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Is the brain really a small-world network?
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A matter of network topology

It is commonly assumed that the brain is a small-world

network (e.g., Sporns and Honey 2006). Indeed, one of the

present authors claimed as much 15 years ago (Hilgetag

et al. 2000). The small-worldness is believed to be a crucial

aspect of efficient brain organization that confers sig-

nificant advantages in signal processing (e.g., Lago-

Fernández et al. 2000). Correspondingly, the small-world

organization is deemed essential for healthy brain function,

as alterations of small-world features are observed in pa-

tient groups with Alzheimer’s disease (Stam et al. 2007),

autism (Barttfeld et al. 2011) or schizophrenia spectrum

diseases (Liu et al. 2008; Wang et al. 2012; Zalesky et al.

2011).

While the colloquial idea of a small, interconnected

world has a long tradition (e.g., Klemperer 1938), the

present concept of small-world features of networks is

frequently associated with the Milgram experiment (Mil-

gram 1967) that demonstrated surprisingly short paths

across social networks (‘six degrees of separation’). The

concept was formalized by Watts and Strogatz (1998), who

derived small-world networks from regular networks by

including a small proportion of random network shortcuts.

Such an organization results in short paths across the whole

network—almost as small as in random networks—com-

bined with local ‘cliquishness’ (or clustering) of neigh-

boring nodes, due to dense local interconnections. These

features can be mathematically summarized by the small-

world coefficient (Humphries et al. 2006), which is defined

as the clustering coefficient of a given network (normalized

by the clustering coefficient of a same-size random net-

work) divided by the network’s normalized average

shortest pathlength. While any network that has a small-

world coefficient larger than one is formally a small-world

network, for many researchers, the term has become as-

sociated with the specific Watts and Strogatz model that is

based on the partial random rewiring of a regular network

(Fig. 1a). Indeed, the estimation of the rewiring probability

has been used to directly associate real-world networks

with the Watts and Strogatz model (Humphries and Gurney

2008). Incidentally, the small-world coefficient might not

faithfully capture the small-world property as originally

described by Watts and Strogatz (1998). Therefore, an al-

ternative coefficient has been proposed that compares the

clustering of the network to a lattice instead of a random

network (Telesford et al. 2011).

A large number of empirical network data conform to

the small-world features of short paths combined with high

clustering, including many neural networks—but do these
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features capture the essence of the topological organization

of brain networks? Real neural networks are very different

from both regular and random networks; thus, a small-

world organization, which by Watts and Strogatz’s (1998)

model may be perceived as a blend of the two, does not

appear as an intuitive blueprint of the brain. Moreover, it

has been known for a while in network science that many

different topological arrangements are possible within the

confines of the small-world properties. For instance, small-

world networks can show diversity with respect to how

their topological features change across scales (Amaral

et al. 2000) and possess or lack a modular structure

(Meunier et al. 2010). Thus, the small-world structure can

co-exist with, but does not necessarily entail, diverse

topological properties and dynamic features.

What are characteristic topological features of brain

networks? Ubiquitously observed features are a heteroge-

neous, non-random degree distribution, resulting in some

nodes with more connections than others, so-called hubs

(Sporns et al. 2007), as well as modules of connections, in

which some nodes are more frequently linked with each

other than with the rest of the network (Hilgetag et al.

2000; Sporns et al. 2004; Bullmore and Sporns 2009).

These features may be combined, in so-called hub modules

or rich clubs (Zamora-López et al. 2010; van den Heuvel

and Sporns 2011), and repeated across several scales of

organization, resulting in hierarchical network arrange-

ments (Sporns 2006; Müller-Linow et al. 2008; Kaiser and

Hilgetag 2010; Fig. 1b). Such topological aspects appear

highly relevant for the organization of dynamic patterns

observed in the networks (Hütt et al. 2014). In particular,

activity patterns are strongly shaped by modular and hub

features of cortical connections (Müller-Linow et al. 2008;

Garcia et al. 2012; Gómez-Gardeñes et al. 2010).

Another global characterization of the organization of

neural networks is provided by the so-called topological

dimension which describes how quickly the whole net-

work can be accessed from any of its nodes (Moretti and

Muñoz 2013). This measure is not simply equivalent to

path length, because the average path length does not

specifically capture how quickly local node neighbor-

hoods grow. Thus, networks with similar characteristic

path length can have a different topological dimension,

due to their distinct path length distributions. In classi-

cal small-world networks as described by Watts and

Strogatz (1998; Fig. 1a), the networks are very well

connected globally via the random network shortcuts.

This means that the number of accessible nodes grows

exponentially with the distance of steps from an initial

node, formally corresponding to an infinite topological

dimension (while ignoring finite-size effects, which

mean that the dimension of finite networks is always

finite). By contrast, the finite topological dimension that

is the defining feature of so-called large-world networks

(Moretti and Muñoz 2013) implies that some parts of

the network are relatively inaccessible. The topological

dimension, thus, offers an alternative perspective on the

global organization of brain connectivity. Importantly,

the characterization of large-world networks by their

topological dimension and the traditional definition of

small-world networks by features of clustering and short

paths are not mutually exclusive. Nonetheless, they have

different consequences for the global dynamics and ul-

timately the function of networks, as discussed further

below. However, before entering this discussion, it is

worth considering some practical aspects of gathering

and analyzing brain network data that have implications

for the inferred network organization.

