
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tapx20

Download by: [Max Planck Society] Date: 08 August 2016, At: 01:55

Advances in Physics: X

ISSN: (Print) 2374-6149 (Online) Journal homepage: http://www.tandfonline.com/loi/tapx20

Josephson plasmonics in layered superconductors

Y. Laplace & A. Cavalleri

To cite this article: Y. Laplace & A. Cavalleri (2016): Josephson plasmonics in layered
superconductors, Advances in Physics: X, DOI: 10.1080/23746149.2016.1212671

To link to this article:  http://dx.doi.org/10.1080/23746149.2016.1212671

© 2016 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 02 Aug 2016.

Submit your article to this journal 

Article views: 43

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tapx20
http://www.tandfonline.com/loi/tapx20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/23746149.2016.1212671
http://dx.doi.org/10.1080/23746149.2016.1212671
http://www.tandfonline.com/action/authorSubmission?journalCode=tapx20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tapx20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/23746149.2016.1212671
http://www.tandfonline.com/doi/mlt/10.1080/23746149.2016.1212671
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2016.1212671&domain=pdf&date_stamp=2016-08-02
http://crossmark.crossref.org/dialog/?doi=10.1080/23746149.2016.1212671&domain=pdf&date_stamp=2016-08-02


Advances in Physics: X, ﻿2016
http://dx.doi.org/10.1080/23746149.2016.1212671

REVIEW ARTICLE

Josephson plasmonics in layered superconductors

Y. Laplacea and A. Cavalleria,b

aMax Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany; bDepartment of 
Physics, Clarendon Laboratory, Oxford University, Oxford, UK

ABSTRACT
We review the optical physics of Josephson plasmons in cuprate 
superconductors. These coherent charge modes arise from 
tunneling of the superfluid between superconducting planes 
and exhibit strong nonlinearities and quantum coherent 
dynamics at THz frequencies. We summarize early transport 
and microwave experiments in Bi2Sr2CaCu2O8+δ (BSCCO) and 
discuss more recent work performed in La2−xSrxCuO4 (LSCO) 
and La2−xBaxCuO4 (LBCO) using nonlinear THz techniques. We 
cover THz-driven oscillations between superconducting and 
resistive states, optical excitation of solitonic breathers, and 
the parametric amplification of Josephson plasma waves. The 
last part of the review discusses some new research directions, 
including cooling of superconducting phase fluctuations with 
lasers and optical cavity control techniques.

1.  Introduction

The superconducting transition involves the formation of electron pairs, which 
condense below a critical transition temperature (Tc) and determine DC and 
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2    Y. Laplace and A. Cavalleri

low-frequency AC transport. A single condensate wavefunction is reflected in a 
complex order parameter Δ(x, y, z, t)ei�(x,y,z,t), with an amplitude Δ

(
x, y, z, t

)
 and a 

phase χ(x, y, z, t). Due to the breaking of gauge symmetry that leads to supercon-
ductivity, this order parameter exhibits a rigid phase, which resists deformation 
in space and time.

At equilibrium and without external perturbation, energy is minimized 
if the order parameter amplitude and phase are constant in space and time 
(Δ

(
x, y, z, t

)
= Δ and �

(
x, y, z, t

)
= 0). Perturbative excitations of the order 

parameter around this equilibrium can be described as distortions of the ampli-
tude Δ (sometimes referred to as the Higgs amplitude mode of the order param-
eter) and of the phase (Goldstone modes of the superconductor).

Phase modes can be understood as longitudinal plasma excitations of the 2e 
Cooper pairs, which are coupled through the long range Coulomb interaction. 
As a consequence of Coulomb interaction, these modes acquire a finite excitation 
frequency for long wavelengths. The frequency of the plasma modes is related to 
the superfluid density �s as �2

p ∝ �s. In general, both uncondensed normal carriers 
and the superconducting fluid participate to the plasma response in conventional 
superconductors, and signatures of the low-density superconducting plasma are 
difficult to detect. However, in layered superconductors, like high-Tc cuprates 
[1], normal-state transport is incoherent (insulating) along the c-axis, so that 
no metallic plasmon is visible in that direction. Hence, when superconducting 
tunneling sets in for T < Tc, distinctive features appear, reflecting the supercon-
ducting plasma alone.

An interlayer superconducting plasma mode is for example observed at GHz–
THz frequencies for most cuprates (see Figure 1). The frequency is low because 
the superfluid density is reduced by the tunneling. As a consequence, the out-of-
plane rigidity of the phase is small and susceptible to phase fluctuations of the 
order parameter [2,3].

Pioneering experiments have detected signatures of Josephson tunneling in cur-
rent–voltage (I–V) measurements along the c-axis of Bi2Sr2CaCu2O8+δ (BSCCO) 

Figure 1. Infrared reflectivity spectra of the optimally doped La2−xSrxCuO4 for x = 0.16 (Tc = 34 K) 
with polarization perpendicular to the CuO2 planes (E//c) for different temperatures above and 
below Tc. Reprinted with permission from Tamasaku et al. [4]. Copyright 1992 by the American 
Physical Society.
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Advances in Physics: X    3

and other high-Tc cuprates [5,6]. Especially important in these early experiments 
is the observation of multiple branches in the I–V curves, characteristic of the 
response of a stack of Josephson junctions connected in series (see Figure 2). 
Other aspects of the Josephson effect have also become observable, including 
microwave emission via the AC–Josephson effect, Shapiro steps, the Fraunhofer-
type dependence of the Josephson critical current in magnetic fields, and macro-
scopic quantum tunneling of the Josephson phase [7,8]. Hence, high-Tc cuprates 
should be considered as two-dimensional layered materials with superconducting 
CuO2 planes which are weakly coupled via Josephson tunneling through insu-
lating barriers. The superconducting order parameter is appropriately described 
if we consider a constant order parameter amplitude throughout the material 
Δ
(
x, y, z, t

)
= Δ and a set of phases 

{
�n(x, y, t)

}
n=1,…,N

, in which each phase 
�n

(
x, y, t

)
 describes the phase difference of the Josephson junction made of two 

neighboring superconducting layers [9].
Let us recall the physics of a single Josephson junction, made up of two bulk 

superconductors separated by a thin insulator (see Figure 2(a)). The gauge invar-

iant phase difference is defined as 𝜑 = 𝜒2 − 𝜒1 +
2e

�

2

∫
1

A⃗.��⃗dl, with χ1 and χ2 denot-
ing the phases of the order parameters in each superconductor and A⃗ the vector 
potential. The two Josephson relations are: �t� =

2e

ℏ
V (t) and I = Ic sin (�), with 

V(t) representing the voltage drop between the two superconductors and Ic the 
critical current of the junction.

