2/γ where γ̂ is the estimate for each of K = 100 experiments

and γ is the long control-run estimate. The relative error is essentially the average deviation of the tail
probability estimate γ̂ from the true value γ where it is assumed that γ̂ follows a Gaussian distribution with
mean γ [16, 17] for a sufficiently large number N of starting particles. For lower values of N, the relative
error calculated in this way has an underlying measurement error in the bias that is observed for γ̂ in lower
N values. Although this bias is often considered negligible, the sensitivity of long return times to small
deviations in the tail probability estimate suggest otherwise. We first illustrate that the relative error cannot
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be used reliably for thresholds whose optimal tilting value is not approximately C. We calculate an estimate
of the mean µ(γ̂) = 1

K ∑
K
k=1 γ̂k for K = 100 experiments with N = 1000 and three different values of C. Then,

we calculate the relative deviation of µ(γ̂) from the ”true” mean γ by
√
(µ(γ̂)− γ)2/γ for each value of the

threshold. Results in fig. (11) show the this deviation is small only for thresholds whose tilting value C lies
near the optimal value.

The effects of this deviation can be seen in return time estimates. We calculate the return time curves
from 100 experiments of GPA and GEV methods with N = 1000 fig. (13) Clearly, GEV methods produce a
larger standard deviation for return times. Under the assumptions above, the relative error for GEV methods
would be larger than that of GPA; however, the mean of the tail probabilities obtained from GEV are nearly
exactly those of the long control run. On the other hand, GPA produces a much smaller standard deviation
(relative error) while the mean of the tail probabilities have accurate estimates only near thresholds for which
the C value is chosen optimally.

We remark that for a single threshold and a close to optimal value of C, relative error estimates are
reliable and GPA outperforms GEV and MC methods under relative error fig. (12) while providing accurate
return time estimates fig. (13). These results are consistent with those of [16]. Interestingly, though not
surprisingly, are the results on equivalent relative error for the GEV and MC methods for shorter return
times. This equivalence suggests that the advantage of GEV over MC methods comes from its ability to
estimate longer return times where MC methods fail to provide results.

3.3 Lorenz Model

The Lorenz 1996 model consists of J coupled sites xl on a ring,

ẋl = xl−1(xl+1− xl−2)+R− xl

l = 0, . . . ,J−1 where the indices are in ZJ . The parameter R is a forcing term and the dynamics is chaotic for
R≥ 8 [24, 25]. The energy E(x) = 1

2J ∑
J
l=1 x2

l is conserved and there is a repelling fixed hyperplane xl = R,
l = 0, . . . ,J−1. The extremes of interest investigated numerically in [16] and in our preliminary work were
tail probabilities of the form P(E(x(t)) > Et). The energy observable on this system has an approximately
Gaussian distribution.

3.3.1 GPA, GEV and MC.

The weight function is taken to be the change ∆E of energy i.e. E(x(t +1))−E(t) for a single time step and
from this an exponential weight function W = exp(C∆E) is constructed, depending on a single parameter C
(large C makes tail probabilities greater). For this analysis, we choose J = 32 sites and a forcing coefficient
R = 64.

The GPA importance sampling algorithm is performed with N = 2000 and 5000 starting trajectories, a
resampling time τ = 0.08, and a total integration time of Tf = 1.28. At each time-step of the algorithm, a
random perturbation sampled from [−ε,ε] where ε =O(10−3) is added to the clones of the previous iteration
to ensure divergence. The final trajectories from GPA with tilting constants C = [3.2 · 10−3,6.4 · 10−3] are
used to calculate the above threshold probabilities and return time curves. The return time curve is calculated
by averaging over 10 experiments. Return time curves from the GEV and MC methods are created from runs
of equal numerical cost 4 · 104, and 1 · 105, respectively. All estimates are compared to a long control run
of 1 ·106. For N = 2000 initial starting particles both GEV and MC methods outperform GPA by providing
more accurate return time estimates for times longer than 1 · 103 (fig. 14). GPA seems to provide more
accurate estimates for returns longer than 1 ·105 for N = 5000; however, the deviation of the averaged return
time curve is much larger than that of GEV or MC methods for all thresholds (fig. 15).
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The complexity of the Lorenz ’96 highlights some of the major pitfalls in GPA. Intuitively, the choice of
tilting value C is (roughly) the shift required for center of the distribution of the observable to lie directly over
the threshold of interest. The Lorenz system provides an example of the difficulties involved in choosing this
tilting value in practice. Similar to the OU system, the underlying dynamics of the Lorenz system equipped
with the energy observable cause a breakdown in the shifted distribution. Unlike the OU system, this occurs
for very low values of C even though the observable range is much larger. As a result, the intuitive choice
of C for thresholds in the tail of the distribution cannot be used. The values of C chosen here are taken from
preliminary work related to [16].

