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Abstract: Mass spectrometry-based metabolome profiling became the method of choice in systems
biology approaches and aims to enhance biological understanding of complex biological systems.
Genomics, transcriptomics, and proteomics are well established technologies and are commonly
used by many scientists. In comparison, metabolomics is an emerging field and has not reached
such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial
improvements were achieved during the last years. Integrated data derived from multi-omics
approaches will provide a deeper understanding of entire biological systems. Metabolome profiling
is mainly hampered by its diversity, variation of metabolite concentration by several orders of
magnitude and biological data interpretation. Thus, multiple approaches are required to cover most
of the metabolites. No software tool is capable of comprehensively translating all the data into
a biologically meaningful context yet. In this review, we discuss the advantages of metabolome
profiling and main obstacles limiting progress in systems biology.
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1. Introduction

Metabolomics offers a framework for analyzing individuals with a specific phenotype at a
molecular level in cell biology, personalized medicine, and systems biology [1–3]. Metabolites are small
molecules participating in metabolic reactions, which are necessary for cellular function, maintenance
and growth [4]. Typically, metabolites range from 50 to 1500 Da, while their concentrations span
several orders of magnitude. The metabolome is highly dynamic, time-dependent, and metabolites are
sensitive to many environmental conditions. It is still unknown how many different metabolite species
exist within a cell or organism; predicted are at least 2000 in mammals [5], the Human Metabolome
Database (HMDB) [6] currently has more than 8000 verified entries. Plants and bacteria outnumber
the diversity of compounds by two orders of magnitude; more than 200,000 metabolites are estimated,
for example, to exist in the plant kingdom [7,8]. Metabolites are extensively exchanged with the
environment, e.g., food intake, excretion, inhalation, secondary metabolites, such as medications,
flavorings, and recreational drugs, which can be further processed by the gut microbiome or organs.
Furthermore, metabolites are, chemically, very diverse (polarity, charge, pKa, solubility, volatility,
stability, and reactivity), consequently no single method can capture and analyze the entire metabolome
at once. Hence, many extraction methods were developed to identify and quantify specific classes of
metabolites. The most commonly used approaches to explore the metabolome are gas chromatography
(GC), liquid chromatography (LC) or, to a lesser extent, capillary electrophoresis (CE), online coupled to
a mass spectrometer (MS), as well as nuclear magnetic resonance (NMR) spectroscopy [9]. Nevertheless,
the contextual and chemical diversity makes the detection of a whole set of metabolites present in a
biological sample an ambitious goal [10,11].
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Systems biology is a novel subject in the field of life science, which aims to understand biological
systems as a whole entity, under a variety of conditions [12]. The availability of huge amounts of
quantitative data and the development of computational methodologies are the main reasons for the
emergence of systems biology [12]. The complete biological model can only be discovered if different
levels of gene expression, proteins, and metabolites are considered in an analysis. Multi-omics data can
be combined as predictor variables in order to identify models that predict phenotypes and elucidate
biomarkers [13].

Metabolites are regarded as the final response of a biological system to environmental changes or
gene regulations and, thus, an aberrant metabolism can be linked to disease severity and phenotypes.
The metabolome is, thereby, the most predictive of phenotype [1,4]. Metabolic profiling refers to
the comprehensive identification and quantification of metabolites in a biological system [14,15].
Systems biology-based metabolome profiling is a new and promising field, which is still puzzled by
several aspects, such as sample preparation, identification, standardization, and translating results
into biological meaningful data.

Metabolomics and systems biology-driven studies have a great potential for hypotheses
generation and dissection of signaling networks in an unbiased or untargeted fashion [16]. The main
advantage of systems biology-based metabolomics is the connection of metabolic networks to the
underlying reaction pathway structure [7]. Thus, systems biology based metabolomics has a lot
of benefits, such as elucidating connectivity maps of pathways, but is still far from covering the
entire metabolome.

In this review, we will focus on the advantages and challenges in metabolome profiling for systems
biological approaches and cover various techniques and their limitations with a special spotlight on
real-time metabolome profiling as a very promising new strategy.

2. Sample Preparation

Typically, a sample preparation protocol contains a solvent extraction step, ultrafiltration,
solid-phase extraction and, optionally, a chemical derivatization step [1]. The optimization of sample
pretreatment is an important point in method development, since it ensures reproducibility. This review
is not focusing on pretreatment strategies and we refer to a variety of other review articles [17–20].

2.1. Derivatization

Derivatization methods apply reagents, which chemically modify and transform a specific
target structure. Thus, derivatization is one of the most effective method to improve the detection
characteristics of metabolites in GC- or LC-MS, binding to LC columns, or to stabilize compounds.
For example, formaldehyde can be used to label the amine groups through reductive amination.
Silylation is a common derivatization reagent in GC-MS, as it transfers a wide range of functional
groups, even though some products are not very stable [21].

By derivatization, a sensitivity gain by several orders of magnitude can be achieved.
The drawbacks are that an additional derivatization step is introduced and not all metabolites can be
derivatized by only one reagent. Furthermore, the mass spectra are different in terms of parent and
fragment masses from their endogenous counterparts. Thus, databases for endogenous compounds
cannot be applied for reference matching and derivatization-specific databases are rare or have to be
built from scratch.

A combination of derivatization and internal standards (ISs), named isotope-coded derivatization
(ICD), is a good alternative for relative quantification, in order to improve analytical precision,
(reviewed in [22,23]). Thereby, one sample is derivatized with a naturally-labeled reagent, while the
other sample is separately derivatized with the isotopically-labeled reagent. After differential labelling,
the samples are pooled and processed jointly to avoid any method biases. Thus, this method offers
new perspectives for quantitative metabolite profiling, where current protocols can easily comprise
over a hundred metabolites [22]. ICD is very similar to the classic stable isotope labeling by amino
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acids in cell culture (SILAC) approach used in proteomics, where specific amino acids are incorporated
into newlysynthesized proteins [24]. Thus, ICD works well for selected compounds or compound
groups, such as amino acids, glycans, phosphometabolites, amines, nucleotides, carboxylic- and fatty
acids [22].

