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Classical scattering of charged particles confined on an inhomogeneous helix

A. V. Zampetaki,1 J. Stockhofe,1 S. Krönke,1 and P. Schmelcher1,2

1Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
2The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

(Received 27 August 2013; published 3 October 2013)

We explore the effects arising due to the coupling of the center of mass and relative motion of two charged
particles confined on an inhomogeneous helix with a locally modified radius. It is first proven that a separation
of the center of mass and the relative motion is provided if and only if the confining manifold represents
a homogeneous helix. In this case, bound states of repulsively Coulomb interacting particles occur. For an
inhomogeneous helix, the coupling of the center of mass and relative motion induces an energy transfer between
the collective and relative motion, leading to dissociation of initially bound states in a scattering process. Due to
the time reversal symmetry, a binding of the particles out of the scattering continuum is thus equally possible.
We identify the regimes of dissociation for different initial conditions and provide an analysis of the underlying
phase space via Poincaré surfaces of section. Bound states inside the inhomogeneity as well as resonant states
are identified.
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I. INTRODUCTION

The formation of helical patterns and structures is common
in many natural systems ranging from DNA molecules and
amino acids to non-neutral plasmas trapped in magnetic fields
[1] and self-assembled configurations of charged particles
confined in nanotubes [2]. Studying the motion of particles
confined in a helix has proven to be a useful tool for the
understanding of complex phenomena such as the optical
activity of sugar solutions [3,4]. Certainly, the problem of the
confined motion of particles in a helical manifold is of fun-
damental interest since it reveals many intriguing phenomena.
Quantum particles confined in one dimension (1D) preserve
some information of the surrounding three-dimensional (3D)
space and thus experience an effective geometric potential
which depends on the curvature of the confining manifold [5].
Such geometric potential effects lead to the formation of
bound states in helical waveguides with a locally modified
radius [6] or in twisting tubes [7]. In the presence of an electric
field, superlattice properties can emerge for a confined charge
carrier [8], whereas when the particles interact with dipolar
forces a peculiar quantum phase transition from liquid to gas
has been predicted [9].

In spite of their physical interest, helical traps have only
recently been investigated experimentally. In nanotechnology,
curved nanotubes such as rolls, spirals, and helices from
thin solid films of silicon germanium can be constructed
[10,11]. Helical traps can also be realized experimentally for
cold atoms either via the interference of counterpropagating
Laguerre-Gaussian beams [12–14] or via the evanescent field
of a nanofiber [15–17] which creates a double-helix trapping
potential. Such setups allow the creation of a homogeneous
helical potential over the entire length of the nanofiber as well
as local modifications of the radius and the pitch of the helix
through local variations of the diameter of the nanofiber [17].
Beyond these, a plethora of trapping techniques also exist for
(ultra)cold ions [18,19].

Motivated by the above, it is instructive to explore the
classical behavior of ions or generally charged particles in
a helical geometry. Surprisingly, this problem has not been

studied extensively in the literature. In Ref. [20] it has been
shown that the classical dynamics of a system of identical
charged particles confined in a helical manifold presents
very intriguing phenomena when the particles interact via
long-range interactions such as the Coulomb interaction. In
particular, the interplay between the 1D confined motion of the
particles and their interactions via the full 3D space gives rise
to an effective oscillatory force. This fact yields, in turn, stable
equilibrium configurations despite the repulsive interactions
between the particles and induces classical bound states whose
number can be tuned by varying the parameters of the helix.

Following the direction of the above study, we explore
in this work the two-body scattering dynamics off an inho-
mogeneity in a helical trap. As a first step, we rigorously
prove that a separation of the center of mass (c.m.) and
the relative motion is provided for an interaction potential
which depends exclusively on the Euclidean distance between
the particles V (|r1 − r2|), if and only if the confining curve
is a homogeneous helix. Then, we examine the case of an
inhomogeneous helical trap with a locally modified radius,
and explore effects due to the coupling of the c.m. and relative
motion. It is shown that initially bound states can finally
dissociate due to the modulation of the potential which leads
to an energy transfer between the c.m. and the relative degrees
of freedom. Due to time reversal symmetry, it is thus equally
possible for two unbound charged particles to form a bond due
to the local inhomogeneity. A phase space analysis provides
us with bound states within the inhomogeneous region as
well as with resonant states and completes the picture of the
two-particle dynamics.

The paper is organized as follows. In Sec. II, we present the
general Lagrangian for the problem of two interacting classical
charged particles confined on a curve and we investigate the
properties that the confining curve has to fulfill so that a
separation of the c.m. and the relative degrees of freedom is
provided. In Sec. III, we present our model of two charged
particles confined to an inhomogeneous helix. Section IV
contains our results for the scattering, whereas Sec. V provides
our analysis of the respective phase space. Finally, Sec. VI
represents a brief summary of our findings.
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II. INTERACTING PARTICLES CONFINED TO A CURVED
1D MANIFOLD

We consider a system of two particles with masses m1,m2

interacting via a potential V (|r1 − r2|) that depends only on the
Euclidean distance between them. Their Lagrangian is given
by

L({ri ,ṙi}) = 1

2

2∑
i=1

mi ṙ2
i − V (|r1 − r2|).

If the particles are confined onto a smooth, regular, and
either closed or infinitely extended space curve r : R �→ R3

parametrized with the arbitrary parameter u, i.e., ri = r(ui),
the Lagrangian takes the form

L({ui,u̇i}) = 1

2

2∑
i=1

mi

∣∣∂ui
r(ui)

∣∣2
u̇2

i − V [|r(u1) − r(u2)|].

(1)

If we choose the arc length parametrization [21]

s : u �→ s(u) =
∫ u

0
|∂u′r(u′)|du′, (2)

since the tangent vector t(si) = ∂si
r(si) is a unit vector we

arrive at the expression

L({si,ṡi}) = 1

2

2∑
i=1

miṡ
2
i − V [|r(s1) − r(s2)|]. (3)

We thus observe that the kinetic energy term retains the
Cartesian form in the arc length parametrization, leading to
the familiar expressions for the conjugate momenta and the
Euler-Lagrange (EL) equations of motion. Introducing the c.m.
S = (m1s1 + m2s2)/(m1 + m2) and the relative coordinate
s = s1 − s2, as well as the total mass M = m1 + m2 and the
reduced mass μ = m1m2

M
, we are led to

L({s,S,ṡ,Ṡ}) = 1
2MṠ2 + 1

2μṡ2 − Ṽ (S,s), (4)

where

Ṽ (S,s) = V

[∣∣∣∣r
(

S + m2

M
s

)
− r

(
S − m1

M
s

)∣∣∣∣
]
. (5)

This yields the following EL equations:

MS̈ = −∂Ṽ

∂S
, μs̈ = −∂Ṽ

∂s
. (6)

Evidently, a separation of the c.m. from the relative motion
is provided if and only if ∂Ṽ

∂S
is exclusively a function of S

which is equivalent to

∂2Ṽ

∂s ∂S
= 0 ⇔ Ṽ (S,s) = V1(S) + V2(s) (7)

with V1,V2 being arbitrary functions of S and s, respectively.
In order to analyze this condition further, we technically

have to distinguish the two cases of a regular and a singular
potential Ṽ (S,s) at s = 0. For a regular potential, we obtain
from (5) that Ṽ (S,0) = V (0). Condition (7) then yields

V1(S) = V (0) − V2(0) = const ⇒ ∂V1

∂S
= ∂Ṽ

∂S
= 0.