In long Josephson junctions, where the spatial dependence of the phase in the 
directions perpendicular to the junction has to be taken into account, the two 
Josephson relations are supplemented with Maxwell’s equations, and, in one-di-
mension, �(x, t) follows a sine-Gordon equation [10]:

 

(1)
1

�2
p

�2�

�t2
− �2

J

�2�

�x2
+ sin(�) = 0

Figure 2. (a) A conventional Josephson junction, where χ1,2 are the phases of the superconducting 
order parameter in each superconductor (SC = superconductor; INS = insulating barrier). Sketch 
of the I–V characteristic of an under-damped Josephson junction. (b) Unit cell of the high-Tc 
cuprate Bi2Sr2CaCu2O8+δ (BSCCO) with the CuO2 planes shown as blue layers. Experimental I–V 
characteristic of a bulk BSCCO sample below Tc. Reprinted with permission from Kleiner et al. [5]. 
Copyright 1992 by the American Physical Society.
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4    Y. Laplace and A. Cavalleri

Here, �J is the Josephson penetration depth, ωp is the Josephson plasma resonance 
(JPR) frequency, and c0 = �J�p is the Swihart velocity.

For a stack of intrinsic Josephson junctions (IJJ) composed of N superconduct-
ing layers, a similar derivation can be performed and the dynamics of the phases {
�n(x, t)

}
n=1,…,N−1

 is described by a set of coupled sine-Gordon equations with 
appropriate boundary conditions [11–14]. The coupling between different junc-
tions is inductive and arises from the screening of the in-plane magnetic field by 
the superconducting currents. The in-plane magnetic screening length in cuprates 
(e.g. �ab ∼ 100 nm in BSCCO) is notably larger than the thickness of a single CuO2 
plane (Å scale); hence, in a single junction, the magnetic flux is never screened, 
with field lines extending over a large number of unit cells.

A special case occurs when the Josephson phase does not depend on space 
within the ab-plane and �n(x, t) = �n(t). This happens for instance when no 
magnetic field is present within the stack and/or if the dimensions of the stack in 
the ab-plane are smaller than the magnetic penetration depth. In this case, the 
superconducting phase excitations are longitudinal, i.e. the electric field lies along 
the direction of propagation of the wave. Coupling between the junctions arises 
in this context due to charging of the superconducting layers, i.e. is capacitive.

1.1.  Zero frequency: Meissner effect and the Josephson vortex lattice

If one ignores time dependence, Equation (1) reads:
 

When a magnetic field is applied to the junction, this equation describes the 
screening of the magnetic field by the superconducting Josephson currents, as 
detailed below.

In the short junction limit (L ≪ 𝜆J, L being the lateral dimension of the junc-
tion), where a magnetic flux can thread the junction, the Fraunhofer-type depend-
ence of the Josephson critical current is observed, both for a single Josephson 
junction and for a stack of IJJ [6,15].

For long junctions (L≳𝜆J) and small applied fields (<<Hc1), where sin (�) ∼ �, 
the solution takes the form � ∼ e−x∕�J. In this case, the applied magnetic field is 
expelled from the inside of the junction and directed toward its edges, i.e. it is 
effectively screened by the Josephson currents.

For large fields (>Hc1), Equation (2) describes the magnetic flux penetration 
in the form of Josephson vortices, in which the Josephson currents are positive 
and negative as the phase sweeps [0, 2�] intervals, driving a tunneling current in a 
vortex loop. In the case of the stack of IJJ, Josephson vortices spread over more than 
one junction, and inductive coupling arranges the Josephson vortices in a lattice. 
Figure 3 shows a Josephson vortex in a conventional Josephson junction and a 

(2)−�2
J

�2�

�x2
+ sin(�) = 0
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Advances in Physics: X    5

Josephson vortex lattice in the case of a stack of IJJ. Contrary to the case of in-plane 
Abrikosov vortices (for magnetic fields applied along the c-axis), Josephson vor-
tices do not possess a ‘normal core’, as they are centered in the insulating barrier 
(for further review on vortices in high-Tc superconductors, see [16] and [17]).

1.2.  Finite frequency: emission of THz radiation

One of the most interesting consequences of the physics discussed above is the 
emission of THz radiation for the application of a DC current (for further review, 
see [18], [19] and references therein). Radiation of electromagnetic waves is rooted 
in the AC Josephson effect described by the nonlinear RLC circuit model of the 
Josephson junction (Figure 4) [10].

By taking Equation (1) in the short junction limit (i.e. removing the spatial 
dependence), under the application of a DC bias current I and by adding a damp-
ing term β, we obtain:

 

(3)
1

�2
p

�2�

�t2
+ �

��

�t
+ sin(�) =

I

Ic

Figure 3. (a) Sketch of a Josephson vortex in a long Josephson junction induced by a magnetic 
field H. The spatial dependence of the Josephson phase �(x) is shown as a dashed line. Red 
arrows indicate the superconducting current flow. (b) Sketch of a triangular Josephson vortex 
lattice in high-Tc superconductors.