2.2. Internal Standards

In mass spectrometry, ISs are the method of choice for absolute or relative quantification,
calibration curves, recovery rate determination, or to correct for matrix effects. Typically, ISs are
isotopically (13C, 15N or deuterium)-labeled counterparts of compounds of interest. The ISs have
the same chemical behavior as their endogenous counterparts, do not show drastic chromatographic
isotope effects, and have the same retention time. The application of ISs is widespread, but one
drawback is that they are not 100% labeled. Thus, an additional and indistinguishable unlabeled
peak of typically 1%–2% intensity, depending on the impurity ratio may occur in the mass spectrum.
Therefore, the amount of introduced ISs should be reduced to a minimum in order to avoid these
interferences. Furthermore, isotopically-labeled ISs are not practical for large profiling approaches,
since they are expensive and not available for the majority of compounds or it is impossible like for
de novo identifications. To circumvent this bottleneck, only a few ISs, matching to similar compound
groups, are selected. Ionization suppression or enhancement is matrix-specific and shows fluctuations
over the elution time. This is not always properly reflected by only using a few ISs.

Alternatives for isotopically-labeled ISs are synthetic compounds, which are very similar to
the target compound, such as a 17-carbon chain sphingosine instead of the natural 18-carbon chain
sphingosine [25]. Label-free approaches, which aim to determine the relative amount of proteins
based on precursor signal intensities or on spectral counting, are well established in proteomics [26].
Several methods have been developed to align chromatographic profiles of non-targeted data without
the need of ISs for normalization, like applied in XCMS Online [27,28].

3. Data Acquisition and Analysis

3.1. GC-, LC-MS, and NMR in Metabolomics

Most metabolic profiling studies are performed using chromatographic separation online coupled
to mass spectrometers, usually gas chromatography (GC)-MS and liquid chromatography (LC)-MS,
as well as nuclear magnetic resonance (NMR) spectroscopy [29].

NMR is generally accepted as the gold standard in metabolite structural elucidation, due to its
high selectivity, analytical reproducibility, non-destructive nature, and simplicity of sample preparation.
However, it suffers from relatively low sensitivity compared to MS [30].

Mass spectrometry-based approaches for metabolic profiling have the advantages of a high
sensitivity and selectivity, as well as high throughput and depth of coverage [11]. GC-MS has
advantages of a greater chromatographic resolution [31–33] when compared to LC-MS-based methods,
a good retention of small compounds that elute early with the solvent front in reverse-phase LC-MS
methods [34], and large spectral libraries [35]. Unfortunately, the thermal stability of the stationary
phase, metabolites and their derivatives limit the metabolome coverage derived by GC-MS [11].
Furthermore, several metabolites can just be analyzed by GC-MS after derivatization and this might
introduce variability and produce derivatization artifacts [30].

Due to its high sensitivity and wide range of molecules that can be analyzed, the usage of LC-MS
has expanded rapidly over the past ten years [1,29].

Bingol and colleagues introduced a strategy, which combines direct infusion MS with NMR
(SUMMIT MS/NMR) for the identification of unknown metabolites in complex mixtures [9].
First, the chemical formulas of compounds in the mixture are identified from accurate masses by MS
and, subsequently, all possible structures are generated [9]. Second, NMR spectra of each member of the
structural manifold are predicted and compared with the experimental spectra to identify the molecular
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structure that match the information obtained from MS/NMR [9]. With this method, different types of
metabolites, such as amino acids, polyamines, nucleic acids, nucleosides, and carbohydrate conjugates
could be identified in an E. coli extract [9]. This approach opens new possibilities in biomedicine,
synthetic chemistry, or food sciences for high-throughput identification of unknown metabolites and
to overcome limitations of databases [9]. Thus, it is possible to combine different approaches, but due
to instrumentation limitations usually just one analytical method is used [36,37].

3.2. Chromatographic Dimension

The metabolome is a collection of compounds with diverse physicochemical properties; no single
retention mechanism is adequate to resolve complex sample mixtures that vary widely in their polarity,
charge, and stability [1]. Usually, polar and nonpolar metabolites are separated and analyzed in
parallel by according analytical columns.

Reversed-phase liquid chromatography (RPLC) is extensively used, because of its reproducible
and predictable retention times, wide applicability to various classes of metabolites, and mobile phase
compatibility for direct coupling to electrospray ionization mass spectrometry (ESI-MS) [1]. The major
disadvantage of RPLC is the poor recovery of hydrophilic compounds. This problem can be solved by
the use of hydrophilic interaction chromatography (HILIC), which requires longer re-equilibration and
can show retention time drifts [38]. Nevertheless, HILIC is the most commonly used separation mode in
LC-MS for polar metabolites that is used together with RPLC for comprehensive metabolomic studies.

The combined use of HILIC and RPLC is an optimal method to increase metabolome coverage,
because it is ideal for retaining extremely polar and lipophilic compounds [39]. The main disadvantage
is that the applied mobile phases of HILIC and RPLC are incompatible and, thus, two separate runs are
necessary, which reduces sample throughput. Furthermore, different chromatographic conditions can
cause redundant data analysis and sample preparation is more complicated due to the requirement of
different sample buffers [39,40].

To overcome these problems, Haggarty and colleagues applied a method where a sample is
injected onto both, RP and HILIC columns in tandem in a single injection [41]. To solve the problem
with the solvent strength incompatibility between the columns, a high-aqueous mobile phase at low
flow rate for the RPLC column and a high-acetonitrile mobile phase at high flow rate for the HILIC
column were used [39].

This tandem column approach was already successfully applied with quadrupole, time of flight
(TOF), and orbitrap mass analyzers [39,41–43]. This method could significantly increase the amount
of identified metabolites in a single analytical run, but one disadvantage is that isomers cannot be
separated [39].

3.3. Non-Targeted, Targeted, and Real-Time Metabolome Profiling

Experimental approaches can be classified into non-targeted and targeted metabolomics.
Non-targeted metabolomics approaches are widely used for de novo analyte identification, where
no prior knowledge about compounds is necessary. In contrast, targeted metabolomics aims to detect
a priori selected analytes, on the basis of known parent and fragment masses, with a method termed
multiple reaction monitoring (MRM). Once optimized for every transition, the MRM approach has
the advantage of selective and sensitive measurement of the selected analytes in complex samples.
The specificity is achieved by fragmenting the analyte and by monitoring both parent and one [44–48]
or more product ions simultaneously [49–53].

Savolainen and colleagues developed a GC-MS method using a high scan speed (20,000 Da/s),
which combines targeted and non-targeted metabolomics into one single accurate, reproducible, and
reliable method [34]. This method has the advantage of measuring predefined metabolites relevant to
the study question and, additionally, identifies unexpected metabolites [34].