Fig. 1 Classical small-world network (a) versus hierarchical modular

network (b). Classical small-world networks can be derived by partial

random rewiring of regular networks, which results in high clustering

and relatively short path lengths. While hierarchical modular

networks may also possess these features, they can also be large-

world networks with a finite topological dimension. This aspect

makes them an intriguing model for brain networks. Adapted from

Watts and Strogatz (1998) and Kaiser et al. (2007)
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Small-worldness depends on the aperture
of empirical studies

Brain connectivity is traditionally established by invasive

histochemical tracing of connections in the brains of ani-

mal models. Extensive collations of such data for the

macaque monkey cortex (Felleman and Van Essen 1991;

Stephan et al. 2001) or for the cat (Scannell et al. 1999)

formally show a small-world organization, although based

on an arrangement of multiple, interlinked network mod-

ules, rather than a classical regular-with-random-links

small-world network (Hilgetag and Kaiser 2004). More

recently, however, extended quantitative compilations of

connectivity data for the macaque cortex (Markov et al.

2014) appear to suggest a different picture. In particular,

these data imply a very high density of cortico-cortical

connections, with more than 60 % of the possible con-

nections actually existing (Markov et al. 2013). Such high

density renders the networks featureless, also in terms of a

small-world organization, as the clustering and path lengths

of these densely connected networks do not differ from

those of same-size comparison networks (matched in the

number of nodes, edges and degree distribution).

The measured network density is influenced by a num-

ber of factors, such as the amount of injected tracer, the

thoroughness of sampling of labeled sections, or by treating

projections as existing pathways no matter if they involve

many or few fibers. The density of neural paths varies

considerably, over five or more orders of magnitude, that

is, from fewer than 10 to more than 100,000 labeled pro-

jection neurons (Markov et al. 2011). While it is still un-

clear how much the physiological or functional impact of a

projection changes with its fiber density (e.g., Vanduffel

et al. 1997), such graded networks might be more suitably

analyzed by approaches that account for the differential

weight of pathways (Rubinov and Sporns 2011). The issue

is underlined by the fact that examples can be found where

brain networks resemble a large-world network when only

the stronger connections are taken into account, while in-

corporating the weakest connections shrinks them to a

small-world network (Gallos et al. 2012). Thus, an analysis

that takes into account the weight of the connections,

especially in very dense networks, and employs weighted

versions of network metrics including the small-world in-

dex (e.g. Bolaños et al. 2013) can be instructive.

Connectivity data for the human brain can be inferred

from in vivo imaging techniques such as diffusion

weighted imaging (DWI). However, these approaches face

problems of limited specificity and sensitivity (Thomas

et al. 2014). Hence, some connections might be unresolved

by such methods (e.g., Zalesky and Fornito 2009; Li et al.

2012). Generally, experimental approaches for discovering

networks have apertures that are tuned to particular scales

and data features. Therefore, not all networks at all scales

are accessible with the same method (such as electron

microscopy or DWI). An additional methodological caveat

is the application of thresholds to such in vivo data to

create networks that can be analyzed (Rubinov and Sporns

2010), which discards weak existing connections. Such

empirical limitations may lead to inaccurate brain network

representations, including evidence of small-worldness.

Another important factor determining the density of

links is the parcellation of the network nodes. The coarser

the parcellation, the denser the network will appear, while a

finer parcellation results in sparser connectivity. For in-

stance, assembling the human connectome from diffusion

data results in a density of 26 % at a coarse parcellation,

whereas a high resolution parcellation results in a density

of just 3 % (Samu et al. 2014). Moreover, if a relatively

coarse parcellation scheme, such as the Regional Map

(Kötter and Wanke 2005), is employed for representing

connections from the CoCoMac primate connectivity

database (http://cocomac.g-node.org), a very high network

density is obtained (i.e. 79 %; Goulas et al. 2014). This

density is much higher than the one obtained for using the

same database with a different, more fine-grained parcel-

lation scheme (i.e. *1 %; Modha and Singh 2010) and

very close to the high density of the primate cortico-cor-

tical network estimated in more recent studies (Markov

et al. 2014). The parcellation coarseness also leads to

systematic changes in the small-worldness of the brain,

with more finely grained networks showing a higher small-

world index (Zalesky et al. 2010).

