R. Preuss, R. Fischer, M. Rampp, K. Hallatschek,
U. von Toussaint, L. Giannone, P. McCarthy

Parallel equilibrium algorithm for real-time control
of tokamak plasmas

IPP R/47
Februar, 2012

Parallel equilibrium algorithm for real-time
control of tokamak plasmas

R. Preuss, R. Fischer, M. Rampp, K. Hallatschek,
U. von Toussaint, L. Giannone, P. McCarthy
Rechenzentrum der Max-Planck-Gesellschaft,

Max-Planck-Institut fiir Plasmaphysik,
EURATOM Association,
Boltzmannstr. 2, 85748 Garching, Germany

February 9, 2012

Abstract

In order to achieve real-time control of fusion plasmas the flux dis-
tribution and derived quantities have to be calculated within the time
of the machine control cycle which is typically of the order of 1 ms.
This requires a fast solver of the Grad-Shafranov equation together
with optimized procedures for the utilization of the result. An algo-
rithm for a fast solver is presented which allows exploitation of the
parallel capabilities of modern multi-core processors. Our implemen-
tation termed GPEC (Garching parallel equilibrium code) is based
cntirely on open source software components. For a numerical grid of
size 32 x 64 our new code requires only 0.04 ms (0.11 ms for 64 x 128)
for a single iteration of the Grad-Shafranov solver using a standard
Intel Xeon quadcore CPU (3.2 GHz).

1 Introduction

Plasma equilibrium in a tokamak is a key discharge property determining
the evolution of a variety of instabilities, such as those related to the boot-
strap currents — among them the neoclassical tearing modes (NTM) to name
only the most prominent ones. The possibility of getting rid of NTMs with
clectron cyclotron current drive (ECCD) [1] whenever their exact position
is known motivates the development of numerical methods for the real-time
computation of the plasma flux distribution. Moreover, with limitations on
the number of (expensive) discharges future fusion machines like ITER or
DEMO rely on real-time capabilities for equilibrium calculation in order to
adjust plasma control online.

So far only approximative approaches and function parametrization are
capable of delivering flux distributions updated within the time scale of one
or a few control cycles. Their obvious drawback is that they suffer from flux
distribution uncertainties and usually fail to cover new or unusual discharges.
Solvers of the MHD equilibrium described by the Grad-Shafranov equation,
like EFIT [2] or GEC (Garching equilibrium code) [3] are fast enough only if
the size of the grid or the number of basis functions (representing the plasma
current distribution) is down-sized, sometimes to a large extent so that the
results are rendered questionable.

In this work a numerically optimized equilibrium solver called GPEC
(Garching parallel equilibrium code) shall be provided which allows to em-
ploy as many basis functions as regarded meaningful in an as large as possible
grid to calculate a plasma flux distribution within one control cycle of AS-
DEX Upgrade, i.e. 1.5 ms. The main idea is to exploit parallel capabilities
of common multicore computer processors by a well known ansatz which was
already developed in the 1970s for the solution of Poisson’s differential equa-
tion (e.g. [4]). It combines Fast Fourier transformation and a solution of a
tridiagonal system of equations, which essentially decouples the discretiza-
tion stencil in one of the two grid dimensions. In order to remain independent
from licensing issues and to avoid any kind of ”vendor lock-in” the new al-
gorithm is implemented in open source code and can be distributed entirely
under an open source licensing model. This meets, in addition, the software
policy of ITER.

The paper is organized as follows: Sections 2 and 3 describe the theoret-
ical foundations. In Section 4 we describe the algorithm we employ for the
solution of the Grad-Shafranov equation and its discretization. In Section
5 we outline the main concepts for the parallelization. Section 6 provides
details of the actual numerical implementation and computational perfor-
mance of the new GPEC solver. Sections 7 and 8 finally summarize the

work and provide an outlook on possible applications at ASDEX Upgrade,
respectively.

2 Calculation of the flux distribution

For the toroidal symmetry of a tokamak, ideal magnetohydrodynamic equi-
librium is described by the second-order partial differential Grad-Shafranov
equation [5, 6] for the poloidal flux function ¥

A*tp = —dmporjy (1)
with the differential operator in cylindrical coordinates (r, 2)
d1d o2
ANt=r—=—+— .
"orror ¥ 0z°)

The toroidal current density profile j; consists of two terms

jomr 2D AP

Y v dy
where p is the plasma pressure and F' denotes the flux function of the poloidal
plasma currents. We consider the isotropic case, i.e. p(r, 1) = p(1), so both
terms are functions of ¥ only and, in the framework of MHD, can be specified
arbitrarily [3], i.e. they will be determined by experiment in our case. This
is usually done by linear superposition of a number N, and Ny of so-called
basis functions 7 () and ¢(v), respectively [7],

(3)

p(Y) = chh'f_ih(w)) (4)

FF'() = > dper(v) . (5)
k=1

7 and ¢ are either chosen as spline functions, as in CLISTE [7], or special
polynomial functions, like in EFIT [2]. In equilibrium codes Eq. (1) is re-
peatedly solved by inserting on the right-hand side (rhs) for j, each basis
function 7, and @;, alone. The latter are calculated with an “old” flux dis-
tribution taken from either initial settings or a previous iteration cycle (see
next chapter):

A*p = —Ar’perima(v°) (6)
Mmpue = 4o 7

With the resulting N, + N flux distributions 1 a so-called response matrix’
B consisting of predictions b,(¢,,) for a certain set of N, diagnostic sig-
nals m = (my, ma,...,my,,)7 is calculated. The prediction b,(7,,) is some
function employing the flux distribution %, to produce the ideal measure-
ment signal, i.e. without measurement noise. An example of such a function
may be the response of the flux distribution to the poloidal magnetic probes.
Simple linear regression of the equation

5]
C2
miy 51(7,01) by ('@52) e by (¢N,,+NF) :
my 52(¢1) bo (7,[)2) bz(lep+NF) CN,
2 B I ; 1o | ®
M N ONn (V1) b, (Y2) o On, (Y, np) dy
e,

provides the coefficients ¢ and d of Egs. (4) and (5). The final result for
the flux distribution 1%* from one such calculation scheme for the Grad-
Shafranov equation is

Np Np
P =i+) ditn,ei - (9)
i=1 j=1

In the following the rhs of Eq. (1) shall be denoted by a general function
g(r, z) (which will be cither one of 7; or ¢; according to Eqn. (6) and (7)).
This states our target problem of solving

A*p =—g(r,z) , (10)

which is, in mathematical terms, an elliptic differential equation or Poisson
equation. The explicit dependence on (r, z), instead of ¢, refers to the fact
that the flux function v is generated in the above way from measurements
mapped to the cylindrical coordinate system and is supposed to resemble Eq.
(7) of Ref. [3] which is the starting point for the next section.

3 Lackner’s Algorithm
The main idea to tackle Eq. (10) is to use a modified Picard iteration scheme

where the new ¥ for the next iteration step is adjusted by comparison of
derived quantities with diagnostic signals as described above. In each cycle

4

Eq. (10) is solved individually for the N, + Ny different right-hand sides to
calculate %" according to Eq. (9). With the latter one obtains an update for
g(r, z). This procedure is iterated until convergence criteria are fulfilled, e.g.
that the largest flux element of ¥ does not change within a desired accuracy
of usually 0.01 percent of its value. One such iteration cycle is called an
"outer” iteration. It turns out that the number of outer iterations is usually
on the order of 10, but, depending on the initial flux distribution, can be as
small as two or three.

