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Abstract

This thesis explores different unusual setups of neutrino oscillation ex-

periments. They could help to observe parametric enhancement of

neutrino oscillations or similar effects. Three different setups are stud-

ied: an artificial periodic step function density profile, a neutrino fac-

tory beam passing through the core of the earth, and a short base-

line with two layers of matter of different constant densities. Different

approximations of the neutrino oscillation probability and numerical

calculations are used for analysing the setups giving an overview of the

basic features. Only the neutrino beam through the earth is under cer-

tain conditions able to lead to observable enhancement effects coming

from multiple layers of matter with different densities. However, the

artificial density profile would have to be longer than 1000 km being

technically not realizable. To detect parametric enhancement with a

neutrino beam traversing the earth core, the energy resolution of the

detector would have to be lowered to about 10%. In addition statisti-

cal analysis of the results to differentiate the used oscillation channels

and high statistics are necessary. In the short baseline setup a vacuum

layer of more than 300 km thickness would be needed to enhance mat-

ter effects. In experiments with atmospheric neutrinos the effects are

small and washed out by experimantal energy resolution.
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Abstract

In dieser Arbeit werden spezielle Aufbauten für Neutrinooszillations-

experimente untersucht. Sie sollen zur Beobachtung parametrischer

Verstärkung von Neutrinooszillationen oder ähnlicher Effekte dienen.

Es werden drei Aufbauten untersucht: ein künstliches Materieprofil

mit einer periodischen Stufen-Dichtefunktion, ein Neutrinofabrikstrahl,

der den Erdkern durchquert und eine kurze Baseline (Strecke zwischen

Neutrinoquelle und Detektor) mit zwei Lagen Materie verschiedener

Dichte. Zur Analyse dieser Aufbauten werden verschiedene Näherun-

gen der Oszillationswahrscheinlichkeit und numerische Berechnungen

genutzt, die einen Überblick über die grundlegenden Eigenschaften des

jeweiligen Aufbaus geben. Es zeigt sich, dass sich nur beim Neutri-

nostrahl durch die Erde unter bestimmten Bedingungen verstärkende

Materieeffekte beobachten lassen, die von Materie mit mehreren La-

gen unterschiedlicher Dichte herrühren. Das künstliche Materieprofil

müsste allerdings für solch eine Beobachtung mehr als 1 000 km lang

sein, was technisch nicht realisierbar ist. Um parametrische Resonanz

mit dem Neutrinostrahl durch die Erde detektieren zu können, müsste

die Energieauflösung des Detektors auf 10 % gesenkt werden. Zudem

wäre eine statistische Analyse zur Unterscheidung der verwendeten Os-

zillationskanäle und eine große Datenmenge nötig. Bei einer kurzen

Baseline ist für verstärkende Effekte eine Strecke im Vakuum von min-

destens 300 km nötig, was schwer zu realisieren ist. In Experimenten

mit atmosphärischen Neutrinos ist der Effekt klein und wird zudem

durch experimentelle Energieungenauigkeiten ausgewaschen.
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1 Introduction

Since the discovery of neutrino oscillations [1], there have been var-

ious works on very different aspects of this phenomenon. Moreover,

huge progress in determining the oscillation parameters has been made.

Not long ago, a non-zero value for the oscillation parameter θ13 was

found [2–4]. In addition to that, θ13 was found to be rather large, close

to the upper bound from the Chooz reactor experiment [5]. Due to

this, observations of the νe → νµ oscillation channel mediated by θ13

are possible 1 .This provides opportunities for future experiments, since

this is one of the main channels where matter effects can be observed.

For some neutrino sources, such as the sun, matter effects are quite

sizeable. For other sources, especially artificial neutrino sources on

earth, matter effects are often small. However, certain resonances

cause big matter effects on neutrino oscillations, even for sources on

the earth and rather short baselines in matter (compared to the way

through the sun). There are two basic types of such resonances: The

Mikheyev-Smirnov-Wolfenstein (MSW)-resonance [6, 7] and the para-

metric resonance [8, 9]. The MSW-resonance emerges from a certain

relation between the neutrino energy and the matter density. The para-

metric resonance can occur for non-constant matter density profiles. It

depends on the relation between the length scale of the matter density

variations and the neutrino oscillations length in matter [10]. A real-

ization that is easy to understand is a periodic matter density profile.

In this thesis, different realizations of neutrino beams traversing

matter with a step function density profile will be discussed. Each

of them will be studied to determine whether they can be employed

to observe enhancement of neutrino oscillations which differs from the

well established MSW-resonance phenomenon. This is interesting for

two reasons. Firstly, there has been no experimental evidence for the

parametric enhancement of neutrino oscillations so far. The situations

1This oscillation channel can also be mediated by the solar parameters θ12 and ∆m2
21.

The dominant mediation depends on the baseline and neutrino energy.
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discussed in this thesis might help to find a way to change that fact.

Furthermore, the presented analysis can help to decide which setup is

the most promising for the detection of one of those enhancing effects.

Secondly, the enhancement of matter effects of neutrino oscilla-

tions can help to measure another important parameter: the neutrino

mass hierarchy. There have been measurements on the absolute mass

squared difference between the two mass eigenstates which are closer

in energy. They show that the mass of the mass eigenstate with larger

νe-contribution, called ν1, is smaller than the mass of the eigenstate

with smaller νe-contribution, called ν2. Thus, in this convention of

naming the mass eigenstates, ∆m2
21 = m2

2−m2
1 > 0 holds (see, e.g. [11]

for a recent review). Hence, two possibilities for the mass ordering

remain. These are the normal ordering, also called normal hierarchy

(NH), m1 < m2 < m3, and the inverted ordering, also called inverted

hierarchy (IH), m3 < m1 < m2. The term mass hierarchy is sometimes

used instead of the more general expression of mass ordering.

Frequently, the difference between the orderings appears as a differ-

ence in matter effects on neutrino oscillations. Therefore, enhancement

of matter effects might play a role in the quest for the determination

of the neutrino mass hierarchy. If the setups discussed here can dis-

close enhancement of matter effects, they might also be sensitive to

the neutrino mass ordering. The motivation for the study of the three

setups in this thesis is the observation of yet unobserved enhancement

of matter effects on neutrino oscillations and the possibility to use this

enhancement for the observation of the mass hierarchy.

The thesis is structured as follows: The chapters 1-3, are an intro-

duction to the topic of neutrino oscillations. They provide the theore-

tical basics. Neutrino oscillations in vacuum and the evolution matrix

formalism are introduced in chapter 2. In chapter 3 general matter

effects on neutrino oscillations are described, and the oscillations prob-

abilities in matter in the two-flavour approximation and for constant

matter density are presented. In addition the parametric resonance of
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neutrino oscillations is discussed.

This introduction is followed by the studies of three different setups

for neutrino beam experiments. In chapter 4 the properties of neu-

trino oscillations in an artificial periodic density profile are described.

Comments on the applicability of such a setup are given. Chapter 5

addresses the parametric resonance of neutrinos passing through the

core of the earth. Chapter 6 is about the enhancement of matter ef-

fects for neutrino oscillations with short-baseline two-layer structures

of the matter density profile.

Conclusions are drawn in chapter 7.

The calculations in this thesis are done in the natural units

~ = c = 1 .

2 Neutrino oscillations in vacuum

In the first section of this chapter neutrino oscillations in vacuum in the

two-flavour approximation are described. Neutrino oscillations have

first been suggested by Pontecorvo [12, 13] and Maki, Nakagawa and

Sakata [14]. The calculations in this section mostly follow the descrip-

tion in [15–17]. In a second section the evolution matrix approach is

introduced.

At first, a neutrino produced in a charged-current weak interaction

process is considered. The neutrino initially has the flavour a where

a denotes one of the flavour eigenstates e, µ and τ . The reason is

that flavour states are the eigenstates of weak interaction. The time

development of this state, ν(t), in the flavour space can be described

by a Schrödinger equation (see, e.g., [16])

i
d

dt
|ν(t)〉 = H |ν(t)〉 , (2.1)
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where H is the Hamiltonian of the system. The Hamiltonian of a free,

relativistic particle of mass m is given by the energy,

E =
√
p2 +m2 . (2.2)

However, the flavour states differ from the mass eigenstates which are

the eigenstates of the free propagation. The mass and the flavour

eigenstates are connected by the leptonic mixing matrix U :

|νa〉 =
3∑
i=1

U∗ai |νi〉 . (2.3)

The index i denotes the mass eigenstates 1,2 and 3. The mixing matrix

U is also referred to as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix [12–14]. Combining eq. (2.2) and eq. (2.3), equation (2.1) can

be written as

i
d

dt
|ν(t)〉 = Udiag(E1, E2, E3)U † |ν(t)〉 . (2.4)

This means the neutrino state at the time t can be described as

|ν(t)〉 =
3∑
j=1

U∗aj |νj〉 e−iEjt , (2.5)

where |νj〉 is the state vector of the jth mass eigenstate (see, e.g. [17]) 2.

Finally, the probability for the neutrino to oscillate into the flavour

state b is given by

Pνa→νb(t) = |〈νb | ν(t)〉|2 (2.6)

= |
∑
j

Ubje
−iEjtU∗aj|2 . (2.7)

2To simplify the computation, it is assumed here that the different mass eigenstates
have equal momenta. This is not entirely correct, but it reproduces the results of the
consistent treatment with high accuracy. For a consistent treatment, the quantum me-
chanical wave packet approach or an approach based on quantum field theory should be
used. See, e.g. [18,19] for detailed explanation in the wave packet approach.
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2.1 The two-flavour approximation

The existing data on neutrino oscillations is usually described in the

context of three flavours. There are also contradictory indications of the

existence of a fourth neutrino species. In this thesis, only the standard

three-flavour approach is considered. In this context, the mixing matrix

U is given as a combination of three rotations and one complex phase.

Furthermore, the standard parametrization will be used. It is given by

U = R23V13R12. Here the matrices

R12 =

 c12 s12 0

−s12 c12 0

0 0 1

 andR23 =

1 0 0

0 c23 s23

0 −s23 c23

 (2.8)

are rotation matrices in the 12- or 23- planes in flavour space and

V13 =

 c13 0 s13e
−iδcp

0 1 0

−s13e
−iδcp 0 c13

 (2.9)

is the rotation matrix in the 13-plane with an additional CP-phase3.

The notation sij = sin θij, cij = cos θij is applied where θij is the corre-

sponding mixing angle.

In this thesis, a two-flavour-approximation will often be utilized for

various reasons. It simplifies calculations significantly, and even more

important, it is quite accurate in many cases. The reason is that there

are two small parameters characterizing neutrino oscillations, θ13 and
∆m2

21

∆m2
31

(see, e.g., [22]). This leads to a nearly decoupling of different

oscillation channels. The calculations in this chapter can, for example,

be found in [23].

