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Abstract
The brain exhibits complex spatio-temporal patterns of activity. This phenomenon is gov-

erned by an interplay between the internal neural dynamics of cortical areas and their con-

nectivity. Uncovering this complex relationship has raised much interest, both for theory

and the interpretation of experimental data (e.g., fMRI recordings) using dynamical models.

Here we focus on the so-called inverse problem: the inference of network parameters in a

cortical model to reproduce empirically observed activity. Although it has received a lot of

interest, recovering directed connectivity for large networks has been rather unsuccessful

so far. The present study specifically addresses this point for a noise-diffusion network

model. We develop a Lyapunov optimization that iteratively tunes the network connectivity

in order to reproduce second-order moments of the node activity, or functional connectivity.

We show theoretically and numerically that the use of covariances with both zero and non-

zero time shifts is the key to infer directed connectivity. The first main theoretical finding is

that an accurate estimation of the underlying network connectivity requires that the time

shift for covariances is matched with the time constant of the dynamical system. In addition

to the network connectivity, we also adjust the intrinsic noise received by each network

node. The framework is applied to experimental fMRI data recorded for subjects at rest.

Diffusion-weighted MRI data provide an estimate of anatomical connections, which is

incorporated to constrain the cortical model. The empirical covariance structure is repro-

duced faithfully, especially its temporal component (i.e., time-shifted covariances) in addi-

tion to the spatial component that is usually the focus of studies. We find that the cortical

interactions, referred to as effective connectivity, in the tuned model are not reciprocal. In

particular, hubs are either receptors or feeders: they do not exhibit both strong incoming
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and outgoing connections. Our results sets a quantitative ground to explore the propaga-

tion of activity in the cortex.

Author Summary

The study of interactions between different cortical regions at rest or during a task has con-
siderably developed in the past decades thanks to progress in non-invasive imaging tech-
niques, such as fMRI, EEG andMEG. These techniques have revealed that distant cortical
areas exhibit specific correlated activity during the resting state, also called functional con-
nectivity (FC). Moreover, recent studies have highlighted the possible role of white-matter
projections between cortical regions in shaping these activity patterns. This structural con-
nectivity (SC) can be estimated using MRI, which measures the probability for two areas to
be connected via the density of neural fibers. However, this does not provide the strengths
of dynamical interactions. Many methods have thus been developed to estimate the con-
nectivity between neural populations in the cortex that is hypothesized to shape FC. The
strengths of these dynamical interactions are called effective connectivity (EC). We use a
cortical model that combines information from Diffusion-weighted MRI (dwMRI) and
fMRI in order to estimate EC.We demonstrate theoretically that directed C can be inferred
using time-shifted covariances. The key point of our method is the use of temporal infor-
mation from FC at the scale of the whole network. Applying our model on experimental
fMRI data at rest, we estimate the asymmetry of intracortical connectivity. Obtaining an
accurate EC estimate is essential to analyze its graph properties, such as hubs. In particular,
directed connectivity links to the asymmetry between input and output EC strengths of
each node, which characterizes feeder and receiver hubs in the cortical network.

Introduction
Patterns of neural activity at the scale of the whole cortex can be quantified by the correlations
between the cortical regions. This so-called functional connectivity (FC) is predicted to some
extent by the anatomical synaptic pathways in the white matter, or structural connectivity (SC)
[1]. However, SC measures the neural fiber density and is not sufficient to fully explain the
structure of FC, which also depends on the dynamics of network nodes. The dynamical interac-
tions between cortical areas is captured by the ‘effective connectivity’ (EC), a concept that has
emerged over years following progress in imaging techniques and related modeling [2–5]. In
network models, EC is the key to understand the propagation of information, which links the
network structure to function. Importantly, EC is model-dependent, which makes the compar-
ison between studies non trivial and has raised much debate recently [6–8]. On the biological
ground, EC accounts for mechanisms that determine the synaptic strength (e.g., types and con-
centration of neurotransmitters), as well as dynamic properties such as neural excitability that
may vary with the local activity level and thus depend on the inputs to the network. This
means that EC may differ from the anatomical SC obtained from dwMRI. FC and EC classi-
cally relate to data and models related to imaging techniques: fMRI, EEG and MEG. Beyond
the analysis of these experimental data, uncovering the relationship between connectivity and
activity has attracted much interest recently, with a particular focus for non-trivial connectivity
topologies that mimic those observed in the biology [9–12]. Within this field, the inference of
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the network connectivity from empirically observed activity is an active line of research [1, 13–
16] and is the purpose of the present study.

In order to infer the connectivity from empirical observations, one needs to define observ-
ables of the activity that the network model has to reproduce. Designing adequate and efficient
estimation procedures is as important as the properties of the model itself. Over the past years,
many techniques have been developed for various dynamical models: for oscillator networks
based on synchrony [17] and covariances [18, 19]; structural equation models (SEMs) [20, 21];
statistical methods for generalized linear models (GLMs) [13, 22]; Granger causality in spiking
networks with nonlinear dynamics [14, 23]; transfer entropy for an abstract model of neural
activity observed via calcium imaging [24]; spike-time covariances in networks of Poisson neu-
rons [25]; covariances for multivariate Ornstein-Uhlenbeck processes [16] with recent develop-
ments to estimate directed connectivity [26]; for the dynamic causal model (DCM) [5, 15]. As
a general rule, three factors limit the accuracy of connectivity estimation: the size of the net-
work, the amount of empirically observed activity and nonlinearities in the mapping between
the connectivity and the activity observables. Moreover, the directionality of interactions
between nodes is harder to estimate than the existence of an interaction between two nodes.

Here we do not focus on the detection of connections, which often involves statistical tests,
but we want to estimate the ranking of individual weights in networks of about a hundred of
nodes. In Methods, we develop the theory to recover from observed covariances (taken as FC)
the network connectivity as well as the intrinsic variability experienced by individual nodes in
a noise-diffusion (ND) network. More precisely, we perform a Lyapunov optimization (LO)
during which the network parameters are tuned iteratively such that the network reproduces
two covariance matrices set as ‘objectives’, or goals. This allows for the use of constraints on
the network parameters, such as enforcing partial connectivity. The model is a multivariate
Ornstein-Uhlenbeck process, where the activity fluctuations are caused by the intrinsic noise
and shaped by the recurrent connections to generate the spatio-temporal covariance pattern.
Compared to previous studies [18], we focus on the situation where the network effect is
strong, meaning that FC significantly differs from EC: even unconnected or weakly connected
nodes can be strongly correlated. This situation was considered for symmetric EC [27, 28]. As
reviewed in [15] for the DCMmodel, many methods only consider connections individually
for the observables; in contrast, partial correlations and multivariate autoregressive models
(MVAR) consider the entire network activity and give the best performance for detecting undi-
rected connections in that study. Our method also relies on the network covariances as a whole
to estimate the connectivity. The performance of the estimation procedure for artificial net-
works is the subject of the first half of Results.

Following previous studies [1, 3, 5, 27, 29], we apply our theory to the estimation of cortico-
cortical connectivity from fMRI data. Obtaining quantitative estimates for the connectivity is
important to gain insight on the information flow within the cortex [30]. In our ND model, EC
coincides with the recurrent connectivity. In many models applied to fMRI data such as the
DCM [5] and dynamic mean-field (DMF) model [1], the hemodynamic response function
(HRF) transforms the neural activity into the BOLD signal, introducing nonlinearity in the
mapping EC-FC. Our ND model does not explicitly incorporate hemodynamics, so the esti-
mated EC describes the interactions between cortical regions via the proxy of the BOLD sig-
nals. Therefore, we test our method on the more elaborate DMF model that incorporates a
HRF [27]. Specifically, we verify that the spatio-temporal covariances in the DMF model with
time shifts of seconds convey information about the underlying neural connectivity, which is
required for our method to be successfully applied to fMRI data. Then, we check the agreement
of the EC estimated using the ND model coincides with the neural connectivity of the DMF
model. Finally we examine the consistency of our results when varying optimization
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parameters, in particular the time shift for the objective covariance matrices. In several previ-
ous models of the whole cortex [12, 27, 28, 31], EC corresponds to a scaled version of SC matrix
obtained from diffusion tensor imaging, which is quasi symmetric. The corresponding fitting
procedures often rely on zero-time-shift correlations, which implies that the directionality of
cortical connections can hardly be estimated. In contrast, another direction of research has
investigated directed interactions, but only for a small number of cortical areas [2–5, 7, 20, 32].
By recovering the strengths of individual connections and intrinsic variability for the whole
cortex divided in 68 areas, we aim to combine the advantages of those studies.

Methods
We present the theory used to go back and forth between the network parameters and the
observables:

• the forward problem: calculation of theoretical covariance matrices Q0 and Qτ for given
matrices for the network connectivity C and intrinsic noise S;

• the inverse problem: estimation of C with fixed S and estimation of both C and S when the
Qmatrix(ces) is(are) known.