Figure 4. Equivalent circuit model of a short Josephson junction.
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6    Y. Laplace and A. Cavalleri

In this model, the junction is described by a nonlinear inductance L (which 
describes the Josephson coupling between the superconducting layers), a capac-
itance C (the capacitive coupling between the superconducting layers), and a 
resistance R (due to the finite conductivity of the non-condensed quasi-particles), 
with �p = 1∕

√
LC and β = L/R.

Below the critical current I < Ic, this equation has a solution �(t) = �0 which 
is time independent. Physically, the junction is in the zero resistance state, where 
superconducting carriers ‘short’ the normal carriers.

When the junction has been biased above its critical current Ic, oscillations 
of the tunneling current appear. The junction develops a finite voltage Vdc for 
which, according to the first Josephson relation, the phase evolves as �(t) = 2e

ℏ
Vdct. 

Consequently, the Josephson current I(t) = Icsin
(

2e

ℏ
Vdct

)
 oscillates at a frequency 

� =
2e

h
Vdc and radiation is emitted.

However, for emission of intense THz radiation in stacks of IJJ, all phases must 
be synchronized, a requirement that is not always easily fulfilled [20–27].

To describe synchronization and strong THz emission [28] (see Figure 5), we 
take the continuum limit of the coupled sine-Gordon equations and we replace 
the discrete index of the junction n by the continuous variable z (corresponding 
to the direction of the c-axis) so that 

{
�n(x, t)

}
n=1,…,N

→ �(x, z, t). In the linear 
regime (sin (�) ∼ �), this yields [29]:

 

where �ab and �c are the magnetic penetration depths for screening currents 
running within the CuO2 layers and along the c-axis, respectively. Accordingly, 
propagating solutions of the type � ∼ ei(kxx+kzz−�t), i.e. Josephson plasma waves 
(JPW), satisfy the following dispersion relation: �2 = �2

p

(
1 +

�2
c k

2
x

1+�2
abk

2
z

)
.

(4)
(
1 − �2

ab

�2

�z2

)(
1

�2
p

�2�

�t2
+ �

)
− �2

c

�2�

�x2
= 0

Figure 5. BSCCO mesa used for THz emission via the AC Josephson effect (left) and I–V characteristic 
of the BSCCO mesa superimposed with the corresponding radiated power (right). From Ozyuzer 
et al. [28]. Reprinted with permission from AAAS.
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Advances in Physics: X    7

One finds that JPW have a frequency that depends not only on their propaga-
tion vector kx along the junctions, but also on the out-of-plane propagation vector 
kz. Figure 6 represents two of such modes for a stack of IJJ with lateral size L: the 
in-phase JPW (kx = π/L, kz = 0) and the out-of phase JPW (kx = π/L, kz =

�

d
, with 

d being the interlayer distance).
Because of their different resonant frequencies, the voltage drop Vdc across 

the junctions can be chosen so as to excite the in-phase JPW mode only with 
the resonance condition �in−phase =

2e

h
Vdc. This mode, in turn, is the one that 

emits efficiently THz radiation because the phases of the whole stack of IJJ are 
synchronized.

1.3.  Optical excitation of Josephson plasma modes

To describe the optical properties of the IJJ, we use the same continuum descrip-
tion given previously. We consider optical fields at k ≈ 0, which cannot excite a 
short wavelength JPW mode (Figure 6(a)). For radiation at normal incidence, we 
have kz = 0 so that the different Josephson phases of the stack are excited in-phase 
(�n(x, t) = �(x, t) for every n) and their dynamics behave as in the case of a single 
Josephson junction in the limit of �J → �c [30]:

The first two terms of Equation (5) describe wave propagation at velocity 
�p ∗ �c = c∕

√
�∞, that is, at the speed of light in the material (�∞ is the dielectric 

constant of the insulating barrier at THz frequencies). Also, for plane waves of 
the type � ∼ ei(kxx−�t), the dispersion relation takes the form : k2x =

�∞

c2

(
�2 − �2

p

)
 

For ω < ωp, the wave vector kx becomes imaginary and wave propagation inside 

(5)
1

�2
p

�2�

�t2
− �2

c

�2�

�x2
+ � = 0

Figure 6. Two different JPW modes in a stack of IJJ. (a) out-of-phase JPW with alternating phases 
of the waves from junction to junction. (b) in-phase JPW. Arrows indicate electric fields at the 
edge of the stack. Electric fields corresponding to the out-of-phase JPW mode cancel each other, 
whereas they add up to produce intense THz radiation in the case of the in-phase JPW mode 
(adapted from Ozyuzer et al. [28]).
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8    Y. Laplace and A. Cavalleri

the material is forbidden due to screening. For ω > ωp, JPW can propagate inside 
the material.

We display below (Figure 7) the calculated space- and time-dependent phase 
oscillations excited by a single-cycle THz pulse [31]. The evolution of the Josephson 
phase �(x, t) is shown on a color scale as a function of time t and depth x inside 
the material. The THz pulse after reflection, displaying oscillations at frequency 
ωp that are absent for T > Tc, is shown in the right panel of Figure 7.

The optical properties can be extracted from the THz time trace. Below Tc, the 
appearance of a narrow peak (delta function) in the real part of the conductivity 
�1(�) implies that �2(�) diverges as ∼ �2

p∕� ∝ �s∕� (ρs is the superfluid density). 
The dielectric permittivity ε1 (ω) evolves from positive to negative values when 
the temperature T crosses Tc.

Finally, the loss function L(ω) = −Im(1/ε(ω)), which peaks where ε1(ω) crosses 
zero, displays a Lorentzian resonance centered at ω = ωp, with a width that reflects 
damping and inhomogeneities in the Josephson coupling that can be either static 
or dynamic [32].

