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Abstract

High frequency psychophysiological data create a challenge for quantitative
modeling based on Big Data tools since they reflect the complexity of pro-
cesses taking place in human body and its responses to external events.
Here we present studies of fluctuations in facial electromyography (fEMG)
and electrodermal activity (EDA) massive time series and changes of such
signals in the course of emotional stimulation. Zygomaticus major (ZYG;
“smiling” muscle) activity, corrugator supercilii (COR; “frowning” muscle)
activity, and phasic skin conductance (PHSC; sweating) levels of 65 partici-
pants were recorded during experiments that involved exposure to emotional
stimuli (i.e., IAPS images, reading and writing messages on an artificial on-
line discussion board). Temporal Taylor’s fluctuations scaling were found
when signals for various participants and during various types of emotional
events were compared. Values of scaling exponents were close to 1, sug-
gesting an external origin of system dynamics and/or strong interactions
between system’s basic elements (e.g., muscle fibres). Our statistical anal-
ysis shows that the scaling exponents enable identification of high valence
and arousal levels in ZYG and COR signals.
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1. Introduction

Easy access to massive amounts of high frequency data about humans
— their health [1, 2] and their responses (also remote) [3, 4, 5, 6] — is
an important fruit of the so-called Big data science [7, 8, 9]. In this scope
psychophysiological information that can be transformed into undisputed
facts/relations concerning our vitals organs [10] is of utmost importance.

In 1961, ecologist Lionel Roy Taylor published his famous paper [11]
in which he reported a power-law relation between a sample variance of
density and a mean density of a sample of several species in a study area.
The data was taken from observations of many species, e.g., various kinds
of larvae, worms, symphylas, macro-zooplankton, shellfish, etc. Taylor was
considering the scaling exponents as a universal measure for aggregation of
population abundance. In his opinion [11], the strong aggregation should
correspond to a larger scaling exponent, and it should be a result of mutual
attractions between individuals belonging to a given species. Mutual repul-
sion should result in lowering of spatial dispersion and in lowering of the
scaling exponent.

In fact, a similar scaling law was found already in 1938 by statistician H.
Fairfield Smith who described it in the (often forgotten) paper [12] entitled
An empirical law describing heterogeneity in the yields of agricultural crops.
Smith compared yields of wheat, maize, sorghum, mangolds and potatoes
from different areas and found that the regression of the logarithms of the
variances for plots of different areas on the logarithms of their areas was
approximately linear [12]. Slopes of the regression curve (we call them scal-
ing exponents) varied from crop to crop and even from one plant’s region
to another. However they were always smaller than a value received for
uncorrelated plants and Smith connected a specific value of regression slope
with the crop heterogeneity.

It is likely that the first observation of the power-law relation between
between a mean and a variance was found by C.I. Bliss [13] who studied
variations in populations density of Japanese beetle larvae in 19411.

In general, Taylor’s theorem leads to relating the standard deviation of
an additive variable with its mean value in similar systems as: σi ∝ 〈fi〉α

1We are thankful to an anonymous Referee for suggesting us this reference.
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where σi – a standard deviation of a given additive value for i-th subsystem,
〈fi〉 – a mean of the value. If the scaling exists then the value of the exponent
α allows to infer about underlying dynamics of the analyzed system by
comparing the results with a behavior of agent-based models or stochastic
dynamics [14, 15, 16].

Studies of Smith and Taylor were devoted to observations of variance
between samples of some yields, or number of some animals occupying
different areas of the same surface. The proposed relationship was later
confirmed in several other empirical studies in ecology (see for example
Ref. [17, 18]), life sciences (e.g., scaling of cell numbers in representatives
of a given species [19]), astrophysics [20], company growth rates [21] or the
stock market [14]. For more examples and for theoretical models that try to
explain the power law between the variance and the mean see, e.g., review
papers [14, 22].

The above mentioned empirical studies considered so-called ensemble
fluctuations scaling (EFS) since variances were calculated over an ensemble
of samples (subsystems) belonging to the same class (usually the class was
labeled by a given surface of samples). EFS can be called also a spatial
Taylor’s law since in ecology it shows how populations vary in spatial aggre-
gation as a function of their average size. It means points at the scaling plot
are described by means and variances of a set of spatially distinct locations
within a population.

There is also another kind of scaling called temporal fluctuations scaling
that, in ecological systems, relates the variability of populations time-series
to their mean [23]. In such a case each point at the scaling plot corresponds
to a mean and a variance of a single population time series. This kind
of scaling was also observed in many natural and man-made systems [14],
including various kind of networks such as internet routers, river networks,
highways networks or World Wide Web [24].