A related issue is the number of initial particles required to give an accurate return time curve. Relative
error arguments for GPA do not hold here both because the optimal tilting value C to threshold pair is
nontrivial for complex systems and because the value C cannot be chosen arbitrarily large. An alternative to
this issue is to choose large enough initial particles N so that relative error is only affected by the standard
deviation of the tail probability estimates γ̂ (see. sec. 3.2); however, this number is nontrivial as convergence
depends on how far the optimal value is from the chosen tilting value.

GEV and GPA methods are able to estimate longer return times compared to MC brute force methods
for the Lorenz 96 system. GEV has the advantage of maintaining the same relative error growth while
difficulties in the optimal choice of C and initial values cause probability tail estimates from GPA to have
much larger relative error. Furthermore, GEV likelihood estimation requires a single run to estimate the
optimal return level plot with confidence intervals where relative error can be approximated by the standard
brute force growth rate (≈ 1/

√
NγA). On the other hand, GPA requires many runs to estimate the relative

error and return level plot for threshold values that do not correspond to the center (or near center) of the
C-shifted distribution.

3.4 Planet Simulator (PlaSim)

We now describe a climate model on which our analysis will focus—Planet Simulator (PlaSim): a planet
simulation model of intermediate complexity developed by the Universität Hamburg Meteorological Insti-
tute [10]. Like most atmospheric models, PlaSim is a simplified model derived from the Navier Stokes
equation in a rotating frame of reference. The model structure is given by five main equations which allow
for the conservation of mass, momentum, and energy. For a full list of the variables used in the following
equations please see table 1. The key equations are as follows:

• Vorticity Equation
∂ζ

∂ t
=

1
1−µ2

∂

∂λ
Fv−

∂

∂ µ
Fu−

ξ

τF
−K(−1)h52h

ξ (1)

• Divergence Equation

∂D
∂ t

=
1

1−µ2
∂

∂λ
Fu +

∂

∂ µ
Fv−52( U2 +V 2

2(1−µ2)
+Φ+TR ln ps

)
− D

τF
−K(−1)h52h D (2)

• Thermodynamic Equation

∂T ′

∂ t
=− 1

(1−µ2)

∂

∂λ
(UT ′)− ∂

∂ µ
(V T ′)+DT ′− σ̇

∂T
∂σ

+κ
T ω

p
+

TR−T
τR

−K(−1)h52h T ′ (3)

• Continuity Equation

∂ (ln ps)

∂ t
=− U

1−µ2
∂ (ln ps)

∂λ
−V

∂ (ln ps)

∂ µ
−D− ∂ σ̇

∂σ
(4)
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Table 1: List of variables used in PUMA.

ζ absolute vorticity λ longitude
ξ relative vorticity φ latitude
D divergence µ sin(φ)
Φ geopotential κ adiabatic coefficient
ω vertical velocity τR timescale of Newtonian cooling
p pressure τF timescale of Rayleigh friction
ps surface pressure σ vertical coordinate p/ps
K hyperdiffusion σ̇ vertical velocity dσ/dt
u zonal wind v meridional wind
h hyperdiffusion order TR restoration temperature
T temperature T ′ T −TR

• Hydrostatic Equation
∂Φ

∂ (lnσ)
=−T (5)

Here,
U = ucosφ −u

√
1−µ2, V = vcosφ − v

√
1−µ2,

Fu =V ζ − σ̇
∂U
∂σ
−T ′

∂ (lnps)

∂λ
, Fv =−Uζ − σ̇

∂V
∂σ
−T ′(1−µ

2)
∂ (ln ps)

∂ µ
.

