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Abstract

Knowledge of kin relationships between members of wild animal populations

has broad application in ecology and evolution research by allowing the investi-

gation of dispersal dynamics, mating systems, inbreeding avoidance, kin recog-

nition, and kin selection as well as aiding the management of endangered

populations. However, the assessment of kinship among members of wild ani-

mal populations is difficult in the absence of detailed multigenerational pedi-

grees. Here, we first review the distinction between genetic relatedness and

kinship derived from pedigrees and how this makes the identification of kin

using genetic data inherently challenging. We then describe useful approaches

to kinship classification, such as parentage analysis and sibship reconstruction,

and explain how the combined use of marker systems with biparental and uni-

parental inheritance, demographic information, likelihood analyses, relatedness

coefficients, and estimation of misclassification rates can yield reliable classifica-

tions of kinship in groups with complex kin structures. We outline alternative

approaches for cases in which explicit knowledge of dyadic kinship is not neces-

sary, but indirect inferences about kinship on a group- or population-wide scale

suffice, such as whether more highly related dyads are in closer spatial proxim-

ity. Although analysis of highly variable microsatellite loci is still the dominant

approach for studies on wild populations, we describe how the long-awaited

use of large-scale single-nucleotide polymorphism and sequencing data derived

from noninvasive low-quality samples may eventually lead to highly accurate

assessments of varying degrees of kinship in wild populations.

Why Determine Kinship in Wild
Animal Populations?

In many social species, members of one sex disperse,

while members of the philopatric sex live in close prox-

imity to kin and nonkin. Distinguishing between close

relatives and unrelated conspecifics allows individuals to

obtain direct or inclusive fitness benefits by biasing affilia-

tive or coalitionary behaviors toward relatives while

avoiding inbreeding and competition with relatives

(Hamilton 1964). For example, recent studies of wild

populations have demonstrated an effect of kinship on

allonursing in cooperative breeders (MacLeod et al.

2013), identified kin biases in association (Bercovitch

and Berry 2013) and affiliation (Widdig et al. 2016), and

shown parallel dispersal of kin (Wikberg et al. 2014) and

inbreeding avoidance (Sanderson et al. 2015). Association

and close social relationships among relatives may provide

adaptive benefits by improved reproductive success

through increased longevity or offspring survival (K€onig

1994; Viblanc et al. 2010).

Beyond dyadic social relationships, knowledge of the

population-wide distribution of pairs of kin and nonkin

can be used to identify dispersal patterns (Van Noordwijk

et al. 2012) or reproductive skew (Vigilant et al. 2015).

Several studies have used kinship analyses to characterize

mating systems of wild populations as monogamous

(Huck et al. 2014), polyandrous (Barth et al. 2014), or

polygynous (Muralidhar et al. 2014), identified extra-pair

parentage in socially monogamous species (Barelli et al.

2013) or cases of adoption and cuckoldry (Stiver et al.

2012). Moreover, at the population level, even members

of solitary species may derive benefits from kin biases by

avoiding inbreeding (Metzger et al. 2010) or competition
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among relatives (Liz�e et al. 2006) or by occupying territo-

ries next to kin which may lead to reduced aggression

(Bradley et al. 2004). Furthermore, dyadic kinship infor-

mation can be used to estimate the heritability of traits

(Dubuc et al. 2014). From a practical perspective, kinship

analyses can be applied to inform conservation efforts

such as the breeding and stocking management of endan-

gered fish populations (O’Reilly and Kozfkay 2014).

Studies of kinship in the wild are often preferable over

studies in captivity because aspects such as the kinship

structure in the population, dispersal, mating as well as

kin-biased behavior may be strongly altered under captive

conditions. However, analysis of kinship patterns can be

challenging in wild populations. Maintenance of long-

term field sites with individually identified animals and

reconstructed multigenerational pedigrees is challenging

(Clutton-Brock and Sheldon 2010). A long-standing goal

in kinship studies has therefore been to assess kin rela-

tionships by the use of genetic analysis, which has typi-

cally employed microsatellite genotype analysis of DNA

derived from noninvasive samples.

Genes or Genealogy?

Comparing genotypes of different individuals and classify-

ing them into kinship categories such as “sister” or “cou-

sin” are difficult. This is because genetic relatedness is a

continuous parameter determined by the proportion of

the genome shared between two individuals by descent

from a common ancestor and, particularly if inferred

from a limited number of markers, does not necessarily

correspond to theoretical expectations based on the cate-

gorical pedigree relationship for a given dyad (Blouin

2003). The segregation of pairs of chromosomes during

the first meiotic cell division as well as chromosomal

recombination is stochastic processes leading to large

variation in the amount of the genome that is identical

by descent between two relatives, with the exception of

parent–offspring and monozygotic twins (Fig. 1;

Rasmuson 1993). For example, while full siblings share

on average 50% of their genome, some may share consid-

erably less or more (e.g., Visscher et al. 2006; Fig. 1) the

variance being dependent on the number of chromo-

somes and their crossover rates (Hill and Weir 2011).