As far as we know at the moment there is no common agreement on
reasons of observed Taylor’s scaling and there are several theories trying
to explain this effect. Temporal scaling in ecology can be for example re-
sults of environmental and demographic stochasticity [25, 26] or interspecific
competition [27]. There are also attempts to find domain-independent gen-
eral roots of the Taylor’s scaling, e.g., in probabilistic models known as
the Tweedie exponential dispersion models that follow from central-limit-
theorem-like theorem [28] or i.i.d. processes with skewed distributions [29].

A natural question is whether the origin of the observed temporal fluc-
tuations and the scaling law is an effect of a stochastic external driving force
or the randomness of complex system internal dynamics [14, 23]. In [16],
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it was suggested that one can separate both contributions and estimate the
ratio of internal interactions between the systems components and the influ-
ence of external perturbations. Studies of temporal scaling for fluctuations
of traded values at NYSE and NASDAQ stock markets [14, 30] have shown
that the scaling exponent strongly depends on the length of the time window
where the variability was observed, and this dependence can provide infor-
mation about correlations taking place in the system in different time scales
[14, 23]. Comparative investigations of fluctuations scaling of quotation ac-
tivity at an online foreign exchange market (Forex) are presented in [31] and
[32]. Theoretical studies aiming to build agent-based models explaining the
temporal scaling can be found, e.g., in [15] or [33], where various kinds of
network topology and random walks were considered.

The main focus of this paper is to study high frequency fluctuations in
facial electromyography (fEMG) and electrodermal activity (EDA) time se-
ries in the course of various emotional stimulation episodes. Our goal is to
check if biological subsystems sensitive to human emotions, i.e. facial mus-
cles responsible for smiling (zygomaticus major) and frowning (corrugator
supercilii) expressions [34], and skin sweat glands (their activity can be as-
sociated with a human’s arousal [35]) follow the temporal Taylor’s scaling.
Mean values and variances of the signals during visual emotional stimula-
tion have been calculated in time windows of different sizes. To the best of
our knowledge, the presence of such a scaling was never reported for psy-
chophysiological signals. The challenge is to distinguish between various
human emotions using observations of the temporal scaling of Taylor’s law.

2. Description of temporal Taylor’s fluctuation scaling

In the present paper, we will consider temporal Taylor’s scaling [14, 15,
16, 23, 24, 33]. Let fi,t be a positive variable fi,t describing an additive
measure of a given activity of the object i at time moment t. Examples of
such activities can be data packages coming to a router, or visits of a web
page or activated muscle fibers. Let the total number of elements in time
series of this activity be T , i.e. t = 1, 2, 3, . . . , T (further we will assume that
T is the same for all objects i). Let us divide the series into Q windows of

size ∆, i.e., Q∆ = T . The quantity [f
(q,∆)
i ] stands for a cumulative value of

the variable fi in a window of the size ∆ (q = 1, 2, 3, . . . , Q is the window’s

label) and (σ
(∆)
i )2 is a variance of this cumulative variable in the whole data

series. Then we have

(σ
(∆)
i )2 =

〈
[f

(q,∆)
i ]2

〉
−

〈
[f

(q,∆)
i ]

〉2
(1)
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Here 〈
[f

(q,∆)
i ]

〉
=

1

Q

Q∑
q=1

q∆∑
t=(q−1)∆+1

fi,t = ∆

∑T
t=1 fi,t
T

(2)

and 〈
[f q,∆i ]2

〉
=

1

Q

Q∑
q=1

 q∆∑
t=(q−1)∆+1

fi,t

2

(3)

When the window ∆ is kept constant for all objects i belonging to a given
system (e.g. a network of Internet routers or WWW) then Taylor’s scaling
means

σ
(∆)
i ∝

〈
[f q,∆i ]

〉α(∆)
. (4)

The value of the exponent α(∆) can be dependent on the window size ∆
[14, 33], and such a dependence can bring some additional information on
dynamics of constituents forming a considered system. The case α(∆) = 1/2
can correspond to a system consisting of mutually independent elements as
in the case of the ideal gas or for random processes obeying the Central
Limit Theorem2. This value can also be observed when the variable fi
corresponds to a number of some events (e.g., data packages coming to a
given node i) and when the time window ∆ is so short that it is very unlikely
that more than two events can emerge in a single window [14]. Larger values
of the exponent α(∆) can correspond to a larger degree of synchronization of
elements forming the system and a set of completely synchronized elements
displays scaling α(∆) = 1. Let us stress that synchronization in ecological
systems is frequently observed, see e.g., coupling of trees reproduction cycles
via pollen exchange [36, 37]. A similar situation takes place when a system
is driven by an external force, for example when populations of separated
groups of animals are synchronized by weather conditions [38] or by other
environmental influences [39].