The combination of vorticity (1) and divergence (2) equations ensure the conservation of momentum
in the system while the continuity equation (4) ensures conservation of mass. The hydrostatic equation (5)
describes air pressure at any height in the atmosphere while the thermodynamic equation (3) is essentially
derived from the ideal gas law .

The equations above are solved numerically with discretization given by a (variable) horizontal Gaussian
grid [9] and a vertical grid of equally spaced levels so that each grid-point has a corresponding latitude,
longitude and depth triplet. (The default resolution is 32 latitude grid points, 64 longitude grid points and 5
levels.) At every fixed time step t and each grid point, the atmospheric flow is determined by solving the set
of model equations through the spectral transform method which results in a set of time series describing
the system; including temperature, pressure, zonal, meridional and horizontal wind velocity, among others.
The resulting time series can be converted through the PlaSim interface into a readily accessible data file
(such as netcdf) where further analysis can be performed using a variety of platforms. We refer to [10] for
more information.

3.4.1 GKLT, GEV and MC.

Our observable of interest in PlaSim is the time series of summer European spatial average temperature
anomalies. For simplicity, we set the climate boundary data to consistent July 1st conditions and remove the
diurnal and annual cycles. This allows for perpetual summer conditions and saves on computational time.
We define the European spatial average as the average over the set of 2-dimensional latitude and longitude
pairs on the grid located between 36◦N− 70◦N and 11◦W − 25◦E. Spatial average values are taken at 6
hour intervals. We subtract the long-run mean to obtain the sequence of summer European spatial average
temperature anomalies used in this analysis.

We perform the GKLT algorithm on the European spatial averaged temperature time-series by consid-
ering initial values as the beginning of a year (360 days) to ensure each initial value is independent. It is
important to note that initial values may be taken at much shorter intervals. We choose one year intervals
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because this initial data was readily available from the long control run. We estimate the resampling time
τ = 8 days as the approximate time for autocorrelation to reach near zero. For each experiment, we use 100
years (100 initial values) run for 17 complete steps of the GKLT algorithm, or 136 days, to estimate anomaly
recurrence times for the T = 8-day time average. We remark that the choice of T and τ here are the same,
however this is not a requirement of the algorithm as illustrated in the Ornstein-Uhlenbeck system in sec.
3.2. Results are compared to a 400 year (144,000 day) control run. Added noise to ensure divergence of
cloned trajectories is sampled uniformly from (preprogrammed noise) [−ε

√
2,ε
√

2] where ε = O(10−4).
Six experiments of the GKLT algorithm are performed on a starting ensemble of N = 100 trajectories

with initial values taken as the starting value of the European spatial average at the beginning of each year.
The values C = [0.01,0.05] (3 experiments per C value) are chosen to tilt the distribution of the spatial-time
average at resampling times τ = 8 days. We remark that constants C = [0.1,2] are also tested with less
favorable results; however, these tests were not included in the total numerical cost of MC brute force and
GEV methods. We choose the observable described by eq. (3.5), with φ(xn(t)) taken as the European spatial
average temperature, to estimate return time curves of the 8-day time average of European spatial averaged
temperature.

We refer to fig. 16 for this discussion. GEV and MC methods agree almost completely up to return
times of 1 · 106 with the GEV continuing to provide estimates for longer return times. 95% confidence
intervals for the GEV (green thin lines) are a result of the likelihood function. The return time curve for
GKLT is formed by the set of return time values from each of the 6 experiments that fall within 1/2 standard
deviation of the mean of the shifted distribution. Hence, the deviation for GKLT (red region) is estimated by
the minimum and maximum deviation of anywhere between 2 and 6 return time values for each threshold.
Compared to that of the long control run, GKLT provides reliable estimates for return times up to 1 · 104,
while GEV estimates remain near those of the long control run for return times up to 1 · 106. Deviation
estimates for GKLT are smaller than the 95% confidence interval for the GEV for return times longer than
1 ·103; however, this may be the result of a low number of experiments. We also remark that the deviation
estimate of the GKLT method for return times of the 8-day average anomaly near 1.5 Kelvin are much
smaller compared to other thresholds. This reduction suggests that at least one of the C values chosen in
GKLT is close to optimal for the 1.5 Kelvin threshold.

