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For sounds of a given frequency, spiral ganglion neurons (SGNs) with
different thresholds and dynamic ranges collectively encode the
wide range of audible sound pressures. Heterogeneity of synapses
between inner hair cells (IHCs) and SGNs is an attractive candidate
mechanism for generating complementary neural codes covering the
entire dynamic range. Here, we quantified active zone (AZ) proper-
ties as a function of AZ position within mouse IHCs by combining
patch clamp and imaging of presynaptic Ca2+ influx and by immu-
nohistochemistry. We report substantial AZ heterogeneity whereby
the voltage of half-maximal activation of Ca2+ influx ranged over
∼20 mV. Ca2+ influx at AZs facing away from the ganglion activated
at weaker depolarizations. Estimates of AZ size and Ca2+ channel
number were correlated and larger when AZs faced the ganglion.
Disruption of the deafness gene GIPC3 in mice shifted the activation
of presynaptic Ca2+ influx to more hyperpolarized potentials and
increased the spontaneous SGN discharge. Moreover, Gipc3 disrup-
tion enhanced Ca2+ influx and exocytosis in IHCs, reversed the spatial
gradient of maximal Ca2+ influx in IHCs, and increased the maximal
firing rate of SGNs at sound onset. We propose that IHCs diversify
Ca2+ channel properties among AZs and thereby contribute to
decomposing auditory information into complementary representa-
tions in SGNs.
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The auditory system enables us to perceive sound pressures
that vary over six orders of magnitude. This is achieved by

active amplification of cochlear vibrations at low sound pressures
and compression at high sound pressures. The receptor potential
of inner hair cells (IHCs) represents the full range (1), whereas
each postsynaptic type I spiral ganglion neuron (hereafter termed
SGN) encodes only a fraction (2–6). SGNs with comparable fre-
quency tuning but different spontaneous spike rates and sound
responses are thought to emanate from neighboring, if not the
same, IHC at a given tonotopic position of the organ of Corti (2, 5,
7, 8). Even in silence, IHC active zones (AZs) release glutamate at
varying rates, evoking “spontaneous” spiking in SGNs. SGNs with
greater spontaneous spike rates respond to softer sounds (high-
spontaneous rate, low-threshold SGNs), than those with lower
spontaneous spike rates (low-spontaneous rate, high-threshold
SGNs) (2, 9). This diversity likely underlies the representation of
sounds across all audible sound pressure levels in the auditory
nerve, to which neural adaptation also contributes (10).
How SGN diversity arises is poorly understood. Candidate

mechanisms include the heterogeneity of ribbon synapses that
differ in pre- and/or postsynaptic properties even within indi-

vidual IHCs (7, 11–14). IHC AZs vary in the number (11, 15) and
voltage dependence of gating (11) of their Ca2+ channels regardless
of tonotopic position (16). Lateral olivocochlear efferent projec-
tions to the SGNs regulate postsynaptic excitability (17) and con-
tribute to the establishment of a gradient of presynaptic ribbon size
along the “modiolar–pillar” axis (18), where the modiolar side faces
the ganglion and the pillar side is away from the ganglion, toward
the pillar cells.
In postnatal development of the mouse, high-spontaneous-rate

SGNs coemerge with AZs that exhibit stronger maximal Ca2+ influx.
Moreover, IHCs deficient for the AZ protein bassoon lack the
population of AZs with strongest Ca2+ influx and, concurrently lack
SGNs with high spontaneous rates (19). Based on these correlations
and given the eminent role of presynaptic Ca2+ influx in controlling
synaptic strength (20–22), we proposed that the varying Ca2+ influx
at a given IHC AZ largely determines the difference in spontaneous
and evoked spiking among SGNs (19). Larger and more complex
AZs (7, 13, 14) with stronger Ca2+ influx (16) tend to reside on
the modiolar IHC side. However, according to classical findings
from the cat cochlea, modiolar synapses seem weaker as they drive
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low-spontaneous-rate, high-threshold SGNs (2, 7). This discrep-
ancy suggests that factors other than AZ size and amplitude of Ca2+

influx contribute to differences in SGN properties.
Here, we live-imaged most, if not all, AZs of individual IHCs

for analyzing the amplitude and voltage dependence of Ca2+ influx
as well as AZ size and position within the IHC. Combined with
immunohistochemical estimation of ribbon size and Ca2+-channel
abundance of AZs, our data indicate opposing gradients of max-
imal amplitude and voltage dependence of Ca2+ influx along the
modiolar–pillar axis: modiolar AZs, thought to drive low-sponta-
neous-rate, high-threshold SGNs, are, on average, larger and have
more Ca2+ channels but operate in a more depolarized range. We
propose that the more hyperpolarized activation range of Ca2+

influx at pillar AZs poises them to enable high spontaneous rates
and low sound thresholds of SGN firing. We studied candidate
regulators of Ca2+ influx at IHC AZs and found that disruption of
the deafness gene GIPC3 in mice causes a hyperpolarizing shift of
Ca2+-channel activation and increases spontaneous SGN firing.

Results
Heterogeneity of Presynaptic Ca2+ Influx Among the AZs of IHCs. The
strength of presynaptic Ca2+ influx and the large (∼2 μm) distance
between hair cell AZs (16, 23) enable spatiotemporally resolved
optical analysis of presynaptic Ca2+ signaling (11, 24, 25). How-
ever, given the limited duration of stable Ca2+ influx in whole-cell
patch-clamp recordings, the low speed of laser-scanning confocal
microscopy had prohibited a comprehensive comparison of the
Ca2+-influx properties among the AZs within a given IHC. To
overcome this technical limitation we combined spinning disk
microscopy with fast piezoelectric focusing to sequentially and
rapidly (frame rate 100 Hz) image confocal IHC sections. This
enabled the analysis of voltage dependence and maximal ampli-
tude of the Ca2+ influx, visualized as local fluorescence increase of
the low-affinity Ca2+ indicator Fluo-8FF (Kd = 10 μM) at most if
not all synapses of a given IHC (Fig. 1A) while the IHC Ca2+

