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We investigate the non-equilibrium dynamics of a driven-dissipative spin ensemble with compet-
ing power-law interactions. We demonstrate that dynamical phase transitions as well as bistabilities
can emerge for asymptotic van der Waals interactions, but critically rely on the presence of a slower
decaying potential-core. Upon introducing random particle motion, we show that a finite gas tem-
perature can drive a phase transition with regards to the spin degree of freedom and eventually leads
to mean-field behaviour in the high-temperature limit. Our work reconciles contrasting observations
of recent experiments with Rydberg atoms in the cold-gas and hot-vapour domain, and introduces
an efficient theoretical framework in the latter regime.
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The idea that matter rapidly relaxes towards a thermal
ensemble [1] has led to a profound understanding of many
macroscopic phenomena within the powerful framework
of equilibrium statistical physics. More recently, the ex-
perimental success in realizing synthetic many-body sys-
tems with controllable dissipation has motivated broad
explorations of non-thermal steady states [2]. Examples
include cold atoms in cavities [3], semiconductor exciton-
polariton condensates [4], trapped ion crystals [5] and
laser-driven Rydberg gases [6]. The interplay of coherent
and dissipative dynamics in such driven-dissipative sys-
tems generates non-equilibrium phases and transitions
that may have no equilibrium equivalent. An evident
example of such distinct behaviour is the emergence of
multiple steady states.

Signatures of bistable many-body phases and hys-
teretic behaviour are reported in experiments on cold
[7] and thermal [8] Rydberg gases, which offer control-
lable particle interactions, dissipation and coherent driv-
ing. While the basic physics suggests a conceptually
simple description in terms of a dissipative spin ensem-
ble [9–21], understanding its many-body dynamics has
proved challenging. Lattice mean field (MF) descriptions
[12, 14], for instance, relate cold atom experiments [7]
to the formation of a bistable steady state, while vari-
ational calculations [17, 18] suggest an interpretation in
terms of a first order phase transition. On the other
hand, MF predictions agree with observations in ther-
mal vapour experiments [8, 14], but are in conflict with
field-theoretical [19] and exact numerical results of one-
dimensional spin chains [13]. In two dimensions, MF and
variational approaches predict the emergence of antifer-
romagnetic phases at strong dissipation [9, 12, 18], con-
tradicting corresponding numerical simulations [20].

In this Letter we address this problem through numer-
ical studies of the driven-dissipative dynamics in Ising-
spin ensembles with power-law interactions. We point
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FIG. 1. (color online) (a) An ensemble of interact-
ing two-level systems is driven coherently with a coupling
strength Ω and frequency detuning ∆ in the presence of de-
cay and de-phasing with rates Γ and γ, respectively. (b)
The potential eq.(1) (solid line) interpolates between different
power-laws and accurately describes the actual interaction be-
tween excited Rubidium atoms (dots), shown exemplarily for
Rb(70S1/2) atoms. (d) Hysteresis with bistable steady states,
whose typical spatial configurations and correlation functions
are illustrated in panels (c) and (e). Blue spheres show ex-
cited particles, while the opacity of the red dots indicates the
excitation rate γ↑ of particles in state |g〉.

out the importance of fluctuations for the topology of
the non-equilibrium phase diagram and draw a direct
connection to the form of the spin-spin interactions. In
particular, bistability cannot occur under the common
assumption of pure van der Waals (vdW) interactions,
but instead requires a short-distance dipolar potential-
core. Such a short-distance behaviour is characteristic for
Rydberg atoms [Fig.1(b)], but typically neglected in the-
oretical models. Upon incorporating particle motion we
reveal a temperature-driven phase transition to bistable
non-equilibrium steady states. In the high-temperature
limit we demonstrate a cross-over to MF-behaviour, of-
fering an explanation of thermal-vapour experiments [8].
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FIG. 2. (color online) (a,b) Excitation spectrum for ρ = 10
and Ω = 1, 0.5 and 0.25 (from top to bottom), obtained
from positive (red solid line) and negative (blue dashed line)
frequency scans as indicated by the arrows. (c,d) Distribution
of potential fluctuations, δ, for parameters indicated by the
dots in panels (a,b).