For a potential with a singularity at s = 0, as in the typical
case of Coulomb interaction, choosing an infinitesimal value
ε > 0 for the s coordinate, we are led through (5) to

Ṽ (S,ε) = V

[∣∣∣∣r
(

S + m2

M
ε

)
− r

(
S − m1

M
ε

)∣∣∣∣
]

= V

[∣∣∣∣r(S) + m2

M
εt(S) − r(S) + m1

M
εt(S)

∣∣∣∣
]

= V [|εt(S)|] = V (ε) (8)

since |t(S)| = 1. Thus, for arbitrary S,S̃

Ṽ (S,ε) = Ṽ (S̃,ε) = V (ε)

and Eq. (7) for s = ε leads to

V1(S) = V1(S̃) = V (ε)−V2(ε) ∀S,S̃ ∈ R ⇒ ∂V1

∂S
= ∂Ṽ

∂S
= 0.

Therefore, both cases lead to the condition ∂Ṽ
∂S

= 0 and we
conclude that the c.m. and relative motion mutually separate
for a potential that depends only on the interparticle Euclidean
distance [Eq. (5)] if and only if ∂Ṽ

∂S
= 0. Furthermore, this is a

necessary and sufficient condition for the conservation of the
total momentum

P = ∂L

∂Ṡ
= MṠ

as follows from (4) and the EL equations (6), yielding a free
particle motion for the c.m.

Introducing the function R(s1,s2) = |r(s1) − r(s2)|, with
s1 = S + m2

M
s, s2 = S − m1

M
s, and V ′(R) = dV

dR

∣∣
R=R(s1,s2), we

obtain

∂Ṽ

∂S
= V ′(R)

∂R

∂S
= V ′(R)

[
∂s1R(s1,s2) + ∂s2R(s1,s2)

]
(9)

and we are thus led to the conclusion that a conservation of the
total momentum as well as a separation of the c.m. from the
relative coordinate is provided for interacting particles if and
only if

∂R

∂S
= ∂s1R(s1,s2) + ∂s2R(s1,s2) = 0, ∀ s1,s2 ∈ R. (10)

The results of [20] indicate that for the confining manifold
being a homogeneous helix, i.e., a helix with a constant radius
and pitch, the c.m. motion is separated from the relative one. In
fact, the homogeneous helix, including also the limiting cases
of the straight line and the circle, is the only curve allowing
for such a separation, as follows from the proposition below.

Proposition. Condition (10) holds for a smooth, regular
curve r(s) that is either closed or extends to infinity and is
parametrized by its arc length s ∈ R if and only if the curve is
a homogeneous helix.

The proof of this proposition is provided in the Appendix.

III. TWO CHARGED PARTICLES IN AN
INHOMOGENEOUS HELICAL TRAP

In the following, we study the classical dynamics of two
identical charged particles confined in a modified helix. The
modification consists of a hump, i.e., a local change of
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FIG. 1. (Color online) (a) Helix with a local modification of the
radius R(u) and a pitch h, as given by Eq. (11). (b) Local modulation
of the radius as a function of the parameter u.

Gaussian form in the radius [Eq. (12)]. The interaction between
the particles is given by a repulsive Coulomb potential

V (|r1 − r2|) = λ

|r1 − r2| ,

with λ > 0. We explore in particular the effects due to the
coupling of the c.m. and relative motion in the presence of the
helical hump.

The inhomogeneous helix parametrized by the angle pa-
rameter u is given by

r(u) =
(

R(u) cos(u),R(u) sin(u),
h

2π
u

)
(11)

with

R(u) = 1 + ε exp[−cu2], (12)

where both the modified radius R(u) and the pitch of the helix h

have been scaled with the radius of the corresponding uniform
helix R0. We use for the inhomogeneous helix the parameter
values ε = 1, c = 0.01, h = 0.4π . Figure 1 depicts the shape
of such a helix and the localized radial modulation.

Since the particles are identical, mi = m, we can choose
dimensionless units by rescaling all quantities with m, λ, and
R0, i.e., introducing m̃ = λ̃ = 1 and

x̃ = x

R0
, t̃ = t

√
λ

mR3
0

, H̃ = HR0

λ
, p̃ = p

√
R0

mλ
.

In the following, we omit for simplicity the tilde.
Performing then a Legendre transformation with pi = ∂L

∂u̇i
,

we obtain from (1) the Hamiltonian

H ({ui,pi}) = 1

2

2∑
i=1

p2
i[

∂ui
r(ui)

]2 + 1

|r(u1) − r(u2)| . (13)

From this we deduce the equations of motion u̇i = ∂H
∂pi

, ṗi =
− ∂H

∂ui
, which we solve numerically for different initial condi-

tions with a Runge-Kutta method of fourth–fifth order with a
variable time step size (ODE45). In order to study the dynamics
in terms of c.m. and relative motion, it is desirable to have a
Hamiltonian with a kinetic energy term of Cartesian form. This
is achieved under the arc length parametrization (2) and leads

to

H ({si,ṡi}) = 1

2

2∑
i=1

ṡ2
i + 1

|r(s1) − r(s2)| .

The si are obtained (numerically) via Eq. (2). Introducing
c.m. S = s1+s2

2 and relative coordinates s = s1 − s2 yields the
Hamiltonian

H (S,s,Ṡ,ṡ) = Ṡ2 + ṡ2

4
+ 1

|r[u1(S,s)] − r[u2(S,s)]| (14)

and the corresponding equations of motion

S̈ = −1

2

∂

∂S

1

|r[u1(S,s)] − r[u2(S,s)]| ,
(15)

s̈ = −2
∂

∂s

1

|r[u1(S,s)] − r[u2(S,s)]| .

We clearly observe here the coupling between S and s in the
potential term. In the case of the uniform helix [20] the arc
length integral can be solved analytically and the Hamiltonian
can be written explicitly as

H (s,Ṡ,ṡ) = Ṡ2 + ṡ2

4
+ 1√

2
[
1 − cos

(
s
a

)] + (
h

2πa

)2
s2

, (16)

with a =
√

1 + ( h
2π

)2.
For understanding the dynamics it is crucial to analyze

the properties of the potential V (S,s). Obviously, we have
limR→∞ V (R) = 0. We focus first on the uniform helix for
which V = V (s) [see Eq. (16)] and thereafter we consider the
case of the coupling of the c.m. and relative motion. Figure 2
shows the behavior of this potential curve for s < 20. We
identify three potential wells which can support bound states
and become shallower as s increases.

The potential V (S,s), taking into account the hump, is
illustrated in Fig. 3. Since it depends on both the c.m. S and the
relative s coordinate, it represents a two-dimensional potential
landscape.