Direct sample injection on high-resolution mass spectrometers is an effective way to maximize
analytical throughput, since sampling, sample preparation, and measurements are time-intensive
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and difficult to automate [54,55]. The applicability of direct injection in metabolomics is extended
by advanced instrumentation capable of high-resolution, accurate mass measurements and tandem
MS (such as FT-ICR-MS and orbitrap MS) [30]. Flow injection analysis/mass spectrometry (FIA/MS),
a method using a HPLC without a column, was applied for metabolite fingerprinting [56], screening
in drug discovery [57] and detection of pesticides in food [58]. Matrix effects resulting in inaccurate
identification and quantification are the main disadvantages of direct sample injection.

Fuhrer and colleagues established a robust platform for high-throughput, accurate mass, and
non-targeted metabolome profiling of E. coli extracts [54]. This method is ideal for initial untargeted
metabolome screens where a variety of samples need to be analyzed rapidly [54].

Link and colleagues went a step further and performed real-time metabolome profiling by direct
injection of living bacteria, yeast, and mammalian cells into a Q-TOF MS in order to reveal metabolic
switches between starvation and growth [55]. They detected 10,466 ions with distinct mass-to-charge
ratios, which could be assigned to around 300 metabolites in 15–30 second cycles. The real-time data
were confirmed by comparison to a manual sampling and extraction method by flow-injection TOF-MS.
By applying the real-time method, more time points were analyzed, more metabolites were identified,
and detected ion intensities were higher than those derived from manually-obtained samples [55].
Thus, metabolome profiling of living cells can be monitored in real-time over extended periods to
follow the dynamics of metabolic processes. Furthermore, the consequences of any kind of cell
manipulation can be studied in real-time, leading to new experimental approaches that could not be
performed before.

3.4. Metabolic Flux Analysis

The original method of metabolic flux analysis (MFA) studies systems at a metabolic steady state,
by determining metabolite transport rates within and out of tissues, cells, or their sub-compartments,
which are then balanced in reaction networks to provide estimates of intracellular fluxes [59].
The limitation of this classical MFA approach is that it cannot resolve fluxes through parallel pathways,
such as glycolysis and pentose phosphate pathway, circular pathways or reversible reactions [60].
To overcome the limitation in MFA, isotope 13C tracers, such as the main substrates for mammalian
cell culture, glucose and glutamine, can be used [60]. Labeled nutrients in biological systems spread
through the network as a function of metabolic activity and produces labeling patterns in the backbone
of metabolic intermediates over time [59]. In vivo fluxes are calculated by mathematical models that
describe the label propagation from isotopic patterns and extracellular transport rates [59].

Isotope labeled-MFA of co-cultures can be performed, in order to determine inter-species
metabolite exchange and population dynamics. This method simplifies experimental and analytical
procedures for co-culture flux analysis, improves accuracy, and allows flux elucidation in systems
where physical separation of cells or proteins is difficult [61].

Recently, we applied an isotope based flux analysis in order to determine the enzymatic activity
of mutated pyrroline-5-carboxylate synthase (P5CS), a protein of the mitochondrial proline cycle.
The mutation causes an autosomal-dominant form of cutis laxa with progeroid features. The flux
analysis revealed that mutated cells had a reduced P5CS enzymatic activity leading to a delayed
proline accumulation [62].

The advantage of fluxomics is that the turnover of virtually any metabolite can be studied by
isotope labeling. New pathways or disease-causing genes can be elucidated, a perfect method for
specific tasks. Systems biological approaches are mainly hampered by the complexity of the entire
system, as most pathways are not straightly leading from A to B, introducing a bias and are, hence,
difficult to compute.

3.5. Mass Spectrometry Imaging

Mass spectrometry imaging (MSI) is a spatially-resolved label-free technique, which can directly
identify and map the spatial distribution and abundance of known or unknown molecular species in
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tissues [63]. Metabolites are the direct measure of metabolic activities and can therefore be correlated
to phenotypes. Many critical parameters, such as the discrepancy between the low number of detected
metabolites versus the real number of possible metabolites, the bias against compound classes and the
overlap of compartmentalized metabolic processes in tissue samples, complicate the interpretation of
metabolite profiles [7]. As the two or three dimensional distribution of metabolites in specific tissue
parts or even subcellular compartments are crucial for many scientific questions, one option to resolve
their precise location is MSI. Conventional imaging techniques are not suitable for simultaneous
visualization of endogenous molecules. MSI, using matrix-assisted laser desorption/ionization
quadrupole ion trap timeofflight (MALDI-QIT-TOF), was used to visualize the spatial distribution of
metabolites in tissue sections [64], or plant surface metabolites [65]. Nanospray desorption electrospray
ionization (nano-DESI), combined with MS/MS, enabled simultaneous imaging and identification of a
large number of metabolites and lipids with a spatial resolution [66]. Three-dimensional secondary
ion mass spectrometry (SIMS) imaging was used to investigate the cellular metabolite uptake on the
single cell level [67]. Even MS free systems, such as an electrochemical camera chip for simultaneous
imaging of multiple metabolites in biofilms was applied [68].

Limited by the absence of a comprehensive MSI method, normalization, and sample preparation
techniques suitable for all metabolite classes, we can barely talk about a systems-wide approach, which
covers the metabolome. Derivatization enables increased detection of metabolites that are hard to
ionize, but may cause analyte suppression or delocalization [69]. Nevertheless, MSI in all its variants
is a valuable diagnostic and systems biology tool, capable of providing comprehensive 2D–3D spatial
distribution of selected metabolites, like amino acids, lipids, carnitines, or carbohydrates [63,70] in a
wide variety of cells and tissues.

3.6. Metabolite Databases

Metabolite databases are repositories of metabolite information, based on experimental
confirmation or in silico prediction, and usually contain MS/MS data in order to facilitate metabolite
identification. The most established repositories for biological compounds are METLIN, featuring
242,000 entries, 14,000 with high-resolution MS/MS data [71], the Human Metabolome Database
(HMDB), with more than 40,000 annotated metabolite entries, including “detected” metabolites
(those with measured concentrations or experimental confirmation of their existence) and “expected”
metabolites (those for which biochemical pathways are known or human intake/exposure is frequent,
but the compound has yet to be detected in the body) [6], and MassBank [72].