The possibility to reach time ranges on the order of the control cycle is
intimately linked with the existence of a fast solver for Eq. (10). First steps
in this direction were performed by Bunemann in 1967 by presenting a fast
Poisson solver for a rectangular grid relying on a cyclic reduction method
[8]. Buzbee showed in 1971 how to embed an arbitrarily shaped boundary
for which Dirichlet conditions exist in a rectangular grid by first invoking
the Poisson solver with artificial zero boundary and correcting for the proper
boundary conditions with a second call of the solver [9]. Based on the above
findings Hagenow and Lackner in 1975 [10] described an algorithm solving
Eq. (10) with the following three steps:

1. Calculate 9° as a solution of Eq. (10) with 1° = 0 on the (rectangular)
boundary.

2. Computation of ¢ at the boundary employing a Greens function [3]

W) = —ng T—{G(r,) (aw (’"*)) ds* . (11)

an

3. Finally, the boundary conditions computed with Eq. (11) are used to
calculate 7 in a second application of the fast solver.

Invoking the fast solver two times (in steps 1 and 3) constitutes the so-called
"inner” iteration.

Though for the past 30 years efforts were made to optimize Buneman'’s
fast solver on the fastest serial computers, e.g. by employing assembler code,
it was not possible to enter the control cycle time range. More recent efforts
to implement the algorithm on parallel systems proved futile since the cyclic
reduction method contains dependent loops with loop lengths too short to
profit from parallelization.

Our new approach presented here employs the Fourier transform method,
a classical tool for solving partial differential equations since the early 1970s
[4]. Fourier decomposition leads to a system of linear equations represented
by a set of symmetric tridiagonal matrices which can be solved independently.

)

Fourier back transformation concludes the solver step. The advantages of
these well known methods are evident — especially when implementing for
multicore processors. For the Fourier transformation as well as for the solu-
tion of the tridiagonal matrix highly optimized numerical library routines are
available. Moreover, both methods split the numerical task into independent
portions which allow a highly parallel work flow (see Section 5).

4 Solution of the discretized Grad-Shafranov
equation

The first step is the discretization of the Grad-Shafranov equation in Eq.
(10). In cylindrical coordinates with radius 7 and height z we consider a
uniformly spaced two dimensional grid of size M x N with (see Fig. 1)

re = roti-A,, i=0..,M, (12)
5 o= z+j-A., j=0,..,N, (13)

where o = Tmins "M = Tmaz, AT‘ = (Ti‘.«[- TO)/ﬁV:[and 20 = Zmins; EN = Zmazs
Ay = {L’N = ZU)/N

°
N-ls' % & s & & » sio
[] E [] [] [] L] L] L] [] i []
° E e e o o o o o .0
% 5 !
[] : [] [] [] [] L] [] [] i L]

° E e o e o ©® o o E °
l]eie ®© @ ® ® © ® .0
,,,,, s oot s e e
Qe e ®© e e e o o, 60
0:1 M-I M
1 —".-_ 1

!

Figure 1: Topography for a M x N grid. The dashed lines clarify the index
values for the boundary grid points. Since the calculation of the flux distri-
bution affects only the inner grid points (and the nearest neighbours at the
boundary), the flux values of the four corners have heen defined to be the
mean of the two nearest neighbours, respectively.

With the usual five-point discretization stencil the differential operator
A* from Eq. (2) reads

B10, o mflear dud (o g | gy
arror Tit1/2 Ti-1/2 Tit1/2 Ti—1/2

A?
0? 1
72t xs Wi+ = 2ig + i (15)
We define
A s? _ 52 -
=5, g = opund &y = e 0; = —si —s; 5 glr:, 2;) .(16)

Employing the above definitions we get the discretized version of Eq. (10),

= 1 1 g;.‘,’ 1
87 Wity + 8; Yic1y + r_’abi,jﬂ =4 ;f_'wi,jq + iy = — T__j AL (17)
2] 1
We shift 1/;0 and 1); ; to the right-hand side, because they are either zero
(as in step 1 of Lackner’s algorithm) or constant (as in step 3 of Lackner’s
algorithm). Let us represent the right-hand side by a single variable p:

—ginA2/ri — /1 for =1 :

Pij = “gi,jAg/T@ for j=2,..,N—2, (18)
—gin-1 A2 ri — i y/ri for j=N-—1

At this point it is possible to decouple the two-dimensional dependency on

adjacent grid points by employing the real sine Fourier transformation, which
is commonly termed ”discrete sine transform” (DST):

i _
Vi; = N Z (A lSin(WJE/N)) (19)
2 Nil
Pii = > pigsin(mjl/N) . (20)
=1

Regarding the z-direction Eq. (19) reads

2 N—
Pise1 = = Z b sin(mjl/N £ wl/N)) . (21)
We make use of
sin(a £) = sin(a) cos(f) £ cos(a) sin(B) (22)

and insert the modified Eq. (21) together with Egs. (19) and (20) in Eq. (17):

L2 Nl 9 N-1
N Z Yiprgsin(mil/N) + s Y Z Y1, sin(mjl/N)
1 = 7l T2 8, il 7l
- = -2 . B o
? Z d”sul (N) + v g 1y 1 cos(N)sm(N)
1.8 0= 'rﬂ l 138 ¥*f, wjl, . @l
+—Z~ Z 1, sin T)COS(N) = T_iﬁ 2. iy COS(W)SIH(N)
N-
) N z Y sin(mjl/N) = N Z iusin(mjl/N) (23)
=1 =1

1,—1-

p
Postulating that Eq. (23) has a solution if it can be solved for every value of

the index [individually, we get

. . 2 . P

87 Vi1 + 87 i+ T—lbzz cos(ml/N) + dibiy = pig (24)

foralll=1,..,N—1andé=1,..,M — 1. With the help of s; = s ; and
defining d;; = [2cos(nl/N)/r; + 6;] we finally obtain

siipng + Sty + s thic1n = b (25)

This establishes (N — 1) independent linear systems of size (A/ — 1) which
can be written as

Dz"z‘z:ﬁz y b=l N—=1 (26)

On the left-hand side Eq. (26) has the (M —1) x (M —1) symmetric tridiagonal
matrix D, and the target vector 9,

~ +]
oy S 0 ()
+ +)
sT 02y s3 Pay
+ 3 +)
82 ()3,,! 53 = ¢3,£
D, = , Yy = . (27)
+ $ + 1l
Sir—3 OM—20 Spr—a Unr—2,
+ g]
0 Spr_a Opm—1y V-1,

and on the right-hand side the vector p; with the aforementioned subtractions
of the boundary values of 1
pri— 53-1/:'0,t
P2,
P31

Pr—2,
A + 4
PM-1,1— 5;\1711/:’1\4',1

The p;; arc the backward sine Fourier transforms (or ”inverse discrete sine
transform”, iDST) of p;,; of Eq. (18)

N-1

pig=) pijsin(mjl/N) (29)

J=1

with i =1,..., M — 1. Eventually, the t,@—values at the boundary are obtained
from backward sine Fourier transformation for i = 0 and 7 = M only:

N-1

Yii = Y Yigsin(mjl/N) . (30)

=1

According to the algorithm the boundary values of 3 are set to zero for the
first solver step and the backward Fourier transformation can be skipped.
However, for the second call of the solver the boundary-1 are nonzero and
Eq. (30) has to be evaluated.