In the two flavour case, there is only one mixing angle, θ0. In

addition, the CP-violating phase drops out because it can be absorbed

3In [20] the author states that this parametrization is similar to the parametrization
of the Cabibbo-Kobayashi-Maskawa-matrix (CKM-matrix) [21] in the quark sector.
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by rephasing the neutrino fields. This means that U can be written as

U =

(
c0 s0

−s0 c0

)
. (2.10)

In the following, the notation s0 = sin θ0 and c0 = sin θ0 is applied. The

two flavours will be e and x, where x can be either µ or τ or a combina-

tion thereof. Inserting this matrix into eq. (2.7), it is straightforward

to calculate the oscillation probability νe → νx:

Pνe→νx(t) = | 〈νx | νe(t)〉 |2

= | (−s0 〈ν1|+ c0 〈ν2|)
(
c0 |ν1〉 e−iE1t + s0 |ν2〉 e−iE2t

)
|2

= |s0c0

(
e−iE2t − e−iE1t

)
|2

(2.11)

It is convenient to define

δij =
Ei − Ej

2
. (2.12)

The energies of the mass eigenstates can be approximated by

Ei ' p+
m2
i

2p
. (2.13)

For this approximation, the assumption has been used that the different

mass eigenstates of which the initial state is composed have the same

momentum p. The approximation yields

δij =
∆m2

ij

4E
, (2.14)

where E ' p is the energy for m = 0 and, ∆m2
ij = m2

i −m2
j . Moreover,

we can replace the time t in eq. (2.11) by the baseline L. One reason for

that is that the neutrino wave packet is very short compared to every

other length of interest. Therefore, the neutrino can be considered to

be point-like. The other reason is that neutrinos are highly relativistic

so their speed is close to one. Its deviation from one can be neglected.
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In the two-flavour case, the indices will often be omitted and ∆m2

and δ will be used for the relevant mass squared splitting and one half

of the energy splitting. With the help of this we can rewrite Pνe→νx(t).

Note that the energies of the different mass eigenstates read

Ei =
E1 + E2

2
± δ21 , (2.15)

where the + corresponds to E2 and the − to E1. The factor E2+E1

2

can now be factored out. It drops out when the square modulus of the

transition amplitude is taken.

This step can also be done at an earlier stage of the calculation

by subtracting 1
2
tr(H)1 from the Hamiltonian. This calculation makes

the Hamiltonian traceless. It is valid as it corresponds to multiplying

the state vector of the neutrino by a phase. This phase is common to

all flavours and does not affect the results of neutrino oscillations. In

the following, the traceless form of the Hamiltonian,

H = Udiag(−δ, δ)U † , (2.16)

will be utilized frequently.

Eventually, after taking the square modulus of the transition am-

plitude, the oscillation probability reads (see, e.g. [23])

Pνe→νx(t) = sin2 2θ0 sin2(δ · L) . (2.17)

2.2 The evolution matrix formalism

A very elegant way to deal with neutrino oscillations is the evolution

matrix formalism. It provides a possibility to solve some more compli-

cated equations in a convenient way. The most important reason to use

this formalism, however, is its independence of the initial state. Due to

that the calculations do not need to be repeated for every new initial

state. This formalism, especially the various properties of the evolu-

tion matrix, is presented in this section. The calculations follow [24]
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for the most part while some of the properties of the evolution matrix

are discussed in [25].

The evolution matrix S (t, t0) is the matrix that describes the time

development of the neutrino state,

|ν(t)〉 = S (t, t0) |ν(t0)〉 , (2.18)

with the initial condition

S (t0, t0) = 1 . (2.19)

Inserting eq. (2.18) into eq. (2.1) gives

i
d

dt
S (t, t0) |ν(t0)〉 = HS (t, t0) |ν(t0)〉 . (2.20)

This equation should hold for any initial state |ν(t0)〉. Thus,

i
d

dt
S (t, t0) = HS (t, t0) (2.21)

should hold. As we see, S (t, t0) follows the same time evolution equa-

tion as ν(t). Replacing the time t by the baseline L as in the previous

section, the evolution matrix reads

S (t, t0) = S (L,L0) = Udiag
(
e−iE1(L−L0), e−iE2(L−L0), e−iE3(L−L0)

)
U †

(2.22)

Using the traceless form of the Hamiltonian as introduced in eq. (2.16),

the explicit form of S in the two-flavour case can be written as

S (t, t0) =

(
cos ∆

′
+ ic20 sin ∆

′ −is20 sin ∆
′

−is20 sin ∆
′

cos ∆
′ − ic20 sin ∆

′

)

c20 = cos 2θ0, s20 = sin 2θ0, ∆
′
=

∆m2

4E
(L− L0) .

(2.23)

Once this matrix is known, it is straightforward to compute the oscil-
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lation probability Pνa→νb(L):

Pνa→νb(L) = | 〈νb | S (L,L0)ν(L0)〉 |2

= | 〈νb | S (L,L0)νa〉 |2

= |[S (L,L0)]ba|2 .
(2.24)

The evolution matrix has some useful features which are listed be-

low.

From the definition of the evolution matrix it can be seen that

evolution matrices from L0 to L can always be split into a product of

intermediate evolution matrices

S (L,L0) = S (L,L1)S (L1, L0) , (2.25)

where L0 < L1 < L.

Assuming there is no absorption or decay of the neutrino and summed

over all flavours, the total probability to find the neutrino always re-

mains 1. Therefore, S has to be unitary:

S (L,L0)S (L,L0)† = 1 . (2.26)

There are different suitable ways to write S (L,L0), especially in

the approximation of two flavours. One way is to employ the Pauli

matrices in the flavour space. The evolution matrix S (L,L0) for the

traceless Hamiltonian can be written as

S = Y 1− iσX , (2.27)

where σ is the vector of Pauli matrices and Y and X are real parameters

(see, e.g., [24]). Y and the 3-vector X now characterize the evolution

matrix. They need to be determined by solving eq. (2.21). Due to the
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unitarity of S , they fulfil the condition

Y 2 + |X|2 = 1 . (2.28)

Taking this into account, there is another appropriate way to write the

evolution matrix,

S = exp

[
−i
(
σ
X

|X|

)
Φ

]
, (2.29)

where

Φ = arccosY = arcsin(|X|) . (2.30)

This parametrization will prove especially useful in the case of a peri-

odic matter profile (see, e.g., [24]).

Due to the unitarity of S (L,L0), in the two-flavour approximation,

Pνa→νb(L) = Pνb→νa(L) (2.31)

holds. This is independent of the matter density profile of the setup.

For the vacuum case, this can be seen immediately from eq. (2.23).

3 Matter effects in neutrino oscillations

The thesis will cover different matter effects. They are a key to diffe-

rent enhancements of neutrino oscillations. Three of them will be dealt

within this thesis. To get an overview of this topic, this chapter com-

prises a general description of matter effects for two flavour oscillations.

The descriptions given in this chapter can be found in [26–28].

3.1 How matter affects neutrino oscillations

When neutrinos fly through matter, they can interact with the particles

by weak interaction. To be precise, they can be absorbed or scattered in

a way that changes their momentum and energy. The effective poten-

tial of such an interaction is of the second order in the Fermi constant
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GF . In this case, the probabilities for the scattering with different par-

ticles have to be added. As the Fermi constant is very small, the effect

of those interactions can be neglected in most cases. However, the neu-

trino can also experience elastic forward scattering. This process leaves

the momentum unchanged. The contributions of scattering processes

on different particles to the effective portential add coherently. Instead

of the probabilities, the amplitudes must be added in this case. Thus,

the effect is of the first order of GF . This is still small compared to the

energy, but it can be of the size of the energy splitting. Therefore, it

can have strong effects on neutrino oscillations (see, e.g. [26]).

Due to the composition of normal matter, the interactions with

matter include neutral current (NC) interactions of all flavours via Z0

exchange, but also charged current (CC) interactions of electron neu-

trinos with electrons via W± boson exchange.

The task is to calculate the effective potential of the weak inter-

actions of neutrinos with matter. Still, the contributions of forward

scattering are much larger than the contributions from other interac-

tions. Thus, it is necessary only to calculate the effective potential of

forward scattering (see, e.g., [26]).

Therefore, the effective Hamiltonian of the corresponding weak in-

teraction process is written down. The parameters that describe the

neutrino such as its energy and momentum are then fixed while inte-

grating over all parameters of the scatterer. Finally, we assume that

the matter is unpolarized and has zero total momentum. The result

for the CC interactions of the electron neutrino is [6]

VCC =
√

2GFNe . (3.1)

Here Ne is the electron number density in the medium.

If the medium is electrically neutral, the numbers of electrons and

protons are the same. Their contributions to the NC effective potential
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cancel each other out. Hence, the effective potential for the neutral

current reads [6]

VNC = −GF
Nn√

2
. (3.2)

However, the NC effective potential is the same for all flavours, ex-

cept for small radiative corrections. Thus it does not contribute to

the change of the flavour state in the oscillation. It can be omitted as

long as a sterile neutrino species is not taken into consideration (see,

e.g. [27]).

The effective CC potential is then added to the Hamiltonian in

eq. (2.1). As the electron density can vary along the path of flight

of the neutrino, this makes the Hamiltonian time-dependent. Conse-

quently the Schrödinger equation for neutrino oscillations is in general

not analytically solvable. In the following, it will be shown how this

new Schrödinger equation can be solved for two flavours and matter of

constant density.

3.2 Oscillation of two flavours in constant density matter

As mentioned before, in matter eq. (2.1) has to be changed to [6] (see

also [28])

i
d

dt
|ν(t)〉 =

((
−c20δ s20δ

s20δ c20δ

)
+

(√
2GFNe(t) 0

0 0

))
|ν(t)〉 . (3.3)

Here, we have omitted the mean kinetic energy of the two mass eigen-

states. That corresponds to using the traceless vacuum Hamiltonian

as introduced in chapter 2.1. In addition, the NC potential has been

omitted. The notation of chapter 2.1 will be used in the following.

Next, we make the new Hamiltonian traceless like the one in va-

cuum. Assuming that the matter density is constant, the system is

easy to solve with a little trick: If H does not depend on time, there

is one basis, independent of t, in which it is diagonal. If there is such

a basis, there is a rotation matrix Um that connects the flavour and
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matter eigenstates. The task now is to find the rotation matrix and

the eigenvalues of the diagonalized Hamiltonian. The rest is just ana-

logous to the calculations in vacuum. We can use the vacuum results,

for example the evolution matrix, and replace the vacuum mixing angle

θ0 by the mixing angle in matter and the eigenvalues of the traceless

vacuum Hamiltonian, ±δ, by the eigenvalues of the new Hamiltonian,

±ω.

Denoting the mixing angle in matter by θm, these quantities are

given by [6, 7]

tan 2θm =
2s20δ

2c20δ − 2V
(3.4)

ω =
√

(c20δ − V )2 + (s20δ)2 (3.5)

Here, V is one half of the effective potential VCC ,

V =
GFNe√

2
. (3.6)

Eq. (3.4) can also be rewritten in the form of the sine of 2θm [6, 7],

sin 2θm =
s20δ√

(c20δ − V )2 + (s20δ)2
. (3.7)

This formulation makes it more obvious that the depth of neutrino

oscillations sin2 2θm as a function of V has the form of a resonance

curve: For very small V, it takes the form of the vacuum mixing. At

the resonance,

V = cos 2θ0δ , (3.8)

sin2 2θm is equal to 1, the depth of mixing is maximal. For very large

values of V, it decreases to zero, and mixing is strongly suppressed. In

this case, the mixing angle approaches π
2
. The enhancement of neutrino

oscillations by matter for a certain relation between δ cos 2θ0 and the

effective potential V is part of the so-called MSW resonance effect [6,7].