4 Discussion

In this paper we have discussed two importance sampling (IS) methods: Genealogical particle analysis
(GPA) which is used to estimate tail probabilities of a time series of observations at a fixed sampling rate,
and GKLT which is used to estimate tail probabilities of a corresponding time average. Both methods
work by tilting the distribution of observations in a reversible way so that the rare events corresponding to
tail probabilities are sampled more often. We have illustrated the particular case when the observations of
interest are distributed according to a symmetric, heavy-tailed distribution and a rare event consists of an
exceedance of a certain level where the natural choice of tilt corresponds to a shift towards the tail.

We compare results of these two methods with classical statistics where rare event estimation is given by
the Generalized Extreme Value (GEV) distribution. Under the goal of obtaining a return level curve, we have
shown that the GEV outperforms both IS methods for all three systems used in this analysis by providing
generally lower relative error and longer return time estimates. We have also illustrated a few disadvantages
in IS methods including the strict dependence of the tilting value to initial conditions and requirement of
multiple runs for return time curve and relative error estimation while demonstrating that classical GEV
results only require a single run to estimate return time curves and follow standard brute force relative error
growth. On the other hand, we have shown that our results do not conflict with previous literature and that
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both the GEV and IS methods outperform Monte Carlo brute force methods in estimating longer return
times. In fact, following previous literature we have shown that IS methods can result in lower relative error
than that of the GEV on subsets of tail probabilities (and hence, that of MC brute force) provided the optimal
tilting value can be chosen.

In general, these results support the idea of using GEV methods over IS under the condition that optimal
tilting values cannot be determined a priori and/or return time curves, rather than returns for a single level,
are of interest. We emphasize that these results should not be taken to discount the value of importance
sampling. The power of these methods can be seen in the decrease in relative error when optimal tilting
values can be chosen. It would be interesting to see more theoretical work in estimating such values which,
at the moment, requires an explicit formula of the (unknown) distribution of the observable. Other numerical
work can also be completed using IS methods which does not involve tail probability estimation. One
particular perspective we plan to explore is the algorithms’ ability to provide the set of trajectories which
most likely end in an extreme event.
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Figure 5: Return time estimates for the Ornstein Uhlenbeck process time average observable using GKLT for 4
different C values and 100 experiments, GEV, and Monte Carlo brute forces methods with numerical cost 4 · 104.
Relative error curves for MC brute force and GEV estimates are represented by dashed lines. Relative error estimated
by 100 experiments of the GKLT process is represented by the shaded red region.