Several in silico-generated compound databases are available as well, such as MINE, containing
over 571,000 compounds [73], MyCompoundID, using an evidence-based metabolome library (EML)
with 375,809 predicted metabolites [74]. Matching metabolite spectra against such huge in silico
databases can give rise to too many false-positive identifications just by chance. Based on our
experience, databases contain several erroneous entries. Especially, the MS spectra are sometimes
of poor quality, they are recorded by different groups with different MS instrumentations, and the
provided instrument settings are sometimes very scarce.

All data derived from metabolome profiling studies should be made publically available in
according depository databases. Thus, full transparency is guaranteed and datasets can be reused for
future identification, quantification, secondary analysis, or systems biology approaches. Data storage,
maintenance, and harmonization are critical points, since abandoned or broken depositories would
cause a significant loss of knowledge. Currently, just a few metabolomics-specific depositories, such as
MetaboLights [75] and PMR [76], are available.

3.7. Metabolite Identification

Due to the complexity and chemical diversity of the metabolome with metabolite concentrations
spread over a wide range of magnitudes, identification is still a challenge. In addition to the variety
of instruments and their different operation and acquisition methods, even more programs exist for
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data processing, typically for a specific class of data. For example, different instrument settings used in
LC-MS, such as collision energy, resolution, targeted, non-targeted, and fragmentation methods, such as
CID (collision induced dissociation), HCD (higher energy collision dissociation), ETD (electron-transfer
dissociation), and PQD (pulsed-Q dissociation) [77–80], can give rise to different fragments species
and intensities. Hence, it is a tough task to use or build metabolite-specific spectral databases for
compound identification.

One of the best, but time consuming, options is to create an instrument specific MRM method
for a set of preselected metabolites. The advantage of using up to three MRMs and their MRM ion
ratios, which are stable properties between transitions [81] for robust and unambiguous analysis of
complex samples, was demonstrated in a screening approach of rotenone-treated HeLa cells [53].
In this study, a MRM method was developed using pure substances and the transitions had to co-elute
at the same retention time with identical peak shapes. MRM ion ratios have been shown to be
essential to avoid false-positive identifications in an example for inosine 51-monophosphate [53].
Schürmann and colleagues revealed the need of a third transition as well [52]. In their study,
product ions from a co-eluting interfering matrix compound were consistent with MRMs of two
sebuthylazine transitions [52]. Following the European Union directive 2002/657/EC, which regulates
the confirmation of suspected positive identifications, this would have resulted in a false-positive
finding. To date there is an insufficient discussion about the relative importance of using certain
transitions for compound identification [52]. Fragment mis-assignments can originate from impure Q1
isolation [39], co-eluting isobaric compounds, wrong database entries, or incorrect peak picking.

Due to its complex nature, non-targeted metabolomics has to be linked to advanced chemometric
techniques, to reduce the data complexity into a smaller set of manageable signals [82]. Analytical
methods and required improvements in non-targeted metabolomics are extensively described in a
review of Alonso and colleagues [83]. A METLIN search for the exemplary parent mass 136 Da reveals
131 isobaric, but unique metabolites, many of them with very similar structures and, thus, almost
similar fragment spectra. As a result, a ranked list based on similarity scores is provided and cutoff
values have to be used to verify the identification. It is debatable whether this is sufficient enough and
how many false-positive identifications are actually included. A big effort is being done to improve
spectral databases, but the development of accurate automatic identification algorithms is still subject
to the availability of an exhaustive set of reference metabolite spectra [83].

As target identification is one of the most critical steps, in silico target identification methods,
including chemical similarity database searches, are used, such as CSNAP (Chemical Similarity
Network Analysis Pulldown) [84]. Several strategies exist on how unknown peaks can be
deciphered and interpreted, but validation guidelines were missing for a long time. A collection
of guidelines/minimum requirements for the validation of metabolite identification, were finally
conceived by the Metabolomics Standards Initiative (MSI in 2005, in order to allow data to be efficiently
applied, shared and reused [85]. The initiative “COordination of Standards in MetabOlomicS”
(COSMOS) is generating robust data infrastructures and exchange standards for metabolomics data
and metadata [86].

4. Biological Interpretation of Results

At this point, a large knowledge gap exists in the translation from changes in metabolite
concentration in body fluids to organ biochemistry and (molecular) physiological interpretation [20].
Existing scarce information are usually only available for specific species, organs, or body fluids and
cannot be transferred from one another easily. Software tools, such as pathway or enrichment analysis
are not taking that into account.

What does it actually mean, if metabolite X from a distinct pathway is found to be decreased?
On one hand, downstream enzymes could have an increased activity or, on the other hand, the enzyme
producing metabolite X could have a decreased activity; both can lead to a decreased level of metabolite X.
Enzyme activities can be influenced by their specific product by steric inhibition/feedback-inhibition
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or activation, and thereby guarantee a balanced homeostasis in the cell. This strategy avoids large
metabolic changes with a potential negative effect for the cell.

Many metabolites play a role in several pathways and are the product or substrate of many
different enzymes or processes. Thus, it is a challenge to pinpoint an altered metabolite to a specific
pathway or enzyme. Nevertheless, the pathway information may already give the correct answer,
or at least a hint, for a biological question. Changes in metabolite abundances can be mapped to
specific pathways, thereby providing mechanistic information of the process under study. Data derived
from metabolic profiling can be complemented by genome, proteome, clinical, and environmental
data, which supports the discovery of potential biomarkers that would not have been identified with
targeted studies alone [87].

Metabolome profiles have the advantage to detect unknown compounds (shotgun) and alterations
on a global scale (shotgun and targeted). As many metabolites usually originate from several different
processes, specific methods have to be used for validation, like a knockdown of the according
enzyme or isotope-labeled MFA. Many bioinformatics tools are continuously created to address
several important questions in the metabolomic field, like interpreting profiling data. MetaboAnalyst
(www.metaboanalyst.ca), permits a comprehensive metabolomic data analysis, visualization and
interpretation, including complex statistical calculations [88]. Metabolite pathway enrichment analysis
(MPEA) was designed for the visualization and biological interpretation of metabolic profiling data
at the system level. The tool tests whether metabolites involved in some predefined pathways occur
towards the top or bottom of a ranked query compound list [89]. Integrated Molecular Pathway
Level Analysis (IMPaLA) [90] is a tool for pathway over-representation and enrichment analysis with
expression- and metabolite data. This proves the importance of metabolomics, but on the downside,
many of these programs get funding for only a few years and are abandoned thereafter and egress,
or even become useless, as file formats and necessary accompanying software changes permanently.
Furthermore, most of the programs require specific raw or input data, which are frequently not
interchangeable between programs.