Therefore, although they are generally strongly correlated,

pedigree relatedness or kinship and genetic relatedness or

realized relatedness is conceptually and often empirically

different.

Pedigree estimates of relatedness may be inaccurate

because they require the assumption that founders are

outbred and unrelated. In combination with the increased

ability to accurately determine realized relatedness, this

has led many to question the usefulness of relatedness

derived from pedigrees, particularly in the context of her-

itability and inbreeding (Gay et al. 2013; Speed and Bald-

ing 2014; Kardos et al. 2015; Wang 2015). Recent human

studies even use the actual genetic similarity of large

numbers of unrelated individuals, instead of close rela-

tives, to estimate heritability and predict phenotypes. This

use of unrelated individuals reduces the variance in

inferred heritability among dyads and increases the possi-

bility of pinpointing the heritability of a trait to specific

genomic regions (Speed and Balding 2014). In theory, the

same principal could be used to investigate kin recogni-

tion in species which recognize kin via phenotype match-

ing by correlating genetic similarity with biases in

behavior as well as to identify the genetic regions

involved. The more genetically similar two individuals

are, the more likely they are to share alleles for the genes

involved in kin recognition by phenotype matching.

According to Hamilton’s (1964) rule, we would thus pre-

dict that individuals prefer more genetically similar indi-

viduals independent of their categorical kinship. Yellow

baboons, for example, likely recognize paternal kin via a

combination of social familiarity and phenotype matching

(Smith et al. 2003), but strong social bonds also exist

among unrelated individuals (Silk et al. 2006). One could

thus hypothesize that preferred unrelated social partners
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Figure 1. Schematic of four chromosome

pairs, showing the parental origins of

segments of the genome shared identical by

descent (IBD) by a pair of full siblings. Green

segments of the genome are passed on to

each offspring by the mother, and blue

segments are passed on to each offspring by

the father. Due to crossover events, parts of

either chromosome can be passed onto the

offspring.
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are chosen based upon genetic similarity due to “misdi-

rected” kin recognition by phenotype matching. For yel-

low baboons, other factors, such as rank or age similarity,

almost certainly have larger effects than genetic similarity

in influencing the choice of social partners among unre-

lated individuals, so that thousands of individuals might

be necessary to obtain sufficient power to detect any

effects of genetic similarity on kin biases (Silk et al. 2006;

Visscher et al. 2014). In an experimental design, juveniles

of Atlantic salmon and brook trout preferred kin with

whom they shared both alleles for an MHC class II gene

to kin with whom they shared no alleles and preferred

nonkin sharing both alleles to nonkin sharing no alleles

(Rajakaruna et al. 2006). In this study, the influence of a

candidate gene on kin recognition was investigated. Gen-

erally however, if a limited number of markers are used

to determine genetic relatedness, and these markers are

not by chance linked to genetic regions involved in kin

recognition, pedigree relatedness should more accurately

represent the genome-wide sharing of alleles than genetic

relatedness and may then be the more accurate predictor

of kin bias. Analogous comparisons of marker- and pedi-

gree-based heritability estimates show that thousands of

single-nucleotide polymorphisms (SNPs) are necessary to

estimate heritability with the same accuracy as when using

pedigree relatedness (Gay et al. 2013; B�er�enos et al.

2014). Such numbers of SNPs are still unavailable for

most studies of nonmodel organisms which particularly

for wild populations often rely upon poor-quality DNA

derived from noninvasive samples and consequently

employ analyses of relatively small numbers of microsatel-

lite loci (Box 1).

In contrast to phenotype matching, kin recognition

mediated by familiarity or contextual cues is independent

of genetic relatedness, but dependent on pedigree rela-

tionships and the resulting spatial and temporal associa-

tion of individuals. These include a close association

between mother and offspring in species with maternal

care, close association of littermates at a young age which

usually are maternal or full siblings, or age proximity

which could be used as a cue for paternal relatedness in

species for which male reproductive skew leads to cohorts

of paternal siblings (Widdig 2013). Cross-fostering experi-

ments have shown that individuals bias their behavior

toward familiar nonkin over unfamiliar kin (reviewed in:

Mateo and Holmes 2004). In most mammals, individuals

may recognize their mothers, but may not bias their

behavior toward other individuals having the same degree

of genetic relatedness (full siblings, father–offspring), and
thus, the pedigree relationship, and not the degree of

genetic relatedness, is informative with regard to kin bias.