The variables of importance are described in Table 1.
We consider a network of interconnected neural populations, as schematized in Fig 1A. The

matrix C in Fig 1B represents the connection strengths for such a network of size 50. In our
model, each node receives noise that propagates due to the recurrent connectivity. The activity
in population i is described by the variable xti , where t denotes the time. An example for the
activity of two nodes is displayed in the left graph of Fig 1C. We analyze the neural dynamics
up to the second-order fluctuations, assuming stationarity of the whole stochastic process. The
means �xi and covariances Q

t
ij of variables x

t
i are defined as:

�x :¼ hxti i;
Qt

ij :¼ hðxti � �xiÞðxtþt
j � �xjÞi;

ð1Þ

where the angular brackets correspond to the average over the randomness due to the noise.
The empirical covariances are evaluated from the discrete time series xn;ti with the correspond-
ing time shifts from the activity of nsim simulated sessions with T samples each:

bQt
ij ¼

1

nsimT

X
1 � n � nsim

0 � t < T

ðxn;ti � bxn
i Þðxn;tþt

j � bxn
j Þ; ð2Þ

Table 1. Table of variables used in Methods and Results.

Variable name Symbol

node activity xt
i

model network connectivity C

noise matrix (intrinsic variability) Σ

model zero-time-shift covariances Q0

model time-shifted covariances Qτ

objective zero-time-shift covariances bQ0

objective time-shifted covariances bQt

doi:10.1371/journal.pcbi.1004762.t001
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where the means bxn
i ¼

P
0�t<Tx

n;t
i =T are evaluated for each session. The stationarity hypothesis

implies that averaging bQt
ij over for a sufficiently long period gives the probabilistic mean Qt

ij.

For the time series in Fig 1C, we obtain the bQ0 and bQt matrices in Fig 1D. By definition, the
matrix Qτ is symmetric for τ = 0, but its asymmetry increases with τ, as shown by lighter plot-
ted dots and fitting curves in Fig 1F.

Fig 1. Network of interacting neural populations. A Schematic diagram of the NDmodel: the neural populations (purple circles) receive noisy inputs as
well as recurrent feedback (gray and red connections, respectively). The topology is non-random: 2 groups of interconnected populations (green dashed
boxes) are linked by hubs (cyan dashed box), but the hubs are not connected to each other. B Connectivity matrixC for a network of 50 populations,
corresponding to the strengths of the red connections in A. The indices for the two groups are indicated by the green bars, and hubs by the cyan bar.C
Example time series between two populations in the network, one from the large group in A and a hub. In the right panel, the darker curve is shifted by τ = 1 s.

D Empirical covariance matrices between all neural populations, evaluated from the time series in C with the two time shifts: τ = 0 for bQ0 and τ = 1 s for bQt;

see expression forQτ in Eq (2). The color scale is adjusted to focus on off-diagonal elements. E Logarithm of autocovariance bQt
ii for each node i as a function

of τ. The mean over all nodes (blue curve) has a slope close to 1/τx (black line). F Asymmetry of theoreticalQτ as a function of the asymmetry of C. The
asymmetry index in Eq (24) scales from 0 for symmetric to 1 for antisymmetric matrices. Three time shifts τ are displayed (lighter to darker blue), each cross
represents a cluster-hub network similar to A and the corresponding line indicates the linear fit.G Network effect indicated by the weak match betweenC
weights andQ0 values over all connections. H Schematic representation of a step in the Lyapunov optimization (LO) procedure. The model covariancesQ0,τ

are evaluated for the current network parametersC and Σ. From the comparison between the modelQτ/0 and their objective counterparts bQt=0, the desired
updates ΔC and ΔΣ for the model parameters are calculated.

doi:10.1371/journal.pcbi.1004762.g001
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Model of interconnected cortical areas
The node activity is governed by the following coupled ordinary differential stochastic equations:

dxti ¼ � xti
tx

þ
X
k6¼i

Cikx
t
k þ ei

" #
dt þ dBt

i : ð3Þ

Each xti experiences an exponential decay with time constant τx and is excited by other xtk whose
contributions are scaled by the recurrent weights Cij. Fluctuations are generated by the Gaussian
white noise dBt

i that has variance (σi)
2; formally, Bt

i is a Wiener process scaled by a factor σi. We
forbid self-connections, i.e., Cii = 0, although this is not crucial. In practice and without loss of
generality, the input ei is homogeneous for all nodes.

Following previous work [16, 27, 33], we derive the well-known self-consistency equations
for the mean �x and covariances Qτ in Eq (1), assuming stationarity of the process. When the
system has a stable fixed point, it is given by the zeros of the linear matrix system:

J�x þ e ¼ 0 ; ð4Þ
where xt indicates the activity vector whose entries are xti for 1� i� N; e is the homogeneous
vector of inputs ei. We have denoted the Jacobian of Eq (3) by

Jij ¼
�dij

tx
þ Cij ; ð5Þ

where the Kronecker delta δij = 1 if i = j and 0 otherwise. The system has a single fixed point
provided J is invertible.

Using Ito’s formula for the derivation of ðxti � �xiÞðxtþt
j � �xjÞ with respect to t, we obtain the

Lyapunov equation for the steady-state of the second-order fluctuations with zero time shift:

JQ0 þ Q0Jy þ S ¼ 0: ð6Þ

The noise matrix S is diagonal with terms ðsiÞ2 ¼ dijhdBt
idB

t
ji and † is the matrix transpose

operator.
As done for the variable t, the derivation of ðxti � �xiÞðxtþt

j � �xjÞ with respect to τ yields an

equation satisfied by the time-shifted covariance Qτ:

Qt ¼ Q0 expm Jyt½ � ; ð7Þ
where expm is the matrix exponential. When J is dominated by the diagonal elements, the auto-
covariancesQt

ii are close to an exponential decay with time constant τx, as illustrated in Fig 1E
with a log y-axis by the straight black line that coincices with the mean in blue up to τ = 2.5 s.

Evaluating covariances from known network parameters
For a model with given connectivity matrix C and intrinsic noise matrix S, the theoretical
zero-time-shift covariance matrix Q0 is the unique solution of Eq (6) and can be evaluated
using the long-known Bartels-Stewart algorithm [16]. Then, the model Qτ can be calculated
from Q0 and J using Eq (7) for any given τ.

Direct estimation of network parameters from empirical covariances
The inverse problem consists in finding an estimate of the connectivity matrix C such that the

model reproduces the two objective matrices bQ0 and bQt for a given τ> 0, e.g., given by
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empirical observations. The relation in Eq (7) allows for the calculation of J from bQ0 and an

occurrence of bQt for a given τ> 0:

J ¼ 1

t
logm bQ0

� ��1bQt

� �� �y
; ð8Þ

where logm is the matrix logarithm [34]. In our case, the non-diagonal elements of the Jaco-
bian directly give the connectivity weight Cij = Jij. Note that the diagonal terms of J can provide
an estimation of τx, so far as we assume Cii = 0. Then, the noise matrix can be evaluated from
the Lyapunov equation Eq (6):

S ¼ �J bQ0 � bQ0Jy: ð9Þ

Due to the matrix logarithm, this method is very sensitive to the noise in bQ0 and bQt: it can give
non-real numbers for J, hence C. For this reason, we develop the optimization method in the
next section.

Case of zero-time-shift covariances. Before presenting the new optimization, we show

that J cannot be fully recovered from the zero-shift covariance bQ0 alone. We use similar calcu-
lations to those presented in previous work [27] to evaluate the solution for Q0 in Eq (6) when J

is diagonalizable and S is known. Because bQ0 is symmetric, it is diagonalizable in an orthogo-

nal basis: bQ0 ¼ PQDQP
y
Q with DQ diagonal and the unitary matrix PQ such that P�1

Q ¼ Py
Q. Reor-

ganizing Eq (6), we obtain

Py
Q J PQ

� 	
DQ þ DQ Py

Q J
y PQ

� 	y ¼ �Py
QSPQ : ð10Þ

The solution J is thus given by

J ¼ PQFP
y
Q;

mjFij þ miFji ¼ �Gij;

G ¼ Py
QSPQ

ð11Þ

with μi the real eigenvalues of DQ on its diagonal. The second equality in Eq (11) implies that
there are infinitely many solutions for J: for each pair i 6¼ j, there is one degree of freedom in

determining F, hence J. In other words, bQ0 alone does not carry sufficient information to recover
the whole J and C. There is, however, a unique particular solution for F that is symmetric:

Fij ¼ Fji ¼ � Gij

mi þ mj

; ð12Þ

corresponding to a unique symmetric J. Recall that this solution requires knowledge about the
noise matrix S.

Lyapunov optimization (LO) to estimate network connectivity from
empirical covariances
As will be shown later in Results, the direct method does not work well with noisy empiricalbQ0=t. We thus propose an alternative estimation method, where C is tuned iteratively such that
the model reproduces the covariance observables, as illustrated in Fig 1H. Considering the
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noise matrix S to be known for now, we optimize C in order to reduce the model error

VðCÞ ¼
X
m;n

ðQ0
mn � bQ0

mnÞ2 þ
X
m;n

ðQt
mn � bQt

mnÞ2 ; ð13Þ

for a pair of objective covariance matrices bQ0 and bQt with a given τ> 0; in Results, it is referred
to as τest. Being the sum of two matrix distances, the Lyapunov function V is positive definite
and becomes zero only when the two covariance matrices are equal to the objective counter-
parts. Eq (8) ensures the unicity of the connectivity C for a given pair of covariances matrices,
when the solution exists.