16



3.3 Parametric resonance of neutrino oscillations in matter

with a step function profile

Most of the effects examined in this thesis are based on the parametric

resonance of neutrino oscillations in a certain type of matter profile

called “castle-wall profile” [24]. This section presents the basic fea-

tures and calculations for this kind of profile and explains the effect of

parametric resonance. It follows the calculations in [24]. For a different

approach to the parametric resonance see also [10].

The evolution matrix for a baseline in matter of constant density is

described by eq. (2.23), but with the effective mixing angle and energy

splitting in matter. The evolution matrix for two layers of matter with

different constant densities is then given by the product of two of those

matrices,

S (L, 0) ≡ S = S2(L,L1)S1(L1, 0) , (3.9)

where S1(L1, 0) and S2(L,L1) are the evolution matrices in the first

and second layer respectively and S is the evolution matrix over both

layers. Here, L1 is the length of the first layer and L = L1 + L2 is the

length of both layers together.

Now the parameters Y and X can be calculated for S . They are

needed for the parametrization as in eq. (2.27) or eq. (2.29). Multiply-

ing the matrices S1 and S2 yields [24]

Y = c1c2 − s1s2(cos 2θ1 cos 2θ2 + sin 2θ1 sin 2θ2) , (3.10)

X1 = s1c2 sin 2θ1 + s2c1 sin 2θ2 , (3.11)

X2 = (sin 2θ2 cos 2θ1 − sin 2θ1 cos 2θ2) s1s2 , (3.12)

X3 = − (cos 2θ1s1c2 + cos 2θ2s2c1) . (3.13)

In this case, the notation θi = θm(Vi) has been utilized for the effective

mixing angle in the ith layer. si = sinωiLi, ci = cosωiLi have been

used for the time-dependent part of the oscillation probabilities where

ωi represents one half of the effective neutrino energy splitting in the
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ith layer and Li its length. This notation will be applied frequently

when dealing with such two-layer profiles.

If this two-layer structure is repeated many times, the resulting

matter profile is the “castle wall” density profile. Now, the evolution

matrix for n periods of this profile, Sn, is achieved by taking S to

the power n. This can be implemented with the parametrization of

eq. (2.29):

S (nL, 0) ≡ Sn = exp

[
−i
(
σ
X

|X|

)
nΦ

]
. (3.14)

From this, a few steps of calculation show Sn in a very helpful way:

Sn = cosnΦ1− iσX
|X|

sinnΦ (3.15)

This form is especially convenient for calculating the transition proba-

bility

Pνe→νx(nL) = |[Sn]xe]|2 (3.16)

=
|X2 sinnΦ− iX1 sinnΦ|2

|X|2
(3.17)

=
X2

1 +X2
2

X2
1 +X2

2 +X2
3

sin2 nΦ . (3.18)

Just as in the case of vacuum oscillations, this probability factorizes

into an amplitude which is independent of L and an oscillation part

that contains the L-dependence. As in the case of constant density,

the prefactor can be maximized. This will lead to oscillations with

maximal depth. The condition for this is

X2
3 = (cos 2θ1s1c2 + cos 2θ2s2c1)2 = 0 . (3.19)

This condition is called the resonance condition [24]. There are different

ways of fulfilling it, but the applied one is

c1 = c2 = 0 . (3.20)

18



In this case,

Φ = 2θ2 − 2θ1 (3.21)

and the oscillation probability is given by [24]

Pνe→νx(nL) = sin2 [2n(θ2 − θ1)] . (3.22)

4 Parametric resonance in an artificial density pro-

file

In the previous section, the parametric resonance of neutrino oscilla-

tions in matter with a “castle-wall” density profile was discussed, and

eq. (3.22) has been derived. This enhancement of neutrino oscillations

via parametric resonance has not yet been observed in experiment. One

can consider different setups to test it. One method is the measurement

of atmospheric neutrinos passing through the core of the earth. This

might be the most promising way to probe parametric enhancement of

neutrino oscillations [29]. Chapter 5 will discuss the resonance in the

core of the earth for neutrinos from a neutrino factory.

Another possible setup would be to build or find a baseline that has

a “castle-wall” density profile. Such a setup might keep the baseline

short while showing parametric enhancement of neutrino oscillations.

The limits of such an experiment will be explored in the following chap-

ter. It will turn out that such an experiment is not feasible.

A simplification of the three-flavour approach to study the oscilla-

tion probability is to apply perturbation theory of zeroth order in
∆m2

21

∆m2
31

.

In this approach, one of the neutrino flavours can be decoupled from

the other two by a rotation in the µ-τ subspace of the flavour space by

the angle θ23 [25]. Hence, the calculation is reduced to two flavours, e

and x. Here, x is the combination of µ and τ produced by the rotation

of the µ-τ subspace. As a result of the reduction to two flavours there

is only one independent oscillation probability. The equation

Pνe→νe = 1− Pνe→νx (4.1)
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can be applied to deduce the other probabilities. The transition prob-

abilities in the flavour basis e, µ and τ are recovered by multiplying

Pνe→νx with c2
23 or s2

23 [29]. Pνe→νx will be employed as the oscillation

probability in the following analysis. Besides the advantages discussed

above, it is directly influenced by matter effects because it contains

electron neutrinos as the initial flavour.

In this chapter, a strongly idealized version of a neutrino experiment

is utilized. It will be assumed that the neutrino oscillation parameters

are known with an accuracy of less than one percent. In addition to

that, the sensitivity of the detector for the oscillation probability is

presumed to be at the order of permille. Moreover, the neutrino beam

is supposed to be monochromatic. These are quite unrealistic assump-

tions. Especially a monochromatic neutrino beam will not be feasible

in neutrino beam experiments. But if the studied experiment is not

feasible under this idealized assumptions, it will not be feasible under

realistic conditions. The reasons behind will be discussed later. Thus,

this idealized version of a neutrino experiment can help to demonstrate

that a neutrino experiment with an artificial density profile can not be

used to observe parametric enhancement of neutrino oscillations.

To determine whether such an experiment with an artificial matter

density profile can be done, there are different aspects to consider. The

first one is the objective to be achieved. It has to be clear which quan-

tity shall be measured and to what extend the experiment is sensitive

to this quantity. The second aspect is the constraints of the experi-

ment. It has to be defined which parameters are constrained and what

size they can take.

Concerning the first aspect, the measured quantity is the paramet-

ric enhancement of the oscillation probability. Therefore, the para-

metrically enhanced oscillation probability, Ppr should be distinguish-

able from the normal neutrino oscillation probability in matter of con-

stant density, Pcd. This means, Ppr should be bigger than the expected

value of the oscillation probability in matter with the constant density
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ρ̄ = ρ1L1

L
+ ρ2L2

L
. In the present case, ρ̄ is approximated by ρ̄ ' ρ1+ρ2

2
.

It will be shown later that the end of each period of the matter density

profile approximately coincides with a minimum of Pcd.

As a result, the difference between Ppr and Pcd, called ∆P , can

be approximated by the difference between Ppr and zero, Pmin. Thus,

the oscillation probability in the artificial density profile setup must be

large enough to be distinguished from zero. However, a slight deviation

of Pcd from the minimum after one period can accumulate over a large

number of periods. This is why the minimal oscillation probability

should not be chosen too small. As an optimistic assumption the mini-

mal parametric enhanced oscillation probability Pmin = 0.01 is selected.

The second aspect concerns the constrains on our parameters. There

are different limitations to experiments on the earth. Firstly, the den-

sity of matter in the earth is, at least for the use of an experiment,

limited by about 10 g/cm3. For many setups the maximal density is

even lower. Secondly, the baseline of the experiment can not be chosen

arbitrarily long. According to the setup, limits may come from the

earth diameter, the flux of the neutrino source and the 1
L2 -dependence

of the flux or just the maximal size of an artificial density profile. The

third limit is the one that will be applied in this section. Nevertheless

the possibility of a beamline which accidentally has the desired matter

profile because of mountains or hills is taken into account.

The next step is combining both aspects, the requirement of the re-

sult and the limits on the parameters. Thereto, the question has to be

answered whether Pmin can be reached within the limits of our exper-

imental parameters. For testing, a measured oscillation probability of

Pmin is assumed. Then all parameters except one are set to convenient

values within the allowed domain. Finally, the requirements for the

last parameter are computed and compared to the restrictions of this

parameter. In this case, it will be determined how long the baseline

must be to reach Pmin. It will be shown that the required baseline of an

artificial profile is too long to be built. Furthermore, there is no chance

21



to find one accidentally. This result will turn out to be independent of

the neutrino energy to the first order in the used approximation.

4.1 Analytical study

To understand certain effects such as resonances it is often helpful to

analyse approximate solutions of the problem. Their properties some-

times show interesting features hard to understand by numerical calcu-

lation. To analyse the present case, the starting point is the transition

probability at resonance for a “castle-wall” density profile as given by

eq. (3.22).

Demanding that the probability takes a certain value Pmin, it is

possible to calculate the number n of layers needed. n is given by the

integer that is closest to

arcsin(
√
Pmin)

2|θ2 − θ1|
. (4.2)

This derives directly from eq. (3.22). This formula has a few interest-

ing characteristics. As expected, the number of layers depends on the

difference of the mixing angles. The larger the difference, the smaller n

needs to be. The difference, however, can not become arbitrarily large.

The maximal difference that can be achieved is π
2
−θ0

4 . It corresponds

to infinite density in one and vacuum in another layer. Note that n can

only take integer values, as mentioned above. If the oscillation proba-

bility for a baseline with an incomplete layer in the end is calculated,

a different evolution matrix has to be used [24].

The next interesting characteristic of this formula is the propor-

tionality to arcsin of
√
Pmin. For small values of Pmin, such as 10−2,

this can be approximated as
√
Pmin. As a result of this dependence n

can only be lowered by a factor of
√

10 if Pmin can be lowered by an

order of magnitude. In addition to that, the deviation of Pcd from zero

represents a lower bound for Pmin. Taking both into account, the pro-

4The mixing angle can be chosen to lie between 0 and π
2

by rephasing of the neutrino
fields. See [30].
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portionality to
√
Pmin and the lower bound from Pcd, the benefit from

an increase of experimental sensitivity on the length of the baseline is

limited.

The total length of the baseline, L, is not only determined by the

number of layers, but also by their size:

L = n(L1 + L2) , (4.3)

where L1 and L2 are the lengths of the single layers. They are deter-

mined by the resonance condition as given in eq. (3.20). In terms of the

oscillation phase, the resonance condition can be written in the form

ωiLi =
π

2
+ kiπ, ki ∈ N . (4.4)

The calculations are restricted to ki = 0 for now, because this is the

condition with the shortest length of a single layer. In this case, the

length of each layer is given by

Li =
π

2ωi
. (4.5)

Here, we see that the length of every period of the profile corresponds

approximately to an oscillation phase of π . As a result, the oscillation

probability in matter of the constant density ρ̄ will be close to the os-

cillation minimum at that point 5 . Thus, this oscillation probability

vanishes at the end of each period of the density profile. Therefore, we

can compare Ppr to zero.