A possible explanation of exponents α(∆) > 1 can be provided in several
ways, e.g., by Tweedie distributions and impact inhomogeneity [14]. Bar-Lev
and Enis have proved [40] that such exponents can be also observed when the
activity fi,t is governed by so-called stable distributions with characteristic
exponents between 0 and 1.

Observations of Taylor’s scaling should not be confused with Detrended
Fluctuation Analysis (DFA) [41] and other approaches [42, 43] used to quan-

2Let us note that for the ensemble fluctuation scaling there are i.i.d. processes with
skewed distributions that can lead to other values of the parameter α, see [29]
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tify long-range power-law correlations in various signals [44] including psy-
chophysiological data related to emotional states [45, 46, 47, 48, 49]. Let us
stress then while the DFA framework uses a single time series the Taylor’s
scaling approach describes properties of a set of similar objects (even when
they are independent). It follows that the exponent α′ of DFA scaling and
the exponent α(∆) of Taylor’s scaling defined in Eq. (4) are not the same
although there exists a relation between their derivatives

dα′

d(log 〈fi〉)
∼ dα(∆)

d log ∆

where 〈fi〉 is the mean value of the analyzed signal. For a derivation of the
relation and more information - see Ref. [14].

3. Data

Our data were gathered during an experiment conducted at Jacobs Uni-
versity Bremen, Germany. There were 65 participants (30 female; mean age
= 20.4 years; standard deviation in the sample = 1.9) that were subjected to
emotional stimuli – pictures from the International Affective Picture System
(IAPS) [50] and forums (see Fig. 1 for schematic representation of the exper-
iment). During the course of the experiment, participants’ fEMG (corruga-
tor supercilii, zygomaticus major) was recorded with the sampling frequency
νs = 2kHz, using the BIOPAC MP150 amplifier system (Biopac Systems,
Inc., Santa Barbara, CA), and signal amplitudes (µV) were amplified with a
gain factor of 5000. EDA (left and right foot skin conductance) was recorded
with the same system at a rate of 500Hz, and an amplification of 5µS/V.
Corrugator supercilii refers to the main facial muscles controlling eyebrow
movements, such as frowning; zygomaticus major refers to the facial muscles
primarily responsible for raising lip corners in smiling. Markers were placed
in the time series to allow identification of an event taking place at a given
time. The total volume of the considered dataset was around 25 GB.

Emotions elicited during IAPS image presentations were scored by the
participants in questionnaires with three questions asking separately about
experienced positive, negative emotion and arousal on Likert-type scales
from 1 to 7. The basis for this assessment was a dimensional theory of
emotions that focuses on “single simple feelings” [51], i.e. “Core Affect”
that can be represented, or mapped, onto only two or three core dimensions
[52], whereas other emotion theories such Ekman’s Neurocultural Theory [53]
distinguish a small number of categorically distinct emotions such as anger,
fear, sadness, happiness, disgust, or surprise. One of the basic assumptions
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of dimensional models is that valence and arousal are primary and auto-
matically perceived, whereas categories are only perceived at a secondary
stage [54]. In this sense, valence and arousal are conceptualized as “Core
Affect” in this type of emotion theory in order to emphasize this distinc-
tion. Two-dimensional models of two orthogonal bipolar dimensions have
been a traditional structure in dimensional models of emotion [55, 56, 51].
Among these two-dimensional models, valence and arousal have been used
very frequently [57], although variants have, e.g., suggested additional (sub-
)dimensions for arousal/activation [58] or valence [59]. Valence reflects the
emotional sign (pleasure vs. displeasure) whereas arousal indicates a state of
activation (activation vs. deactivation). While both dimensions are gener-
ally assumed to be essentially orthogonal to one another [55, 56, 51], there is
some evidence that suggests a weak V -shaped relationship between arousal
and valence [60]. However, the same research [60] simultaneously high-
lights a large individual variation as well as the possibility of different types
of context-dependent relations between both measures, thereby question-
ing the existence of a lawful relation between both variables. It therefore
remains useful to analyze both variables separately. Coordinates in the re-
sulting valence and arousal space can further be projected back, with some
limitations, onto higher-dimensional discrete emotions models [55], e.g., fear
(negative and aroused), sad (negative and not aroused) etc.. However, the
use of a dimensional Core Affect structure as such does not require this
translation, and has been argued to complement rather than compete with
categorical structures [51]. In this study, arousal was scored using corre-
sponding question in a questionnaire (1 ≤ a ≤ 7), and positive and negative
emotion subscales were merged and transformed into one value for valence
(v = 4 + 1