For example, chimpanzee males bias affiliative and coop-

erative behaviors toward maternal, but not paternal

brothers despite a nominal relatedness coefficient of 0.25

for both kinds of relatives (Langergraber et al. 2007). As

genetic similarity, particularly when determined from a

limited set of genetic markers, does not distinguish

among these different kinds of kin and variance for even

the same type of kin is high, the indiscriminate inclusion

of the type of kin that cannot be recognized will lower

the correlation of genetic relatedness and kin bias. There-

fore, if individuals recognize kin through kinship-

correlated familiarity or contextual cues, pedigree kinship

and not genetic relatedness will be the best predictor of

kin bias, suggesting that even in the genomic era, knowl-

edge of pedigree relationships can be useful. As detailed

in the following sections, even the small sets of genetic

markers typically available for studies of wild populations

can be used to make inferences on kin relationships.

Assessing Parentage

Parent–offspring relationships can be determined with

higher confidence than other relationships because, with

the exception of instances of germline mutations or geno-

typing error, the parent and the offspring must share at

least one allele at every locus. In many wild species, par-

ental care, typically by the mother, easily identifies one

likely parent. Direct comparison of mother, offspring, and

potential father genotypes, if sufficiently variable, may

directly reveal parentage relationships if all candidate par-

ents were perfectly sampled. However, analysis in a statis-

tical framework that allows for the consideration of error

rates, proportion of candidate parents sampled, and other

factors can aid in assessing the confidence of the assign-

ments (e.g., CERVUS (Marshall et al. 1998)), FRANz

(Riester et al. 2009), KINGROUP (Konovalov et al.

2004)). For example, testing for parentage in a likelihood

framework assesses the significance of the likelihood ratio

of a dyad, that is, the likelihood that the dyad has a cer-

tain relationship given its patterns of allele sharing (e.g.,

parent–offspring) over the likelihood that the dyad has

alternative relationships (e.g., unrelated) (Fig. 2).

Parentage analysis becomes markedly more challenging

in situations where neither parent is known by observa-

tion. Essentially, the same principal of shared alleles and

exclusion can be applied, but the assignment becomes

much more complicated as the identities of the maternal

and paternal alleles in the offspring are unknown. Several

different approaches have been devised to assign parent-

age if few or no parent–offspring relationships are known

or several sires cannot be excluded (Jones et al. 2010;

Harrison et al. 2013). Generally, assignment error

increases with an increasing number of candidate parents,

but decreases the greater the proportion of candidate par-

ents sampled (Marshall et al. 1998; Harrison et al. 2013).
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Assignment error also depends on the presence of other

categories of kin in the sample. This is because a nonpar-

ent relative of either the offspring or a true parent, partic-

ularly one related to the offspring or parent at a level of

0.25 or higher, is likely to be misclassified as a parent

(Thompson and Meagher 1987; Marshall et al. 1998;

Olsen et al. 2001; Fig. 2).

Thus, despite the unique genetic relationship between

parent and offspring, false-positive and false-negative

assignments are to be expected in parentage analyses.

Box 1.

Genetic marker systems and
noninvasive sampling.

Studies of wild animals typically rely upon noninvasive

samples such as hair (Morin & Woodruff 1992), blow (Fr�ere

et al. 2010), foodwadges (Hashimoto et al. 1996), feathers and

egg membranes (Pearce et al. 1997), shed skin (Villarreal et al.

1996), urine (Hayakawa & Takenaka 1999), or fecal samples

(H€oss et al. 1992). Although the DNA extracted from these

samples is usually degraded and contains low proportions of

endogenous DNA, accurate microsatellite genotypes can be

obtained if extensive replication is performed (Taberlet &

Luikart 1999). First described in the 1980s, microsatellites

(STRs) are tandem repeats of short sequences and have long

been the most common markers used in studies of wild

populations (Fig. B1) with single-nucleotide polymorphisms

(SNPs), single base-pair differences between the genomes of

two individuals of a species, and next-generation sequencing

being less commonly used. The advantages and disadvantages

ofmicrosatellites and SNPs for population genetic applications

in general have been extensively reviewed (Morin et al. 2004;

Guichoux et al. 2011).

Advantages of STRs in kinship analyses

• Highly polymorphic.

• High cross-species amplification success (e.g., Buschiazzo &

Gemmell 2010).

• Sibship reconstruction possible according to the 4- and

2-allele property (Berger-Wolf et al. 2007).