Biomarker Discovery

Biomarker discovery is driven by applying new instrumentation, protocols, and software tools,
in order to find novel and specific key metabolic features, which are characteristic for specific pathological
conditions, diseases, or cancer. Surprisingly, the clinical breakthrough is still out of sight. Nevertheless,
metabolomic key features indicative for diseases such as depression [91], schizophrenia [92,93],
cardiovascular and coronary artery disease [94], diabetes [95,96], and cancers, such as liver [97],
ovarian [98], and breast cancers have been reported [99]. The metabolic level variation between
people, as well as within tissues and time points, is huge and dynamic. The genome, epigenome,
transcriptome, and proteome states are much more stable compared to the high fluctuating metabolites.
The aim in the biomarker field is to find biomarkers, which can precisely detect an early malignancy in
order to achieve the best treatment effects and finally the highest survival rates for patients. So far,
there were no new approved biomarkers in recent years [100,101]. The current strategy to find single
biomarkers for a disease is hampered by high and dynamic fluctuations of metabolites. As every
disease not only changes one metabolite, but entire metabolic pathways, we probably should search for
differentially regulated pathways or metabolite classes to be the more robust biomarkers in the future.

This can be accomplished the best by an integrative approach taking many omics subdisciplines
into account [102]. Thus, accurate multi-data analyses will be the key to reveal, assess, and track
molecular patterns, which reflect disease-perturbed networks [102,103].

5. Conclusions

The metabolome, lying closest to the phenotype and the most predictive of phenotype, is
of emerging interest for systems biologists. Metabolomics has a long lasting importance in the
field of biomarker detection and, finally, for drug treatments. No universal instrument or method
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exists yet, which is capable of measuring the entire metabolome at once. Currently, we are still in
the status of metabolomic profiling, intensive parallelization of different approaches and methods
are transforming metabolomic profiling steadily into metabolome profiling. For a holistic view,
integration of genome, transcriptome, proteome, and/or metabolome datasets can significantly
enhance the insight into biological questions and molecular interactions between these disciplines.
The integration of different molecular profiling data into a comprehensive entity is still challenging,
especially in the bioinformatics area. Knowledge about the function of metabolites and, specifically,
their multiple biological interactions are still missing. Thus, interpretation of results has to be
handled with care. Our review highlights the advantages of metabolome profiles for systems biology
approaches, as well as the current pitfalls, such as data interpretation and translation of results into a
biologically-useful meaning.
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51. Gros, M.; Petrović, M.; Barceló, D. Tracing pharmaceutical residues of different therapeutic classes in
environmental waters by using liquid chromatography/quadrupole-linear ion trap mass spectrometry and
automated library searching. Anal. Chem. 2009, 81, 898–912. [CrossRef] [PubMed]

52. Schürmann, A.; Dvorak, V.; Crüzer, C.; Butcher, P.; Kaufmann, A. False-positive liquid chromatography/tandem
mass spectrometric confirmation of sebuthylazine residues using the identification points system according
to EU directive 2002/657/EC due to a biogenic insecticide in tarragon. Rapid Commun. Mass Spectrom. 2009,
23, 1196–1200. [CrossRef] [PubMed]

53. Gielisch, I.; Meierhofer, D. Metabolome and proteome profiling of complex I deficiency induced by rotenone.
J. Proteome Res. 2015, 14, 224–235. [CrossRef] [PubMed]

54. Fuhrer, T.; Heer, D.; Begemann, B.; Zamboni, N. High-throughput, accurate mass metabolome profiling
of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal. Chem. 2011, 83, 7074–7080.
[CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0016957
http://www.ncbi.nlm.nih.gov/pubmed/21359215
http://dx.doi.org/10.1021/ac8022857
http://www.ncbi.nlm.nih.gov/pubmed/19236023
http://dx.doi.org/10.1016/j.chroma.2013.03.021
http://www.ncbi.nlm.nih.gov/pubmed/23570855
http://dx.doi.org/10.1016/j.aca.2015.08.056
http://www.ncbi.nlm.nih.gov/pubmed/26423629
http://dx.doi.org/10.1002/jssc.200600199
http://www.ncbi.nlm.nih.gov/pubmed/16970185
http://dx.doi.org/10.1007/s11306-014-0770-7
http://www.ncbi.nlm.nih.gov/pubmed/26366140
http://dx.doi.org/10.1016/j.chroma.2012.04.002
http://www.ncbi.nlm.nih.gov/pubmed/22533909
http://dx.doi.org/10.1002/jssc.201200920
http://www.ncbi.nlm.nih.gov/pubmed/23505207
http://dx.doi.org/10.1021/ac100331b
http://www.ncbi.nlm.nih.gov/pubmed/20524683
http://dx.doi.org/10.1021/ac902837x
http://www.ncbi.nlm.nih.gov/pubmed/20349993
http://dx.doi.org/10.1007/s00216-012-6466-9
http://www.ncbi.nlm.nih.gov/pubmed/23064709
http://www.ncbi.nlm.nih.gov/pubmed/19763489
http://dx.doi.org/10.1016/j.chroma.2009.11.051
http://www.ncbi.nlm.nih.gov/pubmed/19954781
http://dx.doi.org/10.1016/j.jchromb.2008.11.013
http://www.ncbi.nlm.nih.gov/pubmed/19041286
http://dx.doi.org/10.1021/ac0715672
http://www.ncbi.nlm.nih.gov/pubmed/18001124
http://dx.doi.org/10.1021/ac801358e
http://www.ncbi.nlm.nih.gov/pubmed/19113952
http://dx.doi.org/10.1002/rcm.3982
http://www.ncbi.nlm.nih.gov/pubmed/19288539
http://dx.doi.org/10.1021/pr500894v
http://www.ncbi.nlm.nih.gov/pubmed/25361611
http://dx.doi.org/10.1021/ac201267k
http://www.ncbi.nlm.nih.gov/pubmed/21830798


Int. J. Mol. Sci. 2016, 17, 632 12 of 14

55. Link, H.; Fuhrer, T.; Gerosa, L.; Zamboni, N.; Sauer, U. Real-time metabolome profiling of the metabolic
switch between starvation and growth. Nat. Methods 2015, 12, 1091–1097. [CrossRef] [PubMed]