The length of the individual layers depends only on the effective

neutrino energy splitting. Nonetheless, neither the vacuum mixing an-

gles nor the mass splitting are adjustable parameters of a potential

experiment, in contrast to the energy E as defined in chapter (2.1).

Thus, it could be of interest to see the energy dependence of the to-

5Note that this is only valid because of the assumption that the neutrino beam is
monochromatic. For other energies than the one used to calculate L, Pcd might be much
larger and Ppr is not at the resonance. A numerical discussion on that topic can be found
in the next section.
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tal required baseline. Without any approximations, this dependence is

rather complex. However, the problem contains a small parameter, Vi
δ

6. An expansion in this parameter will simplify the calculations sig-

nificantly. The following example shows that this parameter indeed is

small in the present case.

The matter density is assumed to be about ρ = 2.8 g
cm3 , which is the

density of the earth crust. Per nucleon, we assume Ye = 0.5 electrons,

as the numbers of neutrons and protons in the earth are approximately

equal, while the number of protons and electrons are exactly equal. We

also use ~c in the units of length times energy as given by the Particle

Data Group [31],

~c = 1.973 269 788× 10−5 eV cm . (4.6)

The Fermi constant has the value [31]

GF = 1.166 378 7× 10−5 GeV−2(~c)3 (4.7)

and the Avogadro constant is [31]

NA = 6.022 140 857× 1023 mol−1 . (4.8)

With the help of these quantities we can now calculate the effective

potential in the earth crust, Vc

Vc =
GF√

2
NAρYe = 3.816 23× 10−14 ρYe = 5.34× 10−14 eV . (4.9)

The other value of interest is δ. The oscillation channel we chose is me-

diated by the 1−3-mixing angle and mass squared splitting. Therefore,

the relevant mass splitting in the present case is

∆m2 = ∆m2
31 =

(
2.457+0.047

−0.047

)
10−3eV2 . (4.10)

6There are actually two parameters, V1
δ

and V2
δ

, but as Li and ωi are expand, each
expansion will be in only one of them. In the final formula, their sum and difference will
appear, so that there are strictly speaking two corrections in the first order, one for each
parameter.
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This is the global fit best value and 1σ range at the moment [11]. Now

taking the best fit value of ∆m2
31 and using eq. (2.14), δ is easy to

calculate:

δ = 6.1425× 10−10 eV

E(MeV)
. (4.11)

Accordingly, Vc
δ

takes the value

Vc
δ

= 8.6980× 10−5E(MeV) . (4.12)

As revealed, in the MeV energy rang, this quantity is small enough to

be utilized as an expansion parameter.

The first quantity to be developed is one half of the effective energy

splitting as given in eq. (3.5). It can be rewritten in the convenient

form

ωi = δ

√
1 +

(
Vi
δ

)2

− 2c20
Vi
δ
. (4.13)

A Taylor expansion of ωi to linear terms in
Vi
δ

yields

ωi ' δ − c20Vi . (4.14)

Inserting this into eq. (4.5) and again linearising by Taylor expansion,

Li at the parametric resonance takes the form

Li '
π

2δ

(
1 + c20

Vi
δ

)
. (4.15)

To 0th order in the expansion parameter Li is proportional to the neu-

trino energy, while the first order correction is quadratic in E. In order

to keep the length of each layer short, the energy should not be too

large. E is assumed to be around a few MeV, but it could as well be

up to 1-2 GeV.

The next step is linearising the effective mixing angles in matter by

Taylor expansion. Therefore eq. (3.7) and the linearised form of ωi are
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used:

θi = 0.5 arcsin

(
δ

ωi
s20

)
' θ0 + 0.5s20

Vi
δ

(4.16)

Now, this formula and the simplified form of Li can be combined. The

result is a formula for the total baseline length:

L ≈ π

2δ

(
2 + c20

V1 + V2

δ

)
δ arcsin

(√
Pmin

)
s20|V2 − V1|

=
π arcsin

(√
Pmin

)
s20|V2 − V1|

+
πc20 arcsin

(√
Pmin

)
(V1 + V2)

2δs20|V2 − V1|

(4.17)

This is one of the main results of this analysis. The first term on the

right side is independent of δ. Therefore, it is independent of the neu-

trino energy. As a result, as long as V
δ

is very small, the length of the

baseline that is needed to get a certain size of oscillation probability

will not change with energy.

The dependence of L on Pmin is the same as for n. The properties of

that dependence have been described above. The most important re-

sult disclosed that n does not depend on Pmin very strongly. Moreover

Pmin should not become smaller than Pcd. Combining the dependencies

on E and Pmin of the leading term of L it is revealed that L can not be

shortened significantly by increasing the accuracy of the experiment or

lowering the neutrino energy.

Both terms, the first and the second one on the right of eq. (4.17),

are proportional to |V2 − V1|−1. If the difference of the effective poten-

tials is small, this is a strong dependence. However, the effective poten-

tials are the most strictly limited parameters as the maximal density

of earth matter can not be raised. Hence, the strong dependence on

the difference of the matter densities can not be applied to shorten L

significantly.
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The second term is of the first order in the small parameter. This

term has an additional factor of c20
V1+V2

2δ
. If V1 ' 0, V2− V1 ' V2 + V1.

As a result, this term is independent of the density of the second layer

as long as V1 ' 0. The term is proportional to E because it contains a

factor of δ−1. As a result this term will rise linearly with energy. This

is rather problematic than helpful, as the correction is positive, and

will even increase L. Anyway, for small energies of a few MeV or less

this factor is strongly suppressed compared to the leading order term

by V1+V2
δ

.

This analysis shows that for energies of some MeV the length of the

baseline required to reach a given transition probability at the paramet-

ric resonance is to the first order independent of the neutrino energy.

It is proportional to the square root of the required transition prob-

ability. Thus, it will be difficult to reduce the length of the required

baseline for such an experiment, even if lower energies can be used and

the sensitivity can be increased.

The approximations done here might be valid only for small en-

ergies, but higher energies can be excluded for different reasons. As

eq. (4.5) shows, Li grows with E. Indeed, as Vi is limited, ωi decreases

with E. This is why at the GeV-scale, where the validity of the applied

approximation reaches its limits, the length of every single layer would

be too large to built or find a “castle-wall” density profile. For exam-

ple, to reach an oscillation phase of π
2

for a neutrino with an energy of

5 GeV in the crust of the earth, one would need a baseline of

L ' 4221 km . (4.18)

The remaining question relates to the size of the first term in eq. (4.17).

It determines whether the studied experiment can be build to observe

the parametric enhancement of neutrino oscillations.
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4.2 Numerical estimates

In this section, it is analysed whether the setup with the artificial den-

sity profile can be utilized to observe the parametric enhancement of

neutrino oscillations or not. Therefore, the length of the required base-

line is calculated in the approximation given above.

The assumptions for the calculations will be as follows: The value

of the neutrino energy is 5 MeV. The matter profile those neutrinos

pass consists of alternating layers of different materials. One of the

materials is proposed to be air, so that V1 ' 0. The other one is the

crust of the earth which means V2 = Vc = 5.34× 10−14 eV. We assume

Pmin = 10−2. The mass squared difference is adopted from the example

in the previous section. The mixing angle θ13 and its 1σ error are given

by [11]

θ13 =
(
8.50+0.20

−0.21

)
° . (4.19)

To get an initial idea, the thicknesses of the individual layers are

computed with the help of eq. (4.15). The results for the lengths of the

layers are

L1 =
2π

∆m2
E(MeV) ' 504.62 mE(MeV) ' 2523.08 m ,

L2 =
2π

∆m2
E(MeV) +

8πc20Vc
(∆m2)2

(E(MeV))2

' 504.62 mE(MeV) + 0.04 m (E(MeV))2 ' 2524.13 m .

(4.20)

In the last line it is clearly visible that the correction of the length of

the layers due to matter is quite small. It becomes clear that building

an actual matter profile might become difficult, even if n is small, as

the length of each layer is already about 2.5 km for the energy of 5 MeV.

Next, the number n of layers is calculated as described in eq. (4.2).

n ' δ arcsin 0.01

s20Vc
' 3.939× 103 1

E(MeV)
' 788 (4.21)
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Multiplying the two results yields for the total baseline

L ' 1009.23 mE(MeV) 3.939× 103 1

E(MeV)

+ 0.04 mE2(MeV2) 3.939× 103 1

E(MeV)

= 3975 km + 165 mE(MeV) .

(4.22)

This is not a very long baseline for a neutrino oscillation experiment,

but it is too long for building the setup described above.

This result is not really surprising. If we go to low energies, mat-

ter effects in neutrino oscillations are very tiny. Due to this, many

layers, around 800 in this case, are needed to achieve a sizeable oscilla-

tion probability. The length of each layer decreases with energy, but it

does not become small enough to compensate for the large number of

layers needed. Therefore, performing such an experiment successfully

requires much higher densities or much longer distances.

One possibility to achieve higher densities is using lead instead of the

crust of the earth in the layers with higher density. This will increase

the density to [32]

ρl ' 11.35 g/cm3 . (4.23)

Lead has approximately

Ye ' 0.4 (4.24)

electrons per nucleon. The effective potential in lead as given by

eq. (3.8) is

Vl ' 1.73× 10−13 eV . (4.25)

As a result, the length of the layer in lead is

L2 ' 504.62 mE(MeV) + 0.14 mE2(MeV2) . (4.26)

Eq. (4.15) was applied to derive this result. The number of layers for
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the same Pmin as before is

n ' 1215 [E (MeV)]−1 . (4.27)

Eventually, the result for the total baseline is

L ' 1226 km + 165 mE(MeV) (4.28)

While the second term on the right side is approximately the same as

in eq. (4.22), the first one is smaller by about 69%. Anyway, it is still

larger than 1000 km. Even when such a dense material as lead is used,

a feasible baseline length can not be reached.

To justify the approximation ∆P = Pmin − Pcd ' Pmin, Pcd is

calculated for the given baseline. The same energy as in the previous

calculations is assumed. The effective matter potential is given by

V̄ =
V1 + V2

2
=
Vc
2
. (4.29)

For the baseline the corrections of the first order are included. Using

the formulae derived in section (3.2), the result is

Pcd ' 8.9× 10−10 . (4.30)

The result shows that it was indeed justified to use Pmin instead of ∆P .

Note that Pcd is still small compared to Pmin for E = 2 GeV. There

Pcd(E = 2 GeV) ' 1.7× 10−4 . (4.31)

Thus ∆P ' Pmin can be applied in the idealized experiment.