We clearly observe two regions with a distinct behavior. The
first, for large values of the c.m. coordinate |S| � 30, presents
a uniform behavior, approximately independent of S. It is
affected only by the relative coordinate s in the same way as the

FIG. 2. (Color online) Potential curve for the uniform helix with
parameters h = 0.4π and R = 1. We observe three potential wells
located at s = 3.34, 10.00, and 16.75 with minimum values V =
0.48, 0.36, and 0.26, respectively.
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FIG. 3. (Color online) Contour plot of the potential V (S,s) for
the inhomogeneous helix. The dashed lines represent the positions of
the minima of the three wells for the homogeneous case. The effect
of the local modification of the radius is evident for |S| � 30.

potential of the homogeneous helix (Fig. 2), thereby presenting
three wells for |s| ≈ 3,10,17. In this uniform domain, the
c.m. and the relative motion are thus decoupled. The second
region, for |S| � 30, presents a strong dependence on the c.m.
coordinate and thus constitutes a regime of strong coupling.
The reader should note that the arc length (2) is taken w.r.t. the
center of the hump and consequently regions with small S,s

correspond to small si and lie in the inhomogeneous region of
the helix.

Two effects are evident: each potential well becomes deeper
and the contour lines bend in the regime of the inhomogeneity.
Concerning the potential barriers, their maximum value
decreases by ∼8% at the sides of the inhomogeneous region,
whereas for S ≈ 0 it retains the value of the homogeneous
regime. All these effects can be explained by the modulation
of the radius of the helix as discussed below.

Modulation of the radius and potential landscape. Since
the pitch of the helix is much smaller than its circumference
(h < 2πR) in both the homogeneous and the inhomogeneous
regimes, the maximum and the minimum potential configura-
tions occur for approximately constant values of the relative
angle parameter ũ = u1 − u2, namely, for ũmax = 2kπ and
ũmin = (2k − 1)π,k ∈ Z [20], which for the first well (k = 1)
correspond, respectively, to particles separated by one or
half a winding of the helix (Fig. 4). The Euclidean distance
between the particles at the minimum configuration increases
substantially with the increment of the radius [Figs. 4(b)
and 4(c)], reaching its maximum value at S ≈ 0 [Fig. 4(c)]
thereby resulting in a strong increase of the potential depth.

For the maximum configurations, the Euclidean distance
increases as well off the center of the inhomogeneous region
but, as it is shown in Fig. 4(b), this increment is small compared
to that of the minimum configuration. At S ≈ 0, the rate of
change of the radius becomes small enough for the radius to be
considered constant with twice the value of its homogeneous
asymptotics [Fig. 4(c)]. However, the pitch h remains the
same, resulting in the same Euclidean distance between the
particles of the maximum configuration and thus leading to
the same maximum potential values as that of the uniform
domain [Fig. 4(c)]. The generalization to other potential wells

FIG. 4. (Color online) Euclidean distances of the particles for the
minimum (©X ,�) and the maximum (©X , �) potential configurations
of the first potential well for three different regions of the inhomo-
geneous helix: (a) the uniform domain of the helix with pitch h and
radius R = 1, (b) the left side of the inhomogeneous region where the
radius increases by H1 at the bottom and by H2 at the top, whereas
the pitch remains the same, (c) the central part of the inhomogeneous
domain S ≈ 0, which since the modulation of the radius is stationary
can be approximately treated as a part of a uniform helix with the
same pitch h, but double radius R = 2.

(second, third) is evident in the regime S ≈ 0: for the case of
the maximum configuration, both particles are shifted by the
same distance in the same direction whereas for the case of
the minimum configuration by the same distance in opposite
directions. This fact results both in an unaltered maximum
value of the potential barrier and in a considerable increase of
the potential depth.

Finally, we note that the contour lines of the potential bend
inside the inhomogeneity towards larger s values as compared
to the uniform domain. This effect is more pronounced for
larger relative distances, i.e., for the third well as shown clearly
in Fig. 3.

In the following sections, we will not discuss the dynamics
of the system in terms of the trajectories t �→ si(t) of two
individual particles but rather in terms of that of a fictitious
particle with two degrees of freedom, S and s, moving in
the 2D potential of Fig. 3. This interpretation is suggested
by the form of the Hamiltonian (14), which provides us with
the respective equations of motion (15). Note, however, that
these two degrees of freedom have different effective masses,
a fact that needs to be taken into account when investigating
the dynamics of the fictitious particle in terms of the potential
gradients in the c.m. and the relative direction.

IV. SCATTERING OFF THE HELICAL HUMP

We analyze now the scattering behavior of a bound pair
of charged particles confined in the inhomogeneous helix that
has been described above. We assume that the particles start
in the uniform domain, i.e., for S 
 −30 with Ṡ > 0. We
introduce Sh as the value of |S| after which the helix as
well as the potential are considered uniform. Specifically, we
choose Sh ≈ 35.6 for which the radius is identical to that of
the homogeneous helix within 0.1%. The particles are further
assumed to be initially bound, so their relative coordinate s lies
within the region of one of the three wells discussed in Sec. IV.
As they pass through the inhomogeneous region, energy is
transferred between the c.m. and the relative degree of freedom
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due to the coupling. This transfer can lead to dissociation of
the particles, which is reflected in the very low values of the
interaction potential (V → 0) at the end of the propagation
(i.e., for S � 30).

We will initially discuss the case where the particles start
with zero relative velocity ṡ = 0 at the minimum of each of the
three wells (Sec. IV A) and then examine further the case of the
first potential well for different initial conditions (Sec. IV B).

A. Initial conditions with zero relative momentum

First potential well. The particles are placed in the homo-
geneous domain (S 
 0) of the helix, in the minimum of the
first potential well s = 3.34 (Fig. 2), with ṡ = 0. We vary
the initial values of the c.m. kinetic energy TS = Ṡ2, over
several orders of magnitude. The different initial conditions
are propagated for a time period t = 600. After that time
the particles have passed the region of inhomogeneity of the
helix, the scattering process is in its asymptotic regime, and
we can record the final values of the potential energy V , the
relative energy Es = ṡ2

4 + V , and the relative coordinate s. If
the final value of V lies within the first potential well, i.e.,
0.48 < V < 0.81, then the particles have remained bound,
whereas if V approaches zero they have dissociated through
the scattering, which is also ensured by large values of the
relative coordinate.

We clearly observe in Fig. 5(a) two regimes of finally bound
configurations: 0 � TS � 3.83 and TS � 38.86, separated by
a region of dissociation 3.83 � TS � 38.86. For small TS ,
below a critical value TSc1 it is expected that an energy transfer
between the c.m. and the relative degree of freedom would
not provide sufficient energy so that the particle can overcome
the potential barrier. After TSc1 ≈ 3.83, dissociation becomes

FIG. 5. (Color online) Overview of final bound and unbound
states for initially bound states started in the first potential well:
(a) Final potential values V [blue (gray) dots] and final relative energy
values Es (black dots) for different initial c.m. kinetic energies TS . The
dashed red lines represent the boundary potential values (minimum
of well, maximum of barrier) of the first potential well. (b) Final
relative coordinate values s (black dots) for different initial c.m.
kinetic energies TS . The dashed red lines represent the boundary
values of those s which lie within the first potential well.