56. Beckmann, M.; Parker, D.; Enot, D.P.; Duval, E.; Draper, J. High-throughput, nontargeted metabolite
fingerprinting using nominal mass flow injection electrospray mass spectrometry. Nat. Protoc. 2008, 3,
486–504. [CrossRef] [PubMed]

57. Roddy, T.P.; Horvath, C.R.; Stout, S.J.; Kenney, K.L.; Ho, P.-I.; Zhang, J.-H.; Vickers, C.; Kaushik, V.;
Hubbard, B.; Wang, Y.K. Mass spectrometric techniques for label-free high-throughput screening in drug
discovery. Anal. Chem. 2007, 79, 8207–8213. [CrossRef] [PubMed]

58. Nanita, S.C.; Stry, J.J.; Pentz, A.M.; McClory, J.P.; May, J.H. Fast extraction and dilution flow injection mass
spectrometry method for quantitative chemical residue screening in food. J. Agric. Food Chem. 2011, 59,
7557–7568. [CrossRef] [PubMed]

59. Sá, J.; Duarte, T.; Carrondo, M.; Alves, P.; Teixeira, A. Metabolic Flux Analysis: A Powerful Tool in Animal Cell
Culture; Al-Rubeai, M., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9.

60. Niklas, J.; Heinzle, E. Metabolic flux analysis in systems biology of mammalian cells. Adv. Biochem.
Eng. Biotechnol. 2012, 127, 109–132. [PubMed]

61. Gebreselassie, N.A.; Antoniewicz, M.R. 13C-metabolic flux analysis of co-cultures: A novel approach.
Metab. Eng. 2015, 31, 132–139. [CrossRef] [PubMed]

62. Fischer-Zirnsak, B.; Escande-Beillard, N.; Ganesh, J.; Tan, Y.X.; Al Bughaili, M.; Lin, A.E.; Sahai, I.; Bahena, P.;
Reichert, S.L.; Loh, A.; et al. Recurrent de novo mutations affecting residue arg138 of pyrroline-5-carboxylate
synthase cause a progeroid form of autosomal-dominant cutis laxa. Am. J. Hum. Genet. 2015, 97, 483–492.
[CrossRef] [PubMed]

63. Li, T.; He, J.; Mao, X.; Bi, Y.; Luo, Z.; Guo, C.; Tang, F.; Xu, X.; Wang, X.; Wang, M.; et al. In situ biomarker
discovery and label-free molecular histopathological diagnosis of lung cancer by ambient mass spectrometry
imaging. Sci. Rep. 2015, 5, 14089. [CrossRef] [PubMed]

64. Zaima, N.; Hayasaka, T.; Goto-Inoue, N.; Setou, M. Matrix-assisted laser desorption/ionization imaging
mass spectrometry. Int. J. Mol. Sci. 2010, 11, 5040–5055. [CrossRef] [PubMed]

65. Shroff, R.; Schramm, K.; Jeschke, V.; Nemes, P.; Vertes, A.; Gershenzon, J.; Svatoš, A. Quantification
of plant surface metabolites by matrix-assisted laser desorption-ionization mass spectrometry imaging:
Glucosinolates on Arabidopsis thaliana leaves. Plant J. 2015, 81, 961–972. [CrossRef] [PubMed]

66. Lanekoff, I.; Burnum-Johnson, K.; Thomas, M.; Short, J.; Carson, J.P.; Cha, J.; Dey, S.K.; Yang, P.;
Prieto Conaway, M.C.; Laskin, J. High-speed tandem mass spectrometric in situ imaging by nanospray
desorption electrospray ionization mass spectrometry. Anal. Chem. 2013, 85, 9596–9603. [CrossRef] [PubMed]

67. Passarelli, M.K.; Newman, C.F.; Marshall, P.S.; West, A.; Gilmore, I.S.; Bunch, J.; Alexander, M.R.; Dollery, C.T.
Single-cell analysis: Visualizing pharmaceutical and metabolite uptake in cells with label-free 3D mass
spectrometry imaging. Anal. Chem. 2015, 87, 6696–6702. [CrossRef] [PubMed]

68. Bellin, D.L.; Sakhtah, H.; Zhang, Y.; Price-Whelan, A.; Dietrich, L.E.P.; Shepard, K.L. Electrochemical camera
chip for simultaneous imaging of multiple metabolites in biofilms. Nat. Commun. 2016, 7, 10535. [CrossRef]
[PubMed]

69. Goodwin, R.J.A. Sample preparation for mass spectrometry imaging: Small mistakes can lead to big
consequences. J. Proteom. 2012, 75, 4893–4911. [CrossRef] [PubMed]

70. Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization
mass spectrometry: An update for 2007–2008. Mass Spectrom. Rev. 2012, 31, 183–311. [CrossRef] [PubMed]

71. Smith, C.A.; O’Maille, G.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.;
Siuzdak, G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005, 27, 747–751. [CrossRef]
[PubMed]

72. Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.;
et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010,
45, 703–714. [CrossRef] [PubMed]

73. Jeffryes, J.G.; Colastani, R.L.; Elbadawi-Sidhu, M.; Kind, T.; Niehaus, T.D.; Broadbelt, L.J.; Hanson, A.D.;
Fiehn, O.; Tyo, K.E.J.; Henry, C.S. MINEs: Open access databases of computationally predicted enzyme
promiscuity products for untargeted metabolomics. J. Cheminform. 2015, 7, 44. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nmeth.3584
http://www.ncbi.nlm.nih.gov/pubmed/26366986
http://dx.doi.org/10.1038/nprot.2007.500
http://www.ncbi.nlm.nih.gov/pubmed/18323818
http://dx.doi.org/10.1021/ac062421q
http://www.ncbi.nlm.nih.gov/pubmed/17902631
http://dx.doi.org/10.1021/jf104237y
http://www.ncbi.nlm.nih.gov/pubmed/21388127
http://www.ncbi.nlm.nih.gov/pubmed/21432052
http://dx.doi.org/10.1016/j.ymben.2015.07.005
http://www.ncbi.nlm.nih.gov/pubmed/26219674
http://dx.doi.org/10.1016/j.ajhg.2015.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26320891
http://dx.doi.org/10.1038/srep14089
http://www.ncbi.nlm.nih.gov/pubmed/26404114
http://dx.doi.org/10.3390/ijms11125040
http://www.ncbi.nlm.nih.gov/pubmed/21614190
http://dx.doi.org/10.1111/tpj.12760
http://www.ncbi.nlm.nih.gov/pubmed/25600688
http://dx.doi.org/10.1021/ac401760s
http://www.ncbi.nlm.nih.gov/pubmed/24040919
http://dx.doi.org/10.1021/acs.analchem.5b00842
http://www.ncbi.nlm.nih.gov/pubmed/26023862
http://dx.doi.org/10.1038/ncomms10535
http://www.ncbi.nlm.nih.gov/pubmed/26813638
http://dx.doi.org/10.1016/j.jprot.2012.04.012
http://www.ncbi.nlm.nih.gov/pubmed/22554910
http://dx.doi.org/10.1002/mas.20333
http://www.ncbi.nlm.nih.gov/pubmed/21850673
http://dx.doi.org/10.1097/01.ftd.0000179845.53213.39
http://www.ncbi.nlm.nih.gov/pubmed/16404815
http://dx.doi.org/10.1002/jms.1777
http://www.ncbi.nlm.nih.gov/pubmed/20623627
http://dx.doi.org/10.1186/s13321-015-0087-1
http://www.ncbi.nlm.nih.gov/pubmed/26322134