Starting from zero weights initially, each optimization step aims to reduce V. To do so, we
calculate the Jacobian J in Eq (5) for the current connectivity C, then the model matrices Q0

and Qτ using Eqs (6) and (7) as we know S. We want to update C to obtain the following
desired changes for the model covariances Q0 and Qτ:

DQ0
mn ¼ �CðbQ0

mn � Q0
mnÞ;

DQt
mn ¼ �CðbQt

mn � Qt
mnÞ;

ð14Þ

where the optimization rate �C is a some small positive number. To evaluate the Jacobian
update ΔJ that corresponds to ΔQ0 and ΔQτ, we consider the equivalent of Eq (8) for the theo-
retical covariance matrices, namely J = logm(X)†/τ with X = (Q0)−1 Qτ. We perform an implicit
differentiation with respect to J and X, yielding

DJ ¼ 1

t
ðDXX�1Þy

¼ 1

t
ðQ0Þ�1DQ0ðQ0Þ�1Qt þ ðQ0Þ�1DQt
� 	 ðQ0Þ�1Qt

� 	�1
n oy

¼ 1

t
ðQ0Þ�1ðDQ0 þ DQtexpmð�JytÞÞ� 	y

:

ð15Þ

Finally, the desired connectivity update is simply for all i 6¼ j

DCij ¼ DJij ; ð16Þ

and zero for the diagonal elements.
To obtain the rhs of the first line in Eq (15), we have assumed that matrices X and ΔX com-

mute. For the LO procedure, this implies the existence of a path of matrix increments corre-
sponding to ΔJ such that the commutation requirement is satisfied at each step, in order to
reach the global optimum. Assuming X to be arbitrary, the subspace of commuting matrices in
which ΔX is constrained is a linear subspace of dimension n(n−1)/2 with n the number of
nodes, to be compared to the dimension n2 of the space of X. Although this subspace is not
dense, it is sufficiently rich to hope that suitable paths exist and the optimum can be
approached; this will be verified using numerical simulation.

This optimization process may also not reach the global optimum when bQt and bQ0 do not
correspond to a real solution for C, such as noisy empirical covariances. We will thus verify the
estimation performance numerically, using the known theoretical covariance matrices
obtained from Eqs (6) and (7) to check for a given connectivity matrix C.

LO estimation of a symmetric network connectivity based on zero-time-shifted covari-

ances only. Here we show how to perform a similar iterative optimization based on bQ0 only
as an objective, as was done for the direct calculation method. Namely, a symmetric ΔJ can be

calculated in terms of DQ0 ¼ �CðbQ0 � Q0Þ at each optimization step. The desired Jacobian
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update for J can be written as DJ ¼ P
m;nDQ

0
mn

@J
@Q0

mn
. Using similar calculations to those follow-

ing Eq (10), we differentiate Eq (6) with respect to Q0 to evaluate @J=@Q0
mn:

@J
@Q0

mn

Q0 þ JðEmn þ EnmÞ þ Q0 @Jy

@Q0
mn

þ ðEmn þ EnmÞJy ¼ 0 ; ð17Þ

where Emn is the matrix filled with zero except for a 1 at indicesm, n. Note that, because Q0 is
symmetric, @Q0=@Q0

mn ¼ Emn þ Enm and not Emn alone. This binds linearly the elements @J/
@Qmn and E

mn+Enm, which actually leads to an equality for ΔJ that has the same form as Eq (6):

DJ Q0 þ Q0 DJy þ J DQ0 þ DQ0 Jy ¼ 0 : ð18Þ
We have a similar indetermination as before, which can be lifted by choosing the particular
symmetric solution for ΔJ:

DJ ¼ PQKP
y
Q;

Kij ¼ � Lij

mi þ mj

;

L ¼ Py
Q½JDQ0 þ DQ0Jy�PQ;

ð19Þ

where the diagonal matrix DQ with eigenvalues μi and the passage matrix PQ are the same as
defined above in Eq (10). Note that we do not need to assume knowledge about S here.

Tuning of input noise variances
So far, we have considered S to be known and fixed during the optimization. Now we extend
the theory to optimize S in parallel with C. We focus on the case where S is diagonal with ele-
ments Sii = (σi)

2 that are the variances of the noise experienced by each network node. The key

to adjust each Sii is to reproduce the corresponding diagonal element bQ0
ii. To do so, the Sii are

simply modified at each optimization step based on the difference between the variance of the
ith node of the model and its objective counterpart:

DSii ¼ �S bQ0
ii � Q0

ii

� �
; ð20Þ

where the update rate is �S.
The implications of tuning the noise matrix S will be explored in a dedicated section of

Results. Intuitively, it can be seen from Eq (6) that S affects the model covariance Q0, hence Qτ

via Eq (7); see Methods for reference. Therefore, assuming an erroneous S for the model
implies incorrect desired updates ΔQ0 and ΔQτ, leading to a wrong update ΔC.

Heuristic optimization procedure for network connectivity
We also compare the LO method with a heuristic optimization, where existing weights are
increased or decreased depending on the Qτ difference between the model and objective for the
corresponding matrix element for a given τ

DCij ¼ �heur bQ0
ij � Q0

ij þ bQt
ij � Qt

ij

� �
: ð21Þ

This method used previously [12] is adapted here to spatio-temporal covariances.
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Network configuration and model parameters used in numerical
simulation
Unless stated otherwise, we use the parameters in Table 2 and Euler’s approach to simulate Eq
(3) numerically. The code is written in python using the packages numpy and scipy, which
incorporate a version of the Bartels-Stewart algorithm. The topology for the cluster-hub net-
works as in Fig 1A consists of two groups of 30% and 60% of the N nodes. Each group is con-
nected recurrently with probability pcon, with a weight randomly chosen in [10, 100]% of cmax.
We exclude self connections, although this is not crucial. The two groups are connected via
hubs with a higher probability equal to 1.3pcon and a weight in the same range as other connec-
tions. Hubs do not have connections between each other. For random networks, all pairs of
nodes have the probability pcon to be connected, with a random weight in [10, 100]% of cmax.
Simulations of duration T with identical parameters but distinct initial conditions are repeated
nsim times in order to evaluate the empirical Q.

We also compare our ND model with the DMF model [27] that simulates a network of neu-
ral population with AMPA and NMDA conductances, whose synaptic activity determines the
BOLD signal via a hemodynamic nonlinear filter [29]. The equations regulating the synaptic
activity variable Si with 1� i� N for the DMF are

dSi
dt

¼ �Si
tNMDA

þ bð1� SiÞHðuiÞ

ui ¼ JðwEESi þ G
X

k
CikSkÞ þ I0

HðxÞ ¼ ax þ b
1þ exp½�cðax þ bÞ� :

ð22Þ

The HRF model relies on the synaptic activity Si to calculate the intermediate variables si, fi, νi
and qi for each area, which give the BOLD signal Bi:

dsi
dt

¼ Si � ksi � gðfi � 1Þ
dfi
dt

¼ si

dni
dt

¼ fi � n1=ai

tH
dqi
dt

¼ 1

tH

fi
r
½1� ð1� rÞ1=fi � � qin

1=a�1
i

� �
Bi ¼ V0 � ½7rð1� qiÞ þ 2ð1� qi=niÞ þ ð2r� 0:2Þð1� niÞ�:

ð23Þ

All parameters are recapitulated in Table 3.

Experimental data set
Resting-state BOLD signal time series and dwMRI data were acquired for 25 healthy subjects
aged between 18 and 39 years (mean 26.7), including 12 females and 13 males. A detailed
description of the data acquisition can be found in [35], which we briefly summarize here. Sub-
jects were asked to stay awake and keep their eyes closed, during which joint MRI-EEG record-
ings were performed using a 3 Tesla Siemens Trim Trio MR scanner and a 12-channel Siemens
head coil [36, 37]. Acquired time series are spatially aggregated for voxels corresponding to the
same area according to the parcellation. Only fMRI data are used in the present study: the
BOLD signals were recorded for about 20 minutes (661 time points taken every 2 s). The
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BOLD signals are high-passed filtered above 0.01 Hz. Then the FC matrices correspond to
covariances between all 68 regions, which are calculated using Eq (2) taking each of the 25 sub-
jects as a separate session. Time shifts are multiples of the temporal resolution after preprocess-
ing (2 s). For the most part, we use for FC the average covariance matrix over all subjects; a
comparison with optimization based on FC for individual subjects is also presented in ‘Robust-
ness of LO applied to experimental data. For each participant, dwMRI was used to evaluate the
white-matter intracortical connectivity. Tractography is performed using corrections for
motion, eddy currents, crossing pathways and the size of regions. Processing steps for MRI
data include 1) preprocessing of T1-weighted scans, cortical reconstruction, tessellation and
parcellation, 2) transformation of anatomical masks to diffusion space, 3) processing of diffu-
sion data, 4) transformation of anatomical masks to fMRI space, 5) Processing of fMRI data.
The dwMRI matrix used in the application to experimental data is the average over all subjects,
which is thresholded to determine weights to tune in the optimization.