We consider a random ensemble of N two-level systems
with states |gi〉 and |ei〉 (i = 1, ..., N) coupled by a laser
field with a Rabi frequency Ω and frequency detuning
∆ [Fig.1(a)]. The associated unitary dynamics is gov-
erned by the Hamiltonian Ĥ = Ω

2

∑
i (|ei〉〈gi|+ |gi〉〈ei|)−

∆
∑
i |ei〉〈ei|+

∑
i<j V (rij)|eiej〉〈eiej |, where V (rij) de-

notes the interaction potential of two particles at posi-
tions ri and rj and rij = |rj − ri|. The N -body density
matrix, ρ̂, of the system evolves according to the master
equation ˙̂ρ = −i[Ĥ, ρ̂] + L[ρ̂]. The Lindblad superoper-

ator L[ρ̂] =
∑
i,α(Li,αρ̂L

†
i,α − 1

2L
†
i,αLi,αρ̂ − 1

2 ρ̂L
†
i,αLi,α)

describes one-body decoherence processes. We account
for decay of the excited state (Li,0 =

√
Γ|gi〉〈ei|) with

a rate Γ and de-phasing of the laser-driven transition
(Li,1 =

√
γ|ei〉〈ei|) with a rate γ.

From now on we use dimensionless quantities, scaling
time by Γ−1 and length by the critical radius rb, defined
as the particle distance at which V (rb) = Γ + γ. We
consider a potential [22]

V (r̄)

Γ + γ
=

1−
√

1 + ξ6/r̄6

1−
√

1 + ξ6
, (1)

which features a dipolar potential core (V ∼ 1/r3) be-
low a distance rvdW and vdW interactions (V ∼ 1/r6)
for r > rvdW. Here r̄ = r/rb and ξ = rvdW/rb denotes
the vdW distance relative to the blockade radius. Since
rb defines the typical distance between Rydberg atoms
limited by the excitation blockade, the value of ξ char-
acterizes the importances of dipolar interactions. Eq.(1)
reproduces the characteristics of Rydberg atom interac-
tions [6], as illustrated in Fig.1(b) by a comparison to nu-
merical results [23] for nS1/2 states of Rubidium atoms.

Provided that Ω/(Γ + γ) � 1 one can adiabati-
cally eliminate the dynamics of the off-diagonal density-
matrix elements and obtain a closed evolution equa-
tion for the diagonal ρS,S [24–27]. The matrix elements
ρS,S describe the population of N -body configurations

S ≡ (s1, . . . , sN ). Here, si is an effective spin vari-
able denoting the ground (si = 0) and excited (si = 1)
state of the ith particle. Introducing the state vector
Si ≡ (s1, . . . , 1 − si, . . . , sN ), the resulting master equa-
tion can be written as

ρ̇S,S = −
∑
i

[
siγ

(i)
↓ (S) + (1− si)γ(i)

↑ (S)
]
ρS,S

+
∑
i

[
siγ

(i)
↑ (S) + (1− si)γ(i)

↓ (S)
]
ρSi,Si

, (2)

where the single-body (de)excitation rates are given by

γ
(i)
↑ ≡ Ω̄2/(1 + 4∆̄i(S)2) and γ

(i)
↓ ≡ 1 + γ

(i)
↑ . The

rates are determined by two parameters: the scaled
Rabi frequency Ω̄ = Ω/

√
Γ(Γ + γ) and the scaled fre-

quency detuning ∆̄i(S) = ∆i(S)/(Γ+γ). The latter con-
sists of the laser detuning ∆ and the interaction-induced
level shifts from nearby excited particles, ∆i(S) = ∆ −∑
j 6=i V (rij)sj [26]. Exact quantum-trajectory simula-

tions for small systems [28] established the accuracy of
this approach for Ω � Γ + γ. Note that this condition
does not restrict our parameters, and permits Ω̄ > 1 if
γ > Γ, which is often the case in experiments [7].