FIG. 6. (Color online) Finally bound (solid black line) and
dissociated (dashed blue line) trajectories near (a) the first transition
point TSc1 ≈ 3.83, (b) the second transition point TSc2 ≈ 38.86. The
trajectories in each case [(a), (b)] differ in their c.m. velocities only
by 0.001.

possible and it indeed occurs. However, the dissociation
regime stops at a second critical value TSc2 ≈ 38.86, a fact
that although counterintuitive from the point of view of the
possible energy supply, can be explained by the limited range
of the inhomogeneous region (|S| � 30). For very high c.m.
velocities Ṡ, the particles get through the inhomogeneity very
fast, allowing for a very short interaction time only. The
effect of the coupling is therefore very restricted, prohibiting
a substantial energy transfer. In other words, the particles’
motion is almost unaffected by the presence of the hump due
to their large velocities. In the regime of bound states, the
change of TS induces a change of the s-oscillation phase at
the end of the propagation (t = 600) leading to an oscillatory
pattern of the final values of V and s. Another interesting
feature of Fig. 5(a) is the behavior of the final relative
energy Es . In the middle of the dissociation region, it acquires
values less than that of the potential barrier Vmax ≈ 0.81, a fact
that will be analyzed in Sec. IV B.

Let us next explore the behavior of the trajectories for TS

close to the critical values TSc1 ,TSc2 , which will be referred to
in the following as transition points. Our results are presented
in Fig. 6. In both cases [Figs. 6(a) and 6(b)], a sharp transition
from a bound to a dissociated final state occurs when TS is
fine tuned. This is depicted in the form of the corresponding
trajectories which are essentially on top of each other for S

less than a critical value Sc. This value is much larger for
the second transition point with TSc2 > TSc1 , a fact that can be
attributed to the larger value of the c.m. velocity. There is an
evident transfer of energy to the relative degree of freedom
depicted in the very large amplitude of the s oscillation of the
fictitious particle for bound trajectories, after the scattering.
With a slight increment of this transfer, the states dissociate
after an oscillation. The trajectory of the fictitious particle is
deflected inside the hump following the curved topology of the
potential landscape until it comes across a large value of the
potential barrier, where it becomes reflected backwards. From
then on, it continues its regular path in the right homogeneous
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FIG. 7. (Color online) (a), (b) Same as in Fig. 5, but for particles
starting in the second potential well. (c), (d) Same as in Fig. 6, but
with (c) TSc1 ≈ 1.15, (d) TSc2 ≈ 33.54.

domain without any further energy transfer. As expected, the
motion of the particle is much less affected (smaller angle of
deflection) by the presence of the inhomogeneity for larger
c.m. velocity [Fig. 6(b)] due to its inertia.

Second potential well. We now place the particles in the
minimum of the second potential well s = 10.00 (Fig. 2)
at the left homogeneous region, with zero relative velocity.
Varying the c.m. kinetic energy TS we observe again [Figs. 7(a)
and 7(b)] a region of dissociation 1.15 � TS � 33.53 sur-
rounded by regions of bound states, yielding two transition
points: TSc1 = 1.15 [Fig. 7(c)] and TSc2 = 33.53 [Fig. 7(d)].
The dissociation region is overall shifted to lower values of
TS , compared to our previous results for the first potential
well. From an energetical point of view, the shift of the first
transition point TSc1 is expected since the potential barrier
lowers, allowing for dissociation with less energy transfer.
However, this argument alone would lead to a shift of TSc2

to larger values, contrary to what is observed here. The
suppression of TSc2 seems to be a result of the bending of the
potential landscape inside the hump. In particular, the straight
line indicating the minimum of the second potential well in the
homogeneous regime passes through the first potential well
close to its barrier (Fig. 3). Trajectories with high enough c.m.
kinetic energy TS � TSc2 encounter this barrier and are forced
to crest it [Fig. 7(d)], a fact that reduces abruptly the amount of
the energy transfer and leads to extended binding. This effect
is more pronounced in the case of the third potential well as
discussed in the following.

Third potential well. Similarly to the previous cases, we
now place the particles in the minimum of the third potential

FIG. 8. (Color online) (a), (b) Same as in Fig. 5, but for particles
starting in the third potential well. (c)–(f) Same as in Fig. 6, but with
(c) TSc1 ≈ 0.46, (d) TSc2 ≈ 3.76, (e) TSc3 ≈ 5.59, (f) TSc4 ≈ 70.35.
The small subfigures in (e) and (f) present the respective trajectories
for large values of S, following them up to the point where the
dissociative and bound trajectories separate from each other.

well s = 16.75 (Fig. 2) at the left homogeneous region,
again with ṡ = 0. A variation of the c.m. kinetic energy TS

[Figs. 8(a) and 8(b)] provides us surprisingly with two distinct
dissociation regimes 0.46 � TS � 3.76, 5.59 � Ṡ � 70.35,
separated by a small region of bound states (3.76 � TS �
5.59), leading to four transition points TSc1 = 0.46, TSc2 =
3.76, TSc3 = 5.59, TSc3 = 70.35 [Figs. 8(c)–8(f)].

This fact is a direct result of the bending of the potential
landscape, which affects mainly the larger relative coordinates
s, i.e., the third well. In particular, as depicted in Fig. 3, the
straight line of the minimum of the third potential well passes,
inside the hump, above the minimum of the second potential
well. Due to the shallowness of the third potential well, only
a very small amount of energy transfer ∼0.01 is needed for
the particles to overcome the barrier and dissociate, a fact that
shifts the first transition point TSc1 to low values. When the
fictitious particle has enough c.m. kinetic energy (Ts � TSc2 ),
it crests the barrier of the second well, but since it gets directly
deflected within it, it can not reach its inner region and the
minimum [Fig. 8(d)]. This is similar to the case of the second
transition point of the second potential well [Fig. 7(d)] and as
in there, it is followed by a regime of bound states. However, if
the c.m. velocity gets large enough (TSc3 = 5.59), the fictitious
particle is less deflected and can reach the region of the
minimum of the second potential well [Fig. 8(e)], allowing
for further energy redistribution between the two degrees of
freedom. Thus, a second dissociation region occurs, which
extends to very high values of TS ≈ 70, a fact that can also
be attributed to the very small height of the potential barrier.
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Nevertheless, even this height can not be overcome, when the
fictitious particle acquires c.m. kinetic energy larger than TSc4 ,
since the dwell time becomes very small, leading again to
bound trajectories as in the cases of the other wells.

For this potential well, sharp transitions from a bound to an
unbound state occur too at the four transition points as shown
in Figs. 8(c)–8(f). It is evident that at the fourth transition point
with a large value of TS , the motion of the fictitious particle
is only slightly affected by the inhomogeneity, tending to a
straight line [Fig. 8(f)].

We emphasize that since the equations of motion of the
system [Eq. (15)] possess a time reversal symmetry, the
transitions from bound to unbound states can be directly
mapped into transitions from free states to bound ones. The
creation of bonds through scattering is surprising, especially
in view of the fact that the particles interact via a repulsive
Coulomb potential. For these reasons, we find it interesting to
examine this process further below.

B. Initial conditions with nonzero relative velocity in the first
potential well

We investigate now the scattering for arbitrary initial
conditions, focusing on the first potential well. When the
particles are in the uniform domain of the helix, inside
the first well with a nonzero relative velocity, the fictitious
particle performs an oscillation in the relative coordinate s.
The phase of this oscillation when the fictitious particle enters
the hump affects the energy transfer between the c.m. and
the relative motion. Moreover, the value of the relative initial
energy Es plays a crucial role in determining which states
become dissociated since states with higher Es require less
amount of energy transfer in order to overcome the potential
barrier. Thus, for a complete description of the scattering
process, we need except from the initial center of mass kinetic
energy TS to specify two other parameters, namely, the initial
relative energy and the phase of the relative oscillation.