However, small deviations from the idealized assumptions will lead

to a Pcd which is large compared to Pmin. One example for an idealized

assumption is the neutrino energy. The assumption of a monochromatic

beam has been the most unrealistic one. A more realistic but still

optimistic assumption would be to assume an energy spectrum that

spreads 1 MeV above and below the resonance, in this case 5 MeV.
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The maximal result for Pcd in this energy range is

Pcd ' 0.086 (4.32)

at the energy

E ' 4.33 MeV . (4.33)

Here, the spectrum has been assumed to be constant between 4 and

6 MeV. The same formula and baseline are applied as before. Since

the result for Pcd is eight times larger than Pmin, Pcd will exceed the

parametrically enhanced oscillation probability within the range of the

spectrum, even if the spectrum is not a step function, but peaks around

the resonance energy.

Similar results are achieved if the oscillation parameters θ13 and

∆m2
31 are varied. If we maximize Pcd over the allowed 3σ-ranges of θ13

and ∆m2
31, Pcd takes the value

Pcd ' 0.096 . (4.34)

These results show the large impact of the deviations from the ide-

alized assumptions. For a realistic experiment a much larger Pmin has

to be chosen independently of the sensitivity of the experiment. Ac-

cording to the analysis in the previous chapter a constraint on Pmin

introduces a strong lower bound on the required baseline. As a result

the required baseline for a realistic experiment is longer than the re-

sults acquired in this section. Thus, the calculations with the idealized

assumptions are an estimate for the shortest required baseline.

To put it briefly, we can describe the situation of an oscillation

experiment that uses a periodic density profile to enhance neutrino

oscillations by an expansion of the baseline L in the small parameter
V
δ

. The leading term of this expansion is independent of the energy

E. Therefore, there is a strong lower bound to the length of such an

experiment. Numerical calculations show that this minimal baseline is

already too long to create a periodic step function matter structure for
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the whole baseline. This experiment is thus not useful to observe the

parametric enhancement of neutrino oscillations.

5 Parametric resonance of oscillations of neutrinos

traversing the core of the earth

In the last few years, huge progress in the determination of θ13 has

been made. It is now known that it is non-zero, and, moreover, rela-

tively large. In this context, the discussion on long baseline neutrino

experiments will be taken up again in this chapter. In particular, the

proposal of the authors of [33–35] to send a neutrino beam through the

core of the earth will be discussed. This study focuses on the question,

whether it will be possible to observe the parametric enhancement of

neutrino oscillations by such an experiment.

The earth density profile can roughly be described by two regions

of constant density: The core with a radius of r = 3485 km [36] and

an average density of ρc ' 11.5 g/cm3, and the mantle with an average

density of ρm ' 4.5 g/cm3. A baseline passing through the core of the

earth thus has a “castle wall” density profile with 3 layers. For this

reason, oscillations of neutrinos traversing the core of the earth can ex-

perience parametric enhancement. For sin2 2θ13 ' 0.1, the parametric

enhancement is one of the strongest enhancements of neutrino oscilla-

tions for neutrinos going through the earth [29].

However, the corresponding baseline is very long and a lot of flux of

a beam will be lost on the way. This will lead to decreased statistics.

A large detector can be utilized to compensate for the loss of flux. The

authors of [33] propose a feasible solution. The planned upgrade of

the neutrino telescope IceCube called PINGU (Precision IceCube Next

Generation Upgrade) [37] could be used as a Mt-size detector. More-

over, there are several neutrino facilities in the northern hemisphere

that could serve as a source for such an experiment.

The discussion on sending a neutrino beam to PINGU will be up-
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dated with the measured value of θ13, and recent estimates of the sen-

sitivity of the PINGU detector. The results of the latest global fits for

θ13 will be used as priors in the calculation. The calculation will be

carried out for both, normal and inverted neutrino mass ordering and

the according best fit values for the neutrino oscillation parameters.

In the calculation, the parametric resonance of neutrinos passing the

core of the earth will be emphasized. It will be tested for which energy

resolution the experiment is sensitive to the parametric enhancement

of neutrino oscillations. The reach for the oscillation parameters such

as the mass hierarchy, or for the density of the earth core, has been

studied widely [33, 34, 38, 39]. The GLoBES software [40, 41] will be

used as a tool for simulation and calculation.

5.1 Preliminary considerations: oscillation probabilities

Before calculating the experimental results, the oscillation probabili-

ties for the observed channels will be determined. They provide first

information on the expected energy spectrum for a certain detected

neutrino flavour. For neutrino oscillations inside the earth an interplay

of MSW-resonances and parametric resonances takes place, leading to

a strong enhancement of neutrino oscillations for energies between 2

and 10 GeV [29, 33]. The interplay of the different resonances makes

it difficult to find a setup that differs from the present one only by the

parametric resonance. If the average density of the baseline is utilized

instead of three layers, not only the parametric resonance disappears,

but the two MSW-resonances will become one single MSW-resonance.

However, the comparison between the setup with three layers and the

one with averaged density can serve as a first test for the observabil-

ity of the parametric resonance. Hence, the results of the calculations

will be compared to the results obtained with an average-density setup.

All of the neutrino sources in the northern hemisphere have ap-

proximately the same distance to PINGU: L ' 12 000 km. This corre-

sponds to a nadir angle of θn ' 20°. Here the facility with the longest

baseline is used. The chosen facility is the Rutherford Appleton Labo-

ratory (RAL) in the United Kingdom, and the length of the baseline is
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L ' 12 020 km. The average density in the mantle and in the core are

calculated with the preliminary earth model (PREM) [42]. The result

is shown in fig. 1. It is similar to the matter density profile used in [33].

0

2

4

6

8

10

0 2000 4000 6000 8000 10000

ρ
[g
/c
m

3
]

x [km]

Figure 1: Earth matter density profile for a baseline of L = 12 020 km. Red
line: PREM matter profile [42], blue line: three-layer approximation.

In this setup, the neutrino source will be a neutrino factory [43]. In

a neutrino factory, muons with positive or negative charge are produced

and stored in a muon storage ring. Those muons eventually decay:

µ− → νµ e
− ν̄e

µ+ → ν̄µ e
+ νe .

(5.1)

The resulting neutrino beam consists of muon neutrinos and electron

antineutrinos, or of muon antineutrinos and electron neutrinos. The os-

cillation probabilities are calculated for the oscillation channels νe → νµ

and νµ → νµ for neutrinos and antineutrinos. These are the oscillation

channels employed in the experiment. Though other oscillation chan-

nels could in principle be observed, these are the ones that are easiest

to differentiate from other channels. To avoid misidentification, these

channels are chosen as signal.

In fig. 2, the top row displays the oscillation probabilities for the

case when µ+ are stored in the muon storage ring. The bottom row
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Figure 2: Oscillation probabilities for the channels νe → νµ (red line), ν̄µ →
ν̄µ (blue line), νµ → νµ (yellow line) and ν̄e → ν̄µ (green line). Solid lines:
the three-layer approximation of the PREM-profile is assumed. Dashed lines:
The averaged density of the RAL-PINGU baseline is applied. Left column:
Normal mass ordering is assumed. Right column: Inverted mass ordering is
assumed.

represents the channels for µ− stored. The solid line has been calcu-

lated with the three-layer approximation of the PREM profile. For the

dashed lines the average density has been utilized. All calculation use

a full three-flavour approach. We see that in each case one of the chan-

nels is enhanced by matter: For the normal mass ordering the neutrino

channels are enhanced while the antineutrino channels are enhanced in

the case of inverted mass ordering.

Besides that, there are only small energy windows in which the

muon neutrino disappearance probability (blue or green line) does not

dominate. Since the PINGU detector will not have direct charge iden-

tification, the muon neutrino disappearance channel can be discrimi-
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nated from the muon neutrino appearance channel by the energy res-

olution [33] 7 or by a statistical discrimination of µ+ and µ− based on

the different lifetimes of those particles in the detector material [44].

However, the energy resolution is an important experimental parame-

ter for the sensitivity of the experiment to the parametric resonance of

neutrino oscillations.

Considering the solid lines in fig. 2, in the νe → νµ-channel (or the

corresponding channel for antineutrinos in the case of inverted mass

ordering), we can identify the double peak at 2-4 GeV with the MSW-

resonance in the core of the earth (smaller left peak) and the paramet-

ric resonance (right peak). The peak around 6-7 GeV is dominated by

the MSW-resonance in the mantle [29]. It becomes clear that for this

baseline the MSW-resonance in the core and the parametric resonance

appear for similar energies, and are difficult to separate. Hence, a high

energy resolution is not only needed to distinguish between the two

oscillation channels, but to distinguish between the MSW-resonance in

the core and the parametric resonance.

The dashed lines show a MSW-resonance between 2 and 6 GeV.

It contains three oscillation maxima. However, those maxima do not

appear at the same energies as the two MSW-resonances and the para-

metric resonance in the case of three layers. Furthermore the maxima

are smaller and narrower than in the case with three layers. If the

energy resolution is high enough to determine the positions of the res-

onance peaks in the νe → νµ-channel, it should be possible to observe

the parametric resonance of neutrino oscillations.

5.2 Setup of the experiment

Source The energy spectrum of the neutrino factory neutrino beam

has a peak close to the energy of the muons and is zero above the

7Note that the argument in [33] was done with νe → νµ and νµ → νµ instead of
νe → νµ and ν̄µ → ν̄µ and for smaller θ13. This leads to wider energy regimes in which
the νe → νµ-channel dominates.
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muon energy [45]. The energy of the stored muons in this setup is

assumed to be 50 GeV. The energy spectrum of a neutrino factory as

given in [45] is shown in fig. (3). It is visible that the flux increases for
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Figure 3: Normalised energy spectrum of a neutrino beam produced by a
neutrino factory as given by eq. (14b) in [45]. The assumed muon energy is
50 GeV. Red: νe or ν̄e flux. Blue: νµ or ν̄µ flux.

energies below 35 GeV. At this energy the νe-flux reaches a maximum,

and starts to decrease, while the νµ flux increases further towards the

muon energy. 10.66× 1020 muons are stored per year.

Detector The detector will be the PINGU upgrade of the IceCube

neutrino telescope. It is a large Ice Cherenkov detector [46]. It consists

of a number of photo-detectors which are embedded into the ice of

the south pole. In the volume of the PINGU upgrade, the photo-

detectors are separated by about 5 m of ice. This region is located

inside the deep, clear ice. It is surrounded by a large region of ice

with a lower density of photo-detectors. This larger volume serves as

a veto to exclude cosmic ray muons [37]. The considered setup will

use the proposed “40-string configuration” [37], where 40 additional

strings of photo-detectors are added to the existing IceCube detector.

The specifications of the detector will be as follows:

Event misidentification In the detector, the neutrinos can weakly

interact and produce their corresponding charged lepton. Those lep-
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tons can be observed and identified by the event topology. The tracks

of the muons produced in CC interactions are utilized as signal. Other

possible topologies are cascade events of NC interactions or CC inter-

actions of other leptons [33]. Considering the flavour composition of

the beam, the oscillation channels ν̄e → ν̄µ and νµ → νµ or ν̄µ → ν̄µ

and νe → νµ respectively contribute to the signal. As mentioned ear-

lier, those two channels shall be discriminated by the energy resolution.

Channels other than the signal channels are considered background.

The channels included in the background are listed in tab. (1) below.