current remained stable (rundown <25%; a few IHCs were ex-
cluded from the analysis because of rundown >25%).
We first imaged the fluorescence of the TAMRA (tetrameth-

ylrhodamine)-labeled RIBEYE (major protein constituent of
the ribbon)-binding peptide (26) to localize AZs and to measure
the fluorescence intensity of labeled ribbons before unavoidable
TAMRA bleaching by the strong blue laser light used for Ca2+

imaging. Another set of images was collected after completing
the time-critical Ca2+ imaging to capture IHC morphology based
on the RIBEYE-peptide background fluorescence (Fig. 1A).
Supported by our previous work we assume that, in conditions of
strong cytosolic Ca2+ buffering (10 mM EGTA in the pipette), the
fluorescence change (ΔF/F0, Fig. 1B) of the low-affinity Ca2+

indicator at the AZ faithfully reports synaptic Ca2+ influx (11), but
note that this assumption could be violated should Ca2+-indicator
saturation or Ca2+-induced Ca2+ release, nonetheless, occur. For
simplicity, we hence refer to the Fluo-8FF ΔF/F0 at AZs as
“synaptic Ca2+ influx.” We depolarized the IHC to −7 mV to
maximize Ca2+-channel-open probability. As shown in Fig. 1B, the
“maximal synaptic Ca2+ influx” varied among the AZs of this
representative IHC, whereas the whole-cell Ca2+ current remained
stable. We postulate that this heterogeneity largely arises from
differences in the number of Ca2+ channels among the AZs within
a given IHC. The coefficient of variation (c.v.) of maximal AZ
Ca2+ influx per IHC was on average similar to the c.v. of maximal
AZ Ca2+ influx across AZ pooled from all IHCs (c.v. = 0.47 ±
0.18,N = 28 IHCs vs. c.v.= 0.59, n = 331 AZs of the same 28 IHCs;
Fig. 1 D and F), whereas the c.v. of maximal AZ Ca2+ influx across
all IHCs was smaller (0.38). Thus, most of the AZ population
variance was explained by heterogeneity among the AZs within the
individual IHCs. However, IHCs varied in the extent of this het-
erogeneity: The c.v. of maximal Ca2+ influx among AZs per IHC

ranged from 0.15 to 0.81 (Fig. 1F; see Fig. S1A for statistics of
individual IHCs).
We directly tested for heterogeneous abundance of Ca2+

channels at AZs by analyzing the relative fluorescence intensities
of IHC AZs immunolabeled for Cav1.3 L-type Ca2+ channels
(Fig. 1 C and D, blue), which mediate >90% of IHC Ca2+ influx
(27, 28). To measure the relative abundance of Cav1.3 Ca2+

channels among AZs, we identified synapses in fixed tissue by
juxtaposition of immunolabeled presynaptic ribbons and post-
synaptic glutamate receptors (Fig. 1C) and integrated the syn-
aptic Cav1.3 immunofluorescence. Interestingly, the variability of
the synaptic CaV1.3 immunofluorescence was smaller (c.v. = 0.28)
than that of maximal Ca2+ influx in live-cell imaging experiments
(c.v. = 0.59, Fig. 1D; see statistics of individual cells in Fig. S1 A
and B). Variance in maximal Ca2+ influx exceeding that of CaV1.3
immunofluorescence could be explained, for example, by AZs
having CaV1.3 channels with different open probabilities.

Ca2+-Channel Abundance and Maximal Ca2+ Influx Scale with Ribbon
Size. Do larger AZs contain more Ca2+ channels and display
stronger maximal Ca2+ influx? To address this, we related our
estimates of Ca2+-channel abundance from live imaging and im-
munohistochemistry to the corresponding fluorescence intensity of
RIBEYE-peptide or immunolabeled ribbons (Fig. 1 A and C; see
statistics of individual cells in Fig. S1 A and B). We assume that
ribbon fluorescence scales with the number of RIBEYE molecules
per ribbon and, hence, with ribbon size (26, 29). Moreover, we
assume that AZ size scales with ribbon size (29, 30), which was
further supported by a positive correlation of synaptic immuno-
fluorescence of RIBEYE and the AZ marker bassoon, a pre-
synaptic scaffold, in separate experiments (r = 0.46, n = 77 AZs,
P < 0.001). The distributions of ribbon fluorescence intensity were
broad and slightly skewed in live imaging (Fig. 1 E and F; c.v. of
0.46 for the entire population and 0.31 as the mean c.v. of individual
cells, Fig. S1D) and immunofluorescence (c.v. of 0.46 for the entire
population and 0.42 as the mean c.v. of individual cells) analyses,
respectively.
Maximal AZ Ca2+ influx showed a positive correlation with

the RIBEYE-peptide fluorescence in live-imaging experiments,
suggesting that, indeed, larger AZs exhibit stronger maximal Ca2+

influx (Fig. 1G, green). We found a stronger correlation between
CaV1.3 and RIBEYE immunofluorescence (Fig. 1G, blue), in-
dicating that larger AZs contain more Ca2+ channels. This weaker
correlation in live imaging might relate to greater variability of
maximal synaptic Ca2+ influx, which next to the number of Ca2+

channels depends on their open probability that can also be en-
hanced by calmodulin-mediated cooperative gating (31). Positive
correlations were also found within most individual IHCs in both
live-cell imaging and immunohistochemistry (Fig. S1 D and E),
indicating that larger AZs tended to have more Ca2+ channels
and, consequently, stronger maximal Ca2+ influx. This was further
supported by finding a positive correlation of synaptic CaV1.3 and
bassoon immunofluorescence in separate experiments (Fig. S1C,
r = 0.625, n = 77 AZs, P < 0.001). Most cells contained an AZ
whose Ca2+ influx was substantially stronger than that of the
others: On average the ΔF/F0 of the strongest AZ (“winner”) was
2.5 times greater than the average of the others (Fig. S1F, P <
0.001, Wilcoxon rank sum test).

