MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

GAP

A GALE Precompiler

Joachim Steuerwald

R/ 36 March 1980

Die nachstehende Arbeit wurde im Rabhmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.

IPP R-36 J. Steuerwald G2P
A GALE Precompiler

March 1980

Abstract:

Computer-aided, predetermined control of experiments
requires a simple and reliable tool to change the values of
parameters by dialog or program. The values set influence
the results of tests and must be taken into account in pro-
cessing experimental data, so that it is easy to access to
those values in a FORTRAN program. The GALE data acquisition
system is organized by domain descriptors, assembled in the
GALE Name-list File, which contain all necessary information
about parameter variables. The GALE precompiler GAP was de-
velored to simplify access to elements of this structure
without changes in the FORTRAN compiler.

Though intended for easy use of GALE variables, GAP may be
applied to all data structured and described in a similar
manner. Archivation and documentation of resulting data by
EDDAR (Experimental Data Documentation and Retrieval) system

were therefore included.

Contents

Introduction

1.1
p [
13

Parameters of the GALE Data Acquisition System

Variables in a Program

Storing Results of Processing Experimental Data

Basic Principles

2.1
2.2
2.3

Survey
Definition of Variables
Substitution of GALE Variables

Program Units

3:1

ww W
P
B w

Generating Alias Names

Describing Data

Performing the Information Given by the NCB
Substitution of Variable Names

GAP Messages

4.1 General

4.2 Messages
Remarks

5.1 A New Feature
5.2 Acknowledgement

Ulw N N -

~N oo

~

1. Introduction

1.1 Parameters of the GALE Data Acquisition System

The GALE data acquisition sytem /1/ is used for the control of
experiments. Parameters may be changed by dialog and therefore

no errors occur in transmission. The input data is attached to
the relevant offsets by the GALE Namelist File (Fig.1).

Each entity is uniquely and completely described by a Namelist
Control Block (NCB) of the GALE Namelist File, such that it may
be reliably and simply found by name. The values of these entities
serve to regulate the parameters of the experiment, and so they
are also used to process experimental data.

Entities of different data types are assembled in one structure.
In FORTRAN language no feature exists to gain access to variables
by using the said domain descriptor. The programmer therefore has
to be familiar with the organization of data description defining
the relevant arrays. Changes in offsets nearly always lead to
changes in programs and are therefore often followed by erroneous
results.

Misunderstandings and difficulties cannot always be avoided and
lead to time-consuming investigations.

These problems can be solved by using the information contained
in the NCB's. The names of entities may then be employed to gain

access to them in a FORTRAN program.

1.2 Variables in a Program

Variables in FORTRAN language define a storage address. In com-
piling the program the name of the variable is lost. Referencing
is not known in FORTRAN language - unlike in ALGOL68 - and sO no
simple way exists to transfer names of variables to the object
program without changes in the FORTRAN compiler.

The GALE precompiler was therefore developed to allow access to
the values of GALE variables described in GALE Namelist Files

in a FORTRAN program without knowledge of the organization of

the relevant data fields. It should also be ensured that programs

work exactly even if offsets have keen changed.

1.3 Storing Results of Processing Experimental Data

If no error has occured, some results of processing experimen-
tal data ought to be documented for later use. In this case
facilities are expected to locate variables by name and to com—
plete automatically the information about data structure. These
goals are reached by means of the GALE precompiler, provided the
documented results are organised by the EDDAR Namelist File /2/
in the manner of the NCB's of the GALE Namelist File.

2, Basic Principles
21 Survey

The name of entities of one or more diagnostics (an exclusive
sub-experiment) are made known to the GALE precompiler. The
number of the test provides

the relevant version number of GALE Namelist
File and from NCB

the offset of entity

the data type of entity and

the length of the data field.

Appropriate arrays to receive the data from the user parameter
section of the GALE Data File are defined.

Finally in all data gained till now, entity names are assigned
to elements of the relevant core regions. In the same manner,
the GALE precompiler uses the EDDAR Namelist File for organizing

the results of experimental data processing.

Because the data of most diagnostics and devices are similarly
organized, names of entities must be made unique by additive
information. FORTRAN variables are therefore defined according

to special GAP rules, shown in the following section.

