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Finite-temperature crossover from a crystalline to a cluster phase for a confined finite chain of ions
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Employing Monte Carlo simulation techniques we investigate the statistical properties of equally charged
particles confined in a one-dimensional box trap and detect a crossover from a crystalline to a cluster phase with

increasing temperature. The corresponding transition temperature depends separately on the number of particles
N and the box size L, implying nonextensivity due to the long-range character of the interactions. The probability
density of the spacing between the particles exhibits at low temperatures an accumulation of discrete peaks with
an overall asymmetric shape. In the vicinity of the transition temperature it is of a Gaussian form, whereas in
the high-temperature regime an exponential decay is observed. The high-temperature behavior shows a cluster
phase with a mean cluster size that first increases with the temperature and then saturates. The crossover is clearly
identifiable also in the nonlinear behavior of the heat capacity with varying temperature. The influence of the
trapping potential on the observed results as well as possible experimental realizations are briefly addressed.
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I. INTRODUCTION

Within the past decade, we have witnessed enormous
progress with respect to the controlled manipulation of ions.
This is in particular due to the application of the dynamics
of ionic systems to spectroscopy [1,2], the implementation
of quantum simulations [3,4], and the realization of quantum
information processors [5,6]. In this context many trapping
methods [7—11] have been suggested. Among the most widely
used is the Paul trap [9], which allows one to monitor single
ions [12] and study the stability of many ion crystals [13-15].
Experimental studies of ions confined in this type of trap have
shown a transition from a cloud of ions to a crystalline structure
with decreasing temperature [16,17].

Along with the experiments there have also been various
theoretical investigations in the formation of Coulomb crystals
in the presence of a trapping potential. An early study of
the structure of spherical Coulomb crystals [18] showed that
particles are arranged in concentric spherical shells with
constant intershell distances and a hexagonal surface structure.
Furthermore, for large systems a bcc lattice is formed in the
interior [19] resembling the case of infinite Coulomb systems
(One Component Plasma) [20]. The two-dimensional (2D)
case has revealed even more exotic phenomena. Specifically,
for the cylindrically confined Coulomb lattice a structural
phase transition with increasing linear density has been found
[21]. The finite 2D systems of charged particles confined in
a parabolic potential or a box present an order-disorder phase
transition with increasing temperature [22]. The density of the
particles differs for the two potentials being almost constant in
the inner region and decreasing while moving outwards for the
parabolic case, whereas it increases radially forming distinct
shells for the box.

Recently, particular interest was dedicated to the study
of one-dimensional (1D) systems and especially cold ions
confined in a corresponding harmonic potential [23-28]. Ana-
lytical approaches have been developed using perturbation the-
ory around the classically minimum energy positions [25,26].
An interesting thermodynamic behavior different from both
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the 2D and three-dimensional (3D) cases has been observed
due to the interplay between the long-range interactions and
strong correlations. These observations include a deviation
of thermodynamic quantities from extensivity, a nonuniform
charge density, and a structural phase transition (linear to
zig-zag) driven by the strength of the radial potential [27]
and temperature [28].

Following the direction of the above studies, the present pa-
per aims at describing classically the thermodynamic behavior
of equally charged particles confined to an 1D box within a
wide temperature range. Such a problem is usually treated by
computing the partition function of the system:

Z(L,N,T) = ZxgZy,
L L
Zy :/ / exp[—BVe(xy, ... xy)ldx; ...dxy, (1)
0 0

where Zgg is the part of the partition function due to the kinetic
energy of the particles, 8 = 1/kgT, g° the coupling constant,
and

N N 2

1 8
VeGm ) =52 ) i @
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the Coulomb potential energy. Since Zy is not analytically
accessible, we will proceed here by utilizing Monte Carlo
simulation techniques.