Additional Josephson plasma excitations exist in multilayer cuprates (e.g. in 
BSCCO, YBa2Cu3O7−δ (YBCO), or Hg-based cuprates) as they possess more than 

Figure 7. Left: simulation of the Equation (5) with appropriate boundary conditions for the time-
dependent electromagnetic field at the surface of the superconductor Dienst et al. [30]. The color 
plot shows the Josephson phase as a function of time t and depth x inside the superconductor 
(x = 0 represents the surface boundary). The bottom panel is the corresponding time evolution of 
the Josephson phase for a line cut close to the surface boundary. Right: c-axis optical properties 
associated with the JPR phenomenon as probed with THz time domain spectroscopy above Tc 
(black solid curves) and below Tc (red curves).
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Advances in Physics: X    9

one superconducting layer per unit cell. The dynamics of the intralayer excitations 
can be probed at mid-infrared frequencies and the optical nature of the different 
modes can be classified as either Raman or infrared active [33–37]. Examples of 
such intralayer excitations are shown in Figure 8 in the case of bilayer and trilayer 
cuprates.

Interestingly, the high-frequency intrabilayer Josephson plasma mode of YBCO, 
although highly damped, seems to appear for temperatures T > Tc, suggesting the 
existence of preformed Cooper pairs in the intrabilayer region [38]. This may 
in particular explain recent experiments which have shown the possibility to 
redistribute spectral weight between the interbilayer and intrabilayer modes by 
driving of a c-axis phonon mode, effectively resulting in a restoration of the super-
conducting coupling in the low-frequency Josephson junction above Tc. [39–41]

1.4.  Surface Josephson plasma waves, linear and nonlinear THz optics

We conclude this introduction by mentioning some theoretical works addressing 
other types of linear and nonlinear Josephson plasma excitations. As discussed 
above, linear JPW propagating within the stack of IJJ are forbidden for frequen-
cies below the JPR (ω < ωp). However, surface plasma waves that propagate with 
frequencies below the plasma frequency exist. These cannot be excited with light 
impinging from free space directly and can only be driven through special meth-
ods, such as the use of a prism with total internal reflection [42], a periodic spa-
tial modulation [43,44], the tip of an atomic force microscope (AFM) [45], and 
spatially confined geometries [46] (see Figure 9).

Figure 8.  Classification of infrared active (IR) and Raman active (RA) longitudinal Josephson 
plasma modes in the intralayer region for bilayer (n = 2) and trilayer (n = 3) cuprates, where the 
superconducting layers are shown in blue. The corresponding Josephson currents (j) and charge 
distributions (++/− −) are indicated (adapted from Munzar and Cardona [36]).
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10    Y. Laplace and A. Cavalleri

A particularly interesting prospect lies in the possibility of using high-Tc cuprates 
as a tunable nonlinear medium to realize various types of analogs of nonlinear 
optics at THz frequencies [29] (consider for instance Equation (4) to be in the 
nonlinear regime). This includes, among others, the use of the Josephson vortex 
lattice as a photonic crystal for THz waves [47,48], negative index metamaterials 
[49], self-induced transparency, and optical bistability at THz frequencies [50–52].

2.  Ultrafast and non-dissipative control of Josephson plasma 
phenomena with THz light pulses

As discussed above, Josephson plasma phenomena in cuprate superconductors 
can be controlled statically using a DC electric bias current [5,6] and/or magnetic 
fields [53,54]. This type of excitation inherently involves dissipation and heating 
effects are unavoidable. In the following, we discuss how the Josephson phase can 
be manipulated with strong THz frequency pulses. This allows for an ultrafast, 
yet, non-dissipative, mean of controlling Josephson plasma phenomena. In these 
experiments, the THz pump and probe pulses are polarized along the c-axis to 
drive and monitor the dynamics of the Josephson phase. Depending on the char-
acteristics of the light excitation, different phenomena are observed.

2.1.  Superconducting-resistive oscillations at THz frequencies

In the case where the frequency spectrum of the incident THz pump pulse Epump 
(t) is below the JPR frequency, the pump pulse is screened within the penetration 
depth, where it drives the Josephson phase �(t) to high amplitudes according 

Figure 9. Two proposals for the coupling of incident THz radiation to launch and detect surface 
Josephson plasma waves in thin films of high-Tc cuprates: prism coupling (left, adapted from 
Slipchenko et al. [42]) and AFM tip coupling (right, adapted from Stinson et al. [45]).
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Advances in Physics: X    11

to ∂  tφ(t) = 2 eV(t)/ℏ ∝ Epump(t) (see Figure 10). This allows for the control of 
the interlayer Josephson coupling, which depends on the Josephson phase as 
�2

p(t) = �2
p,0cos(�(t)) (ωp,0 is the equilibrium JPR frequency). Importantly, under 

this non-resonant excitation, the superconducting coupling is modulated only 
within the duration of the pump pulse, returning to its initial state after the pump 
pulse has excited the sample.

Experimentally, this was achieved with an intense single-cycle THz pulse of cen-
tral frequency ~450 GHz [55] used to drive the single layer cuprate La1.84Sr0.16CuO4 (
Tc = 36K,�p ∼ 2 THz

)
  . [56] The time-dependent optical conductivity σab/c(ω, t) 

within the penetration depth was determined with a delayed THz probe pulse. 
Although the in-plane optical conductivity σab(ω,  t) remained unchanged, 