The obtained effective master equation can be solved
via kinetic Monte Carlo (MC) sampling [29]. To this end,
we randomly sample N particle positions from a cubic
volume with periodic boundary conditions and an edge
length L, chosen to be much larger than rb and rvdW.
The corresponding dimensionless density ρ = Nr3

b/L
3

defines the number of particles within a given blockade
volume r3

b. To calculate the excitation spectrum, we per-
form positive and negative scans of the detuning ∆̄ with
a corresponding chirp rate ±κ. Observables are calcu-
lated from an ensemble average over many realizations
of particle disorder configurations.

We find two distinct steady states with a low and a high
excitation density ρe. The low-density phase corresponds
to a dilute gas of excited pairs [Fig.1(e)], formed by res-
onant sequential excitation of particles at a distance r∆

for which the potential V (r∆) = ∆ compensates the de-
tuning. The correlations in high-density phase [Fig.1(c)]
do not feature strong ordering on the length scale r∆ and
resemble a liquid of repulsive excitations.

To investigate the stability of these two phases, we
calculate the excitation spectrum for negative and pos-
itive scans of the detuning. For a proper choice of pa-
rameters, both phases are indeed found to coexist over
a finite range of ∆̄ where the excitation density shows
hysteretic behaviour, showing qualitative resemblance to
MF predictions [11]. However, in contrast to MF expec-
tations [14], we find no evidence of bistability for pure
vdW interactions (ξ → 0). This is illustrated in Fig.2(a)
and (b) where we show typical excitation spectra for
small and large values of the vdW radius. For small ξ,
the excitation blockade prevents particles from explor-
ing the dipolar region of the interaction potential and
one finds a smooth resonance curve with a unique steady
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FIG. 3. (color online) Phase diagram for ρ = 10 and
Ω̄ = 1, showing a bistable region (grey area) and first or-
der phase transition (dashed green line) between a low- and
high-ρe phase which ends in a critical point (open circle) at
1.7 < ξ < 1.8. (b-d) Excitation density from a single stochas-
tic trajectory. The blue solid and red dashed lines show the
average excitation density for different scan directions, while
the color shading indicates the corresponding probability dis-
tribution of ρe.

state. However, once the short-distance 1/r3-behaviour
of V (r) starts to become significant the system develops
bistable steady states beyond a critical driving strength
[Fig.2(b)].

This behaviour can be understood by considering the
effect of the potential form on energy level fluctuations.
Spontaneous decay inevitably causes |e〉 → |g〉 transi-
tions and thereby temporal fluctuations of the corre-
sponding interaction-induced level shifts ∆i. For ξ . 1,
the total level shift, ∆i, of an excited particle typically
results from a small number of excitations in close prox-
imity. Hence, a single decay event will cause a substantial
change of ∆i and disturb the excitation dynamics. The
resulting large density fluctuations [Fig.3(b)] prevent the
formation of two distinct phases. For large ξ, a large
number of excitations within a distance . ξ collectively
contribute to ∆i, such that potential fluctuations are
greatly reduced. To validate this picture, we have traced
the microscopic steady state dynamics for two different
values of ξ and otherwise identical parameters and aver-
age densities, ρe [dots in Fig.2(a) and (b)]. By recording
the maximum change, δ, of the level shift of excited par-
ticles due to a de-excitation, we construct the spectrum
of potential fluctuations P (δ) from the long-time micro-
scopic steady state dynamics. As seen in Fig.2(c), one in-
deed finds a broad distribution for ξ = 0.5 with extended
tails well beyond the average potential shift 〈V 〉. On the
contrary, for ξ = 2.5 [Fig.2(d)] P (δ) is sharply peaked
around small δ � 〈V 〉 and drops rapidly for larger val-
ues. It is this strong suppression of fluctuations [Fig.3(d)]
that facilitates the formation of bistable steady states in
the limit of large ξ.