For reasons of convenience, we assume that the fictitious
particle starts at a point 1.3 < s0L � smin = 3.34 of the first
potential well in the uniform domain with zero relative velocity
ṡ = 0. In other words, s0L is the left turning point of the
oscillation in the relative coordinate and is related to the total
relative energy by Es = V (s0L), with V being the potential
of the homogeneous regime given by Eq. (16). We denote the
right turning point for the same energy with s0R .

We represent the phase of the oscillation by the parameter
0 � t

T
< 1 which stands for the fraction of the period of the

relative oscillation

T = 2
∫ s0R

s0L

ds ′
√

2[Es − V (s ′)]

at which the particles enter the hump. In such a way, t
T

= 0
corresponds to particles at s0L with ṡ = 0 at the entrance point
ShL = −Sh, whereas t

T
= 0.5 corresponds to particles at s0R

with ṡ = 0. This parameter can be adjusted by changing the
initial c.m. coordinate S in the homogeneous region, while
keeping Ṡ fixed. Due to our genuine interest in the scattering
properties with varying phase, the absolute phase dependence
induced by the arbitrariness of Sh is rendered irrelevant.

Our results are presented in Fig. 9 for nine representative
values of s0L, ranging from energies close to the potential
minimum (s0L ≈ 3.3) to close to the potential barrier height
(s0L ≈ 1.3). Each such value produces a slice which imprints
the dependence of the property under consideration on the
other two parameters: TS and t

T
.

Figure 9(a) provides us with the finally bound and unbound
states for the different initial conditions. For s0L ≈ 3.3, close
to the minimum, we observe that the phase of oscillation t

T

does not affect the behavior of the system, as expected, and
we regain the results of Sec. IV A with a single dissociation
region of a rectangular shape for different c.m. kinetic energies
TS . The shape of this regime is deformed as we go to higher
relative energies (smaller s0L) and it develops a dip. By
increasing further Es the dissociation area breaks into two
parts for a certain regime of initial phases t

T
, providing

us with two dissociation regions with varying TS . As we
approach the threshold energy for passing the potential barrier
(s0L ≈ 1.3), we observe an alternating sequence of bound and
dissociation regions, even at very low c.m. kinetic energies.
This is a surprising feature which makes the dissociation
process sensitive to even small changes of the underlying
parameters, such as the initial value of TS in the scattering
process.

In Fig. 9(b), we present our results for the relative amount
of gain or loss of the maximum relative kinetic energy
(T s

maxf
− T s

maxi
)/Es through the scattering. Clearly, the regions

of high positive (T s
maxf

− T s
maxi

)/Es match exactly with the
dissociation regions of Fig. 9(a). Most regimes show almost
zero total gain of kinetic energy, but surprisingly enough there
are also regimes where the kinetic energy of the relative
motion is decreased after the scattering. These regions of
loss predominately appear between the different regimes of
dissociation and are characterized by particles becoming more
tightly bound in the course of scattering. A further interesting
observation can be made in Fig. 9(c), which shows the
difference Esf

− Vmax of the final relative energy Esf
and the

maximum value of the potential barrier of the first well Vmax.
In particular, this difference is negative not only for the finally
bound states, but also for some of the finally dissociated ones.
The dissociation regions consist of states with Esf

� Vmax

at their boundaries and of ones with Esf
� Vmax at their

center. The dissociated states with Esf
� Vmax might seem

counterintuitive but, as it will be shown below, these result
from trajectories for which the particles dissociate within the
hump, where the coupling of the c.m. and relative motion is
still substantial. Since the potential barrier in this region is
bent (Fig. 3), the fictitious particle overcomes it with its total
amount of energy E = Ts + TS + V (S,s), and thus its final
relative energy can be less than Vmax. Such a phenomenon has
already been encountered in our investigations of Sec. IV A.

Trajectories. As we have seen throughout this section, the
initially bound trajectories are divided into two different cate-
gories: those which remain finally, i.e., after scattering, bound
and those which are led to dissociation. It is evident that the fi-
nally dissociated trajectories can be further classified into those
that dissociate after reaching the uniform region (type A) and
those that dissociate within the hump (type B). Since they reach
the homogeneous domain (Fig. 10), the dissociated trajectories
of type A have more features in common with the bound ones
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FIG. 9. (Color online) (a) States that after scattering remain bound [cyan (light gray) regions] and states that are led to dissociation [blue
(dark gray) regions], (b) color encoded values of the relative difference between the final and the initial maximum kinetic energy of the relative
motion (T s

maxf
− T s

maxi
)/Es , (c) color encoded values of the difference between the final relative energy Esf and the maximum value of the

potential barrier of the first well Vmax for different s0L (x axis), t

T
(y axis), and log10 TS (z axis).

and this is the reason why they always occur close to the transi-
tion points. States of type B, on the other hand, are fundamen-
tally distinct (Fig. 10) and occur only in the middle of the dis-
sociation regions [Fig. 9(c)]. The main difference of A and B

trajectories is imprinted in the energy transfer. Type A trajecto-
ries have always final relative energy greater than the potential
barrier and overall can be thought as cases where a substantial
amount of energy has been transferred from the c.m. to the
relative motion. However, the trajectories of type B pass the
potential barrier with their total amount of energy E. Since they
remain in the inhomogeneous regime for some time after disso-
ciation, a redistribution of energy between the c.m. and the rel-
ative motion is still possible, leading to a sequence of loss and
gain of relative energy. Therefore, their final relative energy Es

can be lower than the height of the potential barrier [Fig. 9(c)].
Figures 10 and 11 specify the above line of arguments and

identify in particular the different types of trajectories. For
a constant value of s0L, sufficiently away from the potential
minimum, one can induce transitions of the form

A → B → A → bound states → A

by varying either the c.m. kinetic energy [increasing TS ,
Fig. 10(a)], or the phase of the relative oscillation [decreasing
t
T

, Fig. 10(b)].
Figure 11 provides us with the complementary information

of how the change of the initial relative energy Es , imprinted
in s0L, affects the evolution of the trajectories. The trajectories
presented for each s0L have the same TS and different phases

t
T

. For s0L = smin [Fig. 11(a)], a case familiar from Sec. IV A,
the fictitious particle does not oscillate and thus the trajectories
are independent of the phase. For the value of TS chosen here,
this set of trajectories constitutes a single dissociated state
of type A. Increasing the relative energy (decreasing s0L), the
trajectories for various phases start to separate, but still their
type remains the same [Fig. 11(b)]. A further increment of Es

[Fig. 11(c)] has as a result the formation of dissociative states of
type B for certain values of phases. Finally, for s0L sufficiently
close to the potential barrier [Fig. 11(d)], the amplitude of
the relative oscillation increases dramatically, allowing for
the emergence of all the three types of trajectories, including
finally bound states.

Energy transfer. Throughout this section, we have come
across intriguing effects originating from the coupling between
the c.m. and the relative coordinate. The key ingredient
allowing for these effects is the energy transfer between the two
degrees of freedom inside the inhomogeneous region. Let us
therefore point out some basic features of the energy exchange
process. To do so, we consider the change of the kinetic energy
of the c.m. TS . The latter is zero in the uniform regime of
the helix. From the equations of motion for the Hamiltonian
(14), we obtain ṪS = −Ṡ ∂V

∂S
, where V = V (S,s). Although

this relation for ṪS refers to certain time evolving trajectories,
we find it instructive to analyze its contour plot for a certain
value of Ṡ = 1.