2(positive − negative); 1 ≤ v ≤ 7). There were 19 IAPS images
shown to each participant. Each presentation lasted for 6 seconds and was
preceded by 2 seconds of baseline and followed by an emotional question-
naire. The order of images within each IAPS set as well as the order of
positive and negative trials (both in the post new thread and in the post
reply sections) was varied randomly between participants. To avoid sta-
tistical effects in the physiological data that were due to fixed sequence of
the stimuli, the order of both IAPS sets was furthermore randomized be-
tween participants and so was the order in which the post new thread and
in the post reply sections were presented. The sequence of main experimen-
tal blocks is presented schematically in Figure 1. The sequence of events
(reading of a post/ thinking about topic, contemplating the topic, writing
of a post, baselines for physiological and subjective ratings, and subjective
ratings of valence and arousal) within each block was always fixed and did
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Figure 1: Graphic representation of the sequence of the main experimen-
tal blocs of the study. The arrows indicate randomizations of blocks between
participants. “Relaxation/baseline” – participants were asked to relax for 3
minutes; “IAPS 1” and “IAPS 2” – two rounds of IAPS images presenta-
tion, 4 images in each round, sequence for each image: 2s of blank image, 6s
of IAPS exposition, emotion questionnaire; “post new thread”/“post reply”
– parts of experiment not related to the study; “paper-and-pencil” – final
questionnaire regarding demographics (not used in the study).

not vary between or within participants. The whole experiment (involving
forum activities) usually took about 30–40 minutes.

Main analyses were carried out using MATLAB R©[61], the data were
stored in a PostgreSQL database. The statistical analysis of exponent com-
parison was performed using R language [62].

4. Signals characteristics

4.1. Facial electromyography

Facial electromyography (fEMG) is a well established method for the
measurement of facial activity, including facial muscle activity associated
with emotional valence [63]. In the present study, this measurement focused
on activation over two sites of facial muscles. Corrugator supercilii (COR;
exemplary response to a stimulus - see 2a) muscle activity is exhibited when
frowning, and shows a negative linear correlation with valence of experienced
emotion – less activity in response toward more pleasant stimuli; activity at
the zygomaticus major (ZYG; exemplary response to a stimulus - see 2b)
muscle site is associated with smiling, and a quadratic effect of valence
(i.e. highest activities are obtained for extreme emotions) [34]. One cannot
exactly map the activity of the muscles with corresponding emotions or even
facial expressions, because of the variety of uses of these muscles (e.g., during
speech), as well as their role in social interactions including, e.g., polite
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Figure 2: Example of signals’ responses to an emotional stimulus (IAPS
6260); colors indicate current event – brown - introduction to IAPS demon-
stration, green - baseline, dark blue - stimulus presentation.

smiling that does not express an intense internal emotional state as such.
However, in the conditions of controlled laboratory experiments such as the
present research, facial activity unrelated to emotions is occasional and can
be regarded as error variance across comparable conditions of emotional
stimulation.

All analyses were performed using raw signals because any smoothing or
filtering would cause a loss of information about signal fluctuations.

The COR and ZYG signals are somewhat similar due to their origin,
namely muscle activity. They differ in that COR is bilaterally innervated as
opposed to a greater contralateral innervation of ZYG [64].

4.2. Electrodermal activity

Electrodermal activity (EDA), or skin conductance (SC) analyses are
based on Galvanic skin responses, i.e., changes in the electrical conductivity
of the skin that are most typically recorded at the subject’s hands (palmar)
or feet (plantar) [65]. As has been known already since the late 1920s [66, 67],
these changes are related to the opening and closing of sweat glands in the
skin that produce sweating, which in turn is known to be related to arousal
[68, 67, 65]. These changes in phasic EDA can be caused by experiencing
an emotion (such as being exposed to various visual stimuli) [35]. More
specifically, both tonic changes in skin conductance level (SCL) as well as
phasic skin conductance responses (SCRs) have frequently been used in the
literature as indicators of sympathetic emotional arousal [65]. The tonic part
of the signal reflects a slowly changing global trend that is not directly in
response to short-term visual stimulation, and therefore was not used for the
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present fluctuation-dissipation analyses. The phasic part is a so-called rapid
changing factor. SCRs are a type of phasic response that are widely used in
scoring event-related arousal exhibited by experimental subjects. SCRs are
typically defined within the psychophysiological literature [67] as requiring
a certain minimum amplitude of peak such as 0.01-0.05 µS (microsiemenses
– unit of electric conductance). In addition, event-related SCRs must occur
within a specific time window (e.g., 1-4 s latency) in order to qualify as
likely related to an external event, whereas non-specific SCRs (NS-SCRs)
can occur at any time during the recording. SCRs will subsequently be
referred to simply as phasic SC (PHSC; exemplary response to a stimulus
- see 2c). In the study, we analyzed only 6 seconds intervals of stimuli
presentation thus we assume that all observed peaks were event related.