It is assumed that 20% of the cascade events are misidentified as muon

tracks [39]. Moreover, we assume that 17% of the taus decay into

muons, producing an intrinsic muon background [33].

Factor Background channel

20% ν̄e → ν̄e (NC cascade)
20% νµ → νµ (NC cascade)
20% ν̄e → ν̄e (CC cascade)
20% νµ → νe (CC cascade)
20% ν̄e → ν̄τ (CC cascade)
20% νµ → ντ (CC cascade)
17% ν̄e → ν̄τ → τ+ → µ+ (intrinsic τ count)
17% νµ → ντ → τ− → µ−(intrinsic τ count)

Table 1: Background channels used in the simulation of the PINGU detector.
In the simulation the background rates for each of those channels will be
multiplied by the “Factor” and then added to the signal event rate. The
background channels are only listed for a running of the factory with µ− for
simplicity. For the other polarity particles and antiparticles are exchanged.
The table is taken from [33] with misID = 20%.

Detection threshold and effective volume The detection threshold

is assumed to be 1 GeV [47], while for the analysis an energy window

from 1 GeV to 25 GeV is introduced. The effective volume of the de-

tector is chosen as a linear interpolation of the values given in fig. 6

in [37] in the energy variable. As a result the effective volume strongly

increases with energy until it reaches about 3 Mt at an energy of 6 GeV.
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Energy resolution As in [33], we chose the energy resolution function

∆E = η · E. The parameter η is varied to find out for which energy

resolution the parametric resonance becomes visible. Values between

η = 5% and η = 15% are looked at.

Cross section For the NC and CC cross sections of the neutrinos the

predefined cross section files of GLoBES are applied. The cross sections

have been determined in [48] and [49].

Systematics As a systematic error a normalization error of 2.5% for

the signal and 5% for the background is assumed. This corresponds to

the assumptions for the normalization error in [33].

Bin size The bin sizes are chosen to be equal within the energy range

of interest. Otherwise there would be jumps in the energy spectrum

due to the change of the bin size. The energy region of interest runs

from 2 to 6 GeV. To guarantee that the bin size does not become larger

than the energy resolution range in this energy range, the bin size is

chosen as 0.1 GeV for η = 5%, 0.2 GeV for η = 10%, and 0.25 GeV for

η = 15%.

Oscillation parameters The oscillation parameters are taken from

table 2 in [11]. For each hierarchy, the best fit values for that hierarchy

have been applied.

5.3 Analysis of the event numbers

In this section the event numbers of the experiment are calculated with

the GLoBES software. The parameters are selected as described in the

previous section. To calculate the event numbers, GLoBES numerically

folds the neutrino spectrum of the source with the oscillation proba-

bility times 1
L2 , the cross section in the detector, the effective volume

and the energy smearing. The resulting differential event numbers are

integrated over the bin size [50].
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Figure 4: Binned event numbers assuming one year of running with µ+ and
one with µ− for selected event types. Top row: Bin width 0.25 GeV, energy
resolution 15%. Middle row: Bin width 0.2 GeV, energy resolution 10%.
Bottom row: Bin width 0.1 GeV, energy resolution 5%. Background events
and errors are not considered. Left side (NH): Assuming averaged density:
red: µ− events, blue: µ+ events, magenta: µ− + µ+ events. 3-layer density
profile: black: µ− events, green: µ+ events, cyan: µ− + µ+ events. On the
right side (IH), µ− and µ+ are interchanged.

The results are displayed in fig. 4 for three different energy res-

olutions: 15%, 10% and 5%. For each energy resolution, the event

numbers have been calculated for the normal hierarchy with µ+ stored

and for the inverted hierarchy with µ− stored. These two cases have

been chosen to simplify the analysis. However, a similar analysis could

be done for the other two cases. The figure contains the event num-

bers for the single signal event types as well as the event numbers

summed over both signal event types. The results for the matter pro-
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files with average constant density and with three layers of constant

density are displayed. The shown event numbers in this figure do not

include background events and error bars. They correspond to the the-

oretically expected event numbers from a particular oscillation channel.

As η decreases, more details of the spectrum become visible for ev-

ery event type. Considering only the µ−-events (or µ+-events accord-

ingly for inverted hierarchy) for the three-layer approximation (black

line), we can see how the parametric resonance becomes visible: For

η = 15%, there is only a small hint of the parametric resonance, as all

three resonance peaks overlap strongly. For η = 10%, the parametric

resonance peak starts to be separated from the MSW-resonance peak

for the earth mantle. For η = 5%, the MSW-resonance in the core

becomes apparent as a separated peak.

Comparing the black and the red line, an increasing difference be-

tween those lines at the parametric resonance peak can be observed

for decreasing η. While the parametric resonance peak becomes higher

and less smeared, the oscillation minimum in the red line at this energy

becomes visible. This is also observed in the total spectra for the two

matter profiles (magenta and cyan). The smaller η becomes, the clearer

different peaks in the spectrum become observable, and the larger is

the difference between the two matter profiles around the parametric

resonance.

Taking into account the µ+-events (µ−-events for inverted hierar-

chy) (blue/green line), we see that the peak in the cyan line (µ+ + µ−

events) at the parametric resonance energy is a combination of the para-

metric resonance peak and a peak of the blue/green line. The peak in

the blue/green line corresponds to a maximum of the muon neutrino

survival probability (see fig. 2 a, blue line). The parametric resonance

peak and the peak in blue/green line are not separated for any of the

tested energy resolutions. Still, the parametric resonance could be

studied using the charge identification method proposed in [44]. If it

can reliably separate the two signal channels, the parametric resonance
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might be observable for η = 10%.

A comparison between the results for the normal and inverted hie-

rarchy shows that the results for the inverted hierarchy are slightly

worse. The event numbers for the inverted hierarchy are dominated by

the muon events. A possible reason is that the cross sections for an-

tineutrinos are slightly smaller than the ones for neutrinos. This would

equalize the event numbers of the two types in the case of normal hier-

archy, and lead to a domination of the µ− events in the case of inverted

hierarchy.

So far, the statistical and systematical errors of the event numbers

and background events have not been taken into account. However they

are relevant for the discriminability of different theoretical approaches

with the studied experiment. Fig. 5 shows the sum of µ+-, µ−-, and

background-events for the three-layer density profile, the averaged den-

sity matter profile, and the assumption of no neutrino oscillations. It

also includes systematical and statistical errors.

Fig. 5 shows how the errors and the background events influence the

discriminability of different models: in the case of normal hierarchy, the

event numbers for the three-layer approximation of the earth density

profile (cyan line) are distinguishable from the event numbers without

oscillations (red line) for all tested energy resolutions. The cyan line

can also be discriminated from the green line representing the event

numbers for the average density approximation. However, the differ-

ence is quite small. Reaching a significant difference between the event

rates for the three different assumptions requires several years of data

taking, and a reduction of systematical errors.

In the case of inverted hierarchy the cyan and green line can be

distinguished from the red line, but not from each other for most of

the energies and energy resolutions displayed. Therefore, an observa-

tion of the parametric resonance might be very difficult if the inverted

hierarchy is realised in nature.
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Figure 5: Binned event numbers after one year of running with µ+ stored
(NH, left side) or µ− stored (IH, right side) summed over all signal event
types, background events included. The error bars include the systematical
and statistical 1σ error. Cyan: Three-layer density profile. Green: Averaged
density assumed. Red: No oscillation assumed.

Not only the differentiation of the event numbers with the three-

layer assumption from the event number without oscillations is influ-

enced by the errors, but also the differentiation of the different peaks

in the spectrum. Taking into account the systematical and statistical

errors of the event numbers, a reduction of the errors might be nec-

essary to clearly observe the parametric resonance peak at an energy

resolution of 10%.

The event numbers without neutrino oscillations in fig. 5 also indi-

cate that the increase of the event numbers towards higher energies is
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not only caused by an increase of the neutrino oscillation. The figure

shows clearly that the event number is only increased by oscillations in

the case of normal hierarchy for the three-layer approximation, while it

is suppressed by the oscillations in the other cases. The increase of the

event numbers without oscillations is caused by a combination of an

increasing effective volume, cross section, and flux. The strong increase

of the event number around 5-6 GeV in the case of the three-layer ap-

proximation can be explained by the overlapping oscillation maxima of

the two signal channels as shown in fig. 2.

To summarize: it is difficult to observe the parametric resonance

with the presented setup. The parametric resonance peak can be dis-

tinguished from the mantle-MSW-peak for η ≤ 10%. The difference

between the results for one layer with average density and three lay-

ers is already visible for η = 15%, though several years of data taking

might be necessary to see a significant difference. However, the µ+ and

µ− events without background can not be differentiated by the energy

resolution around the parametric resonance peak for energy resolutions

of 5% or larger. They have to be separated by a different method, such

as statistical separation based on the lifetime of the muons. The results

for the inverted hierarchy are less significant than the results for the

normal hierarchy. In this case, the parametric resonance might only

be observable with an energy resolution of 5% or higher and very high

statistics.

A recent report on PINGU [39] states the current energy resolution

of DeepCore (the previous upgrade of IceCube) is “expected to improve

by approximately 30%” [39] with the PINGU upgrade. This would lead

to an energy resolution of 17.5% in PINGU. Yet, the energy resolution

of PINGU would need further improvement to make the parametric

resonance visible.
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6 Neutrino oscillations in short two-layer baselines

On the one hand, neutrino oscillation probabilities grow with the dis-

tance travelled by the neutrino until they reach the first oscillation

maximum. On the other hand, in neutrino beam experiments the flux

decreases as 1
L2 . In the setup described in the previous chapter, this

loss of flux was compensated by a Mt-size detector. However, in many

cases a compromise between the big effects achieved by a long baseline

and the loss of flux has to be found.

If we want to observe matter effects, the situation is even worse.

For small baselines the matter effects on the oscillation probability die

out faster than the vacuum oscillations. This phenomenon is called

vacuum mimicking [51]. However, the oscillation probability at short

distances for a matter profile consisting of two layers has some char-

acteristics that can help to avoid vacuum mimicking. In this chapter

a setup is presented that makes use of such effects coming from a two

layer matter profile rather than using a huge detector. It will be dis-

cussed how strongly a second layer can influence the results of short

baseline neutrino experiments.

As in chapter 4, the oscillation probability Pνe→νx will be the tool

to study neutrino oscillations in a short baseline with two layers of

matter with different densities. It is tested whether such a setup could

be used as an alternative to the one in the previous chapter to detect

enhancement of matter effects arising from the multi-layer structure of

the matter.

6.1 Short baselines and vacuum mimicking

In this section, a two-flavour approach of the neutrino oscillation prob-

ability for the short 8 baseline with a two-layer matter profile is pre-

sented. The oscillation probability is expanded in ω2L2. We then

8Throughout this chapter, short should be understood in the sense that the oscillation
phase acquired after travelling this baseline is small compared to one. For large neutrino
energies, such as 1-2 GeV, the length of the baseline can still be of the order of five hundred
kilometres.
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discuss whether the use of two layers leads to a measurable enhance-

ment of matter effects in short baseline neutrino experiments in this

approximation.

