
1 3

Hum Genet (2016) 135:259–272
DOI 10.1007/s00439-016-1636-z

REVIEW

Improved prediction of complex diseases by common genetic 
markers: state of the art and further perspectives

Bent Müller1 · Arndt Wilcke1,2 · Anne‑Laure Boulesteix3 · Jens Brauer4 · 
Eberhard Passarge5,6 · Johannes Boltze1,2,7,8 · Holger Kirsten1,2,9 

Received: 16 September 2015 / Accepted: 15 January 2016 / Published online: 2 February 2016 
© Springer-Verlag Berlin Heidelberg 2016

performance based on traditional (non-genetic) risk factors, 
as well as measures of prediction performance when adding 
common genetic variants to the model. Systematic PubMed-
based search finally identified 55 eligible studies. These 
studies were compared with respect to the chosen approach 
and methodology as well as results and clinical impact. Phe-
notypes analysed included tumours, diabetes mellitus, and 
cardiovascular diseases. All studies applied one or more sta-
tistical measures reporting on calibration, discrimination, or 
reclassification to quantify the benefit of including SNPs, 
but differed substantially regarding the methodological 
details that were reported. Several examples for improved 
risk assessments by considering disease-related SNPs were 
identified. Although the add-on benefit of including SNP 
genotyping data was mostly moderate, the strategy can be 
of clinical relevance and may, when being paralleled by an 
even deeper understanding of disease-related genetics, fur-
ther explain the development of enhanced predictive and 
diagnostic strategies for complex diseases.

Abstract  Reliable risk assessment of frequent, but treat-
able diseases and disorders has considerable clinical and 
socio-economic relevance. However, as these conditions 
usually originate from a complex interplay between genetic 
and environmental factors, precise prediction remains a 
considerable challenge. The current progress in genotyp-
ing technology has resulted in a substantial increase of 
knowledge regarding the genetic basis of such diseases 
and disorders. Consequently, common genetic risk variants 
are increasingly being included in epidemiological mod-
els to improve risk prediction. This work reviews recent 
high-quality publications targeting the prediction of com-
mon complex diseases. To be included in this review, arti-
cles had to report both, numerical measures of prediction 
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Introduction

Most human diseases and disorders result from a complex 
interplay between multiple genetic and environmental fac-
tors (Lander and Schork 1994). These conditions are com-
monly called complex diseases or disorders. Particularly 
when facing severe complex conditions, prevention medi-
cine and the development of long-term curative strategies 
demand effective and reliable disease prediction. This, 
however, remains challenging.

This limitation may be at least partially due to the 
fact that the vast majority of standard disease prediction 
models omit genetic information. Instead, they solely 
rely on typical risk factors (hereinafter termed ‘tradi-
tional risk factors’) such as environmental exposures 
and intermediate phenotypes. The latter are defined as 
disease-related clinical or molecular measures that are 
related to the pathomechanism(s) underlying the disease 
of interest. Well-known examples for such traditional 
risk factors include a high body mass index (BMI) and 
high blood cholesterol in cardiovascular diseases (Yusuf 
et al. 2004).

On the contrary, the recent advancements in the field 
of complex disease genetics have paved the way for 
including genetic data in disease prediction models. 
Moreover, genotyping disease-specific genetic vari-
ants can be conducted independently of the tested indi-
vidual’s age and is increasingly being considered an 
affordable routine diagnostic procedure. Although iden-
tified genetic risk variants explain only a minor propor-
tion of heritability so far, this proportion is continually 
growing due to ongoing advances provided by genome-
wide association studies (GWAS) and next generation 
sequencing analyses (Stranger et al. 2011). Particularly, 
GWAS have identified a growing number of common 
single nucleotide polymorphisms (SNPs) and several 
studies have started to consider such genetic information 
in the framework of common complex disease prediction 
with notable, but highly varying success. Here, we pro-
vide a systematic analysis of these studies by discussing 
the applied methodology, reliability of obtained results 
and their clinical relevance: based on this analysis, we 
further suggest potential directions for future research. 
We extend previous work (Cook and Paynter 2010; Tha-
nassoulis and Vasan 2010; Wang 2011; Vassy and Meigs 
2012) by including current original publications as well 
as by comparing results across prediction of different 
phenotypes. This allows us to analyse on a broader basis 
for key-drivers that may be related to improved predic-
tion performance. Investigated parameters include the 
performance of the baseline model without genetics, the 
number of SNPs, the SNP validation level and that of the 
model, family history, and whether SNPs were chosen 

that are associated with the predicted phenotype itself 
or associated with intermediate phenotypes. Based on 
this analysis, we further suggest potential directions for 
future research.

Search strategy and study identification

For direct comparison, we included studies that predicted 
susceptibility to frequent complex diseases and disorders 
by models incorporating (1) traditional (non-genetic) risk 
factors and (2) traditional risk factors and common genetic 
variants. Studies predicting the course of a disease were not 
considered. Moreover, studies selected had to test the bene-
fit of genetic marker inclusion by comparing the combined 
prediction model against a model omitting genetic markers 
in a quantitative way. If any of these criteria was not met, 
the study was not enclosed.