The present research involved a bilateral plantar recording of EDA, i.e.,
from the subjects’ feet. As opposed to so-called non-palmar non-plantar
sites [65], an adequate recording at this site is non-controversial since it has
been shown to exhibit good measurement properties and is to be preferred
over recordings from, e.g., the wrist, which is more affected by thermoreg-
ulation [65]. Palmar recording sites (i.e., at the palms or fingers) are even
more typical for laboratory measurements of EDA. However, in the present
study, participants had to type on a keyboard during the experiment. This
would have resulted in substantial movement artifacts for a palmar mea-
sure. The plantar recording sites greatly minimized this issue, and further
allowed a bilateral recording, allowing a validation of the recording quality
in the event of any remaining movement artefacts. However, no significant
intraindividual differences between left and right foot EDA signals were ob-
served (mean Pearson correlation coefficient = 0.97; standard deviation in
the population = 0.02). Unless stated otherwise, the right foot SCL signal
was analyzed.

5. Results

We are interested in quantifying temporal fluctuation scaling (TFS) for
time series obtained by facial electromyography (two sets: aggregated activ-
ity of COR and ZYG muscles separately) and electrodermal activity (one set:
aggregated effect from sweat glands — PHSC). Our first analysis concerns
the whole signal, i.e., a complete time series acquired during the experiment
that include, inter alia, episodes of emotional simulations with IAPS im-
ages. In the second stage we try to use additional data to separate series
connected to specific levels of emotions (valence / arousal levels). The third
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and last set of results contains an analysis of the windows size influence on
the obtained scaling exponents.

(a) COR (b) ZYG (c) PHSC

Figure 3: Temporal fluctuation scaling for the whole signals with
∆ = 1/νs = 0.0005s. Standard deviation as a function of the mean values of
signals; each point represents a signal of one participant; least squares linear
regression was applied to log-log data (y = axb ⇒ log y = log a + b log x);
errors are standard errors obtained using the least squares method.

5.1. Taylor’s scaling

Figure 3 presents a scatter plot of standard deviation versus mean char-
acteristics for all the participants and different signals — COR (Fig. 3a),
ZYG (Fig. 3b) and PHSC (Fig. 3c). When considering a time series for the
whole experiment, one has to realize that the each participant experiences
different kinds and magnitudes of stimulation. It follows that the measured
variances originate not only from fast fluctuations of muscle activity or skin
conductance but also from passing through several emotional states induced
by different types of IAPS images. Nonetheless, for all the mentioned signals
we are able to observe Taylor’s scaling characterized by exponents (values
shown with standard error), respectively αCOR = 0.89 ± 0.05 (goodness of
fit: R2 = 0.83), αZY G = 1.03 ± 0.09 (R2 = 0.68) and αPHSC = 0.86 ± 0.07
(R2 = 0.86) that are significantly higher than α = 0.5. Such results might
suggest a partial synchronization of elements which contribute to the value
of the signal.

5.2. Separation of specific emotions

In addition to raw time series the dataset contains also information about
participants’ answers included in the emotional questionnaires. We further
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assume that those answers reflect emotional state of participant, and that
they are comparable between participants (the same scores given by dif-
ferent participants describe similar emotion). Owing to the set of markers
that had been placed in the time series (see Sec. 3) we were able to di-
vide the signals connected to each participant and IAPS image into groups
of short (6 seconds — time of IAPS exposition) time subseries related to
different emotional states. Such a setting gives us an opportunity to check
if the fluctuation scaling exponents characterize each of the states and if
they can be distinguished basing on them. In order to conduct this analysis
one also needs to address the choice of the time window size ∆. The plots
shown in Fig. 3 were obtained using the smallest possible time window, i.e.,
∆ = ν−1

s = 0.0005s, where νs = 2 kHz is the sampling frequency. Knowing
that the size of time window might influence the results, an analysis with ag-
gregation for each IAPS–participant pair with a given score was performed
using different ∆ in order to find one which should allow to distinguish be-
tween emotions. The values of ∆ ranging from 5 ms (minimum of 10 samples
per window) to 1.5s (minimum of 4 full windows per IAPS-participant pair)
were considered.