Examining the distributions of the spacing between the
particles with increasing temperature, we will observe a
transition from a discrete overall asymmetric form to a
continuous exponential one. This fact can be interpreted as an
evidence for a crossover from a crystalline to cluster phase at a
transition temperature 7, at which this distribution acquires a
symmetric Gaussian form. The probability of forming clusters
of increasing size increases with the temperature and finally
saturates. We will then proceed and verify the crossover by the
temperature dependence of the heat capacity. Our results indi-
cate that the transition temperature 7, and consequently every
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thermodynamic quantity depends on the number of particles
N and the length L of the box in an independent manner, thus
presenting deviations from extensivity. An implementation of
this nonextensivity in order to obtain finite quantities in the
thermodynamic limit is attempted. We also discuss the effect
of the trapping potential on the observed results.

The paper is organized as follows. In Sec. II we present, in
some detail, the Monte Carlo methods used in our simulations.
Section III contains our results and a discussion of the
observables used to characterize the statistical mechanics of
the Coulomb system. In Sec. IV we analyze the changes of
the observed properties when trapping conditions are altered,
focusing on the case of harmonic trapping. Finally, Sec. V
provides a brief summary of our findings commenting on a
possible experimental realization.

II. MONTE CARLO APPROACHES TO THE FINITE
ION CHAIN

In order to explore the statistical properties of the finite
Coulomb chain confined in a box we employ the Metropolis
and Wang-Landau algorithms, each possessing a better effi-
ciency with reference to the computation of different quantities
in different temperature regimes. In order to be self-contained,
we will provide below a brief description, discussing their
advantages and deficiencies and explaining how they are
employed in this work. Before doing so, it is important to
notice that for a given number N of particles in the box the
statistical properties of the Coulomb chain are determined by

a single dimensionless parameter A = % This is seen by
introducing the dimensionless variables & = xz’ in Eq. (2) and
inserting the resulting expression in the partition function (1).
In the following we will exclusively use the dimensionless
position variables &;. As a consequence the length of the box
can be taken without loss of generality as L = 1.

For the Metropolis algorithm [29] we generate initially
a random configuration {£;} of the location of the particles
in the box. The configuration is sorted in an ascending
order (0 <& <& < --- <&y < 1). Then we choose for
the jth particle a new position 0 < 5; < 1. The efficiency
of the algorithm is greater if we impose the additional
restriction &;_; < éj’. <éjp- fAE=Ve(E) - Ve(E) <0
the new configuration is accepted, i.e., §; = & ]/ Otherwise we
accept the new configuration with a probability P given by
the Boltzmann factor P = e #2E. This procedure defines
a Monte Carlo step and after a considerable number of
repetitions the equilibrium state is reached. The Metropolis
algorithm satisfies the property of detailed balance, and
therefore it always converges, being also, as a Markov chain,
very efficient in the evaluation of the equilibrium configuration
of the particles. However, it presents also some well-known
deficiencies. In the low-temperature regime, where the min-
imum of the potential dominates the statistical properties of
the system, the acceptance ratio of Metropolis becomes very
low, a fact that leads to a dramatic growth of the simulation
time. The situation is even worse when the potential possesses
many minima, since the particles can be trapped in one of
them and never reach the global minimum. For the strongly
correlated system presented here, the main problem arises in
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the calculation of inherently averaged macroscopic quantities
like the heat capacity Cy. A large ensemble of configurations
is needed in order to reduce statistical errors significantly, and
thus the practical simulations are prohibited.