Figure 10.  Simulations of the spatiotemporal dynamics of the Josephson phase �(x , t) after 
interaction with a broadband THz pulse with a frequency content located below the JPR. Top 
panel: Comparison between the Fourier spectrum of the THz pulse (purple area) and the JPR 
characterized by a plasma edge in the reflectivity (red curve). Main panel: two-dimensional color 
plot of the spatiotemporal evolution of �(x , t). Bottom panels: Time evolution of �(x ≈ 0, t) and of 
the Josephson coupling �2

p(x ≈ 0, t)∕�2
p,0 for a line cut close to the surface boundary (x ≈ 0). The 

red area marks the time during which the THz pump pulse is interacting with the superconductor.D
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12    Y. Laplace and A. Cavalleri

demonstrating the preservation of the in-plane superconducting properties, the 
THz pulse was found to periodically modulate the out-of-plane conductivity (see 
Figure 11, left panel). The imaginary part of the c-axis conductivity Im[σc(ω, t)] 
was found to oscillate in time, periodically vanishing (t = 1.25 ps, 1.75 ps) and 
recovering (t = 1.5 ps, t > 2 ps). Correspondingly, the real part of the conductiv-
ity Re[σc(ω, t)] increased (t = 1.25 ps, 1.75 ps) and vanished (t = 1.5 ps, t > 2 ps) 
periodically (not shown here). The strength of the superconducting coupling 
was experimentally determined by the time evolution of the inductive response 
S(t)∕S(t < 0) = lim𝜔→0 𝜔Im[𝜎c(𝜔, t)]∕𝜔

2
p,0 = 𝜔2

p(t)∕𝜔
2
p,0under the action of the 

THz electric field (Figure 11, right panel).
As expected from the previous discussion, this can be fitted with a function 

of the form 
|||||
cos(�

t

∫ Epump(�)d�)
|||||
, where α is a constant left as a free parameter in 

the analysis. For a strong enough THz field, as the phase �(t) advances in time, 
the superconducting coupling �2

p(t) acquires successively its maximum values for 
φ(t) ≈ 0 (equilibrium) and for φ(t) ≈ π while it becomes vanishingly small when 
crossing �(t) ≈ �

2
. At this phase value, where disruptive interference makes the 

supercurrent go to zero, transport occurs only through the uncondensed qua-
si-particles and the interlayer coupling is switched from superconducting to metal-
lic. Additionally, the frequency of these superconducting-resistive oscillations 
was found to scale with the strength of the THz pulse above a certain threshold, 
a situation which is effectively reminiscent of the AC Josephson effect [56].

Figure 11.  Left: Frequency-resolved optical conductivity Im[�c(�, t)] as a function of pump–
probe delay t at T = 5 K. Right: top Time evolution of the integral of the electric field of the THz 
pump pulse. Bottom Time evolution of the strength of the interlayer superconducting coupling 
quantified by S(t)∕S(t < 0) where S(t) = lim�→0 �Im[�c(�, t)] = �2

p(t) (red dots). The dashed 

line is a fit to the data points by a function of the form |||cos(�∫
t
Epump(�)d�)

||| where α is an 
adjustable parameter. Reprinted from Dienst et al. [56].
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Advances in Physics: X    13

2.2.  Parametric amplification of Josephson plasma waves

When the THz pump pulse is tuned resonantly with the JPR, high-am-
plitude Josephson plasma waves are excited and propagate within the 
depth of the superconductor (see Figure 12). When expressing the oscil-
lation of the Josephson phase as �(t) = �0 cos

(
�p,0t

)
, one finds that 

�2
p(t) = �2

p,0 cos (�(t)) ≈ �2
p,0

[
1 −

�2
0

4
−

�2
0

4
cos

(
2�p,0t

)]
. Two main effects are 

expected: an average reduction of the interlayer coupling strength and a modu-
lation at twice the frequency of the JPR.

Figure 12.  Simulations of the spatiotemporal dynamics of the Josephson phase �(x , t) after 
interaction with a broadband THz pulse with a frequency content resonant with the JPR. Top 
panel: Comparison between the Fourier spectrum of the THz pulse (purple area) and the JPR 
characterized by a plasma edge in the reflectivity (red curve). Main panel: two-dimensional color 
plot of the spatiotemporal evolution of �(x , t). Bottom panels: Time evolution of �(x ≈ 0, t) and of 
the Josephson coupling �2

p(x ≈ 0, t)∕�2
p,0 for a line cut close to the surface boundary (x ≈ 0). The 

red area marks the time during which the THz pump pulse is interacting with the superconductor.
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14    Y. Laplace and A. Cavalleri

This was observed experimentally in the single layer cuprate La1.905Ba0.095CuO4 
(Tc = 32 K), chosen for its JPR frequency of ~500 GHz to be resonant with the 
THz pump pulse [57]. When plotting the spectrally integrated THz response, 
which is proportional to the total oscillator strength of the plasma resonance, 
these measurements display an average reduction of the oscillator strength and 
an oscillatory modulation (see Figure 13).

Importantly, the oscillatory response (Figure 13(b)) occurs at a frequency of 
~1 THz (Figure 13(c)), i.e. twice the JPR frequency (~500 GHz), as expected.

The most interesting implication of this type of modulation of the JPR appears 
in the time- and frequency-dependent loss function as measured by the THz 
probe pulse. The loss function becomes successively negative and positive as a 
function of pump–probe delay, which corresponds, respectively, to amplification 
and deamplification of the Josephson plasma waves excited by the THz probe 

Figure 13. (a) pump–probe response for the frequency-integrated THz probe pulse as a function 
of pump–probe delay. (b) The fast oscillatory part of the signal is obtained by subtraction of 
the slow component shown as the black dashed line in panel a. (c) Fourier transform of the fast 
oscillatory signal shown in (b). Adapted from Rajasekaran et al. [57].

Figure 14.  Left panel: normalized equilibrium loss function in the superconducting state of 
La1.905Ba0.095CuO4 (Tc = 32 K). Right panel: Two-dimensional plot representing the time evolution 
of the frequency-resolved loss function as a function of pump–probe delay. Adapted from 
Rajasekaran et al. [57].
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Advances in Physics: X    15

pulse (Figure 14). These alternating amplification/deamplication processes occur 
at twice the JPR frequency, consistent with the previous observations.