Table 2. Table of simulation, network and optimization parameters for the ND artificial network model.

simulation duration T = 300 s

simulation timestep 50 ms

simulation number nsim = 50

network size N = 50

probability of connection pcon = 20%

maximum weight for C cmax = 0.2

time constant for neural dynamics τx = 1 s

homogeneous input e = 0.3

noise variance Sii ¼ s2
i ¼ 0:6

C optimization rate �C = 2 × 10−4

Σ optimization rate �Σ = 10−1

Unless stated otherwise, these parameters are used for artificial networks.

doi:10.1371/journal.pcbi.1004762.t002

Table 3. Parameters for the dynamic mean-field (DMF) model and hemodynamic response function
(HRF).

a = 270

b = 108

c = 0.154

β = 0.641

J = 0.261

wEE = 0.9

G = 2.5

κ = 0.65

γ = 0.41

τH = 0.98

α = 0.32

ρ = 0.34

V0 = 0.02

All parameters are taken from previous publications [27, 29]. The weights of the C matrices are chosen in

the same range for both ND and DMF models. The value for G sets the regime of the DMF close to the

bifurcation [27].

doi:10.1371/journal.pcbi.1004762.t003
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Ethics statement
The paper makes a secondary use of experimental data already published [35]. The experi-
ments have been approved by the Ethic Committee of Charite University (Berlin).

Results
The goal of the present study is to tune a dynamic model of cortical activity to reproduce
empirical FC obtained from fMRI data. Here FC corresponds to the spatio-temporal covari-

ances bQ0=t. The optimized network parameters are the matrices of recurrent connectivity C
and noise S, the latter being diagonal. We perform the Lyapunov optimization (LO) developed
in Methods to find the parameters that minimize the error between two model Q0/τmatrices

and their empirical counterparts bQ0=t, as illustrated in Fig 1H. The application to fMRI data is
presented in the last two subsections of Results, where the tuned C is an estimate of directed
intracortical EC. In particular, the asymmetry of EC relates to the non-reciprocality of cortical
interactions and to the difference between the strengths of incoming and outgoing connections
for each cortical area.

The first part of Results concerns artificial network models, on which we test the LO proce-

dure. We examine the influence of the choice for the time shift τest related to the objective bQt

upon the performance. We also show that it is necessary to tune the noise S received by the
network nodes in order to accurately estimate the recurrent connectivity C. Our LO procedure
is compared to two alternative to estimate the strengths of individual connections in a network,
namely the ‘direct’ and ‘heuristic’methods. Before applying our method to experimental data,
we also investigate the mapping between EC and FC in a network model equipped with hemo-
dynamics to generate the BOLD signal from neural activity. Specifically, we verify that time-
shifted BOLD covariances convey information about the underlying connectivity between neu-
ral populations.

Noise-diffusion (ND) with non-trivial network topology
The network model consists of interconnected neural populations that experience intrinsic
noise and excite each other. Details about the mathematical formalism and model parameters
are provided in Methods. For artificial networks, we mainly consider the topology in Fig 1A,
where two groups of interconnected populations are linked via hubs. An example of the con-
nectivity matrix is displayed in Fig 1B, where the matrix element indexed by ij corresponds to
the connection from area j to i. Although hubs (cyan) are connected to both groups and not
between each other (as indicated red arrow), they seem to make one with the large group (light
green) in Q0 and Qτ (see the blue arrow in Fig 1D). In contrast, the small group (dark green in
Fig 1A and 1B) does not appear clearly as it exhibits rather low covariances. The reason behind
this choice is to check whether the method can recover the correct topology from the Q0/τ val-
ues that significantly deviate from the underlying connectivity strengths in C.

Our estimation method uses the spatio-temporal information in the covariance bQ of the
entire network to recover the directed weights in C, implicitly relying on the asymmetric matrixbQt for τ> 0. In general, Qτ is not symmetric for τ> 0 for an arbitrary C: Fig 1F shows that the
asymmetry of Qτ linearly scales on average with that of C, with a slope that increases with τ.
We measure the asymmetry using the following index

asymM ¼ 0:5

P
i 6¼jjMij �MjijP

i 6¼jjMijj
ð24Þ
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for a matrixM. It ranges from 0 for symmetric matrices to 1 for antisymmetric matrices. Large
weights with no or weak reciprocal connection mainly contribute to the index. The relationship
in Fig 1F can be understood looking at the expression for Qτ in Eq (7), which amounts to Q0

multiplied by the matrix exponential expm(J† τ). The Jacobian J† is the transpose of the Jaco-
bian matrix defined in Eq (5) and has the same off-diagonal elements as C, so asymJ = asymC.
For small τ, Qτ can be approximated by Q0 + Q0 J† τ, which explains why asymQτ is smaller
than asymC. The variability of the Q

τ asymmetry compared to the small slopes of the curves
makes it difficult to infer the asymmetry of C. This further motivates our method to estimate
accurately C from Q.

We focus on the case where the recurrent weights are sufficiently large to generate a strong
network effect: the mapping between C and Q is not trivially linear and many large values in
Q0 correspond to nodes that are only weakly or not connected. Here, hubs in the network in
Fig 1A are not connected, but have strong variances in Fig 1G and covariances between each
other due to their numerous connections.

Test of Lyapunov optimization (LO) on artificial networks
The optimization procedure is summarized in Fig 1H: C is iteratively modified such that the

model covariance matrices Q0 and Qτ converge towards the objective covariance matrices bQ0

and bQt, for a chosen τ = τest > 0. In the first place we assume S to be known. Starting from a
initial matrix C with all weights equal to zero, LO calculate a C update at each step such that it
reduces the Lyapunov function V in Eq (13); V is the sum of the matrix distance between Q0

and bQ0 on the one hand, and that between Qτ and bQt on the other hand. To measure the good-
ness of fit of C or Q, we define the model ‘error’ as the normalized distance for a matrixM and
its objectiveMobj:

dðM;MobjÞ :¼
P

ði;jÞðMij �Mobj
ij Þ2P

ði;jÞðMobj
ij Þ2

; ð25Þ

which are involved in V.

Firstly we verify that LO recovers the correct connectivity for theoretical objectives bQ0=t cal-
culated with Eqs (6) and (7) with the original C and S. A typical example for the evolution of
the C and Q errors is illustrated in Fig 2A for τest = τx = 1 s. While the Q0/τ errors exhibit a pla-
teau, the C error keeps on decreasing. Fig 2B shows the faster convergence for Q than C for
three stages of the optimization. The residual C error is very small; it may remain non-zero
when the commutativity assumption necessary to derive Eq (15) is not satisfied.

For the same original C, we now simulate the network and calculate the empirical objectivesbQ0=t using Eq (2) for 50 independent repetitions of 300 s each with timestep 0.05 s (i.e., 3 × 105

data points). In Fig 2C, the Q0/τ errors first drop, then rebound and stabilize. Interestingly, the
C error continues to decrease even though the Q error worsens. Because of the noise in the

empirical bQ0=t, there is no real solution C to Eq (7) and the residual error does not vanish. In
Fig 2D, the model C gives a better fit for the original C after 5000 optimization steps than for
the minimum for the Q error. LO also allows for the use of constraints on the weights in C.
Non-negativity is imposed here, although it does not affect the results significantly.

Matching time shift is crucial for accurate connectivity estimation. The estimation per-
formance depends on the choice for τest related to the empirical objectives: Fig 3A shows for
several τest the ‘best’ C, corresponding to the minimum of the Q error as in Fig 2C during the
optimization. From now on, the Q error denotes the mean normalized distance for both Q
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Fig 2. Iterative optimization to recover C from empiricalQ. A Estimation based on theoretical
covariances. Evolution ofQ0 andQτ errors between the model and theoretical objectives (blue curves), as

well as C error between the original and model connectivity (red). The theoretical objectives bQ0=t are
calculated using Eqs (6) and (7). Errors are calculated using the normalized matrix distance in Eq (25). The
optimization relies on Eq (15) with time shift τest = 1 s. B Details of the match of the model and objective
matrices forQτ (blue dots) andC (red crosses) at three stages of the optimization in A. The black line
indicates a perfect match. C Similar plot to A with empiricalQ as objectives, evaluated using Eq (2) for 50
simulations of the same network as in A. D Similar plot to B for the optimization in C.

doi:10.1371/journal.pcbi.1004762.g002
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matrices: ðdðQ0; bQ0Þ þ dðQt; bQtÞÞ=2. For τest = 0.1 and 1 s, the global characteristics of the
original C topology (left panel) are recovered, namely the two interconnected groups linked via
hubs that are not connected with each other. Although weights are weaker than in the original
C, the detail of the connectivity is recovered for τest = 1 s. In contrast, the estimated C for τest =
0.1 s is quasi symmetric. Last, τest = 5 s gives a poor estimation where the cluster-hub topology
is hardly detected.

The left panel of Fig 3B shows the evolution of the Q errors for the optimizations in A. For
small or large τest > 0 compared to τx = 1 s, the Q error often exhibits a large rebound similar
to an explosion (dashed curves). LO being less stable for small and large τest > 0, it gives a poor
estimate for C. In the case τest = 0, the optimization using Eq (19) is rather stable; however, the
resulting estimate is closer to the symmetric part of the original C, not the directed matrix. The
rate of change for C is displayed in Fig 3B (right): during the rebound or plateau of the Q error,
the Cmatrix stabilizes for τest = 0 and 1 s (solid curves).