That begs the question, what is the neural network

density and topology of the brain at the finest, cellular,

level of parcellation? On average, the density of human

brain connectivity at the cellular level is very sparse. The

average number of synapses of neurons (*104) (Braiten-

berg and Schüz 1998) divided by the number of neural

elements (*1010) (Herculano-Houzel 2012) results in a

very low average probability of any two neurons in the

brain making contact (10-6), implying a highly dispersed

network. The dispersion may be ameliorated via the local

clustering of connectivity, for instance, in neural modules

such as columns and layers so that within these compart-

ments, the density is likely much higher (Markram 2006,

but see Stepanyants et al. 2009). To be true, we do not

really know the exact organization of brain networks at the

cellular scale, since extensive empirical microconnectome

data for the mammalian brain are still lacking. The one

existing example of a complete neuronal microconnec-

tome, of the nematode C. elegans, may be too small to be

helpful here. While this network fits the small-world fea-

tures of high clustering and short pathlengths (Watts and
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Strogatz 1998), it also appears to have a finite topological

dimension (cf. Supplementary Figure). However, it is dif-

ficult to make a conclusive statement about this point,

given the small number of just 302 neuronal network nodes

that can be evaluated (White et al. 1986).

Nonetheless, it appears to be a reasonable guess that the

organization of the mammalian brain follows a hierarchical

organization (Meunier et al. 2009), with dense modules at

the local level (cellular circuits, laminar compartments)

that are encapsulated in increasingly larger modules (cor-

tical columns, areas, whole lobes), but with very sparse

overall connectivity (Hilgetag and Hütt 2014; Fig. 1b).

This organization may produce different network topolo-

gies at different scales; for example, synaptic connectivity

within local neuronal populations might form small-world

or random networks. At the global scale, however, such a

network may have a finite topological dimension (Moretti

and Muñoz 2013), unlike classical small-world networks.

Dynamics of small-world versus large-world
networks

What are implications for brain dynamics, if the brain is

organized as a small-world or a large-world network? As

pointed out already by Watts and Strogatz (1998), the

coexistence of high clustering and short average distances

facilitates the integration and spreading of signals. Such a

small-world organization might enhance dynamic com-

plexity (Sporns et al. 2000), due to increased reentry

(Edelman and Gally 2013) and signal integration. Addi-

tionally, network shortcuts can insert incoherent, remote

information (‘topological noise’) into local coherent

neighborhoods (Marr and Hütt 2006). Such shortcuts may

enhance the robustness of classification or local decision-

making tasks across networks (Moreira et al. 2004).

On the other hand, a non-modular small-world ar-

rangement of the Watts and Strogatz type may not be the

optimal topology for supporting limited self-sustained ac-

tivity (Kaiser et al. 2007). Such sustained yet constrained

network activity is an essential ingredient of healthy brain

dynamics, by maintaining the balance between activity

dissipating too quickly or becoming pathologically large.

Sustained activity in an excitable system is also an im-

portant precondition for the phenomenon of criticality, the

positioning of the system precisely at the boundary be-

tween order and chaos (or disorder). The feature of criti-

cality has been associated with several desirable functional

properties, such as a large dynamic range, high adaptability

or optimal information processing (e.g., Shew and Plenz

2013). It has been observed that sustained network activity

is better supported in hierarchical modular networks

(Kaiser et al. 2007; Kaiser and Hilgetag 2010; Wang et al.

2011) than classical small-world networks. More generally,

hierarchical modular networks that are large-world net-

works with a finite topological dimension possess so-called

Griffith phases (Muñoz et al. 2010) that expand the pa-

rameter range of criticality. In contrast to the precise fine-

tuning that is required in other systems to reach a critical

point, for instance by carefully balancing local excitation

and inhibition, an expanded range of criticality arises di-

rectly from the topology of large-world networks. This

makes such systems dynamically appealing and robust, in

addition to further aspects of structural robustness con-

ferred by hierarchical modularity, such as the potential to

assemble a large network from smaller subnetworks of

similar organization, or split a large network into smaller

units while maintaining their dynamical features (Robinson

et al. 2009).

Conclusions

To decide if the brain really adheres to a small-world or-

ganization and to understand the implications of this or-

ganization, one needs to take several theoretical and

empirical aspects into account. The small-world property is

influenced by practical aspects of analyzing brain connec-

tivity; for example, whether connections are treated as

weighted or as binary. Proper topological assessment re-

quires the re-examination of weighted networks, an ap-

proach that entails a new definition of small-world

properties (Bolaños et al. 2013). More generally, the small-

world property depends on the aperture of experimental

methods for studying brain connectivity, the coarseness of

used parcellations and the resulting density of the studied

brain networks. In that respect, recent compilations of brain

connectivity at the macroscopic level do not appear to form

small-world networks, due to their high density. If con-

sidered at the cellular level, brain networks are also un-

likely to form classical small-world networks. While

detailed empirical data are still lacking, a reasonable guess

is that the large-scale neuronal networks of the brain are

arranged as globally sparse hierarchical modular networks.

Even if they fit the general features of local clustering and

relatively short average paths, the small-world concept can

miss the point of other essential topological properties of

such brain networks, such as their finite topological di-

mension, which can also be used to characterize them as

large-world networks.

This means that, at cellular resolution, the brain may be

a large-world network, rather than a classical small-world

network. Intriguingly, such a topology might fundamen-

tally enhance the brain’s dynamic stability and information

processing abilities. Thus, while most researchers have by

now become accustomed to the small world of brain
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connectivity and might find it quite comforting, it may be

just as exciting to step out and explore the large world of

the brain.

Acknowledgments We are grateful to Marc-Thorsten Hütt for cri-
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