This phenomenon is easily understood if we take the Josephson phase to 
be a sum of the phases driven by the THz pump and THz probe pulses. When 
�(t) = �pump(t) + �probe(t), with φpump(t) = φ0 cos (ωp,0t), the effective equation of 
motion describing the dynamics of φprobe (t) reads [30]:

 

This equation of motion describes the dynamics of the oscillator φprobe (t) whose 
natural frequency is parametrically modulated at twice this frequency (2ωp,0), 
and resembles the Mathieu equation for a parametric amplifier. Consequently, 
amplification/deamplification occurs depending on the relative phase between the 
modulation and the Josephson oscillations, i.e. as a function of pump–probe delay 
in the experiments. These observations were also quantitatively reproduced by 
numerical simulations of the complete spatiotemporal dynamics of the Josephson 
phase [57].

Note that these parametric phenomena can be used to create squeezed states 
of light [58]. As the Josephson coupling is sensitive to phase fluctuations, new 
experiments may become possible in which the fluctuations of the superconduct-
ing order parameter phase are controlled in the time domain, possibly stabilizing 
the superconducting state [2,3].

2.3.  Josephson plasma solitons

Close to the JPR frequency, where the dielectric constant crosses zero, even small 
fields can drive the phase to very large amplitudes [29]. This was addressed exper-
imentally in [30], using an intense narrowband THz source of a THz free elec-
tron laser with a central frequency ωFEL, a bandwidth of Δ�FEL∕�FEL ≈ 1 − 2%, 
and continuously tunable in the vicinity of the JPR frequency ωp ≈ 2 THz of the 
optimally doped La1.84Sr0.16CuO4. Several phenomena were reported depending 
if the central frequency of the driving field is far above, close to, or slightly below 
the JPR, thereby establishing that the nonlinearities in the Josephson coupling 
get enhanced as ωFEL is tuned into resonance with ωp.

The most striking phenomenon corresponds to the case where the driving field 
is tuned slightly below the JPR. For a THz field strength corresponding to the 
linear excitation regime, the impinging electromagnetic wave is evanescent, pen-
etrating within a length of the order of λc. Remarkably, above a certain threshold 
electric field, a solitonic propagating mode emerges (see Figure 15).

(6)
�2�probe(t)

�t2
+ �2

p,0

[
1 −

�2
0

4
−

�2
0

4
cos

(
2�p,0t

)]
�probe(t) = 0
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16    Y. Laplace and A. Cavalleri

This mode concentrates the electromagnetic energy in space and time without 
any noticeable distortion of its shape as it propagates. A more detailed visualization 
of its space–time evolution is presented in the inset of the main panel of Figure 
15. This type of Josephson soliton corresponds to a vortex–anti-vortex pair that 
oscillates back and forth in time during its propagation, at a frequency ∼ �p, and 
is called a breather. The characteristics of the soliton, such as its precise shape, its 
speed, and its oscillation frequency, depend sensitively on the excitation condi-
tions above threshold.

Experimentally, this type of solitonic excitation could be probed via the time- 
and frequency-dependent loss function L(ω,t). When the soliton forms and prop-
agates within the superconductor, a strong change of the loss function is found, 
which is exponentially sensitive on field strength and wavelength and could only 
be reproduced qualitatively by numerical simulations. Figure 16 shows the exper-
imental and simulated loss functions as a function of pump–probe delay, as well 

Figure 15.  Simulations of the spatiotemporal dynamics of the Josephson phase �(x , t) after 
interaction with an intense narrowband THz pulse tuned slightly below the JPR. Top panel: 
Comparison between the Fourier spectrum of the THz pulse (purple area) and the JPR characterized 
by a plasma edge in the reflectivity (red curve). Main panel: two-dimensional color plot of the 
spatiotemporal evolution of �(x , t) showing the excitation of a Josephson plasma soliton. Bottom 
panel: incident electromagnetic field impinging on the surface of the superconductor.
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Advances in Physics: X    17

as a line cut of the loss functions at t = 80 ps. The spectral reshaping, exhibiting a 
splitted lineshape and a dip, can be understood as a Fano-like lineshape [59–61], 
which results from the interaction between the soliton and the Josephson plasma 
waves that are employed to probe it.

3.  Future directions: proposals for Josephson phase cooling

In the last part of this review, we discuss new strategies for the control of the 
Josephson plasma phenomena in cuprates. These works address the possibility to 
implement laser control schemes to manipulate the Josephson plasmons and to 
cool their fluctuations. The cooling schemes rely on energy transfer, mediated with 
light, between a low-frequency oscillator that is to be cooled (i.e. the Josephson 
oscillator here) and a high-frequency oscillator (Figure 17).

The high-frequency oscillator can either be an internal mode of the cuprate 
superconductor itself or an external one. We present both approaches in the fol-
lowing. In the first, the oscillator is internal and corresponds to the high-frequency 
intrabilayer Josephson plasma mode in bilayer cuprates such as YBCO. In the 
second, it is an external optical cavity that plays this role. The latter scheme is 
appropriate in cases where such an internal excitation doesn’t exist, as in single 
layer cuprates such as La2−xSrxCuO4.