Maximal Ca2+ Influx Varies with AZ Position in a Modiolar–Pillar
Gradient. To study whether structural and functional AZ proper-
ties vary with position in mouse IHCs, we maintained the native
morphology and position of the IHC within the organ of Corti as
much as possible, by patching the modiolar IHC face with minimal
disruption of the surrounding cells. To combine live-imaging data
from several cells, we reconstructed the morphology of individual
IHCs and the positions of their synapses based on the fluorescence
of the TAMRA-conjugated RIBEYE-binding peptide and then
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transformed the Cartesian coordinates onto cell-aligned cylindri-
cal coordinates (Fig. S2). In brief, for each cell we identified the
plane of maximized mirror symmetry orthogonal to the tonotopic
axis (Fig. S2A). Then, we optically resectioned the IHC orthogonal
to a straight line fit to the pillar edge of the plane of symmetry
(Fig. S2B). We estimated the center of mass for each section and
connected those of the bottom-most and of the largest section to
define the central axis for our cylindrical coordinate system. We
projected the AZ coordinates of several cells along their central
axis for the polar charts, with the four sides annotated as modiolar
or pillar (facing toward or away from the ganglion), or tonotopic-
apical or tonotopic-basal (toward the cochlear apex or base, Fig.
S2C). The analogous fixed-tissue volumes were also transformed
into cylindrical coordinates (Fig. S3).
Polar charts of maximal Ca2+ influx and ribbon size for 202 AZs

from 14 IHCs as a function of AZ cylindrical coordinates are
displayed in Fig. 2 A and B. Our analysis revealed a modiolar–pillar
gradient: large AZs with stronger Ca2+ influx tended toward the
modiolar face (Fig. 2 A–D, F, and G). There was a nonsignificant
trend for maximal Ca2+ influx to be greater in the modiolar half of
the AZ population. This difference became significant when ex-
cluding the AZs of the basal IHC pole (r ≤ 3 μm, Fig. S4A, P =
0.024, Wilcoxon rank sum test), for which modiolar/pillar sorting is
less certain. In 13 out of 14 IHCs the AZ with the strongest Ca2+

influx was located on the modiolar side. CaV1.3 immunofluores-
cence was significantly more intense for modiolar AZs (Fig. 2 C
and E, P < 0.001, Wilcoxon rank sum test). RIBEYE-peptide
ribbon fluorescence (Fig. 2 B, F, and G, P < 0.05, Wilcoxon rank
sum test) and RIBEYE immunofluorescence (Fig. 2 F and H, P <
0.01, Wilcoxon rank sum test) consistently revealed significant
modiolar–pillar differences, indicating that modiolar AZs are
larger. In contrast, we did not detect gradients along the tonotopic
or the central axes of the IHCs for any of the analyzed parameters
(Fig. S4 B and C). In conclusion, IHC AZs follow a modiolar–pillar
gradient for size and Ca2+-channel number, whereby modiolar AZs
are larger and have more Ca2+ channels.

Voltage Dependence of Ca2+ Influx Varies with AZ Position in a Pillar–
Modiolar Gradient. Next, we examined the voltage dependence of
synaptic Ca2+ influx for most if not all AZs of a given IHC. We
applied voltage ramps (from −87 mV to 63 mV) to the IHC
while sequentially imaging the AZs (Fig. 3A), thereby estab-
lishing the voltage dependence of AZ Ca2+ influx in single de-
polarizations. Using ramps instead of step depolarizations, we
limited stimulation to at most 80 depolarizations per IHC. We
estimated the voltage of half-maximal activation of the whole-
cell Ca2+ current of 25 IHCs by fitting a Boltzmann function to
their activation curves [V0.5 = −28.1 ± 1.7 mV (SD), Fig. 3B].
Given the noise of the fluorescence–voltage relationships of the
individual AZs we approximated the data by a fit function (SI
Methods) and then analyzed the derived fractional activation
curves by fitting a Boltzmann function. The mean V0.5 of
synaptic Ca2+ influx at 210 AZs of these IHCs (−27.4 mV) was
very similar to that of the mean whole-cell Ca2+ influx. However,
fractional activation varied substantially among the AZs (Fig.
3C). Accordingly, the V0.5 of Ca2+ influx showed a wide distri-
bution for the entire AZ population, ranging from −38.4 mV to
−18.1 mV (SD: 4.7 mV, Fig. 3 C and D) and within the individual
IHCs [mean: −27.3 ± 3.2 mV (SD), Fig. S1G]. The voltage
sensitivity of Ca2+ influx reported by the slope factor k was
similar for whole-cell and synaptic Ca2+ influx (7.2 ± 0.4 mV vs.
8.2 ± 1.5 mV, Fig. 3 B and E). The scatter plot of slope factor
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Fig. 1. AZ heterogeneity: Those with larger ribbons have more Ca2+ chan-
nels. (A, Left) Stack of confocal sections covering an exemplary IHC filled
with TAMRA-RIBEYE-binding peptide via the patch pipette. (A, Upper Right)
Fluo-8FF fluorescence reports Ca2+ influx (arrowheads) as spot-like maxima
near the membrane during depolarization. (A, Lower Right) Corresponding
image of TAMRA-RIBEYE-binding peptide fluorescence labeling synaptic
ribbons (arrowheads), where Ca2+ influx occurs. White square indicates
where the background fluorescence (Fnearby) was measured. (Scale bar:
1 μm.) (B) Measurement of Ca2+ influx at individual AZs in an exemplary IHC.
Depolarizations to −7 mV (Upper) evoked similar whole-cell Ca2+ currents
with each stimulus (superimposed, Middle). Focusing on single AZs during
each repetition revealed major heterogeneity of maximal Ca2+-indicator
fluorescence amplitudes (Lower, ΔF−7 mV/F0, 100-Hz frame rate; panel su-
perimposes one trace per AZ, each marked by a different color). (C) Confocal
projections of immunolabeled presynaptic Ca2+ channels (Cav1.3), pre-
synaptic ribbons (CtBP2/RIBEYE), and postsynaptic AMPA receptors (GluA2)
with overlay on far right. (Scale bar: 2 μm.) (D) Green: distribution of the
maximal ΔF−7 mV/F0 for each AZ from live imaging. Blue: distribution of the
integrated Cav1.3 immunofluorescence pixel intensities for each AZ in fixed
tissue. (E) Red: distribution of the maximal fluorescence intensity of TAMRA-
peptide labeled ribbons, normalized to the cytosolic fluorescence (Fribbon/
Fnearby). Brown: distribution of the integrated CtBP2/RIBEYE immunofluo-
rescence pixel intensites for each AZ. (F) Distributions of the c.v. estimated
within individual IHCs for AZ parameters: maximal Ca2+ influx (ΔF−7 mV/F0,
dashed green), TAMRA-RIBEYE-binding peptide fluorescence (solid red),
Cav1.3 immunofluorescence (solid blue), and CtBP2/RIBEYE immunofluores-
cence (solid brown). (G) Scatter plot of maximal ΔF−7 mV/F0 vs. TAMRA-