Assuming a short baseline in matter of constant density, the oscil-

lation probability in the two-flavour approach is given by

Pνe→νx(L) = sin2 2θm sin2 ωL . (6.1)

If the baseline is short, ωL� 1. This means eq. (6.1) can be expanded

in this parameter. Using eq. (3.7) this expansion yields

Pνe→νx(L) = s2
20

δ2

ω2
(ωL)2 = s2

20(Lδ)2 . (6.2)

This is the oscillation probability for a short baseline in vacuum as it

can be see by expanding eq. (2.17). This simple example shows the

basic idea of the vacuum mimicking effect. As the matter effects are

of higher order in L than the vacuum oscillation effects, they die out

faster than the vacuum oscillations when the baseline decreases.

However, this approach is only valid if the neutrino is in one of the

flavour eigenstates when entering the matter. Usually, this is the case

for neutrino beam experiments, but in general it is invalid for extrater-

restrial sources such as the sun. If the neutrino does not enter matter

in a flavour eigenstate, a more general approach using perturbation

theory has to be employed [51]. Here, of particular interest is the case

where the neutrino changes its flavour composition by oscillation in

vacuum 9 before entering matter. In this context, the oscillation can

be described by the oscillation probability for matter with two layers of

different densities, as derived in section 3.3. Here V1 = 0 and V2 = V .

9Vacuum is used for the simplicity of calculation. In reality, this would not be feasible
in an experiment on earth. The vacuum is then replaced by a material with small density,
such as air or water.

46



Starting with the oscillation probability

Pνe→νx(L) = |[S ]21|2

= s2
20

(
s2

1c
2
2 + s2

2c
2
1

δ2

ω2
+ 2s1s2c1c2

δ

ω
+
s2

1s
2
2

ω2
V 2

)
,

(6.3)

there are two different approximations, one for a very short baseline

and one for an intermediate baseline with small matter effects. In this

first section, the option with the very short baseline is chosen, an ex-

pansion in ω2L2. The approximation for intermediate baselines will be

considered in a later section.

The result of the expansion in ω2L2 is a simplified formula for the

oscillation probability [51],

Pνe→νx(L2) ' s2
20

{
s2

1 + (c2
1 − s2

1)(δL2)2 + 2s1c1(δL2) + 2s2
1c20(V δL2

2)
}
.

(6.4)

The very first term describes the vacuum oscillation probability in the

first layer. If there is a possibility to measure the oscillation probabil-

ity at the point where the neutrinos enter the second layer, this term

is known, and can be ignored in the following discussion. The second

and third term correspond to the increase of the oscillation probability

in the second layer in the absence of matter effects. The fourth term

comprises the leading order matter effects on neutrino oscillations in

the second layer.

We are particularly interested in the matter effects, so the last term

is the most important one. This term is proportional to V δL2
2. How-

ever, without the first layer the leading order matter effects in neutrino

oscillations as in eq. (6.4)would vanish. If the linear term is zero, the

leading order term is proportional to (V δL2
2)2 [51]. If the phase ac-

quired in the first layer is large enough, this means that the matter

effects in the second layer can be strongly enhanced.

Due to this linear dependence on V δL2
2, the matter effects in this

setup are sensitive to the mass hierarchy of neutrinos. This fact makes
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this special setup attractive not only for the measurement of matter

effects, but also for the determination of the neutrino mass hierarchy.

To optimize the enhancement of the matter effects, a closer look at

the approximation introduced above is necessary exploring how differ-

ent ratios of the lengths of the two layers affect the matter effects on

neutrino oscillations.

In a situation where the vacuum oscillations in the first layer can be

ignored, there are two conditions to maximize the absolute and relative

matter effects at the same time. One possibility for the relative effects

to be sizeable is when the vacuum oscillation probability coming from

the second layer is small. This probability is represented by the second

and third term in eq. (6.4). They can be rewritten as

(c2
1 − s2

1)(L2δ)
2 + 2s1c1(L2δ) = cos(2L1δ)(L2δ)

2 + sin(2L1δ)(L2δ)

' cos(2L1δ)s
2
2 + sin(2L2δ)s2c2

= s2 [sin((2L1 + L2)δ)]

(6.5)

A condition for which this is equal to zero is

2L1 + L2 = n
π

δ
, n ∈ N . (6.6)

In that case, matter effects will dominate the oscillations in the second

layer. To optimize the matter dependence of the oscillation even fur-

ther, the fourth term in eq. (6.4) should be maximized. This can be

done by setting s2
1 = 1. In order to do so, L1δ should be π

2
. In this case,

and according to the first condition, L2δ is nπ, where n ∈ N. If n is

zero, there will obviously be no matter effects. If δL2 is nπ, where n is

any non-zero integer, ω2L2 is already too large for our approximation

to be valid. Moreover, the baseline in this case is quite long and the

benefit from a short baseline is already lost. Hence, the maximization

conditions can not be fulfilled in the scope of this approach. A different

approximation which allows for longer baselines is needed.
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6.2 Impact of the two-layer matter density profile on inter-

mediate baseline neutrino beam experiments

In this section, the same setup as in the previous one will be described

in a different approximation. Starting again with the probability as

given in eq. (6.3), the matter effects are assumed to be rather small. If

the baseline is not too long, there are two small parameters, V
δ

and V L2.

Those are still small while ω2L2 might already be of order one. Still,

the disadvantage of this approximation is being only valid for energies

below a few GeV as discussed in section 4.1, and baselines shorter than

3000 km. A Taylor expansion of eq. (6.3) in the two parameters V
δ

and

V L2 yields

Pνe→νx(L) ' s2
20

{
sin2(Lδ) + 2c20 sin(Lδ)

[
c1,0s2,0

V

δ
− cos(Lδ)V L2

]}
,

L = L1 + L2 , ci,0 = cos(Liδ) , si,0 = sin(Liδ) .

(6.7)

This approximation differs from the one in the previous chapter. The

first term in eq. (6.7) is the vacuum oscillation probability in both lay-

ers. The second and third terms are the leading order matter effects on

the oscillation probability coming from the second layer. This approx-

imation has with eq. (6.4) the fact in common that the leading order

matter effects are odd in δ. Therefore, the leading order matter effects

are sensitive to the mass ordering. This may allow for mass hierarchy

measurement if the matter effects are large enough.

Now the matter effects can be maximized, while the vacuum oscilla-

tion probability achieved in the second layer can be minimized. As the

setup is not different from the one in the previous section, eq. (6.6) can

be used as a first estimate for the minimization of the vacuum oscilla-

tion probability coming from the second layer. When this condition is

fulfilled, eq. (6.7) reads

Pνe→νx(L1, L2) ' s2
20

{
s2

1,0 + 2c20s1,0c1,0

[
2s1,0c1,0

V

δ
+ V L2

]}
. (6.8)
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The maximization condition for the matter effects is then given by

2c1,0s1,0 = 1 . (6.9)

The way to fulfil this condition which leads to the shortest baseline is

L1 =
π

4δ
' 250 kmE(GeV) , (6.10)

where eq. (4.11) has been used to calculate the numerical value. To-

gether with the first condition, eq. (6.6), this determines L2 as a func-

tion of E. The matter potential is given by Vc, as in chapter 4.1. There-

fore, only the neutrino energy remains as a free parameter. Moreover,

the maximization condition for the matter effects fixes s1,0. As a result,

only the matter induced part of the oscillation probability depends on

E. Putting everything together, when both conditions, eq. (6.6) and

eq. (6.9), are fulfilled, the oscillation probability takes the simple form

Pνe→νx(E) ' s2
20

{
0.5 + c20

[
V

δ
+ V L2

]}
(6.11)

= 0.043 + 0.019E(GeV) . (6.12)

This result shows very clearly that the absolute matter effects, but even

more the relative matter effects on the oscillation probability, can be-

come large, albeit the matter potential is far from the MSW-resonance.

It seems as if such a setup where neutrinos first oscillate in vacuum and

then pass a short distance in matter could help to successfully detect

matter effects enhanced by the two-layer structure of the matter profile.

Still, it is not clear that this setup will significantly increase the

matter effects on neutrino oscillations compared to a usual neutrino

beam experiment such as T2K [52]. In normal neutrino beam exper-

iments neutrinos travel through matter of (approximately) constant

density on the whole way from the source to the detector. The two-

layer setup was meant to keep the baseline short in order to reduce

the loss of flux. Anyway, only the second layer was assumed to be

small in the calculations while the vacuum layer was allowed to take
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every convenient length. However, flux is lost in both, the vacuum and

the matter layer. To compare our setup to a normal neutrino beam ex-

periment, the baseline of the normal experiment should be L = L1+L2.

To be able to compare the results in a convenient way, we will

consider the limiting case of the previous calculation, where V1 = V2 =

Vc. The oscillation probability can be calculated from the evolution

matrix as derived in section 3.3. The result is eq. (6.1). Just as before,
V
δ

and V L are assumed to be small parameters. In this case, a Taylor

expansion in these parameters can be done. The result is

Pνe→νx(L) = s2
20

{
sin2(Lδ) + 2c20 sin(Lδ)

[
sin(Lδ)

V

δ
− cos(Lδ)V L

]}
,

L = L1 + L2 .

(6.13)

This formula looks very similar to eq. (6.7). The vacuum induced part

of the oscillation probability is exactly the same in both formulas. As

expected, there are two small differences in the terms describing the

matter effects on neutrino oscillations.

The first difference is that the term proportional to V
δ

does not con-

tain c1,0s2,0 as in eq. (6.7), but rather sin(Lδ) = c1,0s2,0 + c2,0s1,0. As

long as Liδ <
π
2
, i = 1, 2, sin(Lδ) > c1,0s2,0. In that case, the first term

describing the matter effects is smaller in the case with two layers. If

δLi becomes bigger than π
2
, the baseline is already quite large. Focus-

ing on short to medium length baselines, this will not be discussed.

Anyway, at this length scale a two-layer matter density profile might

be difficult to realise.

The second difference between eq. (6.7) and eq. (6.13) is that the

last term on the right side of eq. (6.7) is proportional to V L2 while the

last term on the right side of eq. (6.13) is proportional to V L for one

layer. It is obvious, that V L is bigger than V L2. Still, this term enters

with a minus sign thus lowering the matter induced part of the oscilla-

tion probability. In other words, contrary to the term proportional to
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V
δ

this term yields a lower matter induced oscillation probability for a

normal neutrino beam experiment. As a consequence, it is not obvious

whether an increase of matter effects can be achieved by letting the

neutrino travel the first part of its way from the source to the detector

through vacuum.

Just as in eq. (6.7), the leading order matter effects in eq. (6.13) are

odd in δ. As a consequence, the question in which setup the impact

of the mass hierarchy is larger is the same as the question in which

setup the leading order matter effects are larger. This question can be

answered by numerical estimates.

As the vacuum oscillation probability is the same for both setups,

it will be ignored. Solely, the focus is on the matter induced part of

the oscillation probability,

Pmat
νe→νx, 2(L) = 2s2

20c20 sin(Lδ)

[
c1s2

V

δ
− cos(Lδ)V L2

]
(6.14)

for the setup with two layers and

Pmat
νe→νx, 1(L) = 2s2

20c20 sin(Lδ)

[
sin(Lδ)

V

δ
− cos(Lδ)V L

]
(6.15)

for the setup with only one layer.