5 Parallelizable algorithm

With the above equations Lackner’s algorithm presented in Section 3 can
be implemented such that parallel capabilities of common processors can
be exploited. Start by obtaining g, in Eq. (28) from the backward Fourier
transformation of an initial flux distribution (either from initial conditions
or from a previous outer iteration step). Since the boundary conditions in
the first step of the solver are set to ¥ = 0, only Eq. (29) is nceded. The
computation can be performed in (M —1) independent tasks. Then the linear
system of Eq. (26) is solved to obtain the target vector 1,5; which allows to
compute the proper boundary for 1. Since the linear system decouples into
(N —1) independent tridiagonal systems, this step can be performed in (N—1)
parallel tasks.

As already stated in Ref. [11] it is possible to spare some work in the
subsequent process. In our realization the resulting 'l/:'.g are saved for later use
at all grid positions except at the boundary. Instead of performing a Fourier
transformation of the complete vector field 1,5 only the v, ; are computed
according to Eq. (19) at grid points adjacent to the boundary, since they are
all what is needed for the normal derivative 94°/dn in Eq. (11). This results
in the independent and therefore parallelizable calculation of 2 x (N — 1)
Fourier coefficients for all 1 < j < N -1 withi =1 andi = M — 1,
respectively, and 2 x (M — 3) Fourier coeflicients for all 2 <7 < M — 2 with
j=1and j = N — 1, respectively. The correct boundary of ¢ can then

be calculated with Eq. (11), where the integral is done by a matrix vector
multiplication with a precomputed discretized Greens function.

Following Lackner’s algorithm the aforementioned steps are performed a
second time, but this time with proper boundary conditions. Again some
work can be spared in obtaining g, from Eq. (28). To begin with, remember
that for nonzero boundary conditions p is modified according to Eq. (18).
This changes every array element of the Fourier transformed p by

g o U b
ﬁEOUDC]aFYrU _ F'}Eouudnryéoku Sill(ﬂ'l/N) _WiN Sill(W(N— I)I/N) (31)
1 T

1 1]
Second, only the first and last entry in the vector g, is affected by non-zero
boundary values 'l,:ag‘g and ¢ i, respectively. Therefore, only the latter have
to be calculated with Eq. (30) and are simply subtracted from the modified
p in Eq. (31). Finally, the tridiagonal system of Eq. (26) is solved to get the
target vector v, which is Fourier transformed according to Eq. (19) to give
the resulting flux distribution .
To refer both to the origins of Lackner’s algorithm and to the new parallel
capabilities we baptized the implemented program code as Garching parallel
equilibrium code (GPEC).

6 Implementation and computational perfor-
mance of GPEC

In this section we shall present our implementation and parallelization ap-
proach for the algorithm described in the previous Sections (4, 5) and doc-
ument its computational performance. In the general context of the Grad-
Shafranov equation our solver computes a fast numerical solution of Eq. (10),
i.e. for a single basis function (cf. Sect.1l). Here, our basic parallelization
strategy is based on shared-memory threads which are mapped to the cores
of a present-day multicore CPU.

For multiple basis functions (Eq. 9) each of the required N, + N individ-
ual calls of the solver for Eq. (10) can be performed on a separate multicore
CPU which may be mounted in a multi-socket (shared memory) or multi-
server (distributed memory) system. The distribution of the individual solver
calls onto the CPUs is conceptually straightforward and requires only minor
communication. It will be implemented using the Message Passing Inter-
face (MPI) or the new coarray features of the FORTRAN 2008 standard
[12]. Such a hybrid parallelization strategy is expected to provide sufficient
flexibility to cope with processor and server developments in the foreseeable
future.

10

The last subsection of this chapter briefly reports on our attempts to im-
plement the algorithm as described in Sect. 4 on a general-purpose Graphics
Processing Unit (GPU).

6.1 Overview

The solver for Eq. (10) is implemented in FORTRAN 90 (using double-
precision arithmetics), and employs the industry-standard OpenMP shared-
memory programming model for multi-thread parallelization®. For reasons
of portability and long-term sustainability we did not consider low-level opti-
mizations like, for example, developing assembler code for the most relevant
computational routines. The program is based entirely on Open-Source soft-
ware components, i.e. the complete source code of the solver algorithm, in-
cluding all numerical libraries required is available to us and can be released
under a suitable Open-Source license like GPL, if desired.

In the following we will report results obtained with a standalone program
which we had rewritten based on the techniques realized in the CLISTE pack-
age for the ease of development and testing. Our implementation basically
comprises the rewrite of a subroutine called EQUIL(psi(:,:)). The new
equilibrium code with GPEC is already being used for offline analysis of
ASDEX Upgrade data.

6.1.1 Basic structure of the algorithm

As described in detail in Sects. 4, 5 the overall structure of the algorithm
for an outer iteration step can be characterized by the following sequence of
computations:

dsty: (M — 1) inverse discrete sine transforms (iDSTSs) of size (N — 1), cf.
Eq. (28)

trids: solution of (IV — 1) tridiagonal linear systems of size (M — 1), cf.
Eq. (26)

dstgpare1: 2 DSTs of size (N — 1) plus 2 x (M — 3) scalar products of size (N — 1)
for computing 2(N —1 + M — 3) Fourier coefficients, cf. Egs. (11,19)

matvec: 1 matrix-vector multiplication of rank 2(N + M — 2) x 2(N + M — 2),
cf. Eq. (11)

dstgparea: 2 iDSTSs of size (IN—1) plus a corresponding rank-1 update of a N x M
matrix, cf. Eq. (31)

trids: solution of (N — 1) tridiagonal linear systems of size (M — 1), cf.
Eq. (26)
dsto: (M — 1) DSTs of size (N — 1), cf. Eq. (19)

'see www.openmp.org

11

Note that in the following the notation DST refers to both, the discrete
sine transform and its inverse (iDST) because both variants are equivalent
concerning implementation and computational performance.

6.1.2 Parallelization strategy

The calculations of (M — 1) or 2 DSTs required in steps dst;, dst, or steps
dStspare1; AStspare, Tespectively, are mutually independent and can obviously
be computed in parallel. The same applies for computing the (N —1) solutions
of the tridiagonal systems corresponding to the steps labelled trid; and
trids. Since each of the consecutive steps dsty, tridy, ..., dsts requires
the complete update of the work arrays from the previous step, an implicit
synchronization barrier is implied after each of the individual steps.

Our implementation generally tries to maximize the computational work
for each thread in order to reduce the impact of OpenMP parallelization
overhead. This is of critical importance since in our application a parallel
loop typically contains only a few microseconds of computational work for
a single loop iteration. Typical OpenMP synchronization overheads can be
on the order of up to a few microseconds, according to the EPCC OpenMP
micro-benchmark suite [13].

6.1.3 Data layout

In our FORTRAN 90 implementation we chose a data layout that is trans-
posed wrt. the conventional notation used for the M x N numerical grid
(Sect. 4), i.e. the main two-dimensional work array x which represents), p, . ..
is dimensioned as x(N,M). Thus, each individual DST can work efficiently
on a contiguous memory section, corresponding to FORTRAN's so-called
"ecolumn-major” array ordering. As a consequence, an orthogonal access
pattern along rows applies for the solution of the sct of tridiagonal linear
systems which in general is very unfavorable for the performance due to
strided memory accesses. However, we shall present a highly efficient algo-
rithm for treating the set of tridiagonal linear systems which avoids strided
memory access without having to perform expensive transpositions of the
work arrays.