Int. J. Mol. Sci. 2016, 17, 632 13 of 14

74. Huan, T.; Tang, C.; Li, R.; Shi, Y.; Lin, G.; Li, L. MyCompoundID MS/MS Search: Metabolite identification
using a library of predicted fragment-ion-spectra of 383,830 possible human metabolites. Anal. Chem. 2015,
87, 10619–10626. [CrossRef] [PubMed]

75. Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.;
Neumann, S.; Rocca-Serra, P.; et al. MetaboLights—An open-access general-purpose repository for
metabolomics studies and associated meta-data. Nucleic Acids Res. 2013, 41, D781–D786. [CrossRef]
[PubMed]

76. Hur, M.; Campbell, A.A.; Almeida-de-Macedo, M.; Li, L.; Ransom, N.; Jose, A.; Crispin, M.; Nikolau, B.J.;
Wurtele, E.S. A global approach to analysis and interpretation of metabolic data for plant natural product
discovery. Nat. Prod. Rep. 2013, 30, 565–583. [CrossRef] [PubMed]

77. Ichou, F.; Schwarzenberg, A.; Lesage, D.; Alves, S.; Junot, C.; Machuron-Mandard, X.; Tabet, J.-C. Comparison
of the activation time effects and the internal energy distributions for the CID, PQD and HCD excitation
modes. J. Mass Spectrom. 2014, 49, 498–508. [CrossRef] [PubMed]

78. Sleno, L.; Volmer, D.A. Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 2004, 39,
1091–1112. [CrossRef] [PubMed]

79. Oppermann, M.; Damoc, N.E.; Crone, C.; Moehring, T.; Muenster, H.; Hornshaw, M. High precision
measurement and fragmentation analysis for metabolite identification. Methods Mol. Biol. 2012, 860, 145–156.
[PubMed]

80. Donohoe, G.C.; Maleki, H.; Arndt, J.R.; Khakinejad, M.; Yi, J.; McBride, C.; Nurkiewicz, T.R.; Valentine, S.J.
A new ion mobility-linear ion trap instrument for complex mixture analysis. Anal. Chem. 2014, 86, 8121–8128.
[CrossRef] [PubMed]

81. Kushnir, M.M.; Rockwood, A.L.; Nelson, G.J.; Yue, B.; Urry, F.M. Assessing analytical specificity in
quantitative analysis using tandem mass spectrometry. Clin. Biochem. 2005, 38, 319–327. [CrossRef]
[PubMed]

82. Roberts, L.D.; Souza, A.L.; Gerszten, R.E.; Clish, C.B. Targeted metabolomics. Curr. Protoc. Mol. Biol. 2012.
[CrossRef]

83. Alonso, A.; Marsal, S.; Julià, A. Analytical methods in untargeted metabolomics: State of the art in 2015.
Front. Bioeng. Biotechnol. 2015, 3, 23. [CrossRef] [PubMed]

84. Lo, Y.-C.; Senese, S.; Li, C.-M.; Hu, Q.; Huang, Y.; Damoiseaux, R.; Torres, J.Z. Large-scale chemical similarity
networks for target profiling of compounds identified in cell-based chemical screens. PLoS Comput. Biol.
2015, 11, e1004153. [CrossRef] [PubMed]

85. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.;
Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical
Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221.
[CrossRef] [PubMed]

86. Salek, R.M.; Neumann, S.; Schober, D.; Hummel, J.; Billiau, K.; Kopka, J.; Correa, E.; Reijmers, T.;
Rosato, A.; Tenori, L.; et al. COordination of Standards in MetabOlomicS (COSMOS): Facilitating integrated
metabolomics data access. Metabolomics 2015, 11, 1587–1597. [CrossRef] [PubMed]

87. Weckwerth, W.; Morgenthal, K. Metabolomics: From pattern recognition to biological interpretation.
Drug Discov. Today 2005, 10, 1551–1558. [CrossRef]

88. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful.
Nucleic Acids Res. 2015, 43, W251–W257. [CrossRef] [PubMed]

89. Kankainen, M.; Gopalacharyulu, P.; Holm, L.; Oresic, M. MPEA—Metabolite pathway enrichment analysis.
Bioinformatics 2011, 27, 1878–1879. [CrossRef] [PubMed]

90. Kamburov, A.; Cavill, R.; Ebbels, T.M.D.; Herwig, R.; Keun, H.C. Integrated pathway-level analysis of
transcriptomics and metabolomics data with IMPaLA. Bioinformatics 2011, 27, 2917–2918. [CrossRef]
[PubMed]

91. Paige, L.A.; Mitchell, M.W.; Krishnan, K.R.R.; Kaddurah-Daouk, R.; Steffens, D.C. A preliminary metabolomic
analysis of older adults with and without depression. Int. J. Geriatr. Psychiatry 2007, 22, 418–423. [CrossRef]
[PubMed]