The included studies are selected according to the fol-
lowing search strategy: initially, PubMed was filtered by 
the search term “Risk”[MeSH] AND “Genetic Predispo-
sition to Disease”[MeSH] AND “Polymorphism, Single 
Nucleotide”[MeSH] AND improve*. Articles published 
between 2006/01/01 and 2015/10/01 were included, 
results were restricted to the species humans. Articles of 
the category ‘review’ and ‘clinical study’ were excluded. 
This resulted in 250 articles. When filtering these arti-
cles according to our inclusion criteria, 25 eligible stud-
ies remained. Subsequently, we iteratively analysed the 
co-citation network based on the reference lists of the 
included studies. This identified further 17 additional 
articles. Finally, another 13 articles were identified using 
the search engines https://www.google.de/ and http://
scholar.google.de/ by combining the terms ‘SNPs’, ‘fam-
ily information’ and ‘risk prediction’ (Fig.  1). With this 
strategy, we benefit on the one hand from the controlled 
MeSH vocabulary of MEDLINE which decreases loss of 
potentially relevant articles due to differences in vocabu-
lary. On the other hand, analysis of the co-citation net-
work extends this initial MEDLINE search in an expert-
guided manner.

In total, we identified 55 studies meeting all pre-set inclu-
sion criteria. Several studies analysed more than one cohort 
or used different analytic models. When multiple nested 
non-genetic models were reported for the same cohort, 
the best-performing model was preferred, which typically 
included the highest number of predictors. This resulted 
in 100 included distinct analyses (Table  1; Supplemental 
Table  1). Predicted phenotypes comprised cardiovascular 
pathologies (n = 18 studies) (Humphries et al. 2007; Mor-
rison et al. 2007; Kathiresan et al. 2008; Paynter et al. 2009, 
2010; Davies et al. 2010; Ripatti et al. 2010; Hughes et al. 
2012; Lluis-Ganella et  al. 2012; Hernesniemi et  al. 2012; 
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Brautbar et al. 2012; Isaacs et al. 2013; Bolton et al. 2013; 
Ganna et  al. 2013; Tikkanen et  al. 2013; Ibrahim-Verbaas 
et al. 2014; Beaney et al. 2015; de Vries et al. 2015), breast 
cancer (n = 5) (Wacholder et al. 2010; Mealiffe et al. 2010; 
Darabi et  al. 2012; Dite et  al. 2013; Vachon et  al. 2015), 
prostate cancer (n = 10) (Zheng et al. 2008; Nam et al. 2009; 
Salinas et al. 2009; Aly et al. 2011; Johansson et al. 2012; 
Kader et al. 2012; Klein et al. 2012; Lindström et al. 2012; 
Helfand et  al. 2013; Butoescu et  al. 2014), type 2 diabetes 
(n =  15) (Balkau et  al. 2008; van Hoek et  al. 2008; Lys-
senko et al. 2008; Meigs et al. 2008; Lin et al. 2009; Schulze 
et al. 2009; Talmud et al. 2010; Wang et al. 2010; de Miguel-
Yanes et  al. 2011; Vassy et  al. 2012a, b; Tam et  al. 2013; 
Mühlenbruch et  al. 2013; Vassy et  al. 2014; Walford et  al. 
2014), atrial fibrillation (n =  2) (Everett et  al. 2013; Tada 
et al. 2014), venous thrombosis (n = 2) (de Haan et al. 2012; 
Bruzelius et al. 2014), esophageal squamous cell carcinoma 
(ESCC) (Chang et  al. 2013), melanoma (Fang et  al. 2013) 
and Parkinson’s disease (Hall et  al. 2013) (n =  1 each). If 
not reported in the original publications, p values were calcu-
lated from reported confidence intervals.

Which genetic markers were selected to improve 
prediction?

We did not identify studies which conducted de novo SNP 
selections, but instead referred to previously published 
GWAS/candidate gene association studies which identi-
fied genetic variants associated with the disease of interest. 
Hence, SNPs used in the prediction studies could be consid-
ered pre-validated at least at a basic level. However, different 
SNP selection strategies were reported (Table 1). 48 studies 
(87 %) included SNPs resulting from previous GWAS while 
7 studies (13 %) considered SNPs identified in previous can-
didate association studies. The method of choice strongly 
correlated with the year of publication, probably indicating 
an increased availability of GWAS data for the disease of 

interest: only 2 out of 42 studies (5 %) published after 2009 
used SNPs from candidate association studies. Contrarily, 5 
out of 13 studies (39 %) published before 2010 solely relied 
on candidate association studies for SNP selection.

Notably, seven studies (Kathiresan et  al. 2008; Paynter 
et  al. 2010; Lluis-Ganella et  al. 2012; Hernesniemi et  al. 
2012; Brautbar et  al. 2012; Isaacs et  al. 2013; Ibrahim-
Verbaas et al. 2014) explicitly distinguished between SNPs 
that are directly associated with the predicted endpoint, and 
SNPs that are associated with intermediate phenotypes and 
therefore may contribute indirectly. A rationale behind this 
approach is that it may be of relevance for the predictive 
value of genetics when SNPs associated with intermediate 
phenotype are excluded as these intermediate phenotypes 
may be already included as predictors in the baseline model. 
A different rationale is that the model may benefit from 
shared genetics of the intermediate and predicted phenotype.

How were SNPs included into the prediction 
model?