Fig 3C recapitulates our first main theoretical finding: τest needs to be matched with τx = 1 s
in order to obtain an accurate estimation (see C errors in red). The dashed red curve corre-
sponds to the C for the minimum of the rate of change (red curves in Fig 3B), yielding a better
C recovery than the solid red curve that corresponds to the minimum of the Q error (blue
curves). The green curve indicates the matrix distance to the symmetric part of the original C,
namely 0.5(C+C†). It shows that LO for small τest > 0 recovers the undirected connectivity like
τest = 0, rather than the correct directed one. Finally, we observe that the best Q error corre-
sponding to the minimum over the optimization (blue curve) is not a good indicator for the C
error (red curve): it does not provide useful insight for choosing τest. The performance is fur-
ther illustrated in Fig 3D by the Pearson correlation coefficient between the best and empirical
C (red curve) and Q. The best C for τest = 1 s corresponds to values larger than 0.8, which
means that the weight ranking of the original C is well captured.

In Fig 3E, we compare LO for empirical objectives (red solid curve) with LO for theoretical
objectives (red dashed curve). For τest > 0, even theoretical objectives give a large C error,
meaning that the poor performance comes from the procedure itself. This can be intuited from

Eq (15), which relies on a “contrast” between bQ0 and bQt: for small τest, these two matrices are
too similar and the C update is subject to numerical imprecision. This is confirmed by the evo-
lution of the Q error in Fig 3F. For large τest, however, theoretical objectives yield a very good
estimation. This means that the poor performance for large τest comes from the inaccuracy in

the empirical bQt, as represented by the blue solid curve in Fig 3E.
Need for estimating intrinsic noise in addition to connectivity. Now we extend the LO

procedure to adjust the variance of the noise individually inputted to the network nodes:
each diagonal element Sii is increased or decreased such that the node variance Q0

ii of the

model converges toward its objective bQ0
ii, see Eq (20) in Methods. To verify the estimation

accuracy, we consider a target network with Sii elements uniformly distributed between in

[0.1, 0.6] and perform LO for the theoretical objectives bQ0 and bQt with τ = 1 s obtained using
Eqs (6) and (7). The match between the model and objectives for both C and S is shown in
Fig 4A, corresponding to a quasi perfect estimation of the connectivity as in Fig 2B for the
tuning of C only.

To assess the importance of tuning S, we perform three optimizations using a fixed homo-
geneous S for three levels of noise, namely the minimum, mean and maximum of the original
S. As illustrated in Fig 4B, the Q error and, more importantly, the C error are larger for those
cases (circle, square and triangle) than that with the tuning of S (crosses). Moreover, the values
for the non-zero weights in the original C are estimated less accurately, as measured by the
Pearson correlation coefficient. Fig 4C shows for each case the corresponding matches between

Inference of Directed EC from fMRI FC Hints at Cortical Asymmetries

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004762 March 16, 2016 15 / 30



the original and estimated Cmatrices. This is the second main theoretical finding: the optimi-
zation of S is as important as choosing τest to obtain an accurate estimate for C.

In practice, we find that a fast tuning for S works best in order to keep the optimization
stable, i.e., avoid early “explosion” of the Q error. The presented simulations corresponds to
�S = 10−1 in Eq (20), to be compared with �C = 2 × 10−4 to calculate ΔQ in Eq (14) for the C
update, cf. Methods.

Benchmark of LO procedure and comparison to the direct and heuristic methods. Fig 5
combines the results found in Figs 3 and 4 to verify the robustness of LO when varying the net-
work parameters. Fig 5A compares the C error for two network topologies: the lighter red
curve corresponds to the cluster-hub type as in Fig 1A and the darker curve to randomly con-
nected networks. The need for matching τ with τx is confirmed in the left panel for both types.
The S error in purple is close to perfect for all τest. The error bars correspond to the variability
over 40 networks with randomly chosen parameters: 25� nsim � 50 simulations to calculate

Fig 3. Influence of choice for τest on accuracy of recoveredC. A Best estimated matrices C for τest = 0, 0.1, 1 and 5 s. For τest = 1, the Cmatrix at the end
of the optimization (step 10000) is also shown.B Evolution ofQ errors for the optimizations with various τest in A. bf C C errors corresponding to the best
matrices in A (red solid curve), as well as last matrices of the optimization (red dashed curve). The green curve indicates the error of the best C with the

symmetric part of the originalC. The blue curve indicates the error between the empirical bQt and the corresponding theoretical matrix.D Pearson correlation

coefficient between the best and original C (red) as well as reconstructed and objectiveQ0/τ. between bQt and each corresponding theoreticalQτmatrix for the

same τ = τest in C. E Comparison between LO with empirical bQ calculated with Eq (2) (red solid curve) and LO with theoretical bQ obtained from Eq (7) (red
dashed curve). The blue curve indicates the inaccuracy between the empirical and theoreticalQτmatrices. F Same as B for theQ error with theoretical

objectives bQ0=t.

doi:10.1371/journal.pcbi.1004762.g003
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the empirical bQ; network size 50� N� 100; probability of connection pcon 2 [10%, 30%]; max-
imum recurrent weight cmax 2 [1.2, 2] × 1/N/pcon; input strength e 2 [0.8, 1.2]; and average
noise level σ 2 [0.3, 0.6], with individual values shuffled ±50%; see also Table 2. No significant
difference is observed there. On average over all 80 networks, LO with τest = 0.5 and 1 s give the
best performance. On a technical ground, following the observations in Fig 3B and 3C, here the
best C is chosen after the minimum for the Q error, provided the rate of change for C decreases
(i.e., C keeps stabilizing) and the Q error remains smaller than 1.5 times its minimum.

The right panel of Fig 1A shows that the asymmetry of the original C is correctly estimated
for matched τ and τx. This means that directed connections are well estimated. Fig 5B further
illustrates the quality of the estimation for the 50 networks with the strongest asymmetries: for
small τest � 0, the estimated C is closer to the symmetric part of the original C (largest Pearson
correlations in green). For τest = 1 s, the C recovers well the directed connections in the original
C, as shown by the Pearson correlations in red (all connections) and yellow (non-zero connec-
tions in the original C).

Fig 5C shows how LO performs depending on the amount of observed data and network
parameters. As expected from previous work [25], the optimization performs better in Fig 5C

when a larger number nsim of simulations of the network activity is used to compute bQ0 andbQt, see Eq (2). Connectivity in larger networks is more difficult to estimate, but the asymmetry
of the original C does not affect much the performance.

Finally, we compare our method with the direct and heuristic methods corresponding to
Eqs (8) and (21), respectively. For each case in Fig 5D, the left and right box plots correspond
to the optimization with with τest = 1 s for 40 cluster-hub and 40 randomly connected networks
as in Fig 5A, respectively. While the S error is very small for all methods, the C error is much
smaller for LO than the others. The direct method gives large complex values in the Jacobian

Fig 4. Need for tuning intrinsic noise Σ for each node in addition to C. AMatch between the recovered and the originalC (red crosses) and Σ (purple
triangles) for LO based on Eqs (15) and (20) with theoretical objectives and τest = 1 s. The original network has inhomogeneous noise Σii. B Comparison ofQ
error, C error and Pearson correlation coefficient for non-zero weights of the original C for four optimizations: ‘opt’where bothC and Σ are tuned as in A; ‘low’
for the tuning of C with a fixed Σ with the minimum value of the original Σ; likewise, ‘med’ and ‘high’ with a fixed Σwith the mean and maximum value of the
original Σ. CMatch between the original and recoveredC for the optimization with fixed homogeneous Σ for three distinct values: the minimum, mean and
maximum of the values in the original Σ. They are to be compared with the left panel in A.

doi:10.1371/journal.pcbi.1004762.g004
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obtained from Eq (8) due to the “noise” in empirical bQ0=t, which severely impairs the estima-
tion. The heuristic method also yields a poor C error, although the Q error is very low: it does
not capture the network effect correctly, namely the non-linear mapping between C and Q due
to the recurrent feedback. Last, the asymmetry of the original C is best estimated by LO.

Hemodynamics and temporal information in BOLD covariances
Our method relies on information in time-shifted covariances to infer the connectivity of the
underlying network. In the context of cortical models of BOLD activity, EC classically denotes
the connections between neural populations, whose activity is transformed into BOLD signals
via a hemodynamic response function (HRF). Before applying our method to fMRI experimen-
tal data, we need to test whether BOLD time series as obtained from the HRF convey informa-
tion in their time-shifted measures about EC.