To address the above presented issues we performed analysis of covari-
ance (ANCOVA) for each signal and each observation window size ∆. In this
way we are able to check if the interaction term (average × level of valence
/ arousal) is statistically significant, which in turn allows us to test the hy-
pothesis of equal slopes (α exponents) for different values of valence/arousal.
The results of the analysis are presented in Table 1 leading to two instant
conclusions for valence levels: (i) there is a strong difference among the
scaling exponents for ZYG signal and (ii) there is no statistical difference
among the scaling exponents in PHSC signal. For COR signal we observe
a mixed effect. In the case of arousal the interpretation is also far from be-
ing straightforward: arousal levels seem to distinguishable for the majority
of ∆ windows in PHSC signal, while in case of COR the difference is seen
only for large ∆. Opposite to that there is some mild statistical evidence
that arousal levels can be distinguished for small ∆ in ZYG signal. The
window sizes which yield the highest significance (∆ = 0.04s for ZYG and
PHSC, ∆ = 0.36s for COR) were used in the next part of the analysis. For
those windows a mean value of a given signal was obtained and then the
mean and standard deviations of those mean values were calculated for each
IAPS-participant pair. For pairs with a given emotional score, results were
divided into 25 logarithmic bins and a linear regression using a least squares
method was performed. Results of the fluctuations scaling analysis for each
signal and emotional score is presented in Figs. 4—6. Insets present values
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of scaling exponents α as a function of valence/arousal levels.

signal / ∆[s] 0.005 0.01 0.02 0.04 0.09 0.18 0.36 0.74 1.51

ZYG v ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗

ZYG a . ∗ ∗ ∗ . .
COR v . ∗ ∗ . .
COR a ∗ ∗ ∗∗

PHSC v
PHSC a ∗ ∗∗ ∗ ∗∗ ∗ . ∗∗

Table 1: Results of the analysis of covariance (ANCOVA) for different
signals and different time windows ∆. The following significance codes to
express p-values p of the ANCOVA F -test are used: ∗∗∗ for p < 0.001, ∗∗

for 0.001 < p < 0.01, ∗ for 0.01 < p < 0.05, . for 0.05 < p < 0.1 and empty
space for p > 0.1.

Let us now briefly inspect those insets to describe the results in qual-
itative way. Surprisingly for ZYG signal we have α > 1 for all valence
and arousal levels. Moreover for extreme values of emotional valencies
(v = 1, 6, 7; Fig. 4a) α reaches its lowest values that seem to be differ-
ent than those for other scores. Additionally highly aroused state (a = 7;
Fig. 4b) can be separated from all other scores with its exponent being the
lowest one. In COR signal, scaling exponents for the majority of the series
show α ≈ 1 but they drop to α ≈ 0.85 for very positive (v = 7; Fig. 5a)
and very aroused states (a = 6, 7; Fig. 5b). Finally the results in the case
of PHSC signal for arousal (Fig. 6) are very noisy and no clear trends are
visible except for outlying character of a = 2, 5, 6 levels. There is no figure
for valence as results were statistically insignificant (see below). The as-
sumption of non-negativity of the signal is not fulfilled — some results had
negative means (which is an artifact of separating measured signal to phasic
and tonic parts) and thus they were discarded.

In order to statistically infer differences between specific exponents, we
treat valence and arousal levels as dummy variables in the regression analy-
sis and compare coefficient by t-tests treating consecutive levels (i.e., v = 1,
v = 2, etc.) as reference values. We use false discovery rate [69] to ad-
just originally obtained p-values controlling the expected proportion of false
discoveries among the rejected hypotheses. The exponents’ comparison for
selected ∆ (∆ giving the highest significance in Table 1) is shown in Tables
2-4, where we use significance codes to express p-values that allow for an
instant inspection of the differences among the results.
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Statistical analyses back up our previous conclusions. Indeed, in the
case of valence in ZYG (see Table 2-left), the extreme cases (v = 1, 6, 7) are
different from the rest (v = 2, 3, 4, 5), which in turn are indistinguishable.
On the other hand, the differences among v = 1, 6, 7 levels are not significant
which might suggest a parabola-like relation between α exponent and valence
v. In the case of arousal (see Table 2-right) only the most aroused state
(a = 7) differs from a = 1 and a = 4. For valence in COR signal (Table
3-left), the situation is even more obvious — only v = 7 is significantly
different in this set, other points seem to form a stable level (with a single
exception of v = 2). The case of arousal in COR (Table 3-right) resembles
the same variable in ZYG: here a = 6 differs from a = 1 and a = 3. We do
not perform exponents comparison for valence in PHSC because of the lack
of significance in the analysis of covariance (see Table 1). Finally, for arousal
in this signal (Table 4) we have two levels (a = 2, 6) that are significantly
different from the majority of other scores.