In general, two main strategies for including genetic data into 
the predictive model were identified (see also Fig. 2). In the 
first, each genetic risk variant was considered as an individ-
ual covariate in addition to the traditional risk factors in the 
framework of a regression model. This strategy was adopted 
by 6/55 studies (11 %) (Paynter et al. 2009; Lindström et al. 
2012; Chang et  al. 2013; Bolton et  al. 2013; Helfand et  al. 
2013; Bruzelius et al. 2014). A disadvantage of this approach 
is that the model size considerably increases with the number 
of independent genetic risk factors added. The second strategy 
aimed to solve this problem by proposing an additive genetic 
risk score (Horne et al. 2005), which was adopted by 49/55 
studies (89 %). The simplest form to construct a genetic risk 
score is to count the number of risk alleles among all SNPs, 
which was performed in the majority of the studies (26/49 
studies, 53  %). However, this assumes that each risk allele 
of each SNP has the same predictive value. However, this is 
likely to be divergent from reality in most cases. To account 
for potential differences between SNPs, SNPs can be alterna-
tively weighted according to their effect size. This was done 
in 29/49 studies (53 %). Please note that studies utilising both 
strategies were assigned to both categories. Using an additive 
genetic risk score composed of weighted risk variants resulted 
in risk estimates with similar effect sizes as compared to risk 
estimates from a regression model including each genetic vari-
ant as an individual covariate. In the former approach, how-
ever, fewer degrees of freedom are utilised. The analysed 
studies adopted two methods for SNP weighting. In the first 
method, weights were based on effect sizes from an independ-
ent cohort, e.g. from the literature (25/29, 86 %). In the sec-
ond, weights were calculated from the same population used 

Fig. 1   Search strategy for the inclusion of studies in the analysis. 
This figure provides an overview of the search strategy and the num-
bers of eligible studies meeting the inclusion criteria
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Table 1   Overview of the number and type of genetic data used for prediction

Predicted phenotype Study Type of genetic variants used

Breast cancer Mealiffe et al. (2010) 7 GWAS-SNPs with independent replication

Wacholder et al. (2010) 10 GWAS-SNPs

Dite et al. (2013) 7 GWAS-SNPs with independent replication

Darabi et al. (2012) 18 GWAS-SNPs

Vachon et al. (2015) 76 GWAS-SNPs

Prostate cancer Zheng et al. (2008) 5 SNPs from candidate association studies

Nam et al. (2009) 19 SNPs from candidate association studies

Salinas et al. (2009) 5 SNPs from GWAS/candidate studies showing inde-
pendent cumulative association

Aly et al. (2011) 35 GWAS-SNPs with independent replication

Johansson et al. (2012) 33 GWAS-SNPS

Kader et al. (2012) 33 GWAS-SNPs with independent replication

Klein et al. (2012) 49 SNPs associated with prostate cancer or PS/1 SNP 
associated with breast cancer

Lindström et al. (2012)  
(five age groups)

25 GWAS-SNPs

Helfand et al. (2013) 4 SNPs from candidate association studies replicated 
in GWAS

Butoescu et al. (2014) 9 GWAS-SNPSs

Esophageal squamous cell carcinoma (ESCC) Chang et al. (2013) 25 GWAS-SNPs

Melanoma Fang et al. (2013) 11 GWAS-SNPs

Cardiovascular disease (CVD) related events Humphries et al. (2007) 4 SNPs and 7 SNPs with interaction terms from candi-
date association studies

Morrison et al. (2007) 10 SNPs for whites and 11 SNPs for blacks from 
candidate association studies

Kathiresan et al. (2008) 9 GWAS-SNPs (associated with LDL and HDL)

Paynter et al. (2009) 1 SNP from a candidate association studies with inde-
pendent replication

Davies et al. (2010) 13 GWAS-SNPs

Paynter et al. (2010) 101 GWAS-SNPs associated with CVD or an inter-
mediate phenotype and 12 GWAS-SNPs associated 
with CVD but no intermediate phenotype

Ripatti et al. (2010) 13 GWAS-SNPs

Brautbar et al. (2012) 13 SNPs associated with CVD but no intermedi-
ate phenotype from GWAS/candidate studies with 
independent replication

Hernesniemi et al. (2012) 24 GWAS-SNPs (associated with CAD)

Hughes et al. (2012) 11 SNPs and 2 haplotype from GWAS with inde-
pendent replication and 15 SNPs from GWAS with 
independent replication

Lluis-Ganella et al. (2012)  
(two cohorts)

8 GWAS-SNPs associated with CVD but not with 
intermediate phenotypes

Bolton et al. (2013) 27 SNPs from meta-analysis of GWAS-SNPs

Ganna et al. (2013) 395 SNPs (associated with CHD and intermediate 
phenotypes) from GWAS and 46 SNPs (directly 
associated with CHD) from GWAS

Isaacs et al. (2013) 95 SNPs from meta-GWAS on TC, LDL-C, HDL-C, 
and TG

Tikkanen et al. (2013) 28 SNPs from GWAS

Ibrahim-Verbaas et al. (2014) 324 GWAS-SNPs (associated with all stroke risk 
domains)
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for prediction analysis (6/29, 14 %), which potentially might 
result in biased estimates of the model’s prediction accuracy.