•Generally high power for kinship analyses; ~69 the power of

SNPs (Fig. B2).

Advantages of SNPs in kinship analyses

• Biallelic: Few genotypes necessary to accurately estimate allele

frequencies.

• Lower and predictable mutation rates (Ellegren 2004).

• Shorter fragments amplified: Greater amplification success

from degraded DNA (Campbell & Narum 2009).

• As many loci have to be typed, the resulting genotypes may

be more representative of the entire genome.

• Software for the analysis of genetic marker data is increasingly

developed for SNP data only.
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Given that unrelated individuals are highly unlikely to be

classified as parent–offspring (Fig. 2) and that knowledge

of parentage is likely used to assess a behavioral or eco-

logical hypothesis, it might be acceptable that some puta-

tive parent–offspring dyads are actually not parent–
offspring, but otherwise closely related.

Yet, in long-term studies, for which one parent is

known by observation and the other genetically assigned,

assignment error will be extremely low and continued

parentage analysis can identify maternal and paternal kin-

ship over generations and thus be used to reconstruct

increasingly deep pedigrees (e.g., Van Horn et al. 2008).

Sibship Reconstruction

In species for which the population can be expected to

mainly contain groups of full and/or half siblings, sibship

reconstruction is a powerful tool for identifying the related

individuals. This approach is more accurate than evaluating

dyads because it considers the relationships among all

genotypes simultaneously (Wang and Santure 2009).

The success of sibship reconstruction generally

improves with increases in the number of individuals per

full- or half-sib family, although full sibship may be

determined with high accuracy for sibling groups as small

as four (Wang and Santure 2009), but may decrease with

an increasing number of families (Thomas and Hill 2002;

Sheikh et al. 2008; Almudevar and Anderson 2012; Wang

2012). For example, with just four highly variable loci, 12

full-sibling families of 760 Atlantic salmon could be accu-

rately partitioned (Almudevar and Anderson 2012; Wang

2012). Such analyses are extremely accurate, but become

less successful if dyads with a lower degree of relatedness

are included; for example, the inclusion of cousins

reduces the power and accuracy of the analysis (Thomas

and Hill 2002; Wang 2004). Analysis of populations with

complex kinship structures, such as may arise when both

sexes are polygamous, can lead to prohibitively long run

times and nonconvergence (Wang and Santure 2009;

Wang 2012; Dexter and Brown 2013).

Such complexity, including the coresidence of different

categories of close and distant relatives, may be present in

social groups featuring promiscuous mating systems,

small litter sizes, long life spans, overlapping generations,

or immigration. Hence, approaches identifying different

types of kin in groups with complex kin compositions are

needed.

Identifying the Other Types of Kin

One seemingly straightforward approach to determining

the kin relationship of any dyad relies on the use of dya-

dic relatedness estimators, which gauge the amount of

genetic material shared by descent between individuals.

The accuracy and precision of these estimators depend on

the number of markers typed, their polymorphism, allele

frequency distribution, and the kin structure of the popu-

lation (Milligan 2003; Csill�ery et al. 2006; Konovalov and

Heg 2008; Van Horn et al. 2008). Although the related-

ness coefficient averaged over many dyads usually corre-

sponds well to the expected pedigree relatedness, the

previously discussed inherent difference between genetic

and pedigree relatedness leads to overlapping distributions

of the relatedness coefficient for different kinship cate-

gories (Blouin et al. 1996; Fig. 3A). This is in principal

independent of methodological inaccuracies in genetic

relatedness estimates due to the usage of a limited num-

ber of genetic markers, variance in the sharing of alleles

by state, or inaccurate measures of the population’s allele

frequencies. Consequently, the relatedness coefficient for

any dyad is an imperfect measure of that dyad’s pedigree

kinship, and correlations between pedigree and genetic

relatedness will be imperfect. This thus holds true even if

very large numbers of markers are used. For example, a

Figure 2. Proportion of kin (mis)classified as parent–offspring in

likelihood analyses of parentage. The likelihood ratio value is the

likelihood (L) of the alternative hypothesis of parent–offspring

relationship over the likelihood of a null hypothesis of (A) no

relatedness or (B) a complex null hypothesis simultaneously

considering full siblingship, half siblingship, and no relatedness. Even

when using conservative P-value, misclassifications occur (A) while

testing a complex null hypothesis (B) reduces the number of

misclassifications of other kin categories as parent–offspring but more

than halves the proportion of true classifications. Sets of 1000 dyads

per kinship category (po: parent–offspring, fs: full siblings, hs: half

siblings, ur: unrelated) were generated in KINGROUP v2 (Konovalov

et al. 2004) using ten loci with five equifrequent alleles per locus.