We observe in Fig. 12(a) that for a constant value of
the c.m. velocity, the rate of change of TS is nonzero only
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FIG. 10. (Color online) (a) Trajectories with different c.m. kinetic
energies TS for s0L ≈ 1.56 and t

T
= 0.22. The numerical values

presented in the diagram correspond to the values of TS for the
different kinds of trajectories. (b) Trajectories with different phases of
relative oscillation t

T
for TS = 8.88 and s0L ≈ 1.56. The numerical

values presented in the diagram correspond to the values of t

T
for

the different kinds of trajectories. In both cases, the dissociative
trajectories of type A are shown with solid white lines, while those
of type B are represented with solid black lines. The finally bound
trajectories are presented with dashed cyan lines. The vertical black
dashed line indicates the position ShL at which the hump starts (by
definition).

in the inhomogeneous regime as expected. Moreover, it is
antisymmetric with respect to the center of the hump S = 0,
meaning that if at (−S,s) the particle gains TS , it loses at (S,s).
Therefore, almost symmetric trajectories (S → −S), as those
for very large or very small initial c.m. velocity Ṡ0, will have
finally almost zero energy transfer. However, since TS , moving
from a positive ṪS value to a negative one, reaches a maximum
for these trajectories inside the inhomogeneity (at S ≈ 0), the
average kinetic energy of the c.m. motion inside the hump will
be larger than that in the homogeneous regime. This in turn

FIG. 11. (Color online) Trajectories for various phases of relative
oscillation t

T
for TS = 8.88 and (a) s0L = smin = 3.34, (b) s0L = 3.26,

(c) s0L = 2.53, (d) s0L = 1.56. Solid white lines stand for finally
dissociated states of type A, solid black lines for type B, and dashed
cyan lines for finally bound states.

FIG. 12. (Color online) (a) The rate of change of the kinetic c.m.
energy ṪS as a function of S,s for Ṡ = 1. The solid black lines depict
the position of the maxima of the three potential barriers, while the
dashed brown lines indicate the position of the minima of the three
potential wells in the uniform regime (see also Fig. 3). (b) The dwell
time as a function of the initial c.m. velocity Ṡ0 for the particles
starting at the minimum of the first potential well with zero relative
velocity (blue line with circles). For small Ṡ0, the deviation from
a motion with constant Ṡ = Ṡ0 dictated by the red dashed line is
evident.

leads to a larger effective Ṡ within the inhomogeneity and a
smaller dwell time (defined as the time interval during which
the fictitious particle moves from −Sh to Sh) than the one
expected by Ṡ0. This effect is evident [Fig. 12(b)] only in the
case of small Ṡ0, where even a slight increment in the velocity
affects substantially the value of the dwell time.

The greatest amount of energy can be gained or lost when
the fictitious particle passes deep in the potential well, close
to the potential barrier, since the gradient ∂V

∂S
acquires there its

largest values [Figs. 3 and 12(a)]. For Ṡ > 0, which is always
true for particles passing from the left homogeneous regime
to the right one, the c.m. gains kinetic energy while being in
the first potential well in the region S < 0, and it loses for
S > 0. This causes highly asymmetric trajectories as some
with Ṡ0 > 1 (Figs. 10 and 11) overall to lose an amount of
c.m. kinetic energy, which after reaching the uniform regime
appears as a gain in the total relative energy. Trajectories that
dissociate within the hump (type B), after crossing the top of
the potential barrier for S > 0, regain c.m. kinetic energy TS

[Figs. 3 and 12(a)], but since they continue moving at lower
values of the potential this does not always result in lower final
values of total relative energy. Therefore, we may conclude that
all the dissociative trajectories with a lowered final Es belong
to type B, but not vice versa.

Overall, it is evident that the energy transfer consists of
subsequent losses and gains of TS and Ts induced by the
variations of the potential V (S,s) inside the inhomogeneous
region, leading to a final asymptotic effective gain or loss.
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V. PHASE SPACE ANALYSIS

We explore now the structure of the underlying phase space
of the scattering process and in particular of bound states in
the inhomogeneity of the helix. Since the three potential wells
display similar characteristics, with the first one allowing for
more variations in energy since it is the deepest one, it will be
the only one we consider here. For Hamiltonian systems with
two degrees of freedom, the standard tool for such an analysis is
the Poincaré surface of section (PSOS), taking advantage of the
conservation of energy. Here, we will choose S = 0 (P > 0)
as the intersection through the energy shell. We note that the
PSOS shown in the following report only the bound state
trajectories.

Let us inspect the regions of bound and unbound motion
within the inhomogeneous helix. The only part of the potential
landscape V (S,s) that can support bounded motion is that of
the inhomogeneity, i.e., inside the hump, in the neighborhood
of S ≈ 0. Since the potential wells possess finite barriers, it is
evident that for energies beyond a certain amount the fictitious
particle can escape to infinity concerning either the c.m. S or
the relative coordinate s, leading to dissociation.

For the first potential well, this fact is clearly depicted
(Fig. 13) through the equipotential lines (EPLs). For E �
Ec1 = 0.476, with Ec1 being the energy of the minimum of
the first potential well in the uniform domain, the EPLs are
closed both in the S and s directions [Figs. 13(a)–13(c)]
leading to exclusively bounded motion inside the hump.
Figure 13(c) presents the critical case, a fact that is reflected in
the substantial elongation of the wings of the EPL. A further
increment of the energy leads to EPLs extending to |S| → ∞
[Figs. 13(d)–13(f)] which allows for escaping trajectories from
the center of the hump to the homogeneous regime of the
helix. This holds until the second critical value Ec2 = 0.744
[Fig. 13(e)] is reached. From then on, two additional openings
are formed in the EPL inside the central region of the hump
[Fig. 13(f)] allowing also for escapes in the relative coordinate.

FIG. 13. EPLs of the first potential well for representative total
energies: (a) E = 0.28, (b) E = 0.39, (c) E = 0.476, (d) E = 0.6,
(e) E = 0.744, and (f) E = 0.76.

FIG. 14. (Color online) Poincaré surfaces of section for repre-
sentative total energies: (a) E = 0.28, (b) E = 0.39, (c) E = 0.476,
(d) E = 0.6, (e) E = 0.744, and (f) E = 0.76. The inner region of
(c) (blue dots) consists of chaotic trajectories.

For energies larger than the maximum value of the first
potential well Vmax = 0.81, of course, the particles’ motion
is in principle unbounded.

Figure 14 shows PSOS for different energies. For E < Ec1

[Figs. 14(a) and 14(b)], we observe an elliptic island. Close
to the first transition point E = Ec1 [Fig. 14(c)] it develops in
its inner region, i.e., for small p and s close to the absolute
minimum of the first potential well, a chaotic portion. A further
increase of the energy leads to escaping trajectories, which is
evident in Fig. 14(d) where a large part of the inner region
of the surface of section (empty region) belongs to escaping
trajectories (|S| → ∞) through the respective openings of the
EPL [Fig. 13(d)]. As the energy approaches its second critical
value Ec2 [Fig. 14(e)], the basin of escape becomes larger and
finally for E > Ec2 [Fig. 14(f)], a second area of the surface of
section empties, this time in the center of the region of bounded
motion. This corresponds to trajectories that escape in the s

direction (dissociation) through the two additional openings
on the lower side of the corresponding EPL [Fig. 13(f)].