The following three subsections provide implementation details for the
steps labelled dst (Sect. 6.2), trid (Sect. 6.3), and matvec (Sect. 6.4), re-
spectively.

6.2 Discrete sine transform (DST)

For computing the discrete sine transforms required in steps dst;, dsts,
dStsparel, dStsparez (cf. Sect. 6.1.1) we employ the free software package
FFTW (www.fftw.org, currently in version 3.2.2). FFTW is Open-Source
software (released under the GNU General Public License) and is probably
the most popular and widely used FFT library in scientific high-performance
computing.

For the DST's in steps dst;, dsts a number of n so called FFTW-"plans’
are precomputed in an initialization step, where n is the number of parallel
OpenMP threads to be specified at program startup. Note that in our appli-
cation these initializations do not contribute to the relevant computing-time
budget. FEach FFTW-plan corresponds to the computation of a chunk of
[(M —1)/n] independent, one-dimensional discrete sine transforms, where
[z] denotes the smallest integer larger than or equal z. Compared with a
naive implementation using (M — 1) plans this improves serial performance
(via its "advanced interface” FFTW provides routines for efficiently comput-
ing many independent one-dimensional transforms within a single plan) and
diminishes parallel overhead (by reducing the number of plans resp. parallel
loop iterations from M — 1 to n). Given the fact that the amount of compu-
tational work is the same for each individual DST our grouping of individual
DSTs into chunks of largest reasonable size requires that n should divide
(M — 1) with a zero or large remainder. Otherwise, the load imbalance in-
troduced by one thread which has to compute less than [(M — 1)/n] DSTs
would obviously degrade parallel efficiency. For example, with M = 33 and
n = 6 this load imbalance would impose an upper limit of 32/[32/6] = 5.2
on the achievable parallel speedup.

For performing the DST's required in steps dstspare1, dStspare2 (Sect. 6.1.1)
we precompute two additional FFTW-plans and execute them in parallel. In
step dstgparer the remaining Fourier coefficients at grid points adjacent to
the boundary, ;1 and 9; y—1 (2 <i < M — 2), are computed by evaluating
the two scalar products which are defined by Eq. (19) with j = 1, and
Jj = N—1, respectively. We use precomputed values for the vectors sin(nl/N)
and sin(7l(N — 1)/N),1 <[< N — 1. Computing only this smaller set of
2(N — 1+ M — 3) Fourier coefficients is obviously computationally much
more efficient than employing a full set of (M — 1) DSTs of size (N — 1)
and discarding ¢f;; for all 1 < ¢ < N,1 < j < M. Similarly, as described
in Sect. (5), the operations required for step dstspare2 can be reduced to the
computation of only 2 DSTs (producing the two M-element vectors 1@1-’0 and
‘l/}-i, ~) which enter the rank-1 update of the M x N matrix p; ; (cf. Eq. 31).

13

As an alternative and for numerical reference owr program optionally
supports the discrete sine transform from Intel’s proprietary Math Kernel
Library (MKL), which is closed-source software, as well as the routine sinft
from the popular Open-Source library "Numerical Recipes” [14]. Perfor-
mance comparisons between the libraries will be given below. Note that we
did not make any attempts to optimize Numerical Recipes code.

6.3 Tridiagonal solver

We have implemented an efficient solver for sets of mutually independent
tridiagonal linear systems (steps trid;, trids in Sect. 6.1.1). It is based
on the classic Thomas algorithm, which essentially is a standard Gaussian
elimination method (without pivoting) specialized for a tridiagonal system.
Since in our case the matrix elements depend only on the numerical grid
(cf. Eq. 25), we may precalculate and store a LU decomposition, the com-
putation of which does not contribute to the computing-time budget that is
relevant for our application (cf. [11]).

The time-critical backsubstitution step is implemented such that we can
take advantage of thread-level parallelization and at the same time exploit
SIMD-vectorization for boosting single-thread performance on modern pro-
cessors which support the Streaming SIMD Extensions (SSE) to the stan-
dard x86 instruction set or similar schemes like AVX. Instead of performing
a call to a standard tridiagonal solver individually for each of the NV —1
systems, our solver works on chunks of [(N — 1)/n]| systems per call, where
n is the number of parallel OpenMP threads. Much similar to the afore-
mentioned case of grouping together individual DSTs (Sect. 6.2) n has to
divide (N — 1) with a zero or a large remainder in order not to introduce sig-
nificant load-imbalances. Within a thread or such a solver call, respectively,
SIMD-vectorization can be achieved by performing a simple loop interchange
which makes the loop over the [(N — 1)/n] independent systems an inner
loop and hence amenable to auto-vectorization by the compiler?. The basic
implementation of this solver was taken from the astrophysical radiation-
hydrodynamics code VERTEX [15]. The basic technique is illustrated by
the following code fragment which is a ”vectorized” rewrite of the Numerical
Recipes routine tridag [14].

! n: system size
| a: lower codiagonal, b: main diagonal, c: upper codiagonal
! r: right-hand side, u: solution vector

H

2M.R. acknowledges Dr. Rudolph Fischer (NEC inc.) for originally pointing out the
idea in this context to him.

14

! handle j=1 here
do j=2,n ! forward elimination step
do i=1,k ! loop over k tridiagonal systems, SIMD vectorizable
gam(i,j)=c(i,j-1)/bet(i)
bet (i)=b(i,j)-a(i,j-1)*gam(i,j)
u(i,j)=(,j)-ali,j-1)*uli, j-1))/bet (i)
end do
end do

do j=n-1,1,-1 ! back substitution step

do i=1,k ! loop over k tridiagonal systems, SIMD vectorizable
u(i,j)=uli,j)-gam(i,j+1)*u(di,j+1)
end do
end do

For typical numerical grids used in our applications the coefficients of the
tridiagonal matrix (Eq. 25) satisfy the diagonal-dominance criterion |5‘,,,§| >
s |+]s 1| (Vi,1). This allows us to omit a pivot search in the solver (cf. [14])
and hence to avoid introducing indirect indexing of the arrays which usually
impedes SIMD-vectorization.

As a reference for the numerical accuracy and for assessing the perfor-
mance of our implementation, we also support the option to employ the
unmodified Numerical Recipes routine tridag [14] or the MKL routines
DDTTRFB, DDTTRSB. The latter are pivot-less variants of the standard LA-
PACK routines DDTTRF, DDTTRS for factorization and solution of tridiagonal
linear systems. Performance comparisons will be given below.

6.4 Matrix-vector multiplication

For the matrix-vector multiplication (step matvec in Sect. 6.1.1) we use the
Level-2 BLAS routine DGEMV from the freely available GotoBLAS2 library,
the source code of which is distributed by the Texas Advanced Computing
Centre, (http://www.tacc.utexas.edu/).

When compiled with OpenMP support, the GotoBLAS2 implementation
of DGEMV shows superior parallel performance for our application when com-
pared with either of the FORTRAN 90 intrinsic procedure matmul, with a
(naively) parallelized implementation as a straightforward double loop, or
even with optimized DGEMV implementations taken from latest versions of
the commercial numerical libraries MKL or NAG.

We note that the GotoBLAS2 library is no longer under active devel-
opment but we expect the algorithms or at least the essential ideas to be
adopted by relevant Open-Source, high-performance BLAS-implementation

15

projects like ATLAS (http://math-atlas.sourceforge.net/) or OpenBLAS?
(https://github.com/xianyi/OpenBLAS /wiki).