Acknowledgements We warmly thank Frank Lunkeit at Universität Hamburg for very helpful discussions
and advice concerning PlaSim. MN was supported in part by NSF Grant DMS 1600780.
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Figure 6: Return time estimates from the sequence of maxima taken over each trajectory for the Ornstein Uh-
lenbeck process time average observable using GKLT for 4 different C values and 100 experiments, GEV, and Monte
Carlo brute forces methods with numerical cost 4 · 104. Relative error estimates for GEV and MC methods (dashed
lines) and GKLT (red region) are estimated from 100 experiments.
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Figure 7: Return time estimates for the Ornstein Uhlenbeck process time average observable illustrating the choice of
return time curves after GKLT implementation.
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Figure 8: Return time estimates for the Ornstein Uhlenbeck process time average observable illustrating the break-
down of the distributions for large values of C.
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Figure 9: Return time estimates for the Ornstein Uhlenbeck process using GPA for 3 different C values estimated over
10 experiments, GEV, and Monte Carlo brute forces methods with numerical cost 3 ·103. Relative error estimates for
GEV amd MC methods (dashed lines) and GPA (red region) are estimated from 10 experiments.
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Figure 10: Return time estimates for the Ornstein Uhlenbeck process using GPA for 10 different C values estimated
over 30 experiments, GEV, and Monte Carlo brute forces methods with numerical cost 3 ·103. Relative error estimates
for GEV amd MC methods (dashed lines) and GPA (red region) are estimated from 30 experiments.
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Figure 11: Relative deviation of the estimated mean µ(γ̂A) from K = 100 runs of GPA with N = 1000 from the
assumed, asymptotic mean γ . This deviation is only near zero for thresholds whose optimal tilting value C is chosen in
the weight function (marked with a ◦). Relative deviation of the estimated mean from the GEV method is consistently
near zero, suggesting that even though the deviation is larger, the estimate is more reliable.
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Figure 12: Relative error for MC, GEV, and GPA probability estimates of fixed threshold 2 and corresponding optimal
tilting value C = 4.
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Figure 13: Illustration of the deviation of the return time curves from the control for GEV and 3 different tilting C
values of GPA. Notice that the average return time curve (red) for the GEV fits the control (black ◦) for all long return
times while accurate estimates for GPA only occur near the optimal threshold value.
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Figure 14: Return time estimates for the Lorenz ’96 process using GPA for C = [3.1 · 10−3,6.4 · 10−3] estimated
over 10 experiments for N = 2000 starting particles, GEV, and Monte Carlo brute forces methods with numerical cost
4 ·104. Relative error estimates for GEV amd MC methods (dashed lines) and GPA (red region) are estimated from 10
experiments.
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Figure 15: Return time estimates for the Lorenz ’96 process using GPA for C = [3.1 · 10−3,6.4 · 10−3] estimated
over 10 experiments for N = 5000 starting particles, GEV, and Monte Carlo brute forces methods with numerical cost
1 ·105. Relative error estimates for GEV amd MC methods (dashed lines) and GPA (red region) are estimated from 10
experiments.
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Figure 16: Return time estimates for 8-day average temperature anomalies from PlaSim using GKLT for C = 5 ·10−2

for N = 100 over 136 days starting particles, GEV and Monte Carlo estimates are provided with numerical cost
6× 100× 136 days. The control return time curve comes from a long brute-force run of 144,000 days. Green outer
lines indicate the 95% confidence interval of the GEV. Red filled region indicates the deviation of the GKLT algorithm
estimated over 6 runs.

30



References

[1] M. Carney, R. Azencott and M. Nicol. “Non-stationarity of summer temperature extremes in Texas”,
to appear International Journal of Climatology.

[2] V. Lucarini, D. Faranda, A. C. M. Freitas, J. M. Freitas, T. Kuna, M. Holland, M. Nicol, M. Todd and
S. Vaienti,“Extremes and Recurrence in Dynamical Systems”, Wiley 2016 (312 pages).

[3] J. Bucklew, “Introduction to rare event simulation”. Springer Series in Statistics. Springer-Verlag, New
York, 2004.

[4] M. Carney and H. Kantz. “Robust Regional clustering and modeling of nonstationary summer temper-
ature extremes across Germany”, preprint.

[5] S. Coles. “An Introduction to Statistical Modeling of Extreme Values”, Springer Series in Statistics.
Springer-Verlag, New York, 4th Edition, 2007.

[6] P. Collet, “Statistics of closest return for some non-uniformly hyperbolic systems”, Ergod.Th. & Dy-
nam. Sys. , 21 (2001), 401-420.

[7] C. Giardina, J. Kurchan, V. Lecomte and J. Tailleur. “Simulating rare events in dynamical processes”,
Journal of Statistical Physics, 145, (2011), 787–811.

[8] E. J. Gumbel. “Statistics of Extremes”, Columbia University Press, New York, 1958.

[9] B. Hoskins and A. Simons. A multi-layer spectral model and the semi-implicit method. Q.J.R Meteorol.
Soc., 101:637-55, 1975.

[10] K. Fraedrich, E. Kirk and F. Lunkeit. PUMA Portable University Model of the Atmosphere. World
Data Center for Climate (WDCC) at DKRZ. 2009.

[11] J. Freitas, A. Freitas and M. Todd. Hitting Times and Extreme Values, Probab. Theory Related Fields,
147, no. 3, 2010, 675-710.