RIBEYE-binding fluorescence intensity (green) and of Cav1.3 vs. CtBP2/RIBEYE
immunofluorescence (blue). Dashed lines are linear regressions and r is
Pearson’s correlation coefficient.
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and V0.5 (Fig. 3F) also presents the maximal Ca2+ influx (color
scale) for a total of 210 AZs: The synapses with the strongest
maximal Ca2+ influx showed intermediate V0.5. We found a tendency
for synapses with more hyperpolarized V0.5 to have greater voltage
sensitivity (i.e., smaller k; r = 0.47).
We found that, on average, Ca2+ influx at pillar AZs had

slightly more hyperpolarized V0.5 than that of the modiolar

ones (Fig. 4 A and B, ∼1.4 mV, P < 0.001, Wilcoxon rank sum
test), whereas there was no significant difference in voltage
sensitivity between pillar and modiolar synapses (Fig. 4 C and
D, P > 0.05, Wilcoxon rank sum test). We did not detect gra-
dients along the tonotopic and central axes of the IHCs for
either V0.5 or k (Fig. S4 B and C). In summary, our data in-
dicate major differences in presynaptic Ca2+ signaling for a
given receptor potential. This may translate into differences in
transmitter release and postsynaptic spiking. The more nega-
tive operating point of pillar AZs might account for the high
spontaneous rates and low sound thresholds of SGNs emanat-
ing from pillar synapses reported for the cat. How the pillar–
modiolar gradient of the voltage dependence of Ca2+ influx

0 1 2

pillar
(abneural)

modiolar
(neural)

ap
ic

al

ba
sa

l

∆F-7mV / F0

   
   

pi
lla

r 
   

 (
n=

82
)

m
od

io
la

r 
 

  (
n=

14
0)

  

∆
F

-7
m

V
 / 

F
0

0

1.6

0.4
0.8
1.2

Fribbon / Fnearby

1 3 5

ap
ic

al

ba
sa

l

pillar
(abneural)

modiolar
(neural)

6
μm

 pillar
(abneural)

 modiolar (μm) 
 (neural)          

∆
F

-7
m

V
 / 

F
0

4-4-8 80
0

0.5

1.5

2.5

0.3

1

1.7

2.4

F
C

av 1.3

Ca2+ influx 
(r=0.21,n=202)
Cav1.3 antibody 
(r=0.35, n=187)

   
   

pi
lla

r
   

 (
n=

78
)

m
od

io
la

r
  (

n=
10

9)
0.4
0.8

1.2
1.6
2.0

F
C

a v
1.

3

***

F
C

tB
P

2

F
rib

bo
n 
/ F

ne
ar

by

5

1

3

9
7

0

4
3

1

5

2

4-4-8 80

CtBP2 peptide 
(r=0.24, n=147)
CtBP2 antibody 
(r=0.47, n=187)

 pillar
(abneural)

modiolar (μm) 
(neural)          

   
   

pi
lla

r
   

 (
n=

57
)

m
od

io
la

r
   

(n
=9

0)

1

5

2
3
4

F
rib

bo
n 
/ F

ne
ar

by

   
   

pi
lla

r
   

 (
n=

78
)

m
od

io
la

r
  (

n=
10

9)

***

0.4

0.8
1.2
1.6
2.0

F
C

tB
P

2

*

6
μm

A B

C D E

F G H

Fig. 2. Maximal synaptic Ca2+ influx varies with AZ position in IHCs:
modiolar–pillar gradient. (A) The polar chart displays intensity of maximal AZ
Ca2+ influx (ΔF−7 mV/F0) as a function of AZ position in live-imaging experi-
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Ca2+ influx for the modiolar (140 AZs) and pillar (82 Azs) halves of the same
IHCs as in A. No significant difference was reported byWilcoxon rank sum test
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may be reconciled with the opposing modiolar–pillar gradient
of maximal Ca2+ influx is discussed below.

Probing Molecular Candidate Mechanisms for Regulation of Synaptic
Ca2+ Influx. How does the IHC, a compact presynaptic cell, estab-
lish heterogeneity of Ca2+ influx among its AZs? Here, we con-
sidered two classes of candidate mechanisms: (i) differences in the
subunit composition of the Ca2+-channel complex and (ii) different
interaction partners. The pore-forming CaV1.3α and the auxiliary
CaVβ2 are the dominating subunits of IHC Ca2+-channel com-
plexes, but other subunits contribute (27, 28, 32, 33). Differences in
the biophysical properties of CaV1.3 Ca2+ channels among IHC
AZs might arise from the preferential abundance of specific aux-
iliary subunits (32, 33) or splice variants of the pore-forming α
subunit (34, 35).
Indeed, analysis of splice variants with short C terminus or long