92. Holmes, E.; Tsang, T.M.; Huang, J.T.-J.; Leweke, F.M.; Koethe, D.; Gerth, C.W.; Nolden, B.M.; Gross, S.;
Schreiber, D.; Nicholson, J.K.; et al. Metabolic profiling of CSF: Evidence that early intervention may impact
on disease progression and outcome in schizophrenia. PLoS Med. 2006, 3, e327. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/acs.analchem.5b03126
http://www.ncbi.nlm.nih.gov/pubmed/26415007
http://dx.doi.org/10.1093/nar/gks1004
http://www.ncbi.nlm.nih.gov/pubmed/23109552
http://dx.doi.org/10.1039/c3np20111b
http://www.ncbi.nlm.nih.gov/pubmed/23447050
http://dx.doi.org/10.1002/jms.3365
http://www.ncbi.nlm.nih.gov/pubmed/24913402
http://dx.doi.org/10.1002/jms.703
http://www.ncbi.nlm.nih.gov/pubmed/15481084
http://www.ncbi.nlm.nih.gov/pubmed/22351176
http://dx.doi.org/10.1021/ac501527y
http://www.ncbi.nlm.nih.gov/pubmed/25068446
http://dx.doi.org/10.1016/j.clinbiochem.2004.12.003
http://www.ncbi.nlm.nih.gov/pubmed/15766733
http://dx.doi.org/10.1002/0471142727.mb3002s98
http://dx.doi.org/10.3389/fbioe.2015.00023
http://www.ncbi.nlm.nih.gov/pubmed/25798438
http://dx.doi.org/10.1371/journal.pcbi.1004153
http://www.ncbi.nlm.nih.gov/pubmed/25826798
http://dx.doi.org/10.1007/s11306-007-0082-2
http://www.ncbi.nlm.nih.gov/pubmed/24039616
http://dx.doi.org/10.1007/s11306-015-0810-y
http://www.ncbi.nlm.nih.gov/pubmed/26491418
http://dx.doi.org/10.1016/S1359-6446(05)03609-3
http://dx.doi.org/10.1093/nar/gkv380
http://www.ncbi.nlm.nih.gov/pubmed/25897128
http://dx.doi.org/10.1093/bioinformatics/btr278
http://www.ncbi.nlm.nih.gov/pubmed/21551139
http://dx.doi.org/10.1093/bioinformatics/btr499
http://www.ncbi.nlm.nih.gov/pubmed/21893519
http://dx.doi.org/10.1002/gps.1690
http://www.ncbi.nlm.nih.gov/pubmed/17048218
http://dx.doi.org/10.1371/journal.pmed.0030327
http://www.ncbi.nlm.nih.gov/pubmed/16933966


Int. J. Mol. Sci. 2016, 17, 632 14 of 14

93. Kaddurah-Daouk, R. Metabolic profiling of patients with schizophrenia. PLoS Med. 2006, 3, e363. [CrossRef]
[PubMed]

94. Brindle, J.T.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.K.; Bethell, H.W.L.; Clarke, S.; Schofield, P.M.;
McKilligin, E.; Mosedale, D.E.; et al. Rapid and noninvasive diagnosis of the presence and severity of
coronary heart disease using 1H–NMR-based metabonomics. Nat. Med. 2002, 8, 1439–1444. [CrossRef]
[PubMed]

95. Yi, L.-Z.; He, J.; Liang, Y.-Z.; Yuan, D.-L.; Chau, F.-T. Plasma fatty acid metabolic profiling and biomarkers
of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett. 2006, 580, 6837–6845. [CrossRef]
[PubMed]

96. Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling and
biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass
spectrometry and multivariate statistical analysis. Anal. Chem. 2005, 77, 4108–4116. [CrossRef] [PubMed]

97. Yang, J.; Xu, G.; Zheng, Y.; Kong, H.; Pang, T.; Lv, S.; Yang, Q. Diagnosis of liver cancer using HPLC-based
metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B.
Anal. Technol. Biomed. Life Sci. 2004, 813, 59–65. [CrossRef] [PubMed]

98. Odunsi, K.; Wollman, R.M.; Ambrosone, C.B.; Hutson, A.; McCann, S.E.; Tammela, J.; Geisler, J.P.; Miller, G.;
Sellers, T.; Cliby, W.; et al. Detection of epithelial ovarian cancer using 1H–NMR-based metabonomics.
Int. J. Cancer 2005, 113, 782–788. [CrossRef] [PubMed]

99. Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; Guedes de Pinho, P. Metabolomics analysis for biomarker
discovery: Advances and challenges. Curr. Med. Chem. 2013, 20, 257–271. [CrossRef] [PubMed]

100. Diamandis, E.P. Cancer biomarkers: Can we turn recent failures into success? J. Natl. Cancer Inst. 2010, 102,
1462–1467. [CrossRef] [PubMed]

101. Konforte, D.; Diamandis, E.P. Is early detection of cancer with circulating biomarkers feasible? Clin. Chem.
2013, 59, 35–37. [CrossRef] [PubMed]

102. Meierhofer, D.; Weidner, C.; Sauer, S. Integrative analysis of transcriptomics, proteomics, and metabolomics
data of white adipose and liver tissue of high-fat diet and rosiglitazone-treated insulin-resistant mice
identified pathway alterations and molecular hubs. J. Proteome Res. 2014, 13, 5592–5602. [CrossRef]
[PubMed]

103. Wang, K.; Lee, I.; Carlson, G.; Hood, L.; Galas, D. Systems biology and the discovery of diagnostic biomarkers.
Dis. Markers 2010, 28, 199–207. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pmed.0030363
http://www.ncbi.nlm.nih.gov/pubmed/16933969
http://dx.doi.org/10.1038/nm1202-802
http://www.ncbi.nlm.nih.gov/pubmed/12447357
http://dx.doi.org/10.1016/j.febslet.2006.11.043
http://www.ncbi.nlm.nih.gov/pubmed/17141227
http://dx.doi.org/10.1021/ac0481001
http://www.ncbi.nlm.nih.gov/pubmed/15987116
http://dx.doi.org/10.1016/j.jchromb.2004.09.032
http://www.ncbi.nlm.nih.gov/pubmed/15556516
http://dx.doi.org/10.1002/ijc.20651
http://www.ncbi.nlm.nih.gov/pubmed/15499633
http://dx.doi.org/10.2174/092986713804806621
http://www.ncbi.nlm.nih.gov/pubmed/23210853
http://dx.doi.org/10.1093/jnci/djq306
http://www.ncbi.nlm.nih.gov/pubmed/20705936
http://dx.doi.org/10.1373/clinchem.2012.184903
http://www.ncbi.nlm.nih.gov/pubmed/22522223
http://dx.doi.org/10.1021/pr5005828
http://www.ncbi.nlm.nih.gov/pubmed/25287014
http://dx.doi.org/10.1155/2010/130861
http://www.ncbi.nlm.nih.gov/pubmed/20534905
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	

	
	
	
	
	
	
	
	

	
	