Fig 5. Robustness of the estimation procedure of C and Σ on artificial networks. A Left: Comparison of the C error (red curves) and Σ error (purple
curve) for optimization based on several τest. For the C error, the cluster-hub topology in Fig 1A corresponds to lighter red and the random connectivity to
darker red. The plot is similar to Fig 3C; the error bars correspond to the standard deviation over 40 network configurations. Right: Similar plot for the error of
asymC for the two network topologies.B Pearson correlation coefficient between the matrix elements of the whole recovered and originalCmatrices in red;
idem but limited to non-zero elements of the originalC in yellow; and between the recoveredC and the symmetric part of the originalC in green. The plot
concerns 50 networks of either topology for which the asymmetry of originalC is larger than 0.5; LO is performed using τest = 1 s. C C andQ errors (in red and

blue, respectively) plotted against several parameters for the network and LO: the number of simulations used to calculate the empirical bQ, the network size
N and the asymmetry of the original C. Each cross/dot corresponds to one of the 80 simulations of either topology in A for τest = 1 s.D Comparison of the
estimation performance of LO wit the direct and heuristic methods for theC error (left), the Σ error (middle) and asymmetry error (right). For each case, the left
boxplot correspond to 40 cluster-hub networks and the right one to 40 randomly connected networks; the optimizations are performed with τest = 1 s. Contrary
to others, the asymmetry error is not normalized.

doi:10.1371/journal.pcbi.1004762.g005
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Therefore we compare our noise-diffusion (ND) network with the dynamic mean-field
(DMF) model based on AMPA and NMDA dynamics [27] equipped with the Balloon/Wind-
kessel model for the HRF [29]. As illustrated in Fig 6A, the synaptic input activity of the DMF
(ui in Methods) is transformed by the HRF to generate the BOLD signal. We consider the two
topologies in Fig 6B: a randomly connected network and a network whose connections corre-
spond to the SC obtained from dwMRI (see Methods). The SC connectivity has 32% density
corresponding to the largest dwMRI values, as will be used in the next sections for the ND
model applied to fMRI data. The model parameters are taken from previous publications [27,
29] and recapitulated in Table 3. In Fig 6C, we simulate 50 configurations of the DMF+HRF
model with the two topologies (‘DMF/rnd’ and ‘DMF/SC’, respectively). For each, we choose
weights randomly and calculate the empirical autocovariances of the BOLD signals. We find
significant values up to time shifts equal to 3 s, which then drop. Interestingly, the slope in the

Fig 6. Information conveyed by spatio-temporal FC and hemodynamic response function (HRF). A
Schematic representation of the properties of the two dynamic cortical model: ND network whose activity
directly models the BOLD signals; dynamic mean-field (DMF) model whose synaptic activity is processed by
the HRF to obtain the BOLD signal.B Two types of neural connectivity used with the DMF: random and SC
matrix obtained from dwMRI. In the matrix, darker pixels indicate a higher probability of existing fibers
between cortical areas.C Autocovariances of the two models for 50 different simulations. The y-axis has a
log-scale. For each simulation, the curves are centered vertically with respect of the mean over all nodes to
focus on the slope. The black line represents the exponential decay fitted on the mean experimental BOLD
with time constant 5.3 s.D Left: Similarity between neural and BOLD covariances (excluding variances) for
the two considered DMFmodels, as measured by the Pearson correlation coefficient. Right: Performance of
EC estimation from BOLD FC for the DMFmodels. The performance is measured by the Pearson correlation
coefficient. For each simulation, the objective is the average BOLD FC taken from 50 simulations of the same
network. E Example of a typical mapping between neural and BOLD covariances for a DMF/SC network. The
covariances have been rescaled. F Variability of the EC estimated from individual FCs. The grey dots
represent the match of four EC each estimated for a single simulation of 300 s. The red dots correspond to
the average over 50 estimated EC for 50 simulations of the same DMF/SC network.G Uncertainty of the
estimated EC as a function of the estimated weight for each neural connection. The y-axis is the standard
deviation over the 50 optimizations in F divided by the mean.

doi:10.1371/journal.pcbi.1004762.g006
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log plot for the smaller time shifts is close to that found in experimental data (black line) up to
2 s of time shift. Then we estimate the similarity between the neural covariances at a short time-
scale and the FC given by the BOLD covariances, using the Pearson correlation coefficient
between the corresponding matrix elements. As shown by the Pearson correlations in Fig 6D
(left panel), the match between the neural and BOLD covariances is good, especially when EC
is constrained by SC. This means that, although the HRF involves nonlinearities, the DMF
model preserves the ranking of the spatio-temporal covariances is preserved between neural
and BOLD activity, as illustrated in Fig 6E. In particular, the time-shifted BOLD covariance
matrices are asymmetric.

Now we use the LO procedure to estimate the original EC from the BOLD FC with τest = 1 s.
The right panel in Fig 6D indicates the Pearson correlation between the original and estimated
connectivity. For the DMF model, the agreement corresponds to 0.6 and 0.65 for the random
and SC topologies, respectively. This means a fair recovery of the ranking between the original
EC weights. For the DMF/SC networks where the existing connections are “known” (32% den-
sity), LO only tunes the corresponding weights in C.

Finally, we find that the variability of the estimated ECs decreases with the strength of the
neural connection. This suggests that strong estimated EC values can be trusted based on a
threshold on the variability of the estimations (standard deviation divided by the mean).
Together, these results support the applicability of our method to fMRI data and directly esti-
mate the EC strengths from the average FC.

Application to estimation of EC from fMRI data during rest
Now we use the ND model to reproduce the cortical FC obtained from fMRI recordings during
rest. In contrast to previous studies [12, 27], FC involves both zero-time-shift and time-shifted
covariances of the BOLD signals for the 68 cortical regions here. Following the results in Fig 6,
we denote by EC the connectivity C in our model, even though the network activity directly
models the BOLD signals without a HRF. The data set corresponds to 25 subjects aged from 20
to 39 years. The empirical covariances are calculated using Eq (2) for τ that are multiples of 2 s,
which is the temporal resolution of the BOLD time series. Fig 7A displays the objective FC

matrices bQ0 and bQt with τ = 4 s, which are averages over all subjects. The autocorrelograms of
all 68 nodes are displayed in the inset of Fig 7B. The main panel shows the same curves with a
log-scale for the y-axis: they seem quasi straight lines indicating exponential decays, as
observed for artificial networks in Fig 1E. Therefore, we estimate from the mean BOLD autoco-
variance over all nodes (red curve of Fig 7B) the time constant τx = 5.3 s, which we use to cali-
brate the model. We use a single τx for all nodes, because the distribution of individual time
constants over all nodes is narrow, as shown in Fig 7C.

The direct method in Eq (8) does not work here: the reason is that the matrix logarithm
gives complex values with large imaginary parts. This motivated the development of the LO
procedure. Moreover, our approach allows for the use of constraints on the weights in C: only a
subset of all possible cortico-cortical connections can be tuned. The mask in Fig 7D represents
the anatomical cortical connectome obtained from thresholding the dwMRI data averaged
over all subjects: connections with large SC values are optimized, other weights are kept equal
to zero. The density of existing connections is 32% in Fig 7D.

The blue curve in Fig 7E represents the evolution of the Q error during LO with τest = 4 s: it
first decreases and then “explodes”. This instability corresponds to a transition to excessively
high activity due to too strong feedback. The black curve show the normalized rate of change
for C, whose minimum is close to that of the Q error. For the experimental data, the minimum
of the black curve comes before the minimum of the Q error, but the rate of change of C
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remains close to its minimum until the explosion. In the following, we choose the estimated EC
in Fig 7F and reconstructed FC as the Q and C for the minimum of the Q error. The match
between the model and empirical Qmatrices is illustrated in Fig 7G. Importantly, the match is
similar for the Q corresponding to tuned connections (blue dots) and absent connections
(black crosses). The fit of variances corresponding to the diagonal elements of Q (cyan dots) is
very good.

Fig 7H indicates the poor match between the empirical FC and the symmetric part of esti-

mated C: large values in bQ0 arise from strong network effect even though the EC weight is low.
Robustness of LO applied to experimental data. Before analyzing the properties of the

estimated EC, we check the consistency of the C and S estimated by LO. As shown in Fig 8A,
the best Cmatrices for τest � 2 s describe a similar network topology, i.e., approximately the

Fig 7. Fitting fMRI data to infer cortico-cortical connectivity. A Empirical FC, namely bQ0 and bQt,
averaged over 25 subjects for BOLD signal recorded during rest. B Autocovariances (grey curves, with a log
y-axis) as a function of the time shift τ. From the mean curve (red) the time constant for the NDmodel is
estimated: τx = 5.3 s. The inset represents the autocovariances with a standard y-axis.C Variability of similar
decay time constants to τx in B for individual cortical area.D SCmask of weights to tune (black pixels),
corresponding to the strongest connections of the dwMRI matrix in Fig 6B thresholded to obtain 32% density.
E Evolution of theQ error during the optimization. The black line indicates the rate of change ofC. F EC
corresponding to the estimatedCmatrix.GMatch between empirical and reconstructedQmatrices for the
optimization with τest = 4 s while the connections for the mask in D. For bothQ0 andQτ, the blue dots
correspond to tuned connections, the black crosses to non-diagonal untuned connections and the cyan dots
to diagonal connections. The Pearson correlation coefficient between matrix elements are given above each

plot.HWeak correlation between the symmetric part of the estimatedC and bQ0, indicating a strong network
effect.

doi:10.1371/journal.pcbi.1004762.g007
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same ranking between weights (the black line indicates a perfect match). In contrast, the best C
obtained from Q0 only does not match the best C for Q0 and Q4, as illustrated in Fig 8B. The
estimated intrinsic noise S in Fig 8C is similar for all τest � 0.

The direct method gives inconsistent C for the different τest> 0, as illustrated in Fig 8D to be
compared with LO in A. Fig 8E measures the similarity between these matrices using the Pear-
son correlation coefficients between the weights corresponding to the mask in Fig 7D. LO (red)
provides very consistent C for the different τest, the heuristic method performs worse (purple)
and the direct method (cyan) very poorly. The S consistency, however, is good for all methods.
These findings are in line with the conclusions were found for artificial networks in Fig 5.