22 Definition of Variables
In addition to the well-known FORTRAN syntax, the GAP descriptor

<gap descr> ::= GAPI < gap list1>| GAPO<gap list2>

is introduced. Furthermore, we have

< gap list i> ::= <gap item i > |<gap list i > <gap item i>

<gap item 1> ::= <dev item > < param array ><var list>|
< param array > <var list >
<dev item> ::=<exp name> .<diag id >.<dev id>\

<diag id> .<dev id>|<dev id>

< var list> t:=< var name > | < var list >< var name >
< var name > ::= valid GALE variable name
£ exXp name > ::= three character EBCDIC short name

of experiment

I

< diag id > one to three digit number of diagnostic

within experiment <exp name >

< dev 1id > <dev name > | < dev name > (< dev number >)

< dev name » ::= two character EBCDIC short name of
device
< dev number > ::= one or two digit number of device with-

in diagnostic
< param array>::= name of array the user parameters are

read into (valid wvariable name)

< gap item 2> ::= <diag item> < var list>| < var list >
< diag item> ::=<exp name> . <diag id> |< diag id >
Remarks:

Valid experiment names are found in AMOS segment
EXPP:INFO.EXPN (see ESS, EDDAR system survey /2/

p. 1-3)

Valid diagnostic numbers of all experiments are
listed in AMOS segment < exp name > :GINF.DIAG

(see ESS p. 1-6)

Valid abbreviations of devices are assembled in AMOS
segment EXPP:INFO.DEV (see ESS p. 1-3)

The user may omit the experiment name if he is re-
gistered in the user identification list (UIL) in
AMOS segment EXPP:INFO.UIL (see ESS p. 1-3).

As owner of a diagnostic he may also omit the number
of his own diagnostic.

Both simplifications are only allowed in cases of
unigqueness.

The GAP descriptor must be declared in each program
unit containing GAP variables.

The device numbers must follow the conventions intro-
duced by the diagnostic owner.

The GAP variables are separated by blanks. The end of
a GAP item is announced by comma (,) if further items
follow, otherwise by blank at the end of the statement.

Valid device identifications are connected with the

keyword GAPI and have the form

ASD.41.PG(2) ASDEX experiment, diagnostic number 41,
second PPG (if only one is attached,
(1) may be omitted)

41.PG(2) the user is identified only in UIL for
ASDEX (see remark 4). The variable name
is valid in GAP though beginning with a
number (replaced later on by alias),

implications as above

PG(2) moreover, the user is owner of the diagnostic
number 41 (see remark 4), implications as
above.

Valid diagnostic identifications for output are connected

with the keyword GAPO. Because the above rules are applied,
variable names are mostly unique as long as the user puts

the relevant values into the results of his own diagnostic.
Ctherwise experiment name and diagnostic number are connected

with the wvariable in the same manner as above.

The syntactical rules and the card image of FORTRAN language
are valid in GAP. There is only one exception: variable names

beginning with a number.

2.3 Substitution of GALE Variables

The extended definition introduced by the foregoing section is

necessary for uniqueness of identical variable names within the
organization of data of different devices. If it implies a syn-
tactical error in FORTRAN language, the variable name is replaced
by an alias name (see Sec. 3.1) during precompilation and entered
into the table of variables (TOV, Fig.2).

3l Program Units

3.1 Generating Alias Names
The GAP precompiler looks for a keyword (GARPI, GAPO). If no key-

word is found, it finishes performing the actual program unit.
Then the GAP precompiler continues with the next program unit or,
if there is none, calls the FORTRAN compiler. The GAP precom-
piler investigates variable names appropriate to GAP rules and
announces invalid ones. It continues to perform the program unit,
but later on stops compilation.

Variable names invalid according to FORTRAN language rules must be
substituted. The extension of a variable name is omitted if the
CALE variable name is unique. Otherwise, a string of three cha-
racters, not appearing in this program unit, is joined with the
content of a counter to build an alias name. If the counter ex-
ceeds 999, it is cancelled and GAP looks for another string.
After performing a program unit, the table of variables TOV is
listed.