C terminus, both expressed by IHCs (36), in HEK293 cells
revealed more hyperpolarized activation and higher open proba-
bility for short splice variants of the channel (34, 35). Here, we
studied synaptic Ca2+ influx in IHCs of knock-in mice expressing
the pore-forming CaV1.3α with an HA-tag in exon 49 (36). The
HA-tag disrupts the C-terminal automodulatory domain in the
long CaV1.3α splice variant. This preserves potential C-terminal
protein interaction domains but when expressed in HEK293 cells
functionally converts the gating of “long” splice variants to that of
“short” ones. Therefore, we expected to find more hyperpolarized
activation of synaptic Ca2+ influx. However, the mean V0.5 (t test)

and its variance (Levene’s test) were unchanged (Fig. 5 A–C),
whereas the maximal AZ Ca2+ influx (Fig. 5 D and E, P < 0.005,
Wilcoxon rank sum test) and whole-cell Ca2+ current (Fig. 5F)
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The Cav1.3

HA/HA IHC has larger maximal Ca2+ current than the WT cells (P < 0.001,
ICa,−7 mV,WT = −194.6 ± 6.6 pA, ICa,−7 mV,HA = −234.6 ± 10.6 pA). The errors in this
panel are SEM. (G) Histogram showing the spontaneous rate distribution of
CaV1.3

HA/HA and WT SGNs. (H) Average poststimulus time histogram of SGN re-
sponses to 50-ms suprathreshold tone bursts at the characteristic frequency. Both
the onset (average firing rate in a 1-ms window after median first spike latency)
and steady-state rate (average firing rate over the last 5-mswindow of 50-ms tone
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HA/HA andWT SGNs. (I) Rate-level
functions (Right) and dynamic range (Left) for CaV1.3

HA/HA andWT SGNs. Dynamic
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between the dynamic ranges was observed between CaV1.3

HA/HA and WT SGNs
(19 for CaV1.3

HA/HA vs. 10 forWT SGNs, not significant byWilcoxon rank sum test).
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were larger. Next, we studied sound encoding at the single SGN
level in CaV1.3

HA/HA mice and found a normal distribution of
spontaneous firing rates (Fig. 5G), normal sound-evoked firing
rates (Fig. 5H), and normal sound-pressure dependence of firing
(Fig. 5I). The observed lack of effect of the C-terminal CaV1.3α
manipulation on the voltage dependence of Ca2+ current activa-
tion may be due to strong regulation of CaV1.3 in IHCs by in-
teractions with Ca2+-binding proteins (37–39). The increased
maximal Ca2+ influx, likely resulting from an increased open
probability (34), apparently did not change SGN firing behavior.
AZ proteins known to directly or indirectly interact with the

Ca2+-channel complex include bassoon (40) and rab-interacting
protein (RIM) (41, 42). Both positively regulate the number of
Ca2+ channels at the IHC AZ (15, 43). Bassoon, moreover, con-
tributes to establishing heterogeneity of maximal Ca2+ influx
whereas RIM2α does not seem to be required. Another candidate
interacting partner is harmonin, which regulates CaV1.3 Ca2+

channels, likely by binding of one of its PDZ domains to the ITTL
motif of the extreme CaV1.3 C terminus (44, 45). Here, we
revisited the regulation of IHC AZs by harmonin in deaf-circler
mice (dfcr) (46), reasoning that site-specific expression of har-
monin might contribute to the heterogeneity of maximal Ca2+

influx and voltage dependence of activation. Dfcr IHCs had
weaker RIBEYE-peptide fluorescence regardless of the AZ po-
sition (Fig. S5A, P < 0.05, Wilcoxon rank sum test). AZ Ca2+ influx
and whole-cell Ca2+ current activated at more hyperpolarized
potentials (Fig. S5 B and C, P < 0.05, t test andWilcoxon rank sum
test, respectively). However, this V0.5 shift was observed for both
modiolar and pillar dfcr AZs (both P < 0.05, one-way ANOVA
with Tukey’s post hoc test), arguing against a substantial contri-
bution of harmonin to presynaptic heterogeneity.
The whole-cell Ca2+ influx was enhanced (P < 0.05, Wilcoxon

rank sum test), but the mean synaptic Ca2+ influx was not (Fig.
S5D), suggesting greater extrasynaptic Ca2+ influx in dfcr IHCs. To
test for IHC immaturity and the greater extrasynaptic Ca2+ influx
that accompanies it (29), we immunolabeled for CaV1.3 and large-
conductance Ca2+-activated K+ channels (BK channels, Fig. S5 E
and F). However, CaV1.3 was confined to synapses, which seemed
present at normal numbers, and BK channels clustered at the IHC
neck, both indicating IHCmaturity. We speculate that the V0.5 shift
reflects the absence of CaV1.3 regulation by harmonin or might
relate to impaired mechanoelectrical transduction in dfcrmice (47).

Gipc3 Disruption Causes a Hyperpolarized Shift in Ca2+ Channel Activation
and Enhances Spontaneous SGN Firing. Another PDZ protein and
candidate regulator of Ca2+ channels and AZ heterogeneity is Gipc3
(GAIP interacting protein, C terminus 3). Defects of the human
GIPC3 gene cause human deafness (48, 49) andGipc3 disruption in
mice lead to audiogenic seizures and progressive hearing loss (48).
GIPC proteins share a central PDZ domain flanked by GIPC ho-
mologous domains. Gipc1 has broad roles in intracellular protein
trafficking and in hair cells is required for development of stereo-
ciliary bundles and planar cell polarity (50–52). We studied Black
Swiss (BLSW, hereafter Gipc3 mutant) mice that carry a missense
mutation in the Gipc3 gene (c.343G > A), which replaces a highly
conserved glycine with an arginine at position 115 (Gly115Arg) lo-
cated within the PDZ domain. Early-onset hearing impairment in
Gipc3 mutant mice has been attributed to dysfunction of hair cell
stereocilia, although its localization within hair cells resembles a
cytoplasmic vesicular pattern similar to myosin VI (48). In the
brain, glutamate release was shown to depend on interaction be-
tween myosin VI and its binding partner Gipc1 (50). In hair cells,
a synaptic function for Gipc proteins is yet unknown.
In Gipc3 mutant IHCs we found an increased whole-cell Ca2+

current (Fig. 6 A and D, P < 0.05, Wilcoxon rank sum test) and a
more hyperpolarized V0.5 of activation [Fig. 6B, P = 0.004, Wilcoxon
rank sum test; Gipc3 mutant IHCs: V0.5 = −31.2 ± 1.4 mV, n =
19 compared with C57BL/6J control IHCs (WT): V0.5 = −24.1 ±