Next to these two commonly applied strategies for 
SNP inclusion into the prediction model, two additional 
approaches were identified. Humphries et al. (2007) focused 
on the independent component of each SNP and, given all tra-
ditional risk factors, on the effect of all other SNPs. By doing 
so, the authors adjusted the effect of each SNP on all other 
SNPs and known risk factors, and extended the traditional 
risk score using these adjusted values. Helfand et al. (2013) 
did not include genetic variants in their model, but instead 
aimed to improve the value of prostate specific antigen (PSA) 
levels as an indicator for biopsy-based screening of prostate 
cancer with genetic data. The authors divided the PSA level 
by a genetic risk score and used resulting, modified PSA lev-
els to decide on recommendation for biopsy. This represents 
a rather unconventional approach which has only rarely been 
reported so far. Hence, additional in-depth assessment of its 
impact and predictive value is recommendable.

Regardless of the outlined differences, many studies 
accounted for the correlation of individual SNPs, which is 
a result from linkage disequilibrium. The common strat-
egy was pruning SNPs, i.e. removing one SNP of each 
correlating pair above a certain cut-off. Another approach 
to account for the correlation between SNPs would be to 
explicitly model their correlation structure. However, this 
was not done in any of the investigated studies. We note that 
methodology for feature selection and predictor weighting 
is continually improving (Kooperberg et al. 2010; Kruppa 
et  al. 2012) and future work will show whether this may 
lead to further improved prediction.

How were traditional risk factors included into the 
prediction model?

Traditional risk factors were incorporated in the predic-
tion models in different ways. On the one hand, studies 

Table 1   continued

Predicted phenotype Study Type of genetic variants used

Beaney et al. (2015) 13 GWAS-SNPs from CARDIoGRAMplusC4D and 
19 SNPs from GWAS and candidate studies

de Vries et al. (2015) 49 genome-wide significant SNPs and 103 SNPs at 
FDR <10 %

Atrial fibrillation Everett et al. (2013) 12 GWAS-SNPs

Tada et al. (2014) 12 GWAS-SNPs

Venous thrombosis de Haan et al. (2012) 5 SNPs from GWAS/candidate studies with independ-
ent replication

Bruzelius et al. (2014) 7 SNPs from GWAS and candidate association studies

Type 2 diabetes Balkau et al. (2008) 2 SNPs from candidate association studies

Lyssenko et al. (2008) 11 GWAS-SNPs

Meigs et al. (2008) 18 GWAS-SNPs

van Hoek et al. (2008) 18 GWAS-SNPs with independent replication

Lin et al. (2009) 15 GWAS-SNPs

Schulze et al. (2009) 20 GWAS-SNPs

Talmud et al. (2010) 20 GWAS-SNPs with independent replication

Wang et al. (2010) 19 SNPs from candidate studies with independent 
replication

de Miguel-Yanes et al. (2011) 40 GWAS-SNPs

Vassy et al. (2012a) 38 GWAS-SNPs

Vassy et al. (2012b) 38 GWAS-SNPs

Mühlenbruch et al. (2013) 42 GWAS-SNPs

Tam et al. (2013) 14 GWAS-SNPs

Vassy et al. (2014) 62 GWAS-SNPs

Walford et al. (2014) 62 GWAS-SNPs

Parkinson disease Hall et al. (2013) 4 GWAS-SNPs

“GWAS-SNPs” were identified in previous genome-wide association studies. In contrast, “SNPs” were derived from previous locus-wide asso-
ciation studies

“SNPs with independent replication” are defined as SNPs identified in a previous study, replicated in another previous association study, and 
finally used in the prediction study. Otherwise, SNPs resulted from at least one independent discovery study
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used well-established risk models like the Framingham risk 
score for cardiovascular disease (e.g. Isaacs et  al. 2013; 
Bolton et al. 2013) or the Gail model for breast cancer (e.g. 
Wacholder et  al. 2010; Darabi et  al. 2012). On the other 
hand, some studies selected non-genetic risk factors them-
selves for prediction. Ten of eighteen (56 %) studies pre-
dicting cardiovascular disease used established risk models 
as well as all (5/5) studies predicting breast cancer. When 
selecting non-genetic risk factors themselves, overfitting 
might occur if no appropriate validation strategy is applied.

Note that heterogeneity among prediction performance 
of the baseline model can be high between different cohorts 
and studies, even when the same model of traditional 
risk factors is applied. Exemplarily, the AUC for predict-
ing prostate cancer with the non-genetic PCPTRC risk 
model ranged 0.56–0.72 when it was applied to different 
cohorts in the same study (Ankerst et al. 2012). Therefore, 
improvements of prediction due to genetics should always 
be interpreted under consideration of this heterogeneity 
(Ankerst and Thompson 2012).

How can the benefit of genetic data inclusion 
for disease prediction be measured?

Several methods have been reported to compare models 
including genetic data with those omitting such informa-
tion. Most of these methods can be categorised in discrimi-
nation ability, reclassification ability, and model calibration 
(Steyerberg et  al. 2010; Pencina et  al. 2010; Wang 2011; 
Siontis et al. 2012).