Likelihood analyses were conducted in KINGROUP v2. P-values were

generated through 1,000,000 permutations.
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study in zebra finches found a maximum correlation of

0.86 between the genetic relatedness determined with the

full dataset of 771 SNPs and the pedigree relatedness of a

multigenerational zebra finch pedigree. Because linkage

among loci increases the variance of the estimate (Glaub-

itz et al. 2003; Santure et al. 2010), even a study using

more than 9000 SNPs to assess the correlation between

genetic and pedigree relatedness in pigs found a correla-

tion of just 0.85 (Lopes et al. 2013).

Despite the lack of a perfect correlation of genetic relat-

edness with pedigree relatedness, some approaches exist

to identify dyads which can be classified with confidence.

For example, Blouin et al. (1996) suggested first using

simulated distributions of the relatedness coefficient for

certain kinship categories and then defining cutoff values

to classify dyads as belonging to these kinship categories

while determining consequent misclassification rates from

the simulated distributions. How the cutoff values are

chosen determines the misclassification rate. It is possible

to thus push the misclassification rates for certain kinship

categories under a desired threshold (e.g., 5%, although

much lower rates might be desirable if many dyads are

evaluated) by choosing narrow cutoff values (shaded areas

in Fig. 3A). However, this approach leads to low rates of

true classifications, that is, dyads of a certain kinship cate-

gory which are correctly classified as belonging to that

category, and many dyads remain unclassified because

their values fall between the cutoffs (Fig. 3A).

By combining cutoffs for likelihood ratios, often

expressed as the logarithm of the likelihood ratio (log

odds ratios, LOD) and testing different hypotheses about

the kinship status of a dyad, it may be possible to

improve the resolution of such an analysis (Thompson

and Meagher 1987). Additional power can be added by

combining cutoffs for likelihood ratios with cutoffs for

the relatedness coefficient (Langergraber et al. 2007;
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Figure 3. Misclassification and true classification rates per kinship category. Dyads of unrelated individuals (black), half siblings (green), and full

siblings (blue) genotyped at 23 autosomal microsatellite loci were simulated in KINGROUP v2 using allele frequencies of a band of hamadryas

baboons (Band 1, St€adele et al. 2015). Tables indicate the percentage of true classifications (bold), misclassifications, and unclassified dyads. The

top row indicates the actual relationship. Truly unrelated dyads were combined with unclassified dyads, but could also be classified by defining

cutoff values. (A) Cutoff values for the relatedness coefficient (edges of the shaded areas) can be modified to achieve low misclassification rates

leading to low rates of true classifications (bold). Shaded areas indicate the proportion of dyads classified as half (green) or full siblings (blue). (B)

Cutoff values for relatedness coefficient and two likelihood ratios applied simultaneously (lines); log-likelihood ratio 1 (LOD 1) hypothesis: half

siblings, null hypothesis: parent–offspring, full siblings, unrelated; log-likelihood ratio 2 (LOD 2) hypothesis: full siblings, null hypothesis: parent–

offspring, half siblings, unrelated. This approach leads to similarly low misclassification rates as A) but allows for more true classifications.
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St€adele et al. 2016; Fig. 3B). Although relatedness coeffi-

cients and likelihood ratios are strongly correlated because

they are derived from the same autosomal data, they are

sufficiently different so that the resolution of classifica-

tions of dyadic kinship is improved by combining them.

This leads to low misclassification rates combined with

high true classification rates (Fig. 3B). Cutoffs can be

defined by systematically testing values which maximize

the true classification rate and minimize the misclassifica-

tion rate or can be empirically defined using data from

dyads of known pedigree relationship or from relatives

identified through pedigrees reconstructed after parentage

analysis (Langergraber et al. 2007; St€adele et al. 2016).

Using such an approach, low misclassification rates can

be achieved with a relatively small set of loci. It is impor-

tant to note that even when using this combined

approach, if low misclassification rates are prioritized, a

large number of dyads will be unclassified because their

parameter values fall between the cutoff values for differ-

ent kinship categories (Fig. 3B).

A different approach to identifying dyadic kinship

which also accepts unclassified dyads as a trade-off for

low misclassification rates is based on calculating P-values

associated with likelihood ratios and then selecting a sub-

set of dyads by applying the false discovery rate procedure

(Benjamini and Hochberg 1995) which controls for an

expected proportion of type I errors (Skaug et al. 2010).

The subset of dyads is then genotyped at a second set of

loci, and dyads are accepted as having the hypothesized

kin relationship according to a nominal level of P-value

associated with the new likelihood ratio value.