1.8 mV, n = 20]. Moreover, we found Ca2+ current inactivation
to be reduced in Gipc3 mutants when comparing Ca2+ currents
elicited by 500-ms-long depolarizations (Ires/Ipeak 0.59 ± 0.04 for
10 Gipc3 mutant IHCs vs. 0.41 ± 0.03 for 8 WT IHCs, P = 0.007,
Wilcoxon rank sum test). We also observed enhanced exocytosis
reported as membrane capacitance increments (Fig. 6 C and D,
significant for 50- and 100-ms-long depolarizations), likely as a
consequence of the increased Ca2+ current. At the AZ level, the
distributions of maximal Ca2+ influx (Fig. 7A) and RIBEYE-
peptide fluorescence (Fig. 7B) and were comparable to WT, but
the V0.5 distribution was broader in Gipc3 mutant IHCs and AZs
activated at more hyperpolarized potentials on average (Fig. 6C,
P < 0.01 for variance, Brown–Forsythe test and P < 0.01 for
mean, Wilcoxon rank sum test). Opposite that in WT, maximal
AZ Ca2+ influx (Fig. 7D) exhibited a pillar–modiolar gradient in
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currents during depolarization): hyperpolarized voltage dependence and in-
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17.3 pA, <0.05, Wilcoxon rank sum test). Data are shown as mean ± SEM.
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Gipc3: 111.7 ± 19.4 fF, <0.01, Wilcoxon rank sum test). Data are shown as
mean ± SEM. (D) (Upper) Average Ca2+ currents (QCa) traces of WT IHCs (black
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currents are significantly increased in Gipc3 IHCs (red) at depolarizations of
50 ms (WT: 6.1 ± 0.4 pC, Gipc3: 8.3 ± 0.6 pC, <0.01, Wilcoxon rank sum test)
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Gipc3 mutants. As a result, the pillar AZs, operating at even
more hyperpolarized potentials than in WT, also had stronger
maximal Ca2+ influx on average (Fig. 7 D–F).
To relate these presynaptic observations to SGN firing prop-

erties, we performed in vivo recordings of SGN firing in Gipc3
mutant mice after onset of hearing [postnatal days (p) 14–25].
Gipc3mutant mice showed elevated auditory brainstem response
(ABR) thresholds at p14 and p21 (Fig. S6 A and B). Single SGN
frequency tuning was broad and thresholds at the characteristic
frequency in Gipc3 mutant mice were elevated on average by

28 dB (2 wk) and 72 dB (3 wk) (Fig. S6 B–D). These effects are
attributable to impaired mechanoelectrical transduction and co-
chlear amplification (48). This stereociliary impairment precluded
assessment of the influence of the observed hyperpolarized acti-
vation of Ca2+ channels on sound-response properties. However,
in the absence of sound the spontaneous spike rate in SGNs comes
from Ca2+-dependent transmitter release from the hair cell at its
resting potential (53), allowing us to assess the effects of shifted
voltage dependence of AZ Ca2+ influx on baseline release. De-
spite impaired transduction of sound, spontaneous SGN firing
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Fig. 7. Disruption of Gipc3 in mice shifts the activation of Ca2+ influx to more hyperpolarized potentials and reverses the modiolar–pillar gradient of maximal
Ca2+ influx. (A) Distribution of maximal AZ Ca2+ influx in IHCs of Gipc3 mutant (red trace, n = 152, 19 cells) and WT mice (blue trace, 225 AZs of 25 cells). The
experimental protocol is the same as Fig. 1B. (B) Distribution of the AZ TAMRA-peptide fluorescence in Gipc3 mutant IHCs (red trace, 166 AZs, 19 IHCs) and WT
IHCs (blue trace, 253 AZs of 25 IHCs). (C, Left) Distribution of V0.5 of the voltage-dependent activation of AZ Ca2+ influx in Gipc3mutant IHCs (red trace, 142 AZs of
19 IHCs) andWT IHCs (blue trace, n = 225, 25 cells). The experimental protocol is the same as Fig. 3A. (C, Right) Box plot of V0.5 of voltage-dependent activation of
AZ Ca2+ influx in Gipc3 mutant IHCs: V0.5 was significantly more hyperpolarized in Gipc3 mutant IHCs (P < 0.01, Wilcoxon rank sum test). (D, Upper) Opposing
gradients of maximal AZ Ca2+ influx in Gipc3 (red circle, 128 AZs of 19 IHCs) and WT (blue circle, 226 AZs of 25 IHCs) along the modiolar–pillar axis. Solid lines are
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for Gipc3 mutant IHCs. The maximal AZ Ca2+ influx of pillar AZs was significantly stronger than that of pillar AZs (P < 0.001, Wilcoxon rank sum test). (E) (Upper)
Spatial distribution of the V0.5 in Gipc3mutant IHCs (red circle, 119 AZs of 19 IHCs) and WT IHCs (blue, 194 AZs, 21 IHCs) along the modiolar–pillar axis. Solid lines
are line fits to the data. (E, Lower) Box plots summarize the V0.5 distributions of pillar and modiolar AZs in Gipc3 mutant IHCs. The V0.5 of pillar AZs was sig-
nificantly more hyperpolarized than that of modiolar AZs (P < 0.001, Wilcoxon rank sum test). (F, Left) The relationship of maximal AZ Ca2+ influx and V0.5 (red:Gipc3,
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E4722 | www.pnas.org/cgi/doi/10.1073/pnas.1605737113 Ohn et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605737113/-/DCSupplemental/pnas.201605737SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605737113/-/DCSupplemental/pnas.201605737SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1605737113/-/DCSupplemental/pnas.201605737SI.pdf?targetid=nameddest=SF6
www.pnas.org/cgi/doi/10.1073/pnas.1605737113