Discrimination describes the ability of a model to distin-
guish individuals from risk and non-risk groups. The most 
prominent measure is the area under the receiver operating 
characteristic (ROC) curve (AUC). Within a classical ROC, 
the sensitivity of the model is plotted against 1-specific-
ity for various thresholds of the predictive score (Bamber 
1975). The AUCs can range from 0.5 (the model is com-
pletely uninformative) to 1 (perfect discrimination between 
affected and unaffected individuals). Technically speak-
ing, the AUC can be interpreted as the probability that an 
affected individual has a higher predicted risk score than 
an individual from the control group (Hanley and McNeil 
1982). In order to analyse the benefit of including genetic 
data in a disease prediction model, the AUC of the model 
additionally including genetic data is compared with the 
AUC of the baseline model. If the former is significantly 
larger, a benefit can be claimed. However, the AUC under 
the ROC method has certain limitations. First, it represents 
a measure of multiple realisations of a predictive model as 
it evaluates the performance of the model for all possible 
thresholds of the predictive score. This is done regardless 
of whether or not these thresholds are clinically mean-
ingful. Therefore, an improved AUC does not necessarily 
reflect an improved performance with respect to clinical 
relevance. Second, the AUC has been criticised for being 
relatively insensitive (Cook 2007). This is of particular 
relevance when the AUC of the baseline model is already 
good. Here, the power to detect a statistically significant 
improvement of the AUC by including a certain genetic 
marker is much lower than the power to improve the AUC 
of a model with lower initial AUC values (Tzoulaki et al. 
2009; Pencina et  al. 2010). A prominent example is the 
study of Pencina et al. (2010), who reported that an addi-
tional genetic marker with an effect size of 0.41 (corre-
sponding to an SNP with an odds ratio of 1.5) can improve 
the AUC of baseline models with values 0.55, 0.6, and 0.75 
to an AUC of 0.63, 0.65, and 0.77, respectively. Such cal-
culations typically do not assume a correlation between the 
predictors of the baseline model and the predictors of the 
model including genetic data. As one may expect, adding a 
genetic component to a baseline model will result in a rele-
vant correlation between predictors of both models. Hence, 
the power of the AUC method may be even lower.

Reclassification improvement describes improvement in 
the classification of cases and controls when comparing 
an updated model against a baseline model. For this pur-
pose, Pencina et  al. (2010) proposed the net reclassifica-
tion improvement (NRI). The NRI examines whether the 
model including genetic data shifts cases to higher risk 
categories more often than to lower risk and, vice versa, 
controls to lower risk categories more often than to higher 
ones. Improvement can be claimed if the sum of these 

Fig. 2   Overview of methods as to how genetic data were included in 
the prediction model. “Sum score”: from all SNPs a single predictor 
reflecting the genetic burden was created and used as single param-
eter in the prediction model, “individual SNPs”: SNPs were included 
as individual covariates in the model used for prediction, “weighted”: 
risk alleles of SNPs were weighted according to the respective odds 
ratio, and “unweighted”: risk alleles of SNPs were counted without 
weighting. Note that Brautbar et al. (2012), Everett et al. (2013) and 
Talmud et al. (2010) used weighted as well as unweighted sum scores 
in their analyses and thus appear in both categories in the figure
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movements is better than 0  %, which is found if there is 
equal movement in the correct and incorrect direction 
(Paynter et al. 2010). However, changes of risk categories 
do not necessarily result from clinically important risk cat-
egories. Therefore, some authors report the ‘clinical NRI’ 
related to changes within the most clinically relevant risk 
categories (Cook and Paynter 2011). Although the NRI is a 
well-suited measure for reclassification analysis, a number 
of limitations need to be considered (see Cook and Paynter 
2011 for details). Therefore, the results obtained should be 
interpreted carefully and reported in sufficient detail (Pepe 
2011).

The integrated discrimination improvement (IDI) rep-
resents an alternative and relevant reclassification meas-
ure. The IDI is the difference between the discrimination 
slope of the baseline and the updated model (Pencina et al. 
2008). As clinical risk categories are not required for IDI 
calculation, it is of particular value when such categories 
do not (yet) exist.

Calibration assesses the agreement of predicted and 
observed risks across subgroups with varying baseline 
risk. In general, only predicted risks that are well-cali-
brated are useful for clinical management, because treat-
ment decisions often depend on estimates of the predicted 
risk. The most common measure for calibration is the 
Hosmer–Lemeshow test, which compares predicted and 
observed outcomes over percentiles of risk (Lemeshow 
and Hosmer 1982). Superiority of one model to another 
is typically demonstrated by increased p values resulting 
from this test.

All measures described above reflect different aspects 
of model quality and should be considered in close relation 
to each other whenever possible. For example, a study in 
which the AUC increase is considered small may still pro-
vide substantial improvement of the reclassification meas-
ure NRI and/or increase in the IDI (Pencina et  al. 2008). 
Therefore, an AUC increase of even 0.01 might still be 
suggestive of a meaningful improvement in some cases 
(Pencina et al. 2008), as reclassification of clinically impor-
tant patient subgroups might have been improved. How-
ever, reclassification and discrimination are only of clinical 
value when the predicted risks are in strong correlation with 
the actual risk. The estimation of calibration is therefore 
necessary, and, in the case of a poorly calibrated model, a 
recalibration to the population of interest is strongly recom-
mended (Pepe and Janes 2013).