These approaches could theoretically be used to classify

dyads beyond the second degree of kinship; however, the

overlap of the distributions of measures of genetic relat-

edness increases with a decreasing degree of kinship, and

eventually, no satisfactory trade-off between misclassifica-

tions and correct classifications can be reached.

In sum, by accepting the limitations of certain rates of

misclassification as well as the inability to classify every

single dyad, it is possible to infer dyadic kinship up to

the second degree for many pairs of individuals living in

populations with complex kin compositions, even when

using the limited numbers of autosomal markers typically

available for wild populations.

The Value of Nonautosomal Marker
Data and Demographic Information

The inheritance patterns of the maternally inherited

mitochondrial DNA (mtDNA), paternally inherited

Y-chromosome, and bi-parentally inherited X-chromo-

some make them powerful additions to kinship analyses

using autosomal data and by identifying false-positive

assignments of kinship as well as reducing the misclassifi-

cation rates (Kopps et al. 2015). Of the nonautosomal

markers, mtDNA is commonly used in studies of wild

populations due to a high degree of sequence identity of

many of its segments among vertebrates making it an easy

target for cross-species amplification, as well as the pres-

ence of high copy numbers leading to usually good

amplification from low-quality samples. X- and Y-linked

loci have been less widely used and may have to be iden-

tified de novo for many species, but these can in principal

also be genotyped using cross-species amplification,

although low levels of Y-chromosomal variation can make

it difficult to identify polymorphic Y-linked markers

(Ellegren 2003; Greminger et al. 2010).

Fathers and sons have to share Y-haplotypes, and

mothers and offspring have to share mtDNA haplotypes.

Fathers and daughters as well as mothers and offspring

have to share at least one allele at every locus of the

X-chromosome. Thus, simple comparisons can reveal

misclassifications, and the more diverse the marker, the

more likely it is that misclassifications are identified

because dyads are less likely to share alleles/haplotypes by

Figure 4. Misclassification rates are reduced when autosomal data

are supplemented by other information. Reduction in misclassification

rates for 1000 randomized sets of 1000 dyads using the mtDNA and

Y-haplotype frequencies and X-linked microsatellite allele frequencies

of a social group of hamadryas baboons, Papio hamadryas (Band 1,

St€adele et al. 2015). Vertical lines indicate the range, horizontal lines

indicate the standard deviation, and circles show the average.

Simulations were performed with one Y-linked microsatellites locus,

13 mtDNA haplotypes, and four X-linked microsatellites loci (XX). For

age, it was assumed for simplicity that two-thirds of the individuals

belonged to one generation and one-third to another generation and

that two individuals of the same generation could not have the

supposed relationship.
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chance. In a study of hamadryas baboons, we found that

misclassification rates can be greatly reduced even using

just one Y-linked microsatellite locus or four X-linked

microsatellite loci with low levels of polymorphism

(Fig. 4; Band 1, St€adele et al. 2015). In addition to identi-

fying misclassifications, the inclusion of nonautosomal

marker data can further improve the resolution of kinship

analyses. For example, likelihood ratio values can be cal-

culated for X-chromosomal genotypes, thus making it for

example possible to define cutoffs distinguishing between

maternal and paternal siblings if a sufficient number of

loci are available (Langergraber et al. 2007). As a further

incentive to overcome the challenges of characterization

in novel species, it is worth noting that uniparentally

inherited markers may also aid in analyses of population

structure due to their smaller effective population sizes

and help reveal sex-specific population histories. While

mtDNA is maternally inherited for most animals, paternal

inheritance of the Y-chromosome is the norm only in

mammals (Sato and Sato 2013). Yet, genetic sex determi-

nation via an XY system is found in many fish (Devlin

and Nagahama 2002), insects (Sanchez 2008), and reptiles

(Modi and Crews 2005). In species with a ZW sex deter-

mination system, for which females are the heterogametic

sex, shared Z-chromosomes can facilitate the identifica-

tion of maternally related male dyads, while shared W-

chromosomes can facilitate the identification of mater-

nally related females. However, species with environmen-

tal sex determination and species with a ZW sex

determination system lack exclusively paternally inherited

markers for the identification of paternal relatives.

In addition to genetic markers, information about age,

social status, or group membership may be helpful for

identifying false-positive kinship assignments, for exam-

ple, by identifying dyads which cannot have the pur-

ported relationship due to their relative ages (Kopps et al.