Recently another algorithm has been proposed in order
to overcome these problems, namely, the Wang-Landau
algorithm [30]. Contrary to the canonical ensemble-based
Metropolis, this algorithm uses the concept of the micro-
canonical ensemble, and it intends to calculate the density
of states (DOS) of a system as described below. First, we
choose the range of accessible energies and then divide
it into a number of bins M. We start, assuming that we
have a uniform density of states g(E), i.e., g(E) =1 for
every energy bin. We then proceed as follows. For the
Jjth particle we choose a new position &§;_; < é} <& If
g(Ey) < g(Ey) with Ey = V(&) and E; = Ve (&]), we accept
the new configuration. Otherwise the new configuration is
accepted with a probability P = (%. Each time an energy
bin is visited we update the corresponding density of states
by multiplying the existing value by a modification factor f,
ie., g(E)= f - g(E). We choose f =e! ~2.71828.... We
also update the energy histogram H(E) = H(E) + 1. In the
original version of the algorithm [30] for discrete systems,
the above steps were repeated until a flat histogram was
obtained [e.g., min(H (E)) < 0.8 - (H(E)), with (H(E)) being
the mean value of the histogram]. In order to improve the
accuracy which is of order In f we decrease the modification
factor f = /f and repeat the procedure. When In f ~ 1078
the density of states does not any longer evolve any further and
the simulation is stopped. The major problem of this algorithm
is that it does not satisfy the detailed balance condition, and
so its convergence cannot be strictly proved. Furthermore the
method has been suggested originally for discrete systems
with narrow energy landscapes. Nevertheless it has been used
successfully in recent calculations also considering continuous
systems [31-33]. If the low-energy spectrum of the system
is complex, the criterion of the flatness of the histogram
is never satisfied as some energy bins are never visited.
To overcome this problem several alternatives have been
proposed [33,34]. In our work we use the technique described
in Ref. [34] excluding some boundary bins from the flatness
check. The Wang-Landau algorithm has the special advantage
that once the DOS is obtained, we can easily derive all the
thermodynamic quantities [e.g., Z = ) . g(E )ePE] from this
function alone. Thus, the simulation time is significantly
reduced when computing the temperature dependence of
demanding quantities like the heat capacity Cy. However,
for computing properties that depend on the position of
the particles for systems with a complex, degenerate, and
unbounded energy landscape as the one presented here, this
method is in an inferior position in comparison to Metropolis.
This is attributed to the large computational effort needed in
order to find a representative sample of microstates for each
energy E. In order to exploit the advantages of each algorithm
avoiding its drawbacks, we use both of them and apply each
one for the evaluation of different properties.

In the present study 1.5 x 107 MCs were required in order
to reach equilibrium with the Metropolis algorithm and an
ensemble of 200 configurations in order to obtain the mean
energy (E) as a function of A and the number of particles
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N. For quantities related to the positions of the particles at
equilibrium the size of the ensemble was increased up to 10 000
configurations to achieve better statistics. The Wang-Landau
algorithm has been realized with 2 x 107 MCs for each value
of the modification factor until In f ~ 10~% as stated above.
In most calculations the number of particles N = 100 is used
unless stated otherwise.

The spatially resolved density and correlation functions,
as well as (E(N)) have been computed with the Metropolis,
whereas the heat capacity Cy(A) has been determined using
the Wang-Landau algorithm. As a check, the dependence of
the mean potential energy (E(A)) on the parameter A has been
computed with both approaches.

III. NUMERICAL RESULTS AND DISCUSSION

We present and describe in the following our basic results
for the temperature-dependent behavior and properties of
the ions in the box. Let us begin with the exploration of
the minimum energy configuration (in the first subsection)
and continue with its temperature dependence (in the second
subsection). In the last subsection, which addresses the main
results of this work, evidence for the crystalline-clustering
crossover and the associated phenomenology is presented.

A. Minimum energy configuration

Some useful remarks on the minimum energy configuration
of the ions in the box can be obtained simply by inspec-
tion of the corresponding Coulomb potential energy. First,
Ve(€1,&, ... ,Ey) 1s obviously a strictly increasing function
of & (g?‘/1 > 0) and a strictly decreasing function of &y