Each curve in Fig 8F represents a model whose C has been estimated using LO with bQ0 only

(green curve); bQ0 and bQt with τest = 2, 4 and 6 ms (blue to cyan). For each model, the Qτ error
between the model and empirical matrices is displayed for τ = τmod on the x-axis. The errors
for the two darker blue curves are smaller than the green one for τmod � 2 s, although the fit for
τmod = 0 is slighly worse. Our optimization procedure thus improves the whole spatio-temporal

Q fit, from bQ0 to bQ6, as compared to LO based on bQ0 only. Directed connectivity is synony-

mous with capturing the information in the time-shifted bQt with τ> 0. In the following, we
take as reference for EC the C corresponding to τest = 4 s and 32% density in Fig 7F (and dark-
est blue curve in Fig 8F).

To further check the consistency of the estimated C, we repeat the optimization procedures
with various SC masks, similar to that in Fig 7D. By moving the threshold on the dwMRI val-
ues, we obtain various densities for the mask ranging from 25% to almost 100% in Fig 9A.

Although the Q error decreases for denser C, the estimated C becomes more similar to bQ, and
the mapping between C and Qmore linear. Importantly, the estimated topology of C estimated
by LO for the 4 densities is consistent, as measured by the Pearson correlation in red in Fig 9B.
In comparison, the heuristic method is less consistent (purple). Likewise, Fig 9C shows that the

Fig 8. Robustness of estimatedC and Σ from FCwith different time shifts τest. AMatch betweenC for τest = 4 s (x-axis) andC for τest = 2, 6 and 8 s (y-
axis). Each plotted point corresponds to an EC connection and the black line indicates a perfect match. B Same as B for the EC estimated for τest = 0 on the
y-axis.C Similar plot to A for the diagonal elements of the estimated noise matrix Σ. D Similar plot to B for the EC estimated using the direct method. E
Agreement as measured by the Pearson correlation coefficient between the pairs of EC and Σ plotted in B and D for the LO (red), heuristic (purple) and direct
(cyan) methods. The green error bar on the left represents the same between EC with τest = 0 and the four τest > 0. F Comparison of the models tuned with LO
using different time shifts. For each model C obtained with τest from 0 to 6 s, the curve represents theQτ error for all τmod on the x-axis.

doi:10.1371/journal.pcbi.1004762.g008
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asymmetry of the Cmatrices is consistent across SC masks and τest for LO (red), but less for the
heuristic method (purple).

Finally, we perform LO for each of the 25 individual empirical FC. The Q errors are plotted
in Fig 9D for τest = 2 and 4 s. The errors are similar for the two cases and are larger than the Q
error for the average FC (dashed horizontal line). Fig 9E shows the good agreement between
the individual ECs and the EC obtained from the mean FC in Fig 7F, with Pearson correlation
coefficients around 0.7 for both τest = 2 and 4 s. As shown in Fig 9F, the asymmetry of the indi-
vidual ECs is homogeneous around 0.4, which is slightly higher than the asymmetry of the EC
from the mean FC that is equal to 0.35 (and indicated by the horizontal dashed line). Last, Fig
9G shows the excellent agreement between the mean of individual ECs and the EC from the
mean FC. This confirms the consistency of the results obtained from our LO procedure.

Interpretation of estimated cortical EC
Fig 10A shows the very weak match between the C and the SC corresponding to the dwMRI
data averaged over all subjects, with a Pearson correlation coefficient equal to 0.06. The esti-
mated EC is thus structurally very different from a scaled version of SC. As dwMRI reflects the
density of cortico-cortical white-matter fibers, this suggests that the efficacies of these connec-
tions are determined by other factors than their size, such as types of neurotransmitters, con-
centration of synaptic receptors and excitability of cortical areas.

The estimated EC matrix in Fig 7F is not symmetric, meaning that cortical interactions are
not reciprocal. This information is important as dwMRI data estimate the density of axonal
fibers in the white matter, but do not recover the direction of those fibers. SC is by construction
quasi symmetric, as is the case in Fig 7D. The matrix asymmetry for C relates to the reciprocity

Fig 9. Robustness of estimated ECwith respect to the EC density and individual FC. A Fit performance as a function of the density of EC. The blue
curve indicates theQ error for optimizations with several masks for C (x-axis); the error bar correspond to the 4 τest > 0. The red curve indicates the similarity

between the estimatedC and the empirical bQ0. B Similarity of estimatedCmeasured by the Pearson correlation for the different masks in A and τest = 4 s.C
Input-output asymmetry of the estimatedC obtained for various optimization masks (error bars) and τest (x-axis). The red curve corresponds to LO and the
purple curve to the heuristic method. The blue curve indicates the asymmetry of the empirical FCτ. DQ Error for LO based on individual FCs with τest = 2 and
4 s with 32% density. The horizontal dashed line corresponds to theQ error in Fig 7. E Similarity between the individual ECs and the EC obtained from the
mean FC in Fig 7F. Similarity is measured by the Pearson correlation between the non-zero EC weights for the 32% density mask. F EC asymmetry of the
individual ECs. The horizontal dashed line indicated the asymmetry of the EC in Fig 7F.G Agreement between the mean EC over individual FCs and the EC
estimated from the mean FC.

doi:10.1371/journal.pcbi.1004762.g009
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of intracortical connections and can be seen in the difference between incoming and outgoing
strengths in Fig 10B. No area has both large incoming and outgoing weights, meaning that
hubs act either as receptors or feeders.

In Fig 10C, the results are mapped onto the cortical surface. Cortical feeders with the largest
outgoing weights are the left and right fusiform, middle temporal and superior temporal gyri,
as well as the pre- and postcentral gyri in the left hemisphere. Cortical receivers with the largest

Fig 10. Interpretation of estimated cortical interactions and intrinsic noise. AWeak match between EC
and SC values. Each red cross corresponds to a connection.B Plot of the sum of incomingC weights versus
the sum of outgoingC weights (x-axis and y-axis, resp.) for each cortical area (red cross). C 3Dmapped
representations on the cortex of the variances of the empirical BOLD signal, sums of incoming weights in EC,
and intrinsic noise (related to spontaneous noisy activity). Red corresponds to larger values and blue to small
values.

doi:10.1371/journal.pcbi.1004762.g010
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incoming weights are the left and right precuneus, lateral occipital and superior parietal gyri, as
well as the left isthmus of the cingulate gyrus. We also find that the following areas exhibit the
largest values for S, synonymous with strong intrinsic variability: both left and right lingual
gyri, pericalcarine cortices and frontal poles, as well as right cuneus and transverse temporal
gyrus, and left pars orbitalis. This suggests the propagation of spontaneous activity, mainly
from visual cortices and the prefrontal area.

Discussion
We have shown in a noise-diffusion network model how the directed connectivity C can be

retrieved from empirical covariances bQ. The key is to take into account the temporal informa-

tion in covariances bQt for non-zero time shifts τ> 0. Our proposed method gives a better fit of

all bQt for τ� 0, not only bQ0 that is often considered alone as an objective or goal in fitting pro-
cedures. Our theoretical study demonstrates two crucial requirements in order to recover the

original C in the considered noise-diffusion networks: the time shift τest corresponding to bQt

must be matched with the time constant of the dynamical system τx estimated from the data
(Fig 3); it is also necessary to adjust the diagonal matrix S that relates to spontaneous fluctua-
tions experienced by each network node (Fig 4).

Our method provides an estimation of the asymmetry of intracortical connections (EC)
from fMRI data combined with anatomical information from dwMRI. This is to our knowledge
the first of its kind for the human connectome at the scale of the whole cortex. In addition to
intracortical EC, our method also estimates via S the intrinsic variability of each cortical area,
which is then shaped by EC to generate FC. This estimation relies on information in the BOLD
spatio-temporal covariances, which convey information about the underlying neural connec-
tivity (Fig 6). Our results suggest that the EC cortical hubs are either receivers or feeders, but
not both (Fig 10).

Inference of directed connectivity from observed network activity
It is known that zero-time-shift covariances are not sufficient to retrieve directed connectiv-
ity, but only its symmetric part [16, 25, 28]. Information-based methods able to estimate
directionality such as likelihood maximization [13], Granger causality [14, 23] and transfer
entropy [24] also use temporal information of the observed activity. In minimizing the matrix

distance between the model Q0/τ and objective bQ0=t, instead of considering connections inde-
pendently, the LO procedure captures network effects due to the recurrent feedback. Here we
do not perform a stochastic gradient descent using many samples of the observed activity,

but a deterministic optimization based on the bQ0=t averaged over the whole observation
period (or several simulation sessions). It follows that the optimization is quick: a few min-
utes for 104 optimization steps with a network of 50 nodes and a given τest on a recent desktop
computer.

To obtain the best performance, we have shown that the time shift τest corresponding to bQt

used in LO and the time constant of the dynamical system τx should be matched. As shown in

Fig 3E, poor estimation for large τest arises from the inaccuracy in empirical bQt; for small τest,
LO itself is unstable (see dashed curve in Fig 3F). Fig 5C shows that the method performance is
not strongly affected by the network topology or the connectivity asymmetry, but worsens with
the network size and becomes better with more observations used to calculate the empirical

objective bQ0=t. This is in line with previous results [25]. In addition to C, the intrinsic noise S
received by the network nodes must be tuned to obtain a correct C estimation (Fig 4). Here we
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use a heuristic optimization for a diagonal S in Eq (20); the present framework should be
extended to take into account correlated noise instead of white noise.