6.5 Computational performance
6.5.1 Benchmark platform

Our primary hardware platform for performing the benchmarks we report in
the following is a standard two-socket compute server (HP ProLiant DL370
G6) hosted by RZG. The server is equipped with two Intel Xeon W5580
quad-core CPUs with a clock frequency of 3.2 GHz. We use a standard
Intel software stack (Intel C and Fortran compiler suite, version 12.1 and —
optionally — the Math Kernel Library, MKL 10.3) on top of the Novell/SUSE
SLES11 Linux operating system. All required software is part of the standard
software stack available on RZG Linux systems. We note that our code
and the libraries FFTW and GotoBLAS can also be compiled using the
GNU compiler collection (gee) which points out the option to base the entire
application on a completely free and Open-Source software stack. However,
we have not yet made any attempts to optimize our application for gec.
When compiled with gee (4.6.0), the performance currently falls behind the
numbers obtained using Intel’s compilers by roughly a factor of two.

At runtime we pin OpenMP threads to the available physical processor
cores using environment settings of the Intel runtime. We achieved best
performance by setting KMP_AFFINITY="granularity=compact", which, for
example pins 4 OpenMP threads to a single quad-core CPU on our two-
socket server. In order to minimize OpenMP overhead we specify static loop
scheduling by setting OMP_SCHEDULE=static. Furthermore, in order to pro-
hibit that temporarily idling threads are recurrently “freed” and have to be
reclaimed from the operating system again we set OMP_WAIT_POLICY=active.
The latter two environment settings are part of the OpenMP standard.
When working with a non-Intel software stack (e.g. GNU gcc) the propri-
ctary KMP_AFFINITY setting could be replaced, e.g. by employing standard
GNU tools like numactl for controlling the policy for pinning processes and
shared memory.

3The OpenBLAS project has taken over the GotoBLAS2 source code. In fact, the cur-
rent version 0.1lalpha of OpenBLAS shows the same DGEMV performance in our application
as GotoBLAS2.

16

6.5.2 Overview of benchmark setup and results

We consider a numerical grid with M x N = 64 x 128 zones as our standard
case. The corresponding resolution is generally regarded as sufficient for real-
time applications in the present context. Using all four cores of the 3.2 GHz
CPU of our benchmark platform we achieve a floating point performance of
almost 7 Gflops, resulting in a total runtime of 0.114 ms for a single call of
the solver (i.e. a single "outer” iteration step). Computing the DSTs with
Intel’s proprietary MKL library instead of FFTW would account for a 20%
speedup, i.e. a total runtime of 0.093 ms.

0.25

0.20

=
w

T, * (64x128/MxN) [ms]
e
o

0.05

| N | I Lol .l l L1 | I L1 1 1 I L1 1 J_I

LN I LI L LI L T T 1 T L
I I I I I

0.00

32x64 64x128 128x256 256x512

Figure 2: Parallel runtimes T and subroutine breakdown using all four cores
of the 3.2 GHz CPU Xeon W5580. All runtimes were normalized to the total
number of grid points. The "standard” grid with M x N = 64 x 128 was
chosen as a reference value. Hence, for the other grid dimensions 32 x 64,
128 x 256, or 250 x 512 the actual runtimes can be obtained by multiplication
with factors 1/4, 4, or 16, respectively.

In the following we shall present more detailed timings for the standard
64 x 128 grid. For comparison selected timings are shown also for smaller
(32 x 64), and larger (128 x 256, 256 x 512) grid sizes. Unless explicitly
stated otherwise all benchmark numbers reported refer to a single so-called
"outer” iteration step of Lackner’s Algorithm (Sect. 3). All timings exclude

17

any “initialization”, i.e. operations which can be precalculated and stored in
memory before the sequence of "outer” iterations is computed in a real-time
application. This comprises, for example, the setup of the numerical grid and
derived quantities like s*,s7,d (Sect. 4), computing the LU decomposition
for the tridiagonal solver (Sect. 6.3) or the FFTW-plans (Sect. 6.2). For
the runtimes we noticed variations on the order of 10% when executing the
program several times in a row. This issue has not yet been analyzed and
needs to be revisited when the application is finally going to be prepared
for implementation, e.g. at the ASDEX experiment. We expect that specific
tuning of the operating system parameters will help alleviating the problem
on a particular target compute server.

Figure 2 and Table 1 provide the basic overview of the total runtimes
of the solver for different sizes of the numerical grid. Figure 2, in addition,
shows the contribution of the individual subroutines to the total runtime. Ta-
ble 1 also compares the total runtimes obtained on our standard Xeon W5580
system with CPU models with lower clock frequency and different number
of cores (and also memory bandwidth). In all cases we chose the number
of OpenMP threads equal to the number n of physical cores a single CPU
provides. When using more cores the parallel efficiency usually becomes poor
unless comparably large problem sizes (128 x 256 or larger) are considered
(cf. Fig. 3 and Table 3).

grid 32 x 64 | 64 x 128 | 128 x 256 | 256 x 512

n| T, [ms] | T, ms] T, [ms] T, [ms]
Xeon W5580 | 3.2 GHz | 4 0.040 0.114 0.432 3.550
Xeon E5540 | 2.7 GHz | 4 0.043 0.130 0.489 3.163
Xeon X7542 | 2.7 GHz | 6 0.048 0.113 0.343 3.379

Table 1: Parallel execution times, T;, using a number n of cores for different
sizes, M x N, of the numerical grid. The table also compares the 3.2 GHz
CPU of our standard benchmark platform with the more moderately clocked
Intel Xeon E5540 (quadcore) and X7542 (hexacore) CPUs, both running at
2.7 GHz (the Xeon E5540 CPU, which has a nominal clock frequency of
2.53 GHz is operated in ”turbo mode”).

Overall, the measured runtimes roughly reflect the theoretical compute
performance (clock frequency times number of cores) of the different CPU
models. We observe a few exceptions from this general trend which, in prin-
ciple can be explained by taking into account differences in the memory
bandwidth delivered by the CPUs*, and also load imbalances for different

4According to the STREAM benchmark the memory bandwidth of the faster Xeon

18

combinations of n and M x N (cf. Sects. 6.2, 6.3). In the following we will
mostly confine our analysis to the standard Xeon W5580 benchmark platform.

10’)
256x512

IIIWIiI

T [ms]

g

IIIIIII

1072 | I I

cores

Figure 3: Overview of the parallel execution times, T}, as a function of the
number 7 of cores for different sizes, M x N, of the numerical grid. Runtimes
were measured on the 3.2 GHz CPU Xeon W5580. The dotted straight
lines indicate ideal parallel scaling (corresponding to a parallel efficiency of
n = 100%).

Table 2 and Figure 2 summarize the contribution of the major individual
components of the solver in absolute terms and relative to the solver’s run-
time. Table 2 shows serial runtimes, Figure 2 shows parallel runtimes ob-
tained on four cores. Note that here and also in Table 3 multiple contri-
butions of the same algorithmic steps defined in Sect. 6.1.1 were added up,
i.e. T(2xdst) = T'(dsty)+T (dstz2), T'(2x dstspare) = T (dstspares) + 7 (dStsparea),
and T'(2 x trid) = T'(tridy) + T'(trid,). Notably, already the serial algorithm
performs very well. Runtimes for moderate grid sizes (64 x 128 or smaller)

W5580 CPU is actually 10% smaller when compared with the Xeon E5540 model.