5.3. Window size analysis

In the last part of this Section, we show α exponents values for various
sizes of observation window ∆ (Fig. 7). In all plots X-axes are logarithms
of time windows size ∆ and Y-axes correspond to values of the exponent
α(∆). Colors of the lines mark questionnaire scores in the same way as in
the previous graphs. In the case of ZYG and COR signals (Figs. 7a- 7d),
differences between exponents grow as well as do error bars for both valence
and arousal scores. PHSC results (Figs. 7e and 7f) are comparatively noisy
for all considered window sizes. The increase of α standard errors with the
growth of ∆ is probably an effect of smaller number of full windows in each
IAPS-participant pair, which results in a smaller number of values taken to
calculate means in each bin. The number of bins has been kept constant for
every ∆ value.
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(a) ZYG (valence) (b) ZYG (arousal)

Figure 4: Results of temporal fluctuation measured for ZYG by standard
deviations as functions of mean values of this signal during IAPS stim-
ulation. Different colors correspond to specific values of IAPS emotional
(left) valence score, from very negative emotions (v = 1 - light green) to
very positive (v = 7, dark red) ones, (right) arousal score, from very calm
(a = 1 - light green) to very aroused (a = 7, dark red) states. The black line
– all IAPS data aggregated. Results are binned logarithmically in 25 bins
(each point is a logarithm of mean value of σZY G in all time windows with
log10〈ZY G〉 in a given bin) and shifted both vertically and horizontally for
the sake of readability; Insets show values of exponents α, i.e slope of the
plotted lines as a function of a given score (black horizontal line – exponent
for all IAPS data aggregated, dotted black lines α ± σ(α).). Observation
window ∆ = 0.04s was used.
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vij 1 2 3 4 5 6 7 R2

1 ∗ . ∗ . .95
2 ∗ ∗ ∗∗ .96
3 . . ∗ .98
4 ∗ ∗ ∗∗ .98
5 . ∗ ∗ .97
6 ∗ . ∗ ∗ .98
7 ∗∗ ∗ ∗∗ ∗ .98

aij 1 2 3 4 5 6 7 R2

1 . .97
2 .97
3 .98
4 ∗ .98
5 .97
6 .97
7 . ∗ .92

Table 2: Comparison among pairs of α exponents for different values of
valence (left) and arousal (right) in ZYG signal (∆ = 0.04s). Significance
codes are the same as in Table 1. The table is deliberately symmetrical
to enhance comparison feasibility. The last column contains coefficient of
determination R2 values for corresponding fits from Figs. 4a and 4b.

vij 1 2 3 4 5 6 7 R2

1 ∗ .85
2 .82
3 ∗ .86
4 ∗ .90
5 ∗ .87
6 ∗ .84
7 ∗ ∗ ∗ ∗ ∗ .61

aij 1 2 3 4 5 6 7 R2

1 ∗ .76
2 .87
3 . .91
4 .84
5 .87
6 ∗ . .77
7 .75

Table 3: Comparison among pairs of α exponents for different values of
valence (left) and arousal (right) in COR signal (∆ = 0.36s). Significance
codes are the same as in Table 1. The table is deliberately symmetrical
to enhance comparison feasibility. The last column contains coefficient of
determination R2 values for corresponding fits from Figs. 5a and 5b.
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(a) COR (valence) (b) COR (arousal)

Figure 5: Results of temporal fluctuation measured for COR by standard
deviations as functions of mean values of this signal during IAPS stim-
ulation. Different colors correspond to specific values of IAPS emotional
(left) valence score, from very negative emotions (v = 1 - light green) to
very positive (v = 7, dark red) ones, (right) arousal score, from very calm
(a = 1 - light green) to very aroused (a = 7, dark red) states. The black line
– all IAPS data aggregated. Results are binned logarithmically in 25 bins
(each point is a logarithm of mean value of σCOR in all time windows with
log10〈COR〉 in a given bin) and shifted both vertically and horizontally for
the sake of readability; Insets show values of exponents α, i.e slope of the
plotted lines as a function of a given score (black horizontal line – exponent
for all IAPS data aggregated, dotted black lines α ± σ(α).). Observation
window ∆ = 0.36s was used.
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Figure 6: Results of temporal fluctuation measured for PHSC by standard
deviations as functions of mean values of this signal during IAPS stim-
ulation. Different colors correspond to specific values of IAPS emotional
arousal score (for valence no significant differences were found), from very
calm (a = 1 - light green) to very aroused (a = 7, dark red) states. The
black line – all IAPS data aggregated. Results are binned logarithmically
in 25 bins (each point is a logarithm of mean value of σPHSC in all time
windows with log10〈PHSC〉 in a given bin) and shifted both vertically and
horizontally for the sake of readability; Insets show values of exponents α,
i.e slope of the plotted lines as a function of a given score (black horizontal
line – exponent for all IAPS data aggregated, dotted black lines α ± σ(α).
The observation window ∆ = 0.04s was used.
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aij 1 2 3 4 5 6 7 R2

