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Parkinson’s disease (PD) is primarily associated with two dominant features: cardinal 
motor symptoms and the loss of cells in the substantia nigra pars compacta of the basal 
ganglia. Consequently, these aspects are major foci in PD-related research. However, 
PD is a neurodegenerative disease, which progressively affects multiple brain regions 
outside the basal ganglia and leads to symptoms outside the motor domain. Much less 
is known about the individual contribution of these secondary regions, their interplay 
and interaction with the basal ganglia, and the respective network dynamics in the 
overall manifestation of PD. These regions include classical motor structures such as 
the cerebellum and the supplementary motor area (SMA). However, just as the basal 
ganglia, these regions display a fine-grained microarchitecture, which supports sensory 
and sensorimotor functions. One such function is temporal processing, which has been 
ascribed to a network comprising all of these regions. On the one hand, pathological 
changes in this temporal processing network may be part and parcel of motor and 
non-motor symptoms in PD. On the other hand, a better understanding of the role of 
each network node may offer a novel perspective on compensatory mechanisms, ther-
apeutic interventions, as well as the heterogeneity and individual differences associated 
with PD. We unfold this perspective by relating the neural foundations and functional 
implications of temporal processing to pathophysiological and neurofunctional changes 
characteristic of PD.

Keywords: Parkinson’s disease, temporal processing, timing, compensation, network

iNtrODUctiON

The basal ganglia system is a complex of several nuclei deeply embedded into the vertebrate brain. 
It has extensive connections to other subcortical and cortical regions, and via these connections, the 
basal ganglia system contributes to a wide range of motor and non-motor behaviors (1–5). One of 
the most fundamental functions attributed to the basal ganglia and associated brain regions is the 
patterning and chunking of behavior from simple motion sequences to complex cognitive sequences 
(6, 7). Motor patterns are expressed in physical motion, whereas cognitive patterns are not. They 
may be conceived as routines or “habits of thought,” reflecting a dominant processing mode, which 
emerges from the repetitive future-oriented sequencing of cognitive actions (6). These mechanisms 
reflect a common theme across behavioral domains, and likewise, a general basal ganglia function, 
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which may guide both the iterative build-up and the evaluation 
of repetitive motor and cognitive behaviors (8).

In this context, the term “sequencing” may be broadly charac-
terized as a function that pertains to the sequential order of motor 
and cognitive actions as well as to the specific temporal structure 
of these sequences. In other words, sequencing not only defines 
the order of successive actions in time but also their specific 
temporal relations. Motor and cognitive patterns are typically 
expressed as entire sequences of actions, i.e., they are “packaged as 
a unit ready for expression,” and monkey research indicates that 
accented neural activity marks the boundaries of such packages 
(8, 9). These accentuations introduce a temporal non-linearity, 
as “time can be decoded with higher resolution at the beginning 
and the end of the movement sequences than during them” (8). 
Considering that motor and cognitive patterns may not only be 
expressed in isolation, the continuous chunking of actions may 
effectively give rise to a combination of slower and faster dynam-
ics in ongoing sequential behavior. Although it may be difficult 
to explicitly decode the temporal fine structure of actions that 
constitute the fast dynamics, it may be possible and functionally 
relevant to track the temporal structure of accented boundary 
markers, which constitute the slow dynamics. It has been sug-
gested that the alternation of accentuation and de-accentuation 
reflects low attentional demands required to process actions 
between the markers (8). The questions arise if such temporal 
non-linearities have a perceptual equivalent, and if they can be 
exploited to optimize the allocation of attention in time for both, 
the production and the perception sequential behavior (10).

Habitual behaviors unfold in the hundreds-of-milliseconds 
to seconds range that is central to research into interval timing, 
another fundamental behavioral function that has been ascribed 
to the basal ganglia system, and a wider network of sensorimotor 
regions, which includes the supplementary motor area (SMA) 
and the cerebellum (11–13). In analogy to the above terminology, 
an interval may be defined as the temporal quantity between two 
successive markers. Interval timing tasks indicate that dopamin-
ergic neurons show activity patterns, which consist of a burst at 
the beginning of a trial and a second burst at the expected time 
of reward, with sustained activity throughout the interval (14). 
Interval timing is typically conceptualized as a general activity 
that is inherent to the production and the perception of tempo-
rally structured behavior. As such, interval-based temporal pro-
cessing is a crucial component of non-motor and motor aspects 
of activities as diverse as walking, speaking, or playing music, 
and, conversely the perception and the evaluation of the temporal 
structure that arises from the same activities (14). Due to the fun-
damental nature of basal ganglia contributions to sequencing and 
interval timing, the conceptual and structural overlap between 
these functions has widespread implications, especially if the pat-
terning and chunking of motor and cognitive action sequences 
and temporal processing in cortico-striatal circuits reflect aspects 
of an even more general sensorimotor sequencing capacity, which 
guides production and perception. In the following, we will 
reflect on some of the potential consequences of this overlap in 
Parkinson’s disease (PD), focusing on the role of the basal ganglia 
and its interaction with associated temporal processing regions in 
this particular context.