The microscopic steady state dynamics provides fur-

ther insights about the transition between these two
regimes. The non-equilibrium phase diagram shown in
Fig.3(a) reveals a finite region of bistability at large ξ
which ultimately closes upon decreasing ξ. In between
these two limits, the low- and high-density phases, co-
existing as long-lived metastable states, are connected
by a first order phase transition over a finite range of
ξ. This transition, generally obscured by the ensemble
average over random particle configurations, is revealed
by the counting statistics of a single N -body trajec-
tory, as demonstrated in Fig.3(b)-(d) where we show the
excitation-density distribution for a single particle con-
figuration at a low chirp rate κ = 10−8. For 1.8 . ξ . 2
both phases dynamically coexist and yield a persistent
bimodal counting statistics. The ensemble average of the
corresponding transition point yields the first order tran-
sition line shown in Fig.3(a) which ends in a critical point
around 1.7 < ξ < 1.8.

For a broader characterization of the conditions lead-
ing to bistability we have calculated the asymptotic hys-
teresis area A0 by extrapolating A(κ) to the limit κ→ 0
[inset of Fig.4(b)]. Upon changing ξ, A0 indicates a con-
tinuous transition with a critical exponent ∼ 1 [Fig.4(b)].
The critical ξ expectedly decreases with particle density
[Fig.4(a)]. Yet, the apparent saturation of the transition
line at large densities provides further indication for the
absence of bistable behaviour for systems with dominant
vdW interactions (ξ < 1).

We have also investigated the average switching time
between the two steady states and found the expected
power-law divergence upon approaching the transition
points in Fig.3(a). Yet, the corresponding critical ex-
ponents strongly depend on ξ, which stands in contrast
to thermal-vapour experiments [8] that observed a uni-
versal MF exponent of 0.5 [30]. To resolve this issue we
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FIG. 4. (color online) (a) ξ − ρ phase diagram for Ω̄ = 1,
obtained from MC simulations of frozen particles (solid cir-
cles) and eaMF calculations (open circles). (b) shows the
static hysteresis area, A0, from the frozen-gas simulations for
two different densities. The inset illustrates the typical de-
pendence of A on the chirp rate κ for ρ = 10 and ξ = 1.7
(circles), 2.1 (squares) and 2.5 (diamonds). The lines show a
fit to A = A0 + aκ−b, with free parameters A0, a and b.
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FIG. 5. (color online) (a) Hysteresis area as a function of
thermal velocity for Ω̄ = 0.8, ξ = 2, ρ = 10, L = 12 and κ =
2.2 · 10−3. The data indicates a continuous phase transition
around vth ≈ 0.4 and approaches the eaMF prediction shown
by the grey horizontal bar. Statistical errors correspond to
the symbol size and the height of the bar. The color code in
(b) shows ρ̇e from the eaMF approach. The numerical high-
temperature simulations (vth = 20) closely follow the bistable
eaMF steady state (ρ̇e = 0) in contrast to the monostable
behavior at vth = 0.

now consider thermal particle motion which diminishes
correlations, and thereby alters the spectrum of fluctua-
tions. For simplicity we neglect inter-particle forces and
adopt an ideal gas description with an equilibrium veloc-
ity distribution and dimensionless thermal velocity vth,
measured in units of rbΓ. Tracking the evolving particle
positions, now requires fixed-time-step MC simulations
[29] of the spin dynamics.