In order to avoid biased estimates, the quality measures 
discussed should be computed on test sets independent 
from the initial (‘training’) set used for fitting the model. 
All prediction studies considered in this review only 
included SNPs that were pre-validated in previous, inde-
pendent association studies.

Did the inclusion of genetic information improve 
disease prediction?

We identified both, studies reporting and not reporting 
improved prediction when including genetic data (Supple-
mental Table 1; Fig. 3). Thirty studies (55 %) saw signifi-
cant improvements in AUC when including genetic data. 
Fourteen further studies (26 %) did not identify a significant 
AUC improvement, but a significant improvement in reclas-
sification. Effect sizes of traditional risk factors were gen-
erally larger than those of genetic risk factors, regardless 
of whether or not they were determined in an independent 
data set. Nevertheless, a considerable variation in the effect 
sizes of traditional risk factors was observed. For example, 
a strong risk factor for venous thrombosis is the presence of 
minor leg injuries. This risk factor has an odds ratio (OR) 
>5 (Previtali et  al. 2011), whereas obesity is a moderate 
risk factor reported to confer risk for cardiovascular dis-
eases with an OR of 1.62 (Yusuf et al. 2004). As the power 
to improve the AUC in prediction depends on the predictive 
strength of the baseline model, poorly performing baseline 
models showed best improvement when adding genetic 
predictors. In consequence, we found a clear relation-
ship between the improvement of the AUC due to includ-
ing genetic data and the phenotypes predicted (Fig. 3). For 
example, Zheng et  al. (2008) (predicting prostate cancer) 
reported an AUC of 0.608 for a model accounting for age, 
geographic region and family history. After the addition of 
the genetic risk score, the AUC of the model increased with 
statistical significance to 0.633 (p = 6.1 × 10−6). In well-
performing baseline models, a significant increase of the 
AUC is less frequently reported, still, prediction improve-
ment by considering genetic data is often shown by applying 
measures of reclassification. As an example, Walford et al. 
(2014) reported no significant improvement of the baseline 
model AUC (AUC = 0.861), but significant improvement in 
the reclassification measure (NRI = 0.247, p = 0.0009).

Of note, study comparability was limited by divergent 
study aims and designs as well as by the different analytic 
strategies applied. For example, four studies did not ana-
lyse whether the observed changes in discrimination were 
statistically significant. 15/55 studies (27  %) reported 
results of discrimination, reclassification, and calibration of 
the model with and without genetic data conjointly (Sup-
plemental Table  1). Furthermore, relevant aspects of sta-
tistical procedures were frequently not reported in detail. 
For example, studies applying bootstrap-based proce-
dures rarely provided details whether weighting of SNPs 
or assessment of predictive accuracy was done using the 
out-of-bag or the in-bag data. As another example, studies 
applying cross-validation rarely provided details whether 
weighting of SNPs or traditional risk factors was done 



266	 Hum Genet (2016) 135:259–272

1 3

only once before the cross-validation procedure started 
or repeatedly within each cross-validation iteration. Such 
details are very helpful when evaluating reported classifica-
tion performance and are important for a valid comparison 
of results from different studies. Guidelines already exists, 
but are only infrequently accounted for in current publica-
tions (Janssens et al. 2011).

What is characteristic for studies showing the 
strongest improvement of prediction by the 
inclusion of genetic data?

Several studies report enhanced prediction although per-
formance of the baseline model was similar to other stud-
ies not reporting such improvement (Fig.  3). The first 
outstanding example is the study of Bolton et  al. (2013) 
predicting coronary heart disease. Here, AUC increased in 
two analyses from 0.671 to 0.741 and from 0.717 to 0.753 
when including genetic data. Although this study has sev-
eral strengths (large number of recently reported SNPs, 
a well-defined phenotype definition, and a prospective, 
population-based design) it also comes with some limita-
tions. First, the sample size is rather moderate compared 
to other studies on the same phenotype. Second, each SNP 
was included in the model without applying weights from 
the literature, but estimating them from the cohort also 
used for prediction analysis. This may result in biased esti-
mates. Third, the baseline model was one of the weakest 

that existed for this particular phenotype, which clearly 
favoured significant prediction improvement by adding a 
genetic component to the model. Other interesting exam-
ples are two studies predicting the occurrence of venous 
thrombosis (de Haan et  al. 2012; Bruzelius et  al. 2014). 
Here, AUC increased from 0.77 to 0.82 and from 0.71 to 
0.77 in the discovery and validation cohort, respectively 
(de Haan et al. 2012) and Bruzelius et al. (2014) reported 
an increased AUC from 0.80 to 0.84. These studies, in 
difference to all others investigated, included common 
SNPs with very strong effect sizes: variants rs6025 and 
rs8176719 have literature-reported ORs of 3.8 and 1.85 
with a frequency in cases of 10 and 47  %, respectively. 
Such impressive effect sizes together with high minor 
allele frequencies are of course the exception for genetic 
factors of common diseases. If present, however, they 
allow for a tremendous improvement of prediction when 
added.

Are there SNP‑specific differences?