3.2 Describing Data

The raw data of test are assembled in a GALE data file, whose
organization is described by the relevant GALE Namelist File.
The EDDAR System Survey /2/ affords the possibility of simply
using the latter. The experiment name and diagnostic number

may be omitted in defining a GAP variable if the user is only
listed for one experiment in the UIL (User Identification List),
and is owner of the named diagnostic within this experiment,

and the variable relates to a device of this diagnostic.

Otherwise

the experiment name destinates the relevant GALE

Namelist File,

the diagnostic number and device name define the

appropriate NCB list, and

by the variable name, the NCB of the entity is to

be found.
Descriptive data such as

offset in user parameter section,

type of data, and

length of array
are entered in the TOV.
Similarly, the organization of resulting data is described
in the EDDAR Namelist File. These data are entered in a report
as a pseudo-diagnostic or an array of diagnostic results, most-
ly the diagnostic of which the user is the owner. Properties of
variables not specified are introduced into an automatically ge-
nerated NCB - with the next free offset - in the EDDAR Namelist
File.

3.3 Performing the Information Given by the NCB

The offset A (in bytes, beginning with zero) defines with the
starting index J (default value: 1) - taking the appropriate

addresses of relevant arrays - the index
I = J+ A/L (L = length of data item)

of the named entity in the parameter array, provided A is a mul-
tiple of L.
Nevertheless, the actual organization of the GALE system allows
inconsistencies. In this case

an appropriate LOGICAL%#1 array is generated and

overlaid by EQUIVALENCE statements,

the data are transmitted, and

the above algorithm applied.

Data conversion must be mentioned in these special cases.

If the entity contains more than one element, the necessary
array is declar=zd.

I'orral parameters in subroutines may not be overlaid in

FORTPAN language. They are therefore to he omitted in the sub-
routine call and an appropriate COMMON statement is inserted.
Only labeled commons, with labels like alias names in Sec. (3.1),

are generated.

3.4 Substitutions of Variable Names

Finally, the variable names are replaced, if necessary, by alias
names. In narticular, it must be noted that all variable names
not valid in FORTRAN language are to be replaced by valid ones.
Besides the TOV, all error mesmsages are listed and the FORTFRAN
compilation is not performed if there are errors. Otherwise, GAP

initiates compilation or calls the next program unit.

4. GAP Messages

4.1 General
The output of GAP messages may be controlled by the user by the

logical variable OUT:

OUT=false - short form of outnut: title only in
case of any message, warnings and errors
are presented by their number (see
Sec.4.2), TOV is suppressed.

OUT=true - long form of output: the title is always
listed, TOV, warnings and errors appear
with full text.

The default value of variable OUT is false.

4.2 Messages
The title is of the form
JOB R2AANNN OF DD.MM.YY AT HH:MM:SS
GAP - PRECOMPILER
PROGRAM UNIT AAARAA PRECOMPILED

This is followed by the table of variables (TOV) and then the

appropriate messages, if any.

W

W

1

AAAAAA VARIABLE MULTIPLE DECLARED
The variable name is declared more than once,

all unnecessary declarations being dropped.

AAA TINVALID EXPERIMENT NAME
The experiment name does not exist in AMOS segment
EXPP:INFO.EXPN, look for the valid name or ask the

system manager.

NNN INVALID DIAGNOSTIC NUMBER FOR EXPERIMENT AAA
The diagnostic number was not found for this ex-
periment in AMOS segment <expname > :GINF.DIAG.

Look for a valid number or ask the system manager.

AA DEVICE NAME NOT KNOWN
The device short name is not known. Look for a
valid one in AMOS segment EXPP:INFO.DEV

NN INVALID INDEX OF DEVICE AA OR TOO MANY DEVICES
The owner of this diagnostic has defined a combination

of devices not containing the indexed one.

EXPERIMENT MAME OMITTED, USER NOT IN UIL

The extension of the variable has no experiment name,
though the user is not introduced for any experiment
in the UIL

DIAGNOSTIC NUMBER OMITTED, USER NOT OWNER

OF ANY DIAGNOSTIC

The extension of the variable contains no experiment
name and diagnostic number, though the user is not

owner of any diagnostic.
Free for later use
FOR EXPERIMENT AAA EXISTS NO NAMELIST FILE

Thoucgh the experiment name is valid, no namelist

file was found. Consult the system manacer.