rates were elevated in Gipc3 mutant mice (P < 0.05, one-sided
Kolmogorov–Smirnov test). In contrast to WT animals, where
about 50% of SGNs had a spontaneous rate below 20 Hz, only
16% of SGNs in Gipc3 mutant mice exhibited spontaneous rates
below 20 Hz (Fig. 8A). Some low-spontaneous-rate SGNs, which
generally have higher thresholds, may not have been activated by the
highest-intensity search stimuli (100-dB sound pressure level). Re-
gardless, we found a greater abundance of SGNs with high spon-
taneous firing rates (28% with rates >50 Hz vs. only 12% in WT).
Despite elevated thresholds in Gipc3 mutant mice that most

likely resulted from impaired mechanotransduction and cochlear
amplification, firing rates at sound onset were elevated when
probed at 30 dB above threshold with tone bursts at the char-
acteristic frequency in 2- to 3-wk-old mice. SGNs had onset rates
of 451.4 ± 27.0 Hz for Gipc3 mutant (n = 25) vs. 347.1 ± 26.1 Hz
for WT (n = 24, P < 0.05, Wilcoxon rank sum test). In contrast,
the adapted firing rates were indistinguishable from WT (Fig.
8B). Consistent with the defect of cochlear amplification, rate vs.
level functions had steeper slopes and significantly narrower
dynamic ranges (Fig. 8C). Recovery from adaptation, most likely
reflecting presynaptic replenishment of the readily releasable
pool, proceeded at normal pace inGipc3mutant mice (Fig. S6F).
In principle, the increased spontaneous discharge rates of SGNs

in Gipc3 mutant mice could have resulted from a more depolar-
ized IHC resting membrane potential, potentially due to reduced
basolateral K+ conductances (48). However, IHC resting mem-
brane potentials were unaltered (Fig. S7A), BK channels clustered
at the neck as in WT (Fig. S7B), and BK currents were normally
sized (Fig. S7C) in Gipc3 mutant IHCs at p14–16, indicating

normal IHC maturation (54). This notion was further corrobo-
rated by the normal number of ribbon synapses (Fig. S7D). In
conclusion, disruption of Gipc3 produced a shift of Ca2+-current
activation toward hyperpolarized potentials, reversed the modiolar–
pillar gradient of maximal Ca2+ influx at IHC AZs, and increased
spontaneous firing rates in SGNs.

Discussion
The ear encodes changes in sound pressure over six orders of
magnitude using SGNs that change their firing rates over different
fractions of the audible range, but the mechanisms underlying
such dynamic range fractionation are unknown. Therefore, we
used fluorescence imaging to characterize heterogeneity among
AZs in cochlear IHCs as a candidate mechanism. Our study in-
dicates that IHCs decompose information on sound intensity into
different outputs by varying the Ca2+ influx among their AZs. Two
key determinants of presynaptic Ca2+ influx, the voltage dependence
and the number of Ca2+ channels, differed greatly among the AZs
within IHCs and exhibited shallow opposing spatial gradients along
the pillar–modiolar IHC axis. AZs of the pillar face, on average,
were smaller but activated at more hyperpolarized potentials and,
hence, are likely presynaptic to high-spontaneous-rate, low-threshold
SGNs. The number of CaV1.3 Ca2+ channels and maximal synaptic
Ca2+ influx, on average, were greater for modiolar AZs, which also
were larger in size. We propose that these AZs, given their more
depolarized operation range, are recruited by stronger sounds and
likely drive low-spontaneous-rate, high-threshold SGNs. Disruption
of Gipc3 reversed the normal modiolar–pillar gradient of maximal
AZ Ca2+ influx, shifted Ca2+ channel activation to more hyper-
polarized potentials, and increased the fraction of SGNs with high-
spontaneous firing rate.

Dynamic Range Fractionation Through Heterogeneity of Synaptic
Voltage Dependence. Each presynaptic AZ in a given IHC is con-
trolled by a common potential and provides the sole excitatory
input to “its” postsynaptic SGN. How the operating range of Ca2+

influx at an AZ matches the IHC resting and receptor potential
critically determines its transmitter release and hence the spon-
taneous and sound-evoked firing of the postsynaptic SGN. Be-
cause technically challenging in vivo tight-seal patch-clamp
recordings from IHCs have not yet been achieved there is un-
certainty about the resting (in quiescence) and the receptor
(during sound stimulation) potential. Pioneering recordings with
sharp electrodes from guinea pig IHCs indicated a resting poten-
tial of −40 mV and maximal receptor potentials between ∼10 and
30 mV (1), and a patch-clamp study trying to emulate physiological
ionic conditions in the explanted gerbil organ of Corti estimated a
resting potential of −55 mV (55). Regardless of the precise resting
potential it is evident that Ca2+ influx is partially active at least at a
subset of IHC AZs (Fig. 3) and the relatively depolarized IHC
resting potential is expected to facilitate Ca2+ influx and transmitter
release (56, 57). Moreover, the range covered by Ca2+ activation
at the various AZs (V0.5 spanning from −38 mV to −18 mV) matches
the reported range of IHC receptor potentials very well (Fig. 3).
The SGNs with identical frequency tuning but different sound-
response properties presumably receive input from the same IHC
and collectively convey acoustic information across the entire audible
range of sound pressures to the brain. Candidate mechanisms
underlying the diversity of SGN response properties include pre-
synaptic (7, 11, 12), postsynaptic (13), and efferent (17, 18)
mechanisms. Here, we asked how IHCs might fractionate the
auditory signal for different parallel outputs through heteroge-
neous Ca2+ influx among AZs. Fast 3D live imaging enabled us to
analyze functional and morphological properties of most, if not all,
AZs as a function of position within an individual IHC. In parallel,
we performed semiquantitative confocal microscopy of immuno-
labeled IHC synapses. AZs differed considerably in size, number,
and voltage dependence of Ca2+ channels whereby differences
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among AZs within individual IHCs explained most of the variance
of the entire AZ population. The estimates for Ca2+-channel
number were positively correlated with our proxy of AZ size in
both live-imaging and immunohistochemistry experiments, even at
the level of the single IHC.
Modiolar AZs were larger, had more Ca2+ channels, and