Figures 15, 16, and 17 provide further details enriching the
above analysis in terms of specific trajectories. First, we remark
that the turning points of the trajectories both in the s and S

directions lie on the EPLs of the respective energy. Trajectories
with a larger S elongation and a reduced s amplitude follow
obviously the bending of the potential landscape and are the
ones that map to the inner region of the Poincaré surface of
section. As we move to the outer region of the surface of
section, the amplitude in s increases with a respective decrease
of the amplitude in the S direction. For energies Ec1 < E <

Ec2 trajectories can escape from the left and right openings
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FIG. 15. (Color online) Selected trajectories (a), (c) and respec-
tive PSOS (b), (d) for the energies: (a), (b) E = 0.39, (c), (d)
E = 0.4761. The color of the trajectories corresponds to their position
in the PSOS. In (a), (c) the EPLs are also depicted as in Fig. 13.

of the respective EPL [Fig. 16(c)]. In order to be bound, the
trajectories should have an amplitude of the relative motion
exceeding the width of the openings of the EPL [Fig. 16(a)].
This is the reason why for the PSOS the regime of bounded
motion is located in the outer part, with the inner one being
empty and corresponding to escaping trajectories [Fig. 16(b)].

A more detailed nonlinear dynamical analysis would most
probably reveal two unstable periodic orbits that provide the
connection between the bounded and escaping motion. To
explore this in detail goes, however, beyond the scope of
this work, which has its emphasis on the main phenomena
appearing in the helical dynamics investigated here.

Bridging between bound and unbound there are “resonant”
trajectories, i.e., trajectories that remain within the hump
performing oscillatory c.m. and relative motion, for a large
time interval and finally escaping to the homogeneous asymp-
totic region. They have typical initial conditions in the empty

FIG. 16. (Color online) (a) Selected bound trajectories, (b) PSOS,
and (c) escaping trajectories in the c.m. S coordinate for the energy
E = 0.6.

FIG. 17. (Color online) (a) Selected bound trajectories, (b) PSOS,
and (c) escaping trajectories both in the c.m. S (bound states) and in
the relative coordinate s (free states) for energy E = 0.76.

region of the PSOS [Fig. 16(b)], close to the innermost bound
trajectory. Such a trajectory is presented in Fig. 18. It escapes to
the left opening of the potential well (S < 0) both in forward
and in backward propagation time, i.e., it is reflected at the
helical hump.

A more complex structure of the PSOS is encountered
for Ec2 < E < Vmax. In such a case, as we have remarked
earlier, there are four openings of the EPL. Subsequently, four
unstable periodic orbits exist and thus four possibilities for
escape symmetric with respect to S = 0 [Fig. 17(c)]: two in the
c.m. coordinate direction (S openings) as before and two in the
relative one (s openings). The escape in the S direction (small
s, large S, i.e., s1s2 > 0) both in forward and in backward
propagation time, corresponds to a bound pair of particles that
after scattering within the hump remains bound, a case that
has been referred to in the previous section as a bound state.
On the contrary, escapes in the s direction (large s, small S)
correspond to free particles that come from opposite sides

FIG. 18. (Color online) A resonant trajectory for E = 0.6 and ini-
tial conditions S = 0, s = 5.134, Ṡ = 0.549, ṡ = −0.387: (a) plot
of the trajectory on the potential landscape, (b) time evolution of the
c.m. coordinate S of the trajectory.
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of the helical trap (s1s2 < 0), scatter within the hump, and
return backwards in opposite directions. They thus account for
conventional scattering of free particles and are different from
the peculiar dissociative states we have observed so far.

Between the regimes of escapes, there are two distinct
regions of bounded trajectories [blue (dark gray) and orange
(light gray), Fig. 17(a)]. The first of them consists of trajec-
tories supported by the side parts of the EPL. Their relative
oscillation s amplitude is bounded both from below, by the
width of the S opening in the uniform domain, and from
above by its edge width inside the inhomogeneous region.
The second consists of bound states with somewhat larger
relative s amplitude dictated by the width of the central part
of the EPL. These considerations give rise to the two-ring
structure of the PSOS [Fig. 17(b)].

VI. SUMMARY AND OUTLOOK

We have investigated the classical scattering of Coulomb in-
teracting particles in a helix. First, we have proven that for two
particles interacting via a potential that depends exclusively
on their Euclidean distance, a separation of the c.m., leading
to a conservation of the total momentum, is provided if and
only if the confining curve is a homogeneous helix. Having
this result in mind, we investigated the scattering of charged
particles from a local inhomogeneity of the helix. In such a
system, the coupling between the c.m. and the relative degrees
of freedom induces intriguing effects. The most important of
them is the dissociation of initially bound states of the two
repulsively interacting charged particles through scattering.
Due to the time reversal symmetry imprinted in the equations
of motion, this leads to the conclusion that initially unbound
charged particles can become bound when scattered, a fact
counterintuitive regarding especially the repulsive character
of the interaction.

The underlying mechanism for such a behavior was found
to be the effective energy transfer between the relative and
the c.m. motion occurring due to their coupling. It has been
pointed out, nevertheless, that this transfer does not take place
in a single step, but it is the final result of the continuous
energy redistribution in the whole time interval in which the
particles remain inside the hump. For this reason, the outcome
of the scattering of initially bounded charged particles in
terms of finally bound and dissociated states depends in a
rather complex way on the initial conditions. The dissociation
regimes depending on these conditions have been identified
and analyzed in detail. The most important parameter is shown
to be the value of the initial kinetic energy of the c.m. TS .
In most cases, for very small or very large values of TS the
particles remain bound after the scattering, with dissociation
occurring only in the intermediate regime. This is attributed
to the little amount of energy available for transfer and to the
small dwell time in the hump that prevents a strong coupling
of the relative and c.m. degrees of freedom, respectively.

Our analysis has been completed with an exploration of
the phase space structure of the deepest potential well that
can support bound states. Regimes of bound regular motion
inside the hump, as well as regimes of escapes, were identified
by varying the total energy. This exploration provided us

with bound states localized inside the hump, as well as with
“resonant trajectories.”

Further studies could be dedicated to a more detailed
investigation of the phase space searching for stable and
unstable periodic orbits and their asymptotic curves, a fact that
would allow a rigorous and quantitative analysis of the escape
procedure. A promising direction is the study of many-body
systems which are expected to exhibit an intriguing dynamics
as well as leading to exceptional transition phenomena.
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APPENDIX: CONDITIONS ON THE CURVED 1D
MANIFOLD FOR THE SEPARATION OF THE CENTER OF

MASS FROM THE RELATIVE MOTION

Proposition. The condition

∂s1R(s1,s2) + ∂s2R(s1,s2) = 0,∀ s1, s2 ∈ R, (A1)

where R(s1,s2) = |r(s1) − r(s2)| holds for a smooth, regular
curve r(s) in arc length parametrization if and only if the
curve is a homogeneous helix (including the degenerate cases
of a circle or a straight line).

Proof. “⇐”: By the discussion in Sec. II, condition (A1) is
equivalent to separability of c.m. and relative motion, which
has been demonstrated to hold for a homogeneous helix (see
discussion in the main text).