As shown in Fig.5(a), thermal motion drives a continu-
ous phase transition to bistability. At high temperatures
the hysteresis area saturates to a finite value that can be
understood within the following MF treatment. Assum-
ing that rapid thermal motion completely randomizes any
spatial excitation structures we can neglect correlations
in eq.(2) to obtain a closed equation, ρ̇e = γ̄↑−(1+2γ̄↑)ρe,
for the average excitation density. Averaging the micro-

scopic rates γ
(i)
↑ over the uncorrelated ensemble yields a

closed expression for the MF excitation rate

γ̄↑ =
Ω̄2

2

∫
dk e−k(1/2+Re[f(k)]) cos (k(∆ + Im[f(k)])) ,

(3)
where f(k) = k−1ρe

∫
1 − eikU(r)dr can be interpreted

as the interaction induced line shift [Im(f)] and broad-
ening [Re(f)]. As shown in Figs.5(a) and (b), our high-
temperature results indeed approach this ensemble av-
eraged mean-field (eaMF) limit. In contrast to corre-
sponding lattice MF models [14, 17, 18], the functional
ρe-dependence of γ̄↑ depends strongly on the shape of the
interaction potential. In particular, for ξ = 0 one finds
Re(f) = Im(f) ∝ ρe

√
k, which implies that no phase

transition can occur for pure vdW interactions. The nu-
merically obtained eaMF transition line (Fig.4) demon-
strates that this remains true for finite ξ < 1.

Finally, we put our findings into the context of recent
experiments. Ref. [7] reports bimodal counting statis-

tics of Rydberg excitations in a cold gas of Rb atoms
excited to 70S1/2 states. The quoted laser linewidth
γ/2π ≈ 500 kHz and Rabi frequencies Ω < (Γ + γ) are
within the regime of validity of the present theory. The
vdW radius of ξ ≈ 0.3 implies that the conditions of
[7] do not promote bistable steady states. Bimodality
at short excitation times, τ , can, however, result from
transient relaxation effects [28], while for larger τ dipo-
lar state-mixing induced by black-body radiation [31, 32]
on a timescale τbbr < τ [7, 33] significantly affects the gas
dynamics as observed in other experiments [34–36]. Note
that the temperature corresponding to a thermal velocity
of rbΓ, for typical values of rb ≈ 11µm and Γ−1 ≈ 200µs
[7], can be as low as ∼ 30µK such that atom motion can
be a factor even in cold-gas experiments. Consequently,
thermal gases [8, 37] are deep in the high-temperature
limit, vth � 1, and their measured excitation dynamics
can be understood within the outlined eaMF approach.
Importantly, the thermally activated transition to MF
behaviour explains the emergence of the dynamical MF
exponents [14, 30] observed in [8].

In summary, we have investigated driven dissipative
spin ensembles with competing power-law interactions.
The steady-state of our Master equation (2) shares the
same MF limit as that [9, 14] obtained from the exact
quantum evolution. Yet it accounts for classical correla-
tions and fluctuations which turn out important for the
non-equilibrium physics of such systems. As a striking
consequence, the specific shape of the interaction poten-
tial was found to play a key role for the non-equilibrium
phase diagram despite its general finite-range nature,
dropping rapidly as ∼ 1/r6. The spatial extent of the
inner dipolar potential can be tuned by external static
[38] or microwave [39] fields, which should permit explo-
rations of the predicted phase diagram (Figs. 3 and 4)
in future experiments. We showed that thermal particle
motion can drive a transition to bistablity and ultimately
causes MF behaviour to emerge. The non-equilibrium
phase transition takes place at a surprisingly low temper-
atures in the µK- to mK-domain, which should enable its
observation in cold atom experiments. The established
high-temperature MF limit (eaMF) provides a consis-
tent explanation of recent thermal-vapour experiments
[8] and, permits future analysis of multi-level atoms and
more compex interactions that may occur in such systems
[8, 37].

We thank Rick van Bijnen, Simon Gardiner, Hen-
drik Weimer and Igor Lesanovsky for valuable discus-
sions. This work was supported by the EU through the
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and also by Durham University and the UK EPSRC
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