2015; Weinman et al. 2015; Fig. 4). Depending on the life

history of the species, age may also be useful to identify

the type of a degree of kinship, for example, whether a

dyad of second-degree relatives are grandparent–grandoff-
spring, half siblings, full avuncular relatives, or double

first cousins, which cannot be identified from a small set

of autosomal markers. For example, half siblings may be

discriminated from grandparent–grandoffspring by the

age difference between the individuals in species in which

the reproductive life span is shorter than roughly twice

the age at first reproduction as, for example, in Hector’s

dolphins or rock hyraxes (Pacifici et al. 2013). Programs,

such as FRANz, allow the use of information about

known parentage, sex, birth/beginning of group member-

ship, death/end of group membership, and age at first

birth into parentage analyses (Riester et al. 2009).

Alternatives to Determining Pedigree
Kinship

Although it is possible to reliably determine the dyadic

kin relationship for some proportions of dyads in a popu-

lation using a range of different markers, judiciously esti-

mating misclassification rates, and employing

demographic data when available, determining dyadic

kinship for members of wild populations is challenging.

For the investigation of hypotheses which do not require

explicit knowledge of kinship, we therefore advocate the

use of methods which provide more general and indirect

inferences about kinship in a group or population with-

out the necessity of determining the kin relationships of

single dyads.

Who is definitely NOT closely related?

In many studies, researchers seek to determine kinship

among individuals to control for possible kin biases while

studying other factors that potentially influence social

relationships or grouping patterns. In these cases, it might

often be sufficient to identify dyads that cannot possibly

be close kin and then limit analyses to these dyads. The

same is true for breeding programs that aim to identify

unrelated dyads among potential wild-caught founders.

Individuals not sharing an mtDNA haplotype cannot be

close maternal relatives, individuals not sharing at least

one allele at every X-chromosomal locus cannot be pater-

nal sisters or father–daughter, and males not sharing a

Y-chromosomal haplotype cannot be close paternal rela-

tives. A considerable advantage of this exclusion approach

is that one polymorphic marker of each category is suffi-

cient to exclude these categories of kinship, although a

larger number and greater variability will lead to the

exclusion of more dyads.

Correlating dyadic relatedness coefficients
and other variables

Average dyadic relatedness coefficients can be compared

among groups to, for example, make inferences about

philopatry and dispersal by comparing average relatedness

within groups to average relatedness among groups or

average within-group relatedness values for male and

female dyads (Jane�cka et al. 2007; Li and Meril€a 2010;

St€adele et al. 2015). However, it is often interesting to

know whether a certain variable is dependent on related-

ness, such as whether more closely related individuals are

in closer spatial proximity, have more similar phenotypes,

or more often show certain dyadic behaviors. In studies

of wild populations for which experimental hypothesis
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testing is usually not possible, correlational hypothesis

testing is used to infer causal relationships.

The Mantel test, which assesses the correlation between

two distance matrices, has been used to test for nonran-

dom correlations between the dyadic relatedness coeffi-

cient and other variables, such as spatial distance,

acoustic similarity (Lemasson et al. 2011), similarity of

odor profiles (Boulet et al. 2009), or association strength

and mtDNA sharing (Wiszniewski et al. 2010). Extensions

of the simple Mantel test (Mantel 1967), the partial Man-

tel test (Manly 1986), or multiple regressions on distance

matrices (Smouse et al. 1986) allow for testing the corre-

lation between two variables while controlling for one or

more other variables. Although Mantel tests have been

widely used in ecological studies to assess the relationship

between geographic and genetic distance, their statistical

appropriateness has been critically discussed, and particu-

larly, the extensions of the simple Mantel test have been

criticized in terms of low power and inflated type I error

rates (Guillot and Rousset 2013; Legendre et al. 2015).

Generally, it seems that simple Mantel tests reveal unbi-

ased results if the assumptions of the test are met, includ-

ing linearity, homoscedasticity, and a lack of

autocorrelation of the permuted variable (Guillot and

Rousset 2013). However, the limitations of the Mantel

test make it useful only for the investigation of simple

hypotheses.

Generalized linear models allow the assessment of more

complex hypotheses by testing the influence of several

continuous or categorical variables on a response variable

including interactions or non-normal error structures, for

example, whether there is an influence of genetic related-

ness on spatial proximity and whether this is different for

male and female dyads. Data collected from wild popula-

tions will rarely correspond to the standard experimental

designs in which each individual is part of only one dyad,

but instead some or all individuals are part of many

dyads. To control for the nonindependence of the data

introduced by these multiple “observations”, random

effects can be included in (generalized) linear-mixed

models. For dyadic data, this is not always trivial because

the individuals within a dyad are often indistinguishable

in that they cannot be placed in a meaningful order, such

as male and female or aggressor and aggressed (Kenny

et al. 2006), and so the assignment of each individual to

one of the two random effects for a dyad is arbitrary. A

possible solution to this is to repeatedly randomize this

assignment and report model results averaged over the

randomizations (e.g., Van Leeuwen et al. 2012).