“⇒”: Assume that condition (A1) holds. The outline of the
proof is as follows. We show that by virtue of Eq. (A1), for
each x ∈ R the map

Fx : W �→ W, Fx[r(s)] = r(s + x) (A2)

is an isometry (i.e., it preserves distances) on the submanifold
W ⊆ R3, which is defined as the image of the curve r. We
extend this family of isometries to a family of isometries
{�x}x∈R from all of R3 into itself, with the property that
the restriction �x

∣∣
W = Fx . The isometries of R3 form the

group of Euclidean moves E(3). Since the �x are continuously
deformed to the identity map for x → 0, they belong to the
identity component of E(3), i.e., to SE(3). Thus, by the
classification theorem for Euclidean moves [22] each �x is
a screw operation or a degenerate case thereof, i.e., a pure
rotation or translation. Furthermore, not all �x can be the
identity on R3. Thus, there is a nontrivial continuous family
of screw operations {�x}x , including the identity, that map
the curve W to itself. In particular, there is an infinitesimal
screw operation whose repeated action on any point of W
maps the point to W again. So W , the image of r(s), must be
a (homogeneous) helix, which proves the proposition.

We now proceed to the detailed proof and first show
that, given Eq. (A1), the map Fx as defined in (A2) is an
isometry on W . First, we prove that there is a function χ
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such that R(s1,s2) = χ (s1 − s2). To see this, introduce new
variables ξ− := s1 − s2, ξ+ := s1 + s2 and a function χ with
the property χ (ξ+,ξ−) = R(s1,s2). Then, condition (A1) yields
∂χ/∂ξ+ = 0, leading to χ (ξ+,ξ−) = χ (ξ−) or

R(s1,s2) = χ (s1 − s2).

This, in turn, immediately implies R(s1,s2) = R(s1 + x,s2 +
x), or

|r(s1) − r(s2)| = |r(s1 + x) − r(s2 + x)|
for all x,s1,s2 ∈ R, showing that indeed Fx as defined above
is an isometry on W .

We now assume without loss of generality that 0 ∈ W and
proceed to show that for all x the map

F̃x : W �→ R3, F̃x(r) := Fx(r) − Fx(0)

has the following properties:
(i) |F̃x(r)| = |r| ∀ r ∈ W .
(ii) σ (F̃x(r1),F̃x(r2)) = σ (r1,r2) ∀ r1,r2 ∈ W .
(iii) F̃ (α1r1 + α2r2) = α1F̃x(r1) + α2F̃x(r2)
∀ r1,r2 ∈ W, α1,α2 ∈ R s.t. α1r1 + α2r2 ∈ W .

Here, σ denotes the Euclidean scalar product. (i) immediately
follows from Fx being an isometry on W . (ii) follows from (i)
and Fx being an isometry since ∀ r1,r2 ∈ W ,

2σ (F̃x(r1),F̃x(r2))

= |F̃x(r1)|2 + |F̃x(r2)|2 − |F̃x(r1) − F̃x(r2)|2
= |r1|2 + |r2|2 − |r1 − r2|2 = 2σ (r1,r2).

Finally, using (i) and (ii) it is easily shown that

|F̃x(α1r1 + α2r2) − α1F̃x(r1) − α2F̃x(r2)|2
= |(α1r1 + α2r2) − α1r1 − α2r2|2 = 0,

which proves (iii).
Now, we are in the position to construct the extended

isometries �x . Let us first assume that the curve r does not
entirely lie in a plane. Then, we can form a basis of R3 with
three linearly independent vectors wi ∈ W . Hence, for each
x ∈ R3 there exists a unique expansion x = ∑3

i=1 αiwi , αi ∈
R. For any such x we define

�x(x) := Fx(0) +
3∑

i=1

αiF̃x(wi).

Evidently, for the special case of r = ∑3
i=1 γiwi ∈ W ,

�x(r) = Fx(0) +
3∑

i=1

γiF̃x(wi) = Fx(0) + F̃x

(
3∑

i=1

γiwi

)

= Fx(0) + F̃x(r) = Fx(r),

due to property (iii) of F̃x , such that indeed the restriction
�x |W = Fx . Now, using property (ii) of F̃x , it is straightforward
to show that for any x and y = ∑3

i=1 βiwi ∈ R3,

|�x(x) − �x(y)|2 =
∣∣∣∣∣

3∑
i=1

(αi − βi)F̃x(wi)

∣∣∣∣∣
2

=
∣∣∣∣∣

3∑
i=1

(αi − βi)wi

∣∣∣∣∣
2

= |x − y|2 ,

which proves that �x is an isometry of R3.
Finally, we address the special case of a planar curve. Then

either W is a straight line, in which case there is nothing to
prove, since this is a degenerate case of a helix. Otherwise,
we pick two linearly independent vectors wi ∈ W and a
third vector k3 perpendicular to w1,w2. Since Fx maps W
to itself, it is clear that σ (F̃x(wi),k3) = 0 as well. For any
vector x ∈ R3, a representation x = α1w1 + α2w2 + α3k3 is
possible and we define

�x(x) = Fx(0) + α1F̃x(w1) + α2F̃x(w2) + α3k3,

which for x ∈ W (implying α3 = 0) using (iii) again
leads to �x |W = Fx . Furthermore, using the orthogonality
of k3 to wi ,F̃x(wi) as well as (ii), it follows for any
y = ∑2

i=1 βiwi + β3k3 that

|�x(x) − �x(y)|2 =
∣∣∣∣∣

2∑
i=1

(αi − βi)F̃x(wi) + (α3 − β3)k3

∣∣∣∣∣
2

=
∣∣∣∣∣

2∑
i=1

(αi − βi)wi + (α3 − β3)k3

∣∣∣∣∣
2

= |x − y|2.
Therefore, for this case, too, one can construct an isometry
�x of R3 which extends Fx . Evidently, in both cases tuning
x → 0 one can continuously transform the �x to �x=0 = idR3 ,
such that all �x lie in SE(3).

[1] H. Totsuji and J.-L. Barrat, Phys. Rev. Lett. 60, 2484
(1988).

[2] G. Vernizzi, K. L. Kohlstedt, and M. Olvera de la Cruz, Soft
Matter 5, 736 (2009).

[3] G. E. Desobry and P. K. Kabir, Am. J. Phys. 41, 1350 (1973).
[4] F. Dufey, Chem. Phys. 330, 326 (2006).
[5] R. C. T. da Costa, Phys. Rev. A 23, 1982 (1981).
[6] P. Exner and M. Fraas, Phys. Lett. A 369, 393 (2007).
[7] J. Goldstone and R. L. Jaffe, Phys. Rev. B 45, 14100 (1992).
[8] O. V. Kibis et al., Electromagnetics 25, 425 (2005).

[9] K. T. Law and D. E. Feldman, Phys. Rev. Lett. 101, 096401
(2008).

[10] V. Y. Prinz et al., Phys. E (Amsterdam) 6, 828 (2000).
[11] O. G. Schmidt and K. Eberl, Nature (London) 410, 168 (2001).
[12] M. Bhattacharya, Opt. Commun. 279, 219 (2007).
[13] A. Okulov, Phys. Lett. A 376, 650 (2012).
[14] I. Ricardez-Vargas and K. Volke-Sepúlveda, J. Opt. Soc. Am. B
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