tended to show stronger maximal Ca2+ influx. The hypothesis
that these AZs drive SGNs with lower spontaneous firing rate
and higher sound threshold, at first sight, seems counterintuitive
because a greater number of Ca2+ channels is expected to elicit
more spontaneous and evoked release. However, we found that
modiolar AZs, on average, required more depolarization for
their activation (Fig. 4), consistent with the idea that modiolar
synapses drive high-threshold SGNs (2, 7, 8). Modiolar AZs that
hold more Ca2+ channels may support higher maximal rates of
transmitter release, which could explain the higher susceptibility
of low-spontaneous-rate, high-threshold SGNs to excitotoxic
insult during acoustic overexposure (58). The operation of pillar
AZ at relatively hyperpolarized potentials may contribute to
high-spontaneous firing rates and responses to soft sounds found
for SGNs innervating the pillar side (2, 7). Based on the spatial
distribution of the voltage dependence of presynaptic Ca2+ influx
found here for mice, and the spatial distribution of postsynaptic
spontaneous rates in cats, we hypothesize that the voltage de-
pendence of presynaptic Ca2+ influx is a major determinant of
spontaneous and sound-driven SGN firing. This hypothesis is
supported by the more hyperpolarized V0.5 of AZ Ca2+ influx
in IHCs (Fig. 7) and the increase in SGN spontaneous firing rates
in Gipc3 mutant mice (Fig. 8), but not in in CaV1.3

HA/HA mice, for
which, too, we found more AZ Ca2+ influx but no change in voltage
dependence. However, we note that different from classic ex-
periments in mature cats (2, 7) the present data were obtained
from mice and we cannot rule out some immaturity of the afferent
synaptic connectivity because we recorded soon after the onset of
hearing. Moreover, the variability of voltage dependence of pre-
synaptic Ca2+ influx was high in both the modiolar and pillar
halves, whereby the differences between V0.5 among modiolar
or pillar synapses could exceed that between the average pillar and
modiolar synapse. In addition, the spatial segregation of func-
tionally distinct classes of type SGNs at the level of IHC in-
nervation in mice might deviate from that described for cats.
Future experiments simultaneously addressing presynaptic
properties and postsynaptic firing will be required to further
test our hypothesis.

Regulation of the Number and Voltage Dependence of Ca2+ Channels
at IHC AZs. Which mechanisms determine the number and volt-
age dependence of Ca2+ channels at an AZ? The number of Ca2+

channels at the presynaptic AZ is governed by the expression of
the specific Ca2+-channel subunits and splice variants (33, 36, 59)
as well as by that of scaffold proteins that tether Ca2+ channels to
the AZ (15, 42, 43, 60, 61) and/or regulate their turnover (44) by
direct or indirect interaction with the channels. Moreover, sub-
unit composition as well as splice variants and interacting pro-
teins also modulate functional properties of the specific Ca2+

channel (62). The Ca2+-channel complex at IHC AZs is likely
composed of splice variants of the pore-forming subunit CaV1.3α
containing exons 43S or 43L (36), of the CaVβ2 (33), and less
likely of other CaVβ subunits (32), and of a yet-to-be-identified

CaVα2δ subunit. CaVβ2, the synaptic ribbon, and the presynaptic
scaffolds bassoon and RIM2α and β were previously shown to
promote the abundance of CaV1.3 at IHC AZs (15, 33, 43),
whereas harmonin seems to reduce the number of synaptic CaV1.3
(44). Work in zebrafish hair cells has revealed an intriguing mo-
lecular interplay between RIBEYE and CaV1.3 channels, whereby
RIBEYE overexpression promotes the formation of CaV1.3-positive
AZ-like specializations and synaptic Ca2+ influx negatively regulates
RIBEYE abundance at the AZ (63, 64). The present study cor-
roborates the notion that the Ca2+-channel number is proportional
to ribbon size in cochlear hair cells (11, 30). We speculate that re-
lease rate for a given open probability scales linearly with the
number of Ca2+ channels, assuming nanodomain coupling (29, 65,
66), regardless of the AZ size. Future simultaneous measurements
of AZ Ca2+ influx and exocytosis or SGN firing will be required to
analyze the consequences of presynaptic heterogeneity for trans-
mitter release at IHC AZs.
How do IHCs form opposing gradients of AZ size, CaV1.3

abundance, and voltage dependence of activation? The modiolar–
pillar gradient of AZ size was lost upon lesion of the lateral oli-
vocochlear efferents (18), and it is tempting to speculate that they
provide an instructive influence on the postsynaptic SGN terminal
and/or the IHC AZ. Here, we found that the intracellular gradient
of maximal Ca2+ influx was altered in Gipc3 mutant mice. In
addition, Gipc3 disruption increased Ca2+ influx and caused a
hyperpolarizing shift in its activation. These presynaptic changes
likely underlie the enhanced spontaneous and sound-onset firing
in Gipc3 mutant mice, although alternative explanations exist.
How the Gipc3 protein might be involved directly or indirectly for
establishing a modiolar–pillar gradient remains to be elucidated.
Considering analogy to Gipc1 (50, 52), it is tempting to speculate
that Gipc3 serves to adapt components of the Ca2+-channel
complex to motor proteins and thereby assists their trafficking to
AZs with a preference for the modiolar face. Signals instructing
polarized trafficking might originate from lateral olivocochlear
fibers, SGNs themselves, and/or the planar cell polarity that sets
the orientation of the apical hair bundle (67, 68) and involves
Gipc1 signaling (50). Future work should address the mechanism
by which Gipc3 operates to traffic and/or regulate Ca2+ channels.

Methods
Research followed national animal care guidelines and was approved by the
University of Göttingen board for animal welfare and the animal welfare
office of the state of Lower Saxony. For details of patch-clamp and confocal
Ca2+ imaging, immunohistochemistry and confocal imaging, extracellular
recordings from auditory nerve fibers, and data analysis see SI Methods.
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