1 .88
2 . . ∗ .85
3 . .92
4 . .94
5 ∗ .76
6 ∗ ∗ .97
7 .78

Table 4: Comparison among pairs of α exponents for different values of
arousal in PHSC signal (∆ = 0.04s). Significance codes are the same as
in Table 1. The table is deliberately symmetrical to enhance comparison
feasibility. The last column contains coefficient of determination R2 values
for corresponding fits from Fig. 6.
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(a) ZYG (valence) (b) ZYG (arousal)

(c) COR (valence) (d) COR (arousal)

(e) PHSC (valence) (f) PHSC (arousal)

Figure 7: Temporal fluctuation scaling exponent α(∆) for (a,b) ZYG,
(c,d) COR, (e,f) PHSC during IAPS stimulation depending on (left) va-
lence score, (right) arousal score (from 1 to 7) as function of window size
∆; black points – all IAPS data aggregated.
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6. Conclusions

In this paper, we investigate scaling of fluctuations in signals of psy-
chophysiological human activity (facial muscles, skin conductance) that were
elicited in response to emotional stimuli. The experiment conducted at Ja-
cobs University with over 60 participants allowed us to test the hypothesis
that emotional states can be recognized by examining the scaling exponent
of the relation between the standard deviation and the mean.

We underline that our primary observation in this study is that of the
existence of Taylor’s scaling in the whole time series, where we observed
scaling exponents α ranging from 0.83 to 1.03. Such values, that are signifi-
cantly higher than α = 0.5 lead us to speculate on the origin of the influence
exerted on participants. As it is well known, the value of α = 0.5 for tem-
poral fluctuations scaling is found for example [14] in systems consisting of
non-interacting elements. Larger values of α are observed when interactions
take place and elements are partially synchronized, and/or there is an ex-
ternal impact acting on the system. The results obtained in this paper can
not exclude any of these scenarios, since muscle fibers are interacting with
one another, and there is also a complex influence of external emotional
signals on these muscles. While the standard assumption in the field of
psychophysiological research on facial EMG [63, 70, 71] has been that of a
quasi-random firing of muscle units (MUs), our results are consistent with
more recent findings [72], suggesting a certain degree of synchronization of
MU firings.

The second part of our analysis was devoted to separating scaling re-
lations for different levels of subjectively reported emotional valence and
arousal that were elicited in participants by exposing them to (emotion-
ally) standardized pictures, as reflected by the questionnaire data. Based
on values of scaling exponents obtained by grouping the series with simi-
lar emotional scoring, we are able to distinguish series connected to extreme
emotions. Interestingly, the results for facial activity (zygomaticus major, re-
sponsible for smiling, and corrugator supercilii that controls frowning) show
that time series for very positive and highly aroused levels are described by
low (in comparison to those for different levels) scaling exponents. We spec-
ulate that this kind of emotional impact leads to a decrease of the coherent
character of the motion of face muscles, which would lower the value of α
exponent.

In the last part of our study, we examine closely the issue of the size
of the time window and its influence on the scaling exponent. We observe
high variability and almost a monotonic growth of α with increasing length
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of the time window for the smiling muscle, regardless of the valence and
arousal level. Such a behavior can be consistent with the concept of internal
synchronization of muscle fibers that should be more easily observed at
longer time scales. A similar influence of time window length was reported
for volumes of transactions for stocks at NASDAQ, NYSE and Chinese stock
markets [14, 30]. In the case of corrugator supercilii, we deal with an opposite
situation of exponent value decay with growing ∆ that might be related
to fundamental differences in the interplay between short-term bursts of
activity at this site (brief episodes of frowning), and more long-term shifts
in the overall tension found at this site for some subjects.

Our results might contribute to the development of novel approaches
to fEMG and EDA signal analysis but still require additional analyses and
replication. In future research, we plan to use various detrending algorithms
to remove possible effects of data non-stationarity as well to combine the
Taylor’s studies with the Hurst exponent analysis [14].
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