19

grid 32 x 64 64 x 128 128 x 256 256 x 512

T [ms] % | T [ms] % | T [ms] % | T [ms| %
2xdst 0.036 48.4| 0.149 534 | 0.653 55.2| 2999 444
2xdstpare | 0.012 16.3 | 0.032 11.5| 0.117 99| 0.577 8.5
2xtrid 0.013 16.8| 0.048 17.2| 0.191 16.2| 1.112 164
1 xmatvec 0.014 17.9| 0.049 176 0.220 186 | 2.074 30.7
solver 0.076 100.0 | 0.279 100.0 | 1.182 100.0 | 6.764 100.0

Table 2: Single-core runtimes T' and subroutine breakdown for different sizes
M x N of the numerical grid.

are well below the millisecond range, i.e. already with a single core it would
be possible to run a couple of outer iteration steps within a typical control
cycle of the experiment. Table 2 and Figure 2 also shows that the DSTs con-
sume the largest fraction of the computing time which justifies our particular
choice of the data layout (Sect. 6.1.3). For very large grids the matrix vector
multiplication becomes the dominant component.

The transformations which we employ for steps dstgparer and dstgpares
(Sect. 6.2) are a factor of 3 to 5 faster when compared with a naive imple-
mentation which would require another two complete sets of (M — 1) DSTs
of size (N — 1). This can be seen by comparing rows labelled 2xdstpar. and
2xdst in Table 2 (see also Table 3).

Within individual rows of Table 2 we find the runtimes to roughly quadru-
ple with doubling both values, M and N. This is in accordance with the com-
putational complexity of the underlying algorithms, which are O(N - M) for
the tridiagonal systems, O(M - N log N) for the DSTs, and O((N + M)?) for
the matrix-vector multiplication, respectively. For the largest grid-size one
notes deviations from this trend, which is due to the computations becoming
memory bound.

Focusing on a grid size of 64 x 128, Table 3 shows the parallel scaling be-
haviour of the individual components of the algorithm. For all components a
rather good parallel efficiency is achieved up to the maximum of 4 cores pro-
vided by a single CPU (see also Fig. 3). Although there are no relevant serial
parts remaining in the algorithm or our implementation, Figure 3 indicates
some deviation from the ideal scaling curve (which corresponds to a parallel
efficiency n = 100%). This behaviour is rather explained by the overhead
introduced by OpenMP parallelization (mostly setup and synchronization of
threads in the parallel loops) and by the fact that at most 2 threads can be
utilized in steps dstsparer and dstspares.

The significant decrease of the parallel efficiency from 4 to 8 cores (see also

20

cores 1 2 4 8

Ty [ms] n | Ts [ms] n | Ty [ms] n | Ts [ms] 7
2xdst 0.149 1.00 0.081 0.93 0.048 0.78 0.062 0.30
2xdstepare 0.032 1.00 0.021 0.76 0.017 047 0.026 0.15
2xtrid 0.048 1.00 0.033 0.73 0.027 0.44 0.038 0.16
1xmatvec 0.049 1.00 0.028 0.87 0.021 0.58 0.018 0.34
solver 0.279 1.00 0.164 0.85 0.114 0.61 0.144 0.24

Table 3: Parallel runtimes, T;, for different numbers n of cores, and parallel
efficiency, 7, conventionally defined as n = T1/(n - T,,) for grid size 64 x 128.

Fig. 3) is caused by a combination of two effects. First, the OpenMP overhead
gets larger relative to the total computational work performed by a thread.
Second, NUMA effects (i.e. slower access to memory and cache of the "re-
mote” CPU) become relevant when both CPUs of the two-socket server are
utilized by 8 threads®. Both effects, OpenMP overhead and memory bottle-
necks could probably be further reduced by performing elaborate profiling
and tuning of the program. For the time being we refrain from spending
considerable efforts on such further tuning, noting that in the final applica-
tion scenario multiple CPUs can presumably be utilized very efficiently by
running multiple independent copies of the solver, where each instance corre-
sponds to a different basis function. Assuming perfect parallelization, which
is not unreasonable since only minimal inter-CPU communication is required,
a server with four quadcore CPUs of present-day technology would, for exam-
ple, be able to compute 1ms/(8-0.114 ms/4) ~ 4 outer iteration steps within
a millisecond, provided that N, + Np = 8 basis functions and a numerical
grid of size 64 x 128 (T4 = 0.114ms) are chosen, or 12 outer iterations for a
grid with 32 x 64 zones (T, = 0.04ms).

6.5.3 Performance of the DST

Our measurements show that for the grid sizes considered (N and M cor-
respond to the length of an individual DST, and to their total number, re-
spectively) the DST routines provided by Intel's proprietary Math Kernel
Library (MKL 10.3) are faster by approximately a factor of 1.5 compared
to FFTW. Both, MKL and FFTW routines show roughly the same parallel
scaling behavior with increasing number of cores. Overall, this translates
to a 20% performance improvement of the complete solver when using the
DSTs from MKL (Table 4).

As expected, the routine sinft from Numerical Recipes is not competitive

5Test runs on an Intel 10-core CPU Xeon E7 8870 indeed showed that in the absence

21

grid (M x N) 32 % 64 | 64 x 128 | 128 x 256 | 256 x 512
T

n| T, [ms] | T, [ms] T, [ms] n [ms]
Xeon W5580 | 3.2 GHz | 4 0.034 0.093 0.372 2.861
Xeon E5540 | 2.7 GHz | 4 0.033 0.092 0.346 3.295
Xeon X7542 | 2.7 GHz | 6 0.043 0.091 0.283 3.188

Table 4: Same as Table 1, but showing the performance of the solver using
DSTs from the Intel Math Kernel Library (MKL 10.3) instead of FFTW.

performancewise. It was implemented rather for comparing the numerical
accuracy delivered by different DST libraries and can also serve as fallback
for building the solver, as the source code for sinft and all dependencies
from Numerical Recipes are packaged with our code.

We intentionally refrain here from providing more systematic benchmark
numbers for comparing DSTs from Intel MKL and FFTW, because our ex-
periments have shown that the single-core performance and in particular the
parallel performance is highly sensitive to the size of the individual trans-
forms and to subtleties of the OpenMP parallelization, respectively. As an
example, we note that we were successful to achieve decent parallel efficiency
with the DSTs from MKL ounly if the work arrays were declared as "thread-
private” (in the OpenMP sense) module variables. Using instead a local
variable with private scope in the OpenMP parallel region or loop, which
is programmatically apparently equivalent we noticed very poor scaling of
MKL’s DSTs in our application.

Finally, we note that even for the smallest grid size considered here
(32x64) a direct implementation of Eqs. (19) and (20) as a matrix multiplica-
tion using a multi-threaded level-3 BLAS routine DGEMM with a precomputed
coeflicient matrix, sin(7jI/N) does not outperform FFT-based DSTs taken
from platform-optimized libraries like Intel MKL or FI'T'W.

6.5.4 Performance of the tridiagonal solver

Unlike in the case of DST (sce previous subsection) a meaningful and un-
biased comparison of the performance of our new tridiagonal solver with
alternative routines from Intel MKL, Numerical Recipes or alike is not pos-
sible due to the particular data layout used in our program. Specifically, our
choice of dimensioning arrays as x(N,M) entails memory access with large
strides when employing a generic tridiagonal solver routine like DDTTRSB (In-
tel MKL) or tridag (Numerical Recipes). For example, the call sequence for

of NUMA positive parallel speedups are obtained up to the maximum of 10 threads.