PArKiNsON’s DiseAse AND 
(DYsFUNctiONAL) teMPOrAL 
PrOcessiNG

Impaired sequencing of motor actions is one of the hallmarks of 
PD, a neurodegenerative disease that leads to a loss of dopamine 
releasing neurons in the substantia nigra pars compacta of the 
basal ganglia. PD is commonly diagnosed on the basis of these 
primary motor symptoms, most characteristically the slowing of 
movements, rigidity, and resting tremor. However, PD is also a 
progressive disease, and these characteristic motor symptoms are 
asymmetric and may surface only after internal mechanisms fail 
to compensate for the impact of the disease (15). Although motor 
symptoms are most striking, PD typically also has a deteriorating 
impact on numerous cognitive functions that is apparent in the 
early “pre-motor” phase of the disease [for a recent review see Ref. 
(16)]. This most likely reflects the extensive structural and func-
tional connectivity of the basal ganglia system. Consequently, 
non-motor symptoms can precede motor symptoms in early 
non-medicated patients (17).

In line with the rationale discussed above, damage to the 
basal ganglia system should also lead to impaired temporal 
processing as well as a temporally specific dysfunction of 
sequencing behavior. Moreover, the latter may be a consequence 
of the former as impaired temporal processing may factor into 
other motor and non-motor cognitive aspects of the disease, 
expressed in suboptimal timing in production and perception. 
The structural and functional characteristics and the interplay of 
brain regions that engage in temporal processing may therefore 
provide a novel perspective on some of the dynamic pathological 
and compensatory changes in regions such as the cerebellum and 
the SMA. Such changes have been observed in the progression 
of the disease but their specific role in the pathogenesis of PD 
remains unclear.

Seminal work in the temporal processing domain has estab-
lished that the cerebellum is involved in precise and automatic 
discrete event-based (salient-feature) temporal processing, 
whereas the basal ganglia and associated cortico-striato-thalamo-
cortical circuits engage in attention-dependent interval-based 
(continuous-event) temporal processing, thus creating an explicit 
representation of the temporal relation between successive events 
(12, 14, 18). However, apart from these primarily discussed sys-
tems, temporal processing most consistently activates the SMA 
and prefrontal regions (19). At least three important aspects 
should be emphasized: (i) these regions can engage in temporal 
processing also when very little or even no movement or move-
ment preparation is involved (18), (ii) they can interact across 
different timescales, thereby potentially forming an integrative 
subcortico-cortical temporal processing network (10, 20), and, 
(iii) the same regions are affected by PD and change their activa-
tion patterns during the progression of the disease.

Parkinson’s disease patients display compromised perfor-
mance in various temporal processing tasks spanning production 
and perception, which has been attributed to various components 
of a dysfunctional “internal clock” mechanism (21–23). Some 
aspects of this performance are reminiscent of primary motor 
symptoms. For example, PD patients tend to speed up during 
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repetitive self-paced finger-tapping tasks, comparable to the 
typical phenomenon of gait festination (22, 24, 25). However, 
there is a considerable degree of heterogeneity in many results, 
which may reflect specific task characteristics, different stages 
of the disease, patient subgroups, as well as the differential 
engagement of compensatory mechanisms (26–28). With respect 
to compensation, it may be relevant to consider the relation of 
action selection, ordering, and implementation as separate from 
the specific temporal structuring of these processes as independ-
ent components of a general behavioral sequencing capacity. 
Thus, a better understanding of the role of other brain regions 
in temporal processing, most critically the cerebellum and the 
SMA, may pave the way to personalized and specifically targeted 
manipulations of temporal structure.

HYPO- AND HYPerActivitY: 
DYsFUNctiON Or cOMPeNsAtiON?