E 1o NO NCB LIST FOP DEVICE AA(NN) OF DIAGNOSTIC NN FOUND
For this device, no entry to NCB list within the
named diagnostic was found. Examine the existence of
this device in the definition of this diagnostic or

consult the systemr manager.

E 11 NO NCB FOR VARIABLE AAARAA
This variable name does not exist for this device.

Look for the valid name in the appronriate NCB list.

iea|

12 QOFFSET OP FIELD LENGTH AAAAARA OUT OF BOUNDS IN
ARRAY PAARAA
The offset of a variable or a field is out of bounds
within the declared arrav. Examine whether offset of
field declaration is invalid, or whether the de-

clared array is too short.

E 13 NO CONFIGURATION FILE FOR EXPERIMENT AA FOUND
The relevant configuration file, though necessary
for the GALE precompiler, does not exist. Consult the

system manager.

E 14 VARIABLE AAAAAA NOT IN GAP-DESCRIPTOR
The variable is not defined by a GAP descriptor in this
nrograr urit. The extension of this variable in the

FORTRAN program may not be resolved.

W 15 VARTABLE AAAAAA NOT IN THIS PROGRAM UNIT
A variable name declared in a GAP descriptor was not

detected in the actual program unit.

E 16 VARTABLE AAAAAA INVALID IN PROGRAM UNIT
The variable name does not follow the syntactical
rules of FORTRAN language, though not declared in a

GAP descriptor.

W 17 CALL OF SUBROUTINE AAAAAA (aaaaaa,...,aaaaaa)
CHANGED TO (bbbbbh,...,bbbhbb) COMMON CCCCCC INTRODUCED
Formal parameters in the call of a subroutine were
omitted and put into an automatically generated common.
The user should inspect this action in all its conse-

quences.

1o

Remarks

W Warning, compilation follows

E Error, no compilation

5. Remarks

5.1 A New Feature

To make the programmer more familiar with the substitution
of variables we introduced a new feature. The use of pro-
grammer-designed variable names is forced in the GAP-De-
scriptor by

< gap item i > := <{gap subitem i > = < for varname >
(s. Section 2.2), where

< gap subitem i > substitutes < gap item i3> and

£ for varname > is the variable name expected
in the FORTRAN program.

5.2 Acknowledgement

The author wishes to thank Mrs. Tichmann and Mr. H. Fisser

for many helpful discussions.

Literature

/1/ Lathe R., Miiller E.: GALE Programmer's Handbook.
Max-Planck~-Institut fiir Plasmaphysik, Garching.
Bericht R/27 vom Februar 1978

/2/ Steuerwald J., Tichmann Ch.: EDDAR System Survey.
Max-Planck-Institut fiir Plasmaphysik, Garching.
Bericht R/34 vom November 1979

11

FROM CONFIGURATION FILE

F e 2 ¥
LI i)
- N
OFFSET LENGTH NAME CONTENTS
O 2 N. PRV ACCESS PRIVILEGED FLAG
2 2 N.NXT Foirter to next NCP
= 2 N.HLP Fointer to Help Record
b 4 N.NAM Name of Variable (RAD 50)
10 1 N.FLG Flag (Data REMOTE OR LOCAL)
11 1 N.TYP TYPE OF VARIABLE
12 1 N.LEN ARRAY ENGTH OF DATA
15 1 N. MOK IF TYPE 15 BINARY, N MSK
CONTAINS THE BIT - PoIITION
1< 1 N.OFS proinTeR O THE
ASSOCIATED DATA REGION
FIG1: GALE NAMELIST FILE

JOB JKS123 OF 22.34.E&1 AT 12:31:25
GAP - PRECCMPILER

PFOGRAM UNIT MAIN PRECOMPILED

TABLE CF VARTABLES

ALIAS EXTENSTION VARTABLE CFFSET TYPE LENGTH
NAME NAME ‘ BYTES
XYZ0001 ASD.41.PPG{Ll).TIME 0 REAL x4 132
XYZOC02 ASDe41.PPGI(1).PEMD 132 INTFGER®2 v
FEQ C REALX*4 4

PRE 4 REAL *4 4

POS 4 REALX*4 4

FIGs 2 : TABLE CF VARIABLES