Figure 16.  Bottom panels: Two-dimensional plots representing the time evolution of the 
frequency-resolved loss function as a function of pump–probe delay when a soliton is formed 
and propagates into the superconductor. Experimental (left) and simulated (right) loss functions 
are shown. Top panels: The figure shows the perturbed loss function for a line cut taken from the 
bottom panel at t ~ 80 ps (red curve), together with the equilibrium loss function (dotted black 
line) and with a Gaussian fit to the pump spectrum (gray, shaded). Reprinted from Dienst et al. 
[30].
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18    Y. Laplace and A. Cavalleri

3.1.  Parametric cooling of bilayer cuprates by THz excitation

Bilayer cuprates have two superconducting layers per unit cell; hence, two types 
of Josephson junctions are connected in series: a thick and a thin one (see Figure 
17(b)). These are characterized by their Josephson plasma frequencies ωl (low 
frequency for the thick interbilayer junction) and ωh (high frequency for the 
thin intrabilayer junction), with ωl < ωh. For a given temperature T such that 
ℏωl  <  kBT  <  ℏωh, phase fluctuations in the interbilayer regions are more pro-
nounced than in the intrabilayer ones. The model assumes that the dimensions 
of the superconductor in the ab-plane are much smaller than the magnetic pen-
etration depth so that the dominant coupling mechanism between the junctions 
is capacitive and happens through a layer charging of the atomically thin super-
conducting electrodes. A parametric modulation of this coupling, which can be 
realized via a c-axis infrared lattice mode acting as a transducer, allows for the 
manipulation of the thermal populations of the junctions [62]. This happens when 
the modulation frequency ωd matches the frequency of the two sidebands gen-
erated by the coupling between the interbilayer and the intrabilayer Josephson 

Figure 17.  (a) Generic scheme for sideband cooling. �g⟩ and �e⟩ are the ground state and first 
excited state of the high-frequency oscillator, respectively (frequency �h), while �n⟩ denotes 
the occupation number of the low-frequency oscillator (frequency �l). A laser (yellow arrows) 
tuned at �h − �l (resp. �h + �l) provokes descending (resp. ascending) transitions, thereby 
decreasing (resp. increasing) the occupancy �n⟩ of the low-frequency oscillator. (b) Crystal 
structure of the bilayer cuprate YBCO. Phase fluctuations can be transferred from the interbilayer 
(�l) to the intrabilayer (�h) Josephson junctions. (c) Sketch of a cavity cooling scheme. Josephson 
fluctuations of a single layer cuprate (�l) are transferred to the photonic mode of an optical cavity 
(�h).
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junctions, which are given by ωh−ωl = ωd and ωh + ωl = ωd (see Figure 17(a)). Figure 
18 shows the evolution of the thermal fluctuations of the phases (φl, φh) of two 
such coupled Josephson junctions, with dampings (γl, γh), in the parametrically 
driven regime for a representative set of parameters relevant for bilayer cuprates.

Suppression of the phase fluctuations ⟨�2
l ⟩ of the low-frequency Josephson 

junction from their value at thermal equilibrium is observed once the driving 
at ωd = ωh−ωl is switched on at t = 0 ps. Correspondingly, there is an increase in 
the phase fluctuations ⟨�2

h⟩ in the high-frequency Josephson junction. Because 
the quadratures ⟨𝜑̇2

l ⟩ and ⟨𝜑̇2
h⟩ behave similarly as ⟨�2

l ⟩ and ⟨�2
h⟩, respectively 

(not shown), this effect corresponds to a change in the effective temperatures 
of both junctions (as opposed to a squeezed thermal state which would reduce 
one quadrature at the expense of the other): in the present case, the final state 
corresponds to an interbilayer mode cooled to T = 0.6Tinital while the intrabilayer 
mode is heated to T = 1.2Tinital, where Tinital is the bath temperature. Figure 18(b) 
shows the frequency dependence for different sets of dampings of the low- and 
high-frequency Josephson junctions. As expected from the previous discussion, 
the decrease (cooling) or increase (heating) in the phase fluctuations ⟨�2

l ⟩ of the 
low-frequency Josephson junction happens only within a range where ωd matches 
the frequency of the two sidebands.

Most importantly, the phenomenology exposed here remains valid when one 
considers a stack composed of several of these Josephson junctions connected in 
series and representative of a bulk bilayer superconductor [62]. Experimentally, 
the cooling phenomenon may be observed by measuring the switching current 

Figure 18. Parametric cooling in the two-junction case. The parameters taken for the simulation 
are: �l∕2� = 1THz and �h∕2� = 10THz, �l = 0.19THz, �h = 3.63THz. (a) Time evolution of 
the Josephson phase fluctuations in the interbilayer and intrabilayer junctions (⟨�2

l
⟩ and ⟨�2

h
⟩, 

respectively) after a resonant driving is turned on at t = 0 ps (the junctions are initially in thermal 
equilibrium). (b) Dependence of the cooling/heating effect as a function of the parametric 
modulation frequency �d for different sets of damping parameters. Reprinted with permission 
from Denny et al. [62]. Copyright 2015 by the American Physical Society.
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20    Y. Laplace and A. Cavalleri

distribution of the stack. Figure 19 presents the cumulative distribution functions 
(CDF) of the switching current for a stack of 100 junctions for various thermal 
and driven states. The CDF associated with thermal distributions for different 
temperatures T′ lower than a reference temperature T (T′/T from 0.6 to 1) shift 
toward higher switching currents with respect to the reference thermal distribu-
tion (the leftmost dotted line). Importantly, a similar trend is observed when the 
system is parametrically driven, starting from the equilibrium state at temperature 
T. Consequently, this points toward a remarkable similarity between the driven 
system and a thermal one of lower temperature.

3.2.  Cavity Josephson plasmonics

Optical cavities have been used to ‘dress’ [63] and ‘cool’ [64,65] material excita-
tions. To implement such an approach for manipulating Josephson plasmons in 
high-Tc cuprates, a design of THz cavities based on complex oxide heterostruc-
turing [66,67] was proposed and is shown in Figure 20 [68].

The heterostructure involves a film of the single layer cuprate La2−xSrxCuO4, 
inserted between two insulating films of the parent compound La2CuO4, with a 
metallic oxide at the bottom (e.g. SrRuO3) and metallic patches (e.g. gold) depos-
ited on top of the structure. In this geometry, resonant THz modes are highly 
confined between the two metals, together with their electric field being polarized 
along the c-axis and propagation vector in the ab-plane [69]. Consequently, the 
THz photonic mode couples exclusively to the interlayer electrodynamic prop-
erties and to the JPR.