Post-mortem PD brain tissue analyses have revealed a selective loss 
of pyramidal neurons in the pre-SMA (29). However, neuroimag-
ing studies that explicitly targeted the role of associated regions 
such as the cerebellum and the SMA in PD and also applied typi-
cal sequential temporal processing tasks are relatively rare. The 
existing evidence confirms complex patterns of interactions that 
change in the progression of the disease. Early studies observed 
that cerebellar hypoactivity in synchronization and continuation 
phases of a finger-tapping task at a base tempo of 600 ms that 
was partially normalized by medication (24). There are reports of 
hyperactivation of the pre-SMA in de novo PD patients relative 
to healthy controls, most likely reflecting the contribution of the 
pre-SMA to the temporal sequencing of self-initiated opening 
and closing movements of the (right) hand at approximately 
every 1000 ms (30). In the same study, this finding was paralleled 
by bilateral hyperactivation of the superior cerebellum (mainly 
ipsilateral) and hypoactivation of the ipsilateral inferior cerebel-
lum. The authors hypothesized that these changes in the cerebellar 
activation pattern may reflect compensation for a dysfunctional 
cortico-striatal motor loop. Similarly, PD patients off levodopa 
medication showed hyperactivation of the left cerebellum and the 
SMA during a synchronization-continuation finger-tapping task 
using a base tempo of 750 ms. These results were also interpreted 
as an indication of compensation for cortico-striatal dysfunction 
(31). However, in another group of patients off medication, pat-
terns of concurrent hypoactivation of the basal ganglia and the 
pre-SMA were observed during the performance of sequential 
hand movements (32), as well as of the basal ganglia and the cer-
ebellum during a target interception task that required predictive 
motor timing (33). Other studies have shown hypoactivation of 
the pre-SMA and the caudal portion of the SMA paralleled by 
hyperactivation of the ipsilateral cerebellum in patients perform-
ing repetitive paced button presses (34), as well as an augmented 
recruitment of cerebello-thalamo-cortical circuits in PD patients 
performing continued finger tapping following a pacing sequence 
with a base tempo of 500  ms (35). While these examples are 
clearly selective, they serve to illustrate that the experimental 
tasks applied in PD research vary widely. The heterogeneity of 
the results reflects this variability, thus highlighting the need for 

individualized approaches, potentially on the basis of individual 
temporal processing profiles.

strAteGies FOr iNterveNtiON

Therefore, one goal could be to improve the efficiency and usabil-
ity of interventions relying on rhythmic auditory cueing in order 
to provide patients with wearable devices that are customized to 
meet their individual therapeutic needs [for recent reviews, see Ref. 
(36–38)]. For example, a clearly distinguishable event structure in 
the hundreds-of-milliseconds range should be optimally suited to 
trigger automatic salient-feature cerebellar temporal processing 
mechanisms. Subliminal changes in this event structure could be 
used to compensate for impaired sequencing abilities due to basal 
ganglia pathology by pushing the dysfunctional system toward 
a more stable state over an extended period of time, e.g., by 
working against the tendency to accelerate movement rates. This 
strategy may assist or even circumvent the impaired build-up and 
evaluation of repetitive motor and cognitive action sequences in 
patients by assigning part of the sequencing task to potentially 
less affected brain regions such as the cerebellum. Accordingly, 
this perspective may shift the focus from basal ganglia pathology 
to the function of a distributed system, in which basal ganglia 
contributions to sequencing and temporal processing have to be 
interpreted relative to the function of the other network nodes. 
A potential starting point in this endeavor may be to obtain indi-
vidual measures of basic temporal processing capacities such as 
“spontaneous motor tempo” (the ability to generate a temporally 
regular sequence of events) or “preferred perceptual tempo” (the 
preferred tempo of sensory events), which have been found to be 
correlated and linked to the ability to exploit temporal structure 
in a sensory task (39, 40). If combined, such basic measures 
may be indicative of some of the characteristics of the temporal 
processing network, i.e., the dysfunctional “internal clock” of a 
patient.

Due to the focus on the basal ganglia, cerebellar contributions 
to pathological and compensatory mechanisms are often over-
looked (15). For example, although resting tremor is perhaps the 
most characteristic of the Parkinsonian symptoms, its origins are 
unknown. Research into this phenomenon has targeted multiple 
structures in the basal ganglia system, but it is of note that the 
tremor can be abolished via stimulation of thalamic targets of cer-
ebellar output, which renders the cerebellum a potential source 
of the tremor-inducing pathological oscillations (15, 41, 42). 
Speculations of this kind also have to consider the progressive 
character of the disease, which may not only manifest in dynamic 
network changes but may also affect the causality underlying these 
assumptions. Overall, cerebellar compensatory mechanisms may 
be most efficient during the early stages of the disease, but they 
may fail once the pathological changes become more severe (15). 
However, the partial neglect of cerebellar contributions to PD 
also stands in contrast to the substantial evidence for recipro-
cal short-latency direct connections next to cortically mediated 
connections between the two systems (42–46). These structural 
connections suggest a tight coupling between the cerebellum and 
the basal ganglia and associated regions but their functional sig-
nificance remains unclear. One candidate of particular interest in 
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the context of sequencing and interval timing may be the cerebel-
lar triggering of dopaminergic activity in prefrontal areas or the 
ventral tegmental area through projections via the thalamus that 
marks the beginning of a trial in interval timing tasks (11, 14, 47).