]
]

the DDTTRSB routine,

do 1l =1,N
call DDTTRSB(’N’,M,1,d1(1,:),d(1,:),du(1,:),b(1,:),1,info)
enddo

where d1, d, du and b are the N x M arrays corresponding to the LU de-
composition (computed by DDTTRFB) and the right hand side/solution vector,
respectively, would obviously be a very inefficient one. Hence, this setting
does not allow a fair comparison with our own solver, which in turn is tai-
lored exactly towards such an "unfavourable” data layout. In short, DDTTRSB
is not competitive in our application, although the routine as such is highly
optimized for a standard application scenario®.

Tlix128) [ms] | Taex128) [ms] gain | Tigaxios) [ms] gain
VTRS 0.0017 | 0.0063 4.3 10.021 5.2
DDTTRSB (MKL) 0.0008 | 0.0131 | 0.053 -
tridag (NR) 0.0022 | 0.0339 —10.148 =
vtridag 0.0025 | 0.0097 4.1 | 0.037 4.3

Table 5: Serial execution times for different tridiagonal solvers. The ”gain”
measure is defined as k - T{1x128)/T(kx128), Where & is the number of indepen-
dent tridiagonal systems to be solved.

In order to still demonstrate the potential of our solver in an unbiased as pos-
sible way we provide here benchmark numbers in an artificial setting, which
grants each routine the type of data layout which is natural and presumably
optimal.

In this setting, Table 5 compares serial execution times of our vector-
ized solver for multiple systems (named VTRS) with those of Intel’s MKL
(DDTTRSB). Both routines rely on a precomputed LU decomposition and do
not perform row or column interchanges due to pivoting. For reference we also
provide numbers for the "standalone” solvers (i.e. no precomputed LU de-
composition available) from Numerical Recipes (tridag) and its ”vectorized”
variant for multiple systems (named vtridag) which was also implemented
by us (cf. Sect. 6.3).

The three columns of Table 5 show serial execution times for solving
different numbers (k) of independent tridiagonal systems of size 128 each.

SRoutines like DDTTRSB are commonly designed for computing the backsubstitution of
multiple right hand sides, given a single LU decomposition. In our application, by contrast,
each right hand side comes with a different LU decomposition.

23

For a single system (k = 1), the platform-optimized MKL routine DDTTRSB
outperforms our solver VIRS by a factor of two. However, unlike DDTTRSB the
serial execution time of VTRS does not increase proportional to the number
of systems. For example, when solving k& = 16 tridiagonal systems, VIRS is
more than twice as fast as the MKL routine owing to gains of more than a
factor of 4 due to SIMD-vectorization and better cache locality.

As documented by the lower two lines of Table 5 the Numerical Recipes
routine tridag is not competitive, performancewise. Our ”vectorized” vari-
ant for multiple systems (vtridag), however, outperforms the MKL routine
(DDTTRSB) already for & = 16 systems, even though the latter saves on the
order of 50% of the operations by making use of a precomputed LU de-
composition. In analogy to the DSTs, support for the original Numerical
Recipes routine, as well as for our variant vtridag was implemented mainly
for reasons of numerical reference and as a fallback.

6.6 Code validation

Throughout its development the solver was embedded in a program environ-
ment which resembles the actual call to the equilibrium calculation realized as
a subroutine in the CLISTE program (subroutine EQUIL). This was achieved
by storing the contents of all variables used by CLISTE when calling this
subroutine. The final state of all variables after processing the CLISTE sub-
routine was stored as well and used for the code validation. The differences
in the results of the old CLISTE subroutine and the new solver were within
computational accuracy, i.e. maximum relative deviations are on the order
of 10712,

6.7 Experiments with general-purpose graphics pro-
cessing units (GPU)

In the context of an earlier master’s thesis project [16] co-supervised by
threc of us (U. v.T., M. R., R. F.), the suitability of the parallel algorithms
described above for implementation on general-purpose graphics processing
units (GPU) was assessed. Such devices could in principle serve as a more
powerful and also cost-efficient alternative to a standard CPU server.

Using NVIDIA’s popular CUDA programming model, different algorith-
mic variants of the main components, namely the discrete sine transform
(DST) and the tridiagonal linear solver, were implemented and tested on
a NVIDIA C1060 GPU and also on its successor, the C2050 model, called
"Fermi”. Here, we quote results only for the latter platform, which is sig-

24

nificantly more powerful, in particular for performing double precision nu-
merics, which is the arithmetic precision that is relevant for our application.
Using parallel cyclic reduction [17] for the tridiagonal systems and NVIDIA’s
CUFFT library (available at www.nvidia.com) for the DSTs, runtimes for a
single solver step on the order of a millisecond were achieved for grid sizes
ranging between 32 x 64 and 128 x 256. This is a factor of 10 slower com-
pared to the performance of our solver on a quad-core CPU (see above), not
even counting the time which is spent for the data transfer between the host
CPU to the GPU. Given the nominal peak performance (double precision)
of 500 Gflops of the C2050 GPU (vs. 50 Gflops for the CPU), this is clearly
a disappointing result. It can be explained by the fact that in our applica-
tion the size of the problem resp. the compute intensity is simply too small
to overcome various latencies, c.g. for starting and synchronizing individual
compute kernels or memory accesses on the GPU. In fact, only when we
artificially increased the problem size (e.g. computing thousands of DSTs of
size 128) the high thread-concurrency of the GPU could be fully exploited
and decent performance values on the order of hundreds of Gflops were ob-
tained. Such problem sizes could in principle arise in practical applications
if very fine numerical resolution and a large number of basis functions were
demanded for high accuracy. While in such cases the GPU might be able to
significantly outperform the CPU in terms of operations per second (Gflops),
absolute runtimes clearly are prohibitively large for real-time applications.

7 Summary

We presented GPEC, a numerically optimized solver for the two-dimensional
Poisson problem posed by the Grad-Shafranov equation describing magne-
tohydrodynamic equilibrium in tokamaks like ASDEX Upgrade. GPEC is
implemented in FORTRAN 90 and relies solely on open source software com-
ponents. It is therefore considered sustainable and meets the software policy
of ITER. The new code has been validated with results from the currently
used equilibrium code CLISTE.

The parallel capabilities of common multicore processors motivated to
employ a solution method developed nearly fifty years ago which consists of
the combination of Fourier transformation and solutions of tridiagonal linear
systems. Both methods in their optimized form, i.e. fast Fourier transfor-
mation taken from an optimized numerical library and a SIMD-vectorized
solver for a set of tridiagonal system of equations which was developed by
us, together with OpenMP parallelization of the numerical tasks enabled to
achieve execution times of about 0.04 ms on quad-core x86 processors (Intel

25

Nehalem, 3.2 GHz) for a grid size of 32 x 64 which is considered to be suf-
ficiently large to derive quantities for plasma control. This runtime is way
below of the control cycle for fusion machines which is typically in the mil-
lisecond time range and hence allows for a significant enhancement of the
operational regime for real-time plasma control. With doubling both grid
dimensions the runtimes quadruple, which is in accordance with the compu-
tational complexity of the algorithm. GPEC shows good parallel efficiency
up to the total number of cores of a single CPU socket. NUMA effects and —
to a lesser degree — parallel overhead deteriorate the efficiency of parallel scal-
ing beyond a single socket. However, this drawback can be compensated by
the utilization of the solver in equilibrium codes (which is the primary appli-
cation of the new solver) where a number of solutions of the Grad-Shafranov
equation are computed independently for a whole set of basis functions. This
allows to efficiently utilize multiple CPU sockets in parallel as shown by a
first prototype implementation (to be described elsewhere) of GPEC into
the equilibrium code "IDE” [18] using the message-passing interface (MPI)
standard. For a grid size of 32 x 64 the computation of an outer iteration
takes approx. 0.08 ms per basis function on a single CPU. In the MPI-parallel
equilibrium code this runtime is expected to scale with the number of basis
functions divided by the number of CPU sockets which, for example, read-
ily enables real-time applications using eight basis functions and four CPUs.
Moreover, this strategy of parallelizing the Grad-Shafranov solver for the
multicore architecture of a single socket and distributing the basis functions
across multiple sockets opens up the possibility to calculate highly resolving
grids (say 128 x 256) and a large number of basis functions (say up to the
order of 30) within reasonable time, using an adequately equipped, but still
mainstream computer system. This will enable to address scientific problems
relying on high spatial resolution with moderate hardware costs.