Fig. (6) shows Pmat
νe→νx, 2−P

mat
νe→νx, 1 for different energies as a function

of L1 and L2. It happens that the biggest deviation from zero takes

place for low energies. For energies of 2 and 3 GeV (bottom row), the

difference of the two probabilities is nearly zero. For lower energies (top

row), the result is negative for most combinations of L1 and L2. Only

for E = 0.5 GeV, and L ' 600 km the results become positive. For

such a long baseline the setup with two layers, especially such a long

baseline in vacuum, is difficult to realize. But if such a setup can be

realized, it might help to observe an enhancement of matter effects on

neutrino oscillations due to a two-layer structure of the matter profile.

It might also help to determine the mass hierarchy.
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Figure 6: Difference of the matter induced parts of the oscillation probability
for one and two layers, Pmatνe→νx, 2 − Pmatνe→νx, 1, as given by eq. (6.14) and
eq. (6.15), for neutrino energies of 0.5, 1, 2 and 3 GeV as a function of the
length of the two layers, L1 and L2

To put it briefly, in most cases the additional effort for a two-layer

setup does not bring any advantage. Only in the special case where

E = 0.5 Gev and L ' 600 km, the oscillation probability induced by

matter is bigger for the two-layer setup. However, in this case the

vacuum part of the baseline is rather long. Moreover, this estimate has

not taken into account the energy spectrum of the neutrino which could

wash out the effect. Thus, using two layers does not help to shorten

the overall baseline, but only the part of the baseline in matter. An

enhancement of the oscillation by the two-layer structure will be very

difficult to achieve. Hence, the benefits of the two-layer structure might

not compensate for the additional effort to build it.

6.3 The short baseline with two layers using the example of

atmospheric neutrinos

The setup discussed above is realized by one important neutrino source:

atmospheric neutrinos. The author of [51] discusses the enhancement
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of matter effects on the neutrino oscillation probability by the oscil-

lation in the atmosphere before entering the earth. He utilizes the

approximation given in eq. (6.4). His study will be extended by us-

ing the approximation derived in the previous section. Furthermore it

will be discussed whether the energy- and angular resolution of current

detectors are good enough to resolve the enhancement of the matter

induced part of the oscillation probability.

In our atmosphere, cosmic particles scatter with the atoms of the

atmosphere. In this process mesons, mostly pions, are produced. Neu-

trinos emerge from their decay and the decay of the muons originating

from this decay. The flux of these neutrinos is a mixture of neutrinos

and antineutrinos. It contains electron and muon neutrinos [53,54]. On

average, the production process takes place at a height of h = 15 km

above the ground. Depending on the nadir angle θn
10 the neutrinos

coming to a detector travel the distance

L1 = −R cos θn +
√

(R + h)2 −R2 sin2 θn (6.16)

through the atmosphere 11, where R = 6371 km is the radius of the

earth. After that, neutrinos traverse the earth and reach the detector

after a distance of

L2 = 2R cos θn . (6.17)

Neutrinos with an energy of 0.5-3 GeV travelling nearly horizontally

are considered so the nadir angle is in the range of 82-90°. For those

neutrinos the approximation given by eq. (6.7) can be used.

This section is dedicated to the question whether it is important

to take into account the oscillations in the atmosphere of the earth in

the analysis of the data on nearly horizontally entering neutrinos from

atmospheric neutrino experiments. In addition, it will be addressed

whether current atmospheric neutrino experiments might observe an

10The nadir angle is assumed to be smaller than π
2

. Otherwise the neutrinos do not
travel through the earth.

11The density of the atmosphere is small compared to the density of the earth. For that
reason the atmosphere can be considered as vacuum. This simplifies the calculations.
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enhancement of the matter effects on neutrino oscillations due to the

oscillation in the atmosphere. To answer this, some numerical estima-

tions are done.

The oscillation probability and the matter induced part of the os-

cillation probability are computed as given in eq. (6.7) and eq. (6.13)

as functions of E and θn. For the effective matter potential, Vc is used.
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Figure 7: Upper row: Total oscillation probability Pνe→νx = Pνe→νµ+Pνe→ντ
taking into account oscillations in the atmosphere (red solid line, see
eq. (6.7)) and assuming neutrino production at the surface of the earth (blue
dashed line, see eq. (6.13). Bottom row: The same for the oscillation proba-
bility with the total oscillation probability in vacuum subtracted, Pmatνe→νx (see
eq. (6.14) for red solid and eq. (6.15) for blue dashed line). Left column:
Function in dependence of E for θn = 1.47. Right column: Function in
dependence of θn for E = 1.5 GeV.

Fig. 7 shows the calculated quantities. The red solid lines represent

the oscillation probabilities with the oscillations in the atmosphere.

The blue dashed lines stand for the calculation where oscillations out-

side of the earth have been neglected completely and the production

point of the neutrinos is assumed to be at the surface of the earth. The

plots on the left side show the energy dependence. It is visible that

the probability is strongly oscillating for small energies. For higher

energies above 2.5 GeV, the probability slowly decreases. At these en-

ergies, the probability that takes the oscillations in air into account is
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slightly bigger. Another difference between the red and the blue line:

compared to the blue line, the oscillation maxima and minima of the

red line are always reached for slightly higher energies than the ones

for the blue line. As a result, at certain energies the oscillation proba-

bility concerning oscillations in air becomes larger than the probability

neglecting them while for other energies it is the other way round.

The right graphs exhibits the same probabilities as a function of the

nadir angle. Here, the energy is fixed. The oscillation of the probability

with varying θn is less fast than the one with varying E. In graph d

we monitor that similar to the observations in graph a and c, the red

line reaches its maximum for higher θn and then decreases slower than

the blue line. However, one does not observe a strong enhancement of

the oscillation probability by the additional layer in air.

Overall, it seems that the oscillation in the atmosphere can have

a big influence on the oscillation probability, but this effect strongly

depends on the energy. Nevertheless, in experiments, the energy and

the angle can not be measured with a very high accuracy yet. For

example, the energy resolution of the Super-Kamiokande experiment is

about 17-30% for multi-GeV events [55]. In order to get more realistic

results the oscillation probability is now averaged over the uncertainty

range of the angle and the energy.

Fig. 8 shows the integrated oscillation probability. Here, an energy

resolution of 0.17E has been assumed. This corresponds to the best

resolution for multi-GeV events in the Super-Kamiokande detector [55].

The angular resolution of θn is 0.26 [55]. As this error range covers the

complete span of angles considered, the plot does not show the inte-

grated probabilities as a function of θn. Instead, the integration over

θn is always done from 1.2 to 1.57.

Compared to the results before integration, we see that the os-

cillations have been washed out. The dependencies of the oscillation

probability and its matter-induced part on the neutrino energy have de-
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Figure 8: a: Total oscillation probability Pνe→νx taking into account oscilla-
tions in the atmosphere (red solid line) and assuming zero production height
(blue dashed line) integrated over the nadir angle from 1.2 to 1.57 and over
the neutrino energy interval [E − δE, E + δE], as a function of the mean
neutrino energy E. δE = 0.17E. b: The same graph for the oscillation
probability with the total vacuum oscillation probability subtracted, Pmatνe→νx.

creased. Furthermore, the difference between the red and the blue line

is now rather small for all energies. Especially the difference between

the matter effects on neutrino oscillations for the two assumptions has

become tiny. The big differences we saw in fig. (7) have averaged out.

In conclusion: as long as the energy and angle resolution of future

atmospheric neutrino experiments do not become better by some orders

of magnitude, the oscillation in the atmosphere can be neglected, as

the effect is completely washed out by averaging over the large E- and

θn-resolution ranges. No enhancement of the oscillation probability

caused by the two-layer setup is observed.
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7 Conclusions

This thesis has dealt with three different setups for neutrino beam ex-

periments that include matter with multiple layers of constant density.

In the first part a setup with alternating layers of different constant

densities has been studied. The objective has been to test whether it

would be possible to build such a matter density profile in order to

observe parametric enhancement of neutrino oscillations. To do so, the

required baseline for an observation under idealized conditions has been

computed. It turned out that the baseline has a lower bound which

is independent of the neutrino energy. If the matter profile consists of

alternating layers of lead and vacuum, this bound is about 1200 km,

for vacuum and the crust of the earth it is even 3900 km. Hence, such

an artificial density profile can not be built in such a way that it serves

the observation of the parametric enhancement of neutrino oscillations.

The second part of this thesis has examined the question of sending

a neutrino beam through the core of the earth. In particular, an experi-

ment in which a neutrino beam is send from a neutrino factory at RAL,

the most northern neutrino facility, to PINGU at the south pole has

been simulated with the GLoBES software. The event numbers have

been plotted for different energy resolutions of the detector testing

which energy resolution is needed to observe the parametric resonance

of neutrino oscillations in the earth. The event numbers for a three-

layer approximation of the earth density profile have been compared

to the event numbers obtained with a constant density approximation

of the earth density profile and without neutrino oscillations. The re-

sult of this comparison has been that the event numbers obtained with

the two different density approximations already differ for an energy

resolution of 15%. However, the parametric resonance peak becomes

visible in the spectrum at an energy resolution of between 15% and

10%. The two signal channels can not be separated around the para-

metric resonance by energy resolution for energy resolutions of 5% or

larger. A careful analysis using statistical charge discrimination would

have to be employed. Moreover several years of runtime increasing the
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statistics might be necessary to observe a significant deviation between

the predicted event numbers of the different theoretical assumptions.

In addition, these observations require an improvement of the currently

expected energy resolution of the PINGU upgrade.

The last part of the thesis has dealt with neutrino oscillations in

short baselines. The possibility has been discussed to enhance the mat-

ter effects on neutrinos passing a short distance in matter by letting

them pass a certain distance in vacuum before or after the distance in

matter. Under certain conditions, which are similar to the parametric

resonance condition, this allows for an enhancement of the matter ef-

fects. It has been questioned whether this could help to increase the

matter effects in short baseline neutrino experiments. It has turned

out that one would need a long baseline in vacuum (at least 300 km) to

benefit from the two-layer setup compared to the situation when the

whole distance is travelled in matter. It has been addressed if the ef-

fects described in this section might be important in the prediction for

atmospheric neutrino experiments. But any enhancing effect coming

from oscillations in the atmosphere averages out as soon as the realistic

energy and angular resolutions of the detector are taken into account.

As a conclusion, it has proven very difficult to observe the paramet-

ric resonance or similar enhancement effects arising from multiple layers

of matter with different densities. None of the setups discussed in this

thesis is well-suited to detect such a resonance. Artificial profiles ful-

filling all necessary conditions are hard to build. In contrast, the earth

in general allows for parametric resonance, but it is difficult to reach

the required energy resolution to disentangle different resonances. The

effects arising in short baselines with a two-layer structure are small

and suffer from finite energy resolutions.

Nonetheless, an improvement of the energy resolution of current

detectors and long-time observations might lead to the observation of

the parametric resonance of neutrinos passing through the core of the

earth.
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