In addition to the effect sizes, we explored whether addi-
tional SNP characteristics may lead to better disease pre-
diction. First, we compared performance of GWAS SNPs 
versus SNPs from candidate studies. 32/48 (67  %) stud-
ies that included SNPs from GWAS reported significant 
improvement in classification, 18/32 (56 %) also included 
some strategy of validation. 4/7 (57  %) studies that 

Fig. 3   Overview of the discrimination improvement due to inclu-
sion of genetic data across all included 100 analyses. An AUC of 
1.0 indicates perfect discrimination between cases and controls, 0.5 
is equivalent to random guessing. Studies are stratified according to 
their predicted phenotype. Each reported analysis is depicted in form 
of an arrow with the arrow start indicating the AUC when using tra-
ditional risk factors only and the arrowhead indicating the AUC of 
the model including genetic data. The colour of the arrow illustrates 
significance of reclassification measures with blue statistically sig-

nificant, orange not statistically significant, and grey not tested. Solid 
lines indicate GWAS-derived SNPs and dashed lines all other SNPs. 
The figure clearly illustrates it is generally harder to improve discrim-
ination of a prediction model by including the genetic data in cases 
where the baseline model already performs well. Nevertheless, in 
some cases significant reclassification can be observed even for high 
baseline AUC values. For numbers and additional details on studies, 
please also refer to Supplemental Table 1
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included SNPs from candidate association studies reported 
significant improvement in classification, with two studies 
including a validation strategy. A reason for non-superior 
performance of GWAS SNPs might be that candidate SNPs 
were well chosen focussing on well-validated SNPs with at 
least moderate effect sizes.

Analyses applying weighted genetic risk scores more 
frequently reported a significant improvement in prediction 
due to genetic data (40/58, 69 %) as compared to analyses 
applying non-weighted genetic risk scores (17/37, 46  %). 
An improved performance compared with studies applying 
non-weighted genetic risk scores was still observed when 
we filtered for analyses applying SNP weights determined 
in independent cohorts (29/43, 67  %). This was also true 
when further filtering for studies completely evaluating in 
a second cohort (4/4, 100 %). Therefore, it can be assumed 
that better performance of weighted genetic risk scores 
is unlikely to solely result from model overfitting. It also 
underpins the fact that weights from independent cohorts 
should be used to maximise the reproducibility of results 
whenever possible.

Inclusion of familial risk did not have a major effect on 
the predictive power of candidate SNPs. 30/50 (60 %) anal-
yses with familial risk had improvement of prediction when 
including genetic data versus 32/50 (64 %) of analyses that 
did not include familial risk. This finding is in accordance 
with previous reports (Ripatti et al. 2010; Vassy and Meigs 
2012). As noted by Ripatti et  al. (2010), reasons include 
measurement error for family history and that currently 
known genetic variants only account for a small proportion 
of familial risk.

Finally, we did not observe a major effect of num-
ber of SNPs on prediction improvement (Supplemental 
Fig. 1). This may reflect the limited knowledge regarding 
the genetic component of complex diseases. Simulations 
demonstrate that the prediction improvement might be 
considerably higher when all relevant SNPs were included 
(Aly et al. 2011; Dudbridge 2013), but considerably larger 
studies are needed to identify more relevant SNPs and to 
uncover a larger fraction of the heritability.

Is there a benefit of including or excluding SNPs 
associated with intermediate phenotypes?

Brautbar et  al. (2012), Paynter et  al. (2010) and Lluis-
Ganella et  al. (2012) investigated the strategy of including 
SNPs significantly associated with coronary heart disease, 
but excluding SNPs associated with an intermediate phe-
notype related to this disease. In contrast, Kathiresan et  al. 
(2008) and Isaacs et  al. (2013) restricted selected SNPs to 
those that were associated with an intermediate phenotype. 
Ibrahim-Verbaas et al. (2014) included 322 SNPs associated 

with nine intermediate phenotypes of stroke and only two 
SNPs directly associating with stroke. Only Paynter et  al. 
(2010) directly compared both strategies in the same dataset 
and found a similar (weak) performance of SNPs from both 
SNP selection strategies. Brautbar et al. (2012), Kathiresan 
et  al. (2008), Lluis-Ganella et  al. (2012) and Ibrahim-Ver-
baas et  al. (2014) observed an improved predictive value 
when including genetic information. Given those exam-
ples for a successful inclusion as well as exclusion of SNPs 
associated with intermediate phenotypes, no final conclu-
sion can be drawn at this point due to the limited number 
of studies directly comparing different strategies at the same 
cohort. However, investigations of endophenotypes appear to 
increase in relevance while applied methodology continually 
improves. Significant benefit is expected especially for com-
plex diseases in which endophenotypes have the potential to 
bridge complex genetic backgrounds and known disease het-
erogeneity (Insel and Cuthbert 2009). Interestingly, a com-
plementary strategy applied by Hernesniemi et  al. (2012) 
proved to be ineffective. Selecting GWAS-derived SNPs 
associated with cardiovascular diseases (CVD) to predict an 
intermediate phenotype of CVD, i.e. intima–media thickness 
and artery elasticity, did not result in enhanced prediction 
while only a limited association with the intermediate phe-
notype was found. A plausible explanation is that selected 
SNPs may act via different intermediate phenotypes.

What are potential implications for clinical 
research and practice?