In addition to more systematic investigations of the cerebel-
lum and the SMA in PD by means of temporal processing tasks 
that are known to activate these regions, the differentiation of 
their primary or compensatory engagement may be addressed on 
the basis of recent evidence for a more fine-grained structural dif-
ferentiation of cerebellar, SMA, and also basal ganglia subregions. 
On the one hand, the distinct functional connectivity patterns 
revealed in this context may provide the opportunity to dissoci-
ate between primary pathological and secondary compensatory 
aspects and allow further exploration of specific network func-
tions (5, 44, 48). On the other hand, these findings may be used 
to refine existing approaches, including the application of neuro-
stimulation techniques such as repetitive transcranial magnetic 
stimulation (rTMS). rTMS has been used to target particular PD 
symptoms, patterns of hypoactivity and hyperactivity in specific 
regions, or fluctuations in behavior associated with long-term 
drug administration (49–53). For example, lateralization of the 
SMA and its differentiation into rostral and caudal subregions 
are reflected by different aspects of temporal processing tasks 
such as the temporal range or the engagement of sensorimotor 
as opposed to sensory processing (54, 55). Depending on the 
type and the temporal structure of the behavior of interest, such 
dissociations may be useful to identify the most promising target 
for the stimulation.

Task-dependent temporal processing characteristics may 
also partly explain the differential responses in specific regions 
to particular stimulation frequencies. For example, the right-
lateralized SMA activity in temporal processing tasks in the 
suprasecond range may dominate the response to 1-Hz rTMS 
stimulation. 1-Hz stimulation has been found to impact the 
timing of anticipatory postural adjustments in PD patients if it 
is applied over the SMA but not over the dorsolateral premotor 
cortex, and to improve motor but not non-motor symptoms (56, 
57). Obviously, further research is necessary to entertain these 
possibilities but the fundamental nature of temporal processing 
may bear the potential to improve the principal effectiveness of 
these methods, which are typically considered a promising form 
of treatment for PD (58, 59).

cONcLUsiON

Although the cerebellum and the SMA are affected in PD and 
should hence be considered in a more encompassing view of the 
disease, their contribution to the overall pathogenesis is a matter 
of debate. Perhaps most importantly, it is still unclear if changes in 
cerebellar and SMA activity are aspects of the primary pathology 
and/or secondary compensatory mechanisms (60). However, 
their contribution may be entirely secondary to the cell loss in 
the substantia nigra, which is the focus of basic research and 
therapeutic intervention. Further, a better understanding of their 
interaction with the basal ganglia deems necessary to account for 
the complexity of the disease and to open potential new direc-
tions for therapeutic interventions.

The overlap between the sequencing and the temporal 
processing functions ascribed to the basal ganglia and cortico-
striatal circuits offer one such direction. Moreover, the relatively 
specific concepts that have been developed with respect to the 
neural mechanisms underlying temporal processing in the basal 
ganglia and the cerebellum may allow improvement of existing 
strategies such as cueing and stimulation techniques. In this 
context, knowledge about the interplay of the basal ganglia with 
other regions engaged in temporal processing may offer a means 
to improve behavioral compensatory strategies via the informed 
manipulation of temporal structure or the identification of prom-
ising targets for interventions targeting the neural level.

An interesting open question concerns the transfer of 
therapeutic effects from basic temporal processing tasks to more 
complex behavior or from motor to non-motor processing and 
vice versa (37). Such transfer effects may reflect the essentially 
sensorimotor nature of the overarching network, as well as the 
general behavioral function of the basal ganglia in the sequencing 
of actions in both domains. Accordingly, therapeutic intervention 
in PD may aim to balance the dysfunction of this overarching 
network by targeting specific network functions to improve 
performance in several domains rather than focusing only on 
the most prominent motor symptoms reflecting to an extent the 
increasing interest in non-motor features of the disease.
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