8 Outlook to the application of GPEC at
ASDEX Upgrade

There are two options for real-time realization of plasma control in an en-
vironment such as ASDEX Upgrade: First, as a real-time diagnostic and,
second, fully incorporated into the control system. The first option is to
run the evaluation of the equilibrium as a stand-alone diagnostic with data
transfer from and to the control system. This is — based on a Labview sys-
tem [11] — currently implemented and further developed at ASDEX Upgrade
for the control of NTM instabilities. The equilibrium data, e.g. the position

26

of g-surfaces, are transferred in real-time, which means here within a few
control cycles, to the control system for further evaluation of the steering
parameters of the electron cyclotron heating mirrors.

The second option is to fully include the real-time evaluation of the equi-
librium into the control system running the plasma discharge. This has the
advantage that the data transfer over the heavily loaded network is reduced
and that much more information can be provided and used for plasma con-
trol. This additional information can be detailed equilibrium information
which is otherwise limited by the network capabilities, reliability measures
of the equilibrium, and measures of failure of gradually degrading measured
signals for automatically driven tools for robust diagnostic data analysis.

The real-time equilibrium needed for plasma control is calculated cur-
rently at ASDEX Upgrade with a function parametrization (FP) algorithm
[19]. This FP algorithm is known to be fast and robust as long as the mag-
netic data are reliable and no degradation or failure of individual magnetic
data occur. In the case of failure of magnetic data the FP coefficients have to
be re-analysed which has to be done off-line. Moreover, the FP equilibrium
is known to deviate from the equilibrium computed with the Grad-Shafranov
solver. Though this can usually be tolerated for plasma position control, the
deviances might no longer be acceptable for more sophisticated applications
depending on, e.g. well known plasma core and edge parameters. This em-
phasizes the need for a real-time Grad-Shafranov solver to support or replace
the FP equilibrium in advanced applications of plasma control.

Recently, there is a lot of progress in the development of real-time diagnos-
tics, e.g. for profile estimation. On the one hand, these real-time diagnostics
can provide input data, such as kinetic profiles and fast particle pressure, for
the real-time Grad-Shafranov solver. On the other hand, the real-time inter-
pretation of these diagnostics data is expected to benefit from an improved
real-time equilibrium.

The reliability of the real-time equilibrium will depend on the settings
of the grid size, the number of basis functions, and the convergence criteria
chosen. The plasma position, such as the position of the magnetic centre
and the separatrix contour, can be well determined for most purposes with
a reduced grid size of 32x64 and a reduced set of four to ten basis functions.
The number of outer iterations required for convergence usually is small in
cases of stationary or slowly changing plasmas and a good initial guess of
the current distribution. But for the start-up, ramp-down, and transient
plasma phases on the order of 10-50 outer iterations might be necessary. For
high-resolution edge pressure or edge current distributions the number of
basis functions is typically in the order of 25 and the typical grid size needed
is 128x256. Due to the parallelization concept introduced in this report,

27

such an increase in the number of basis functions can be compensated by
an increase in the number of CPUs employed. Challenging settings can be
realized with a sufficient number of CPU-sockets. Todays standard Linux-
clusters do provide such an environment.

9 Acknowledgement

We are grateful for discussions with C. Fuchs, R. Hatzky, J. Hobirk, K.
Lackner and W. Suttrop. Thanks to P. Martin for providing a subversion of
the CLISTE code with which this study started and to S. Gori for the latest
FORTRAN 90-version. We would also like to thank R. Tisma for his help on
integrating DST routines. We thank 1. Zhukov for his master thesis work on
the GPU implementation and K. Reuter and J. Hacker (TU Miinchen) for
supporting the thesis project.

References

[1] M. Maraschek, G. Gantenbein, T. P. Goodman, S. Giinter, D. F. Howell,
F. Leuterer, A. Miick, O. Sauter, and H. Zohm. Active control of MIID
instabilities by ECCD in ASDEX upgrade. Nucl. Fusion, 45:1369, 2005.

[2] L. L. Lao, J. R. Ferron, R. J. Groebner, W. Howl, H. St. John, E. J.
Strait, and T. S. Taylor. Nucl. Fusion, 26:1035, 1990.

[3] K. Lackner. Computation of ideal MHD equilibria. Comp. Phys. Comm.,
12:33, 1976.

[4] J. Hugill and J. Sheflield. Nucl. Fusion, 18:15, 1978.
[5] V. D. Shafranov. Zh. Eksp. Teor. Fiz., 33:710, 1957.
[6] R. Liist and A. Schliiter. Z. Naturforsch., 129:850, 1957.

[7] P.J. McCarthy, P. Martin, and W. Schneider. The CLISTE interpretive
equilibrium code. Technical Report IPP 5/85, Max-Planck-Institut fiir
Plasmaphysik, 1999.

[8] O. Buneman. Technical Report SUIPR 294, Standford, 1967.

[9] B. L. Buzbee, F. W. Dorr, J. A. George, and G. H. Golub. SIAM J.
Num. Analysis, 8:722, 1971.

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

K. v. Hagenow and K. Lackner. In Proc. 7th Conf. Num. Sim. of Plas-
mas, page 140, 1975.

L. Giannone, R. Fischer, K. Lackner, Q. Ruan, A. Veeramani, M. Cerna,
J. Nagle, M. Ravindran, D. Schmidt, A. Vrancic, and L. Wenzel. Com-
putational strategies in optimizing a real-time grad-shafranov pde solver
using high-level graphical programming and cots technology. 2010.

John Reid. Coarrays in the next fortran standard. SIGPLAN Fortran
Forum, 29:10-27, July 2010.

J. M. Bull. Measuring synchronisation and scheduling overheads in
OpenMP. In In Proceedings of First European Workshop on OpenMP,
pages 99-105, 1999.

W.H. Press et al. Numerical Recipes. Cambridge University Press, 2007.

M. Rampp and H.-Th. Janka. Radiation hydrodynamics with neutrinos:
Variable eddington factor method for core-collapse supernova simula-
tions. Astronomy € Astrophysics, 396:361-392, 2002.

Ilya Zhukov. Development of a grad-shafranov equation solver for GPG-
PUs. Master’s thesis, TU Miinchen, 2010.

Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal
solvers on the GPU. In Proceedings of the 15th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, PPoPP 10,
pages 127-136, New York, NY, USA, 2010. ACM.

R. Fischer. Integrated data analysis with equilibrium. In Proceedings of
the 7th Workshop on Fusion Data Processing Validation and Analysis,
2012. In preparation.

P. J. McCarthy. An integrated data interpretation system for tokamak
discharges. Technical report, University College Cork, 1992. PhD Thesis.

29

O