The inclusion of genetic markers such as SNPs into diag-
nostic procedures was originally thought to rapidly increase 
diagnostic accuracy and to significantly reduce the number 
of patients being diagnosed false-negatively (Ginsburg and 
McCarthy 2001; Diamandis et  al. 2010). In theory, this 
would ultimately translate into both faster and improved 
therapeutic intervention and preventive treatment. After 
analysing results from first studies, much of the initial 
enthusiasm cooled off. Ripatti et  al. (2010) and de Haan 
et al. (2012) were sceptical about the potential clinical use 
of common SNPs for disease prediction in cardiovascular 
diseases. Wacholder et al. (2010) found a certain benefit in 
prediction when including genetic markers for high- and 
low-risk groups, but not in groups at intermediate risk for 
breast cancer (2010). Still, the benefit was not sufficiently 
large to meaningfully improve the identification of patients 
who might profit from prophylactic treatment. Neverthe-
less, a clear diagnostic advantage was repeatedly seen for 
a number of diseases when genetic markers for diagnosis 
were included (Fig. 3), suggesting the definition of particu-
lar scenarios under which this strategy can provide a meas-
ureable benefit.
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From a socio-economic perspective, cost-effectiveness 
is relevant when deciding which patient to test. For exam-
ple, Mealiffe et  al. (2010) proposed to improve the cost-
effectiveness by only testing patients whose risk status is 
likely to change. Only testing individuals close to classifi-
cation cut-offs would lower the effort because the major-
ity of patients do not require screening. However, with the 
steady progress in the field, the costs for thorough genetic 
profiling are continuously declining (Gershon et al. 2011). 
This in turn may increase the value of genetic diagnostics 
even for conditions where current approaches only provide 
a small improvement.

More recent studies including those by Ganna et  al. 
(2013) and Tikkanen et al. (2013) are more optimistic about 
the benefit of adding genetic markers to disease prediction 
models. Ganna et  al. (2013) estimated that one additional 
event resulting from coronary heart disease could be pre-
vented in 318 patients by including genetic markers to 
their model. This measure is the gain in ‘number needed to 
screen’ (NNS) when comparing the baseline model with the 
model including genetic data. NNS is defined as the num-
ber of patients needed to be screened to detect one affected 
individual (Rembold 1998). Tikkanen et al. (2013) reported 
a gain in NNS of 15.9 (prevention of 135 events out of 
2144 cases) by additional genetic testing in a subgroup 
of patients. This subgroup was previously categorised at 

intermediate risk for coronary heart disease by using non-
genetic information. While these findings are generally 
encouraging, the reported gains in NNS are still relatively 
high. Several strategies may be suggested to compensate 
for this problem and to ensure a measurable benefit.

First, reporting the NNS is generally recommended 
when investigating diagnostic procedures amended by 
genetic test components. This is important, since the NNS 
is rarely reported in the literature, although this meas-
ure precisely indicates clinical relevance and assesses the 
value of intervention. Consequently, the NNS can be used 
for identifying the best-performing model when comparing 
different approaches.

Second, future research may also focus on assessments 
in which the investigation of traditional risk factors is more 
costly than the investigation of genetic risk factors. By 
applying a second confirmative diagnosis, e.g. by conven-
tional diagnostics using non-genetic components, the num-
ber of patients treated with optimal benefit may be maxim-
ised (Peterson et al. 2013; Hagemann et al. 2013).

Third, future work may focus on conditions for which 
a highly effective or even causative treatment is available 
and/or early therapeutic intervention provides a clear bene-
fit with respect to prognosis. This may further include cases 
in which a failure to treat causes relevant additive burden 
to the patient. In these scenarios, prediction is of high 

Fig. 4   Take-home messages for predicting complex diseases with common genetic markers
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clinical relevance and even a small benefit as the inclusion 
of genetic data may be of value. However, such approaches 
always require careful balancing of socio-economic costs 
caused by additional treatments versus gained benefits, as 
well as a thorough ethical consideration.

Such improvement of diagnostic genetic markers might 
be also relevant for other fields of clinical research, e.g. 
adaptive clinical trials or improved handling of patient het-
erogeneity by molecular reclassification. Up to now, genetic 
testing for drug efficiency is rarely used in clinical practice 
albeit its underlying potential (Antman et al. 2012). This is 
also true for classifying subtyping of diseases using com-
mon SNPs. Here, promising candidates for certain diseases 
like breast cancer exist, but these are not routinely available 
yet (Garcia-Closas et al. 2013).

Conclusion

A considerable number of reports indicating that genetic 
data could contribute to the improvement of prediction 
models have been identified. The additive value of con-
sidering genetic information was statistically significant in 
many analyses, though limited with respect to the absolute 
effect in most cases. Hence, considerable progress is still 
required before routine clinical practice will benefit from 
including genetic data in the prediction of risk to certain 
diseases. Although the heterogeneity of the included phe-
notypes by the reviewed studies requires careful and case-
specific interpretation, we derived general conclusions for 
future work which we summarised in Fig. 4.

Given encouraging examples of improved prediction 
with noticeable clinical relevance and in light of the ongo-
ing progress in the field of genetics, we feel optimistic that 
including the genetic component in prediction models of 
complex diseases and disorders will continually increase 
and provide a measurable add-on benefit in the future.
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