It is important to note that the sample size and the

variance in the relatedness composition of the population

determine the power of any test correlating dyadic relat-

edness coefficients with other variables. In particular, wild

populations with complex kinship structures may contain

a very low proportion of highly related dyads (Csill�ery

et al. 2006; Van Horn et al. 2008). Furthermore, kin-

biased behaviors might only be expressed toward one type

of kin but not another, even though the two kin cate-

gories have the same mean genetic relatedness (e.g., par-

ent–offspring and full siblings). Researchers should be

aware of this reduced power when interpreting nonsignifi-

cant results.

Future Directions and Challenges

Work in humans aimed at identifying relationships in

human pedigree data illustrates the potential of large-scale

data from SNP arrays or whole-genome sequencing. For

example, relatives up to the third degree can be identified

with extremely low rates of misclassifications using 500k

SNPs (Manichaikul et al. 2010). Relationships can be

detected up to the fifth degree with high accuracy using

thousands of unlinked SNPs (Kling et al. 2012), and incor-

poration of linkage information among SNPs may distin-

guish between different relationships possessing the same

degree of relatedness (Kyriazopoulou-Panagiotopoulou

et al. 2011). Stretches of sequence identical by descent

inferred from whole-genome sequence data may resolve

relationships up to the fifth degree (Huff et al. 2011; Li

et al. 2014). Thus, even distantly related dyads can be accu-

rately classified if a large number of markers, linkage infor-

mation, or whole-genome sequence data can be attained.

Programs for pedigree reconstruction should eliminate

the need for dyadic relationship classification while at the

same time clearly defining the type and not just the degree

of the relationship. However, these programs currently do

not accommodate complex social systems with non-

monogamy, ungenotyped individuals central to the pedi-

gree, assume sampled individuals are in the same

generation, or require large-scale SNP or whole-genome

sequencing data (Riester et al. 2009; Kirkpatrick et al. 2011;

Cussens et al. 2013; He and Eskin 2014; Staples et al. 2014).

Only in the recent years have researchers employed

large-scale cross-species SNP-typing approaches, such as

SNP chips, which make it possible to genotype large arrays

of SNPs for species other than model organisms and com-

mercial species (Pertoldi et al. 2010; Ogden et al. 2012;

Hoffman et al. 2013). However, recovery rates for poly-

morphic SNPs may be low even in closely related species, as

in a study in which cross-amplification of bighorn sheep

(Ovis canadensis) DNA on a 49,035 loci domestic sheep

SNP array (Ovis aries), species which diverged ~2.6 Mya,

yielded only 561 polymorphic SNPs (1.1%) (Miller et al.

2011). Few studies have used large SNP arrays for low-

quality DNA (Decker et al. 2009). However, efficient

semi-automated smaller-scale approaches may yield
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genotypes of ~100 SNPs from low-quality fecal or hair

DNA (Kraus et al. 2015; Norman and Spong 2015).

The potential of next-generation high-throughput

sequencing to generate large amounts of sequence data

from even low-quality samples, such as ancient DNA,

would suggest that large numbers of noninvasive samples

could soon be efficiently genotyped or sequenced on a

genomic scale. However, demonstrations of efficient low-

cost genome-level sequencing from noninvasively

obtained low-quality samples are thus far limited in scale

(Perry et al. 2010; Chiou and Bergey 2015; Snyder-Mack-

ler et al. 2016). One recent study used DNA from 62

baboon fecal samples to produce low-coverage genomes

(0.499) and infer paternity for 27 offspring (Snyder-

Mackler et al. 2016). They estimated a cost of 200 USD/

individual for coverage of 1x, approximately twice the

amount needed to generate comparably effective

microsatellite genotypes for paternity inference. Higher-

coverage genomes may be obtained through the improve-

ments in enrichment of host DNA from fecal samples,

although prescreening of DNA samples for the minority

containing relatively higher proportions of host DNA

remains important (Chiou and Bergey 2015).

Methodologies for efficient and cost-effective genotyp-

ing from low-quality DNA are only starting to be devel-

oped for larger panels of SNPs and whole-genome

sequencing, and particularly for the latter, an enormous

amount of know-how and postprocessing is necessary.

Therefore, microsatellites will, at least in the near future,

stay the marker of choice for most studies of wild popula-

tions for which only low-quality DNA can be obtained,

and determining kinship in these populations will remain

challenging.
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