The direct method in Eq (8) to estimate C has been used previously with statistical tests to
estimate the existence of connections from observed activity [16, 26]. As shown in Fig 5D, it

does not work well for the level of noise in empirical observations bQ0=t considered here. This
motivated the development of our LO procedure in Methods. Here we focus on the estimation
of connection weights, i.e., their ranking; the detection of connections using statistical methods
can be based on the estimated C from LO, but this is left for further work. Nevertheless, detec-
tion should be based on an as-good-as-possible estimated ranking of connections weights,
which can be measured by the Pearson correlation. Our method for Ornstein-Uhlenbeck pro-
cesses also bears similarities with MVAR [3], but we enforce additional constraints on the
connectivity.

Recent studies [12, 28] have also used greedy algorithms to optimize symmetric C relying

on bQ0 using more elaborate network models. Those procedures update C step-by-step accord-
ing to various measures such as the Pearson correlation between all matrix elements of zero-

time-shift correlations. Here we have transposed this heuristic method to reproduce bQt in

addition to bQ0, see Eq (21). Although the resulting Q0/τ
fit is close to perfect, the C estimation

remains poor in Fig 5D. Taking the network effect correctly into account via LO is important
to recover the original C, as compared to tuning connections individually based on the corre-
sponding Q0/τ value.

More generally, the problem with inferring C lies in the definition of observables or objec-
tive functions to constrain models without ambiguity: to a set of network parameters should

correspond only a single value of the observable (here a pair bQ0 + bQt). In [25], the minimiza-
tion of matrix L1 norm for sparse networks was used to reduce the indetermination in usingbQ0 only. Beyond our results based on noise-diffusion processes, we expect that directed C can
be recovered for other network models such as Hawkes processes (a.k.a. Poisson neurons) or
binary neurons using second-order moments with non-zero time shift (here covariances). This
is supported by recent results that demonstrate how the covariance structures are formally
related across these neural models [38].

The present framework appears well suited to model activity as continuous signals; for spike
trains generated by networks of GLM or Poisson neurons with simple temporal filters, it
remains to be seen whether our fast tuning procedure can be adapted. We have only considered
resting-state activity, but the procedure may also be extended to the case of multiple stimula-
tion-response pairings. In particular, the external input emay be adjusted [16], in addition to C
and S.

Whole-cortex dynamic model fitted to fMRI data and cortical interactions
The goal of our model-based approach is to reproduce the resting-state FC obtained from
fMRI. Although the ND model is not new, we propose a novel ‘LO’ procedure to tune the
model parameters with suitable observables, namely time-shifted covariance matrices as FC.
The estimated connectivity of the ND model relates to the intracortical EC, whose properties
can then be analyzed [1]. For instance, EC can be searched for hubs, communities and similar
features [30]. Here we have focused on hubs (Fig 10) and our results suggest that activity prop-
agates from the visual, auditory and prefrontal areas. We find among the listening hubs the
precuneus and superior parietal gyrus that belong to the default-mode network. These net-
works are usually found in resting-state FC and our results shed a new light on the architecture
that shapes the activity propagation between them.
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The NDmodel was previously used together with hemodynamics in order to reproduce
similar fMRI data [12, 27]. As was demonstrated for that study for zero time shifts, the BOLD
covariances with time shifts of the order of seconds also convey information about the interac-
tions that determine the neural dynamics (Fig 6). This is in line with recent results showing
that the BOLD time series convey information about cognitive processing for similar time lags
[39, 40]. In our model, the EC asymmetry generates lags in covariances. Moreover, the LO pro-
cedure can estimate the EC ranking this neural connectivity from the BOLD covariances pro-
vided the ranking is preserved between the neural and the BOLD covariances for those more
elaborate models involving a HRF (Fig 6). This supports the application of the ND model with-
out HRF to model directly the BOLD data. In particular, the ND model seems well adapted to
fMRI data at the considered parcellation of about 100 nodes: the BOLD autocovariances are
close to exponential decays (i.e., straight lines for the log y-axis), as shown by the comparison
between the ND model in Fig 1E and our experimental data for time shifts up to 8 s in Fig 7B.
The corresponding time constants are rather homogeneous over all regions in Fig 7C, so we
use a single τx = 5.3 s to calibrate the ND model, which corresponds to typical values for HRF
[41]. In contrast, the autocovariances for the DMF+HRF in Fig 6C show a drop for τ� 4 s that
is not observed in the experimental data. We keep in mind that the precise relationship
between the fluctuations of the BOLD signal and neural activity is still under debate [41–43].
Numerous studies such as those about repetition priming and suppression [44] have shown
how changes in fMRI signals reflects those in neural activity, such as synchronization of the lat-
ter at a much shorter timescale. Moreover, fMRI is one of the few non-invasive methods to
evaluate processing in the human brain (of course in vivo) and has many clinical applications
[45], irrespective of its precise link to neural activity. This further supports efforts to develop
generative models of BOLD and methods to better interpret these fMRI data.

An underlying assumption of our approach is that the individual variances of BOLD signals
are meaningful [46]. This motivates the use of covariances to fit our model, rather than correla-
tions that are often used [1]. The results in Fig 7 give a FC Pearson correlation coefficient
(sometimes called predictive power) larger than 0.6 for both Q0 and Q4. In this sense, our study
improves previous results [12, 31]. Importantly, the EC and S estimated by LO is surprisingly
stable with respect to the choice of time shift for the considered experimental data. We find
consistent results for a broad range of τest from 2 to 8 s, with a Pearson correlation coefficient
larger than 0.9 in Fig 8. Choosing denser connectivity for EC improves the FC fit, but does not
significantly change the EC ranking as shown in Fig 9A and 9B for results from 25% to 45%
density. As an additional check, we have also shown that EC estimated from individual FCs
coincides with EC obtained from the mean FC over all 25 subjects. In comparison, the heuristic
and direct methods in Figs 8E and 9B and 9C give far more inconsistent results. Moreover, the
heuristic method only uses part of the FC matrices when EC is sparse: it tends to overfit the
existing connections compared to absent connections. A recent study [15] compared methods
to estimate directed cortical interactions in a generative model of BOLD activity including
hemodynamics: among those, Patel’s τ[47] gave the best performance, but that study was lim-
ited to sparse connectivity. Here we consider the FC for the whole cortex, which gives coupled
constraints for a reasonably large network. Incorporating more areas limits the number of
unknown contributions to the node activities, strengthening the estimation accuracy. This was
observed for partial correlations in a similar manner for undirected connections [15].

Several previous studies used a scaled version of the SC matrix as EC [12, 28, 31]. As shown
in Fig 8F, a symmetric EC does not satisfactorily fit time-shifted FCs. Furthermore, Fig 10A
shows the weak match between dwMRI and our estimated EC values. This suggests that the
fiber densities as measured by dwMRI may not be a good predictor for the dynamic interac-
tions between cortical areas, but only for the skeleton of the cortical connectome. In addition,
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those previous studies used interhemispherical connections to improve the FC fit of the mod-
els. Here these connections also appear to be fairly strong in the estimated EC in Fig 7F, as
shown by the two secondary diagonals in the top-left and bottom-right quadrant of the matrix.
In any case, large covariances are obtained even for unconnected areas because of the strong
overall feedback in the network, in line with results supporting that the cortex is in a state close
to criticality [27]. As the dynamics of each cortical region has no nonlinearity in our model,
large EC values are the only origin for the strong network effect, which induces the non-trivial
mapping between EC and FC in Fig 7H.

As shown in Fig 1F for artificial networks, the C asymmetry is reflected in Qτ for τ> 0. In
our experimental data, the corresponding FCτ (blue line in Fig 9C) is not symmetric and relates
to propagating activity [39]. In the ND network, the noise received by each area is embodied by
S, which is then shaped by EC to generate FC. Here the LO procedure extracts the spatio-tem-
poral FC information to estimate the EC asymmetry. The information about asymmetry in
intracortical connections is thus important and complements the SC obtained from dwMRI,
which is symmetric. Compared to previous studies that investigate the directionality of cortico-
cortical connections [2, 4, 7], the novelty is that we estimate this property at the scale of the
whole cortex. As all nodes have the same activation function, EC values indicate the relative
interaction strengths between areas. What matters in our EC analysis is the ranking of EC
weights: the difference between a low EC value and an absent connection is not so important
here. Here we have estimated the asymmetry of cortico-cortical EC to be equal to 0.35 in Fig
8C. This is larger than macaque’s COCOMAC asymmetry that gives 0.14 for the same index
[48, 49], but note that nonlinearity in the model dynamics would affect the precise EC values;
what is important here is that EC is significantly asymmetric. This translates to an imbalance
between incoming and outgoing EC weights. Fig 10B suggests that hubs are either feeders or
receivers, but do not have both strong incoming or outgoing connections. As a conclusion, our
work sets a suitable ground to study both local and global properties of the whole cortical con-
nectivity, which will give insight in the underlying neural processing.
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