[12] A. C Freita, J Freitas and M. Todd. “Speed of convergence for laws of rare events and escape rates”,
Stoch. Proc. App. 125 (2015) 1653- 1687.

[13] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, John Wiley and Sons, 1978.

[14] V. Galfi, V. Lucarini and J Wouters, “A large deviation theory-based analysis of heat waves and cold
spells in a simplified model of the general circulation of the atmosphere”. J. Stat. Mech. Theory Exp.
2019, no.3 3, 033404, 39 pp.

[15] C. Gupta, M. Holland and M. Nicol, “Extreme value theory and return time statistics for dispersing
billiard maps and flows, Lozi maps and Lorenz-like maps”. Ergodic Theory Dynam. Systems 31 (2011),
no. 5, 1363-1390.

[16] J. Wouters, F. Bouchet. (2016) ”Rare event computation in deterministic chaotic systems using ge-
nealogical particle analysis.” J Phys. A: Math. Theor. 49 374002

[17] P. Del Moral, J. Garnier. (2005) ”Genealogical Particle Analysis of Rare Events.” Annals of App. Prob.
15 (4) 2496-2534.

31



[18] F. Ragone, J. Wouters, F. Bouchet. (2018) ”Computation of extreme heat waves in climate models
using a large deviation algorithm.” PNAS 115 (1) 24-29.

[19] C. Giardina, J. Kurchan and L Peliti. “Direct evaluation of large-deviation functions”, Phys Rev Lett,
96, 120603, (2006).

[20] J. Tailleur and J. Kurchan. “Probing rare physical trajectories with Lyapunov weighted dynamics”,
NatPhys, 3:203-207, (2007).

[21] P. Hall. On the Rate of Convergence of Normal Extremes. Journal of Applied Probability, 16, no.2 2
(1979), 433-439.

[22] M.Holland and M. Nicol “Stochastics and Dynamics”, 15, no. 4, 1550028, 23 pages (2015).

[23] M. R. Leadbetter and G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Se-
quences and Processes, Springer-Verlag, 1980.

[24] E. N. Lorenz, Predictability–a problem partly solved. Seminar on Predictability, Vol. I, ECMWF
(1996).

[25] E. N. Lorenz, Designing chaotic models. J. Atmospheric Sci. 62 (2005), no. 5, 1574-1587.

[26] P. Del Moral. “Feynman-Kac formulae. Genealogical and interacting particle systems with applica-
tions”. Probability and its Applications (New York). Springer-Verlag, New York, 2004.

[27] F. Ragone, J. Wouters and F. Bouchet, “Computation of extreme heat waves in climate models using a
large deviation algorithm”. Proc. Natl. Acad. Sci. USA, 115 (2018), no.1, 24-29.

[28] G. Rubino and B. Tuffin. “Introduction to rare event simulation. Rare event simulation using Monte
Carlo methods”, 1-13, Wiley, Chichester, 2009.

[29] J. Wouters and F. Bouchet, “Rare event computation in deterministic chaotic systems using genealogi-
cal particle analysis”. J. Phys. A, 49 (2016), no. 37, 374002, 24pp.

32


	1 Extremes and rare event computation.
	2 The Four Methods.
	2.1 Generalized Extreme Value Distribution (GEV).
	2.2 Brute Force Monte Carlo.
	2.3 Importance Sampling Techniques
	2.3.1 Genealogical Particle Analysis
	2.3.2 Giardina-Kurchan-Lecomte-Tailleur (GKLT) algorithm


	3 Numerical Results
	3.1 The Generalized Extreme Value (GEV) Model for Numerical Comparison
	3.1.1 GEV Model for Comparison to GPA Tail Estimates
	3.1.2 GEV Model for Comparison to GKLT Tail Estimates
	3.1.3 Return Time Curves

	3.2 Ornstein-Uhlenbeck Process
	3.2.1 GKLT
	3.2.2 GPA
	3.2.3 Relative error estimates.

	3.3 Lorenz Model
	3.3.1 GPA, GEV and MC.

	3.4 Planet Simulator (PlaSim)
	3.4.1 GKLT, GEV and MC.


	4 Discussion