Without the high-Tc superconductor La2−xSrxCuO4 inside and for a given 
width w of the top metallic patches, the simulated reflectivity spectrum of the 

Figure 19.  Cumulative distribution functions (CDF) of the switching current. The solid lines 
correspond to the driven states and the dotted lines correspond to thermal states. The reference 
thermal distribution at temperature T corresponds to the leftmost curve (brown dotted line). 
Thermal distributions at temperatures T′ lower than T are shown (T �∕T = 0.6 → 1.0) as well as 
driven distributions with increasing driving strengths (0.02→0.1). Reprinted with permission from 
Denny et al. [62]. Copyright 2015 by the American Physical Society.
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heterostructure exhibits an absorption dip at a frequency νc(w), signaling the cav-
ity resonance (see Figure 21(a), left panel). The spatial distribution of the electric 
field of the corresponding photonic mode is shown in Figure 20(c). As the cavity 
resonance depends on the inverse patch width, defined as v(w) = c∕(2

√
�∞w) 

(�∞ ≈ 27 being the dielectric constant of the insulating La2CuO4), precise tun-
ing of the cavity can be achieved by varying the width of the top gold patches 
(Figure 21(a), right panel). When a superconducting film of the optimally doped 
La2−xSrxCuO4 with JPR frequency νp = 2.3 THz is inserted inside the heterostruc-
ture, a qualitatively different behavior is observed. As the cavity resonance is swept 
through the JPR frequency, one observes a clear avoided crossing which indicates a 
strong coupling between the JPR and the THz photonic mode (Figure 21(b), right 
panel). At resonance (νc(w) = νp, Figure 21(b) left panel), the reflectivity signals the 
presence of two modes that are separated by a Rabi splitting 2Ω [70].This shows 
the possibility to dress the Josephson plasmons with the THz photonic mode of 
the cavity and to create hybridized Josephson plasmon–polariton excitations. 
Additionally, the energies of the two Josephson plasmon–polaritons can be tuned 
by varying the thickness of the superconducting film inside the structure [68].

When the THz cavities are tuned off resonantly with respect to the JPR, i.e. in 
a parametric regime, the Hamiltonian of the plasmon–cavity system writes [68]:

H = h�ca
+a + h�pb

+b + hg(b+ + b) a+a

Figure 20. Proposed heterostructure for cavity Josephson plasmonics. (a) zoom on the high-Tc 
superconductor La2−xSrxCuO4. Red arrows indicate the Josephson plasma oscillations between 
the planes at the characteristic frequency νp. (b) zoom on a single THz cavity enclosing the high-
Tc cuprate: Au/La2CuO4(LCO)/La2−xSrxCuO4(LSCO)/La2CuO4 (LCO)/SrRuO3 (SRO). (c) the proposed 
heterostructure: an array of THz cavities grown from thin films and embedding an high-Tc 
cuprate. The electric field distribution of the fundamental mode of the ‘bare’ cavities (i.e. without 
the superconductor) is shown. Reprinted with permission from Laplace et al. [68]. Copyright 2016 
by the American Physical Society.
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22    Y. Laplace and A. Cavalleri

where a+, a, b+, and b are the creation and annihilation operators of the photon 
and Josephson plasmon fields, respectively, νc and νp are the cavity and JPR fre-
quencies, and g is the coupling between the plasmons and the cavity mode. This 
Hamiltonian is the very same used in the context of cavity optomechanics to 
cool mechanical modes [65]; hence, it is proposed that these THz cavities can be 
used to control the dynamics of the Josephson plasmons and to cool their fluctu-
ations. The cavity cooling scheme described here makes use of the nonlinearity 
of the Josephson effect, whereas the parametric cooling scheme of the previous 
section did not rely on it. Previously, the interbilayer and intrabilayer Josephson 
plasma modes formed a linearly coupled system and the up-conversion process 
was achieved by the modulation of the coupling between the two. Here, the light 
is inelastically scattered by the plasmons and the cavity resonance is used to select 
the anti-Stokes transition (i.e. to up-convert the photon energy), hence reduc-
ing the number of thermally excited plasmons. From the typical figures of merit 
determined for these cavities, it was estimated a threshold of the order of a few 
ten’s of kV/cm for the incident THz field in order to observe cooling dynamics 
in this system [68]. This field strength is presently achievable with both table-top 
THz sources and Terahertz-free electron lasers.

Figure 21. (a) Right: Reflectivity as a function of frequency and inverse patch width of the bare 
heterostructure. The white solid line shows the JPR frequency νp. Left: Reflectivity cut of the bare 
cavity tuned at νp (white dashed line on the right panel). (b) Right: Reflectivity as a function of 
frequency and inverse patch width for the cavity/high-Tc heterostructure. The white solid line 
shows the JPR frequency νp. Left: Reflectivity cut of the cavity/high-Tc heterostructure when the 
bare cavity is tuned at νp (white dashed line on the right panel). Reprinted with permission from 
Laplace et al. [68]. Copyright 2016 by the American Physical Society.
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4.  Conclusion and outlook

As discussed in this review, Josephson plasma phenomena in high-Tc cuprates 
are associated with a wide range of scientific challenges, with fundamental and 
technological ramifications. We have drawn special attention to the possibility of 
controlling the Josephson plasma modes in a coherent and non-dissipative fash-
ion, enabled by the recent development of intense THz light pulses, both table-top 
and at free-electron lasers. Based on the diversity of the plasma modes arising 
from the Josephson coupling which have not been addressed experimentally yet 
(e.g. surface Josephson plasma modes, plasma modes in restricted geometries, and 
Josephson plasma modes engineered with cavities), many new possibilities remain 
unexplored. Finally, we pointed out that advanced schemes can be envisaged in 
which these collective modes are manipulated, including schemes in which their 
fluctuations are cooled with light.
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