(% < 0). Thus, the first and the last particles always occupy
the edges of the line segment, i.e., & =0 and &y = 1. It is
obvious that the problem possesses a symmetry axis with
respect to the center of the box. As a result, if the number
of particles N is odd, the central particle is positioned at the
center of the line segment (§ y/2)+1 = 1/2, where | x] denotes
the floor function of the number x). Furthermore, for more
than three particles the minimum energy configuration is not
the equidistant one. In fact, the difference Agq&; = &° — £
with {sio} the equilibrium positions of the particles at zero
temperature and {éieq = ﬁ} the equidistant positions is a
discretization of a smooth function, inversion symmetric with
respect to the center position N /2 possessing a minimal value
at imin S N/4, a maximal value at in,x = 3N /4, and being
almost linear within [7min,imax] (Fig. 1). Due to the fixed length
of the box and the long-range character of the interactions, the
particles tend to accumulate at the edges of the box leaving
larger interspace distances in its middle part [Figs. 2 and 3(a)].
This is opposite to the case of ions confined in an 1D harmonic
potential [23,26] where the length of the chain is not fixed and
the particles tend to accumulate in the inner region. Such a
behavior could be expected as the 1D analog of the 2D system
presented in Ref. [22]. In the specific case of the 1D system
with the first and the last particle fixed at the edges, it can be
proven (see the Appendix) that due to the ordering of positions,
the lowest energy configuration presented here provides the
only minimum of the potential energy. This is in contrast to
systems in higher dimensions, such as 3D ionic systems under
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FIG. 1. (Color online) The difference of the expected equidistant
position of each particle from its minimum energy position as a
function of the index of the particle for N = 100 particles confined
in a box with unit length L = 1.

harmonic confinement, where many local minima and multiple
isomers exist [35].

B. Temperature dependence of the configurations
and the densities of charges

To study the temperature dependence of the observables
describing the properties of the charged particles in the box

we have to vary the parameter A. We define gfz =kgT)

yielding t = + = L asareduced temperature. As T increases,

positions diffé\rent T?rom the minimum energy ones become
accessible to the particles. At temperatures T 2 10 the particles
start to form clusters of different sizes [Fig. 3(b)]. Thus
the form of the possible particle configurations changes
dramatically. However, if we consider the mean positions of
the particles [Figs. 3(c) and 3(d)] over an ensemble of 10*
configurations we observe that for the high-temperature case
[Fig. 3(d)] the clustering is averaged out, and the resulting
mean configuration resembles very much that of the low-
temperature regime [Fig. 3(c)]. A slight difference, however,
is that for high temperatures the positions seem closer to the
equidistant ones with less accumulation at the edges of the
box, which are no longer occupied.

The properties of the mean equilibrium configuration for
different temperatures can be further explored by considering
the temperature dependence of the quantity (A.,&;) and the
density function (p(£)). As seen in Fig. 4 for temperatures
T < 1 the mean positions of the particles are identical with the
minimum energy ones (Fig. 1). Even at T = 10? (black line

N=6

s | | | | 4
T [ [ [ I T
N=10
i | | ol ks | | | d
T [ [ [ 'I I [ [ I T
N=20

FIG. 2. (Color online) The minimum energy configurations
of particles as obtained by the minimization of the potential
Ve(x1,x2, ... ,xy) for N = 6,10 and 20. The particles are represented
with the (blue) full dots, and the equidistant positions are marked with
the (red) vertical line segments.
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FIG. 3. (Color online) Particle configurations for N = 100: (a)
A single configuration of particles at T = 1073, (b) the same for
7 = 10°, (c) the mean configuration of particles for T = 1073, (d) the
same for T = 10°.

with circles) the form of (A.,&;) is preserved except from
a decrease in its magnitude and a deviation at the edges.
However, for T = 10* the form becomes linear keeping the
symmetry around the center but changing by an overall sign.

A reference to the density of the absolute positions &;
would be of no practical use since, due to the finite number
of particles, the problem is discrete, and it would result only
in a set of delta functions. In previous studies [23,25,26] there
has been a particular interest in the quantity A& = &4 — &;
denoting the interspace distance between successive particles.
It has been shown that its inverse is a smooth function of &;
and represents the density of ions per unit length. To improve
statistics we use the ensemble average of Ag;, ie., (A§;).
Through interpolation, we produce the density of charge (o (&))
in the continuum limit. Our results are presented in Fig. 5 for
various temperatures. We clearly observe the nonuniformity
at the outer areas (close to the edges) for temperatures 7 < 1
(opposite to what has been observed in Ref. [23]) and an almost
uniform behavior for high temperatures except for the region
close to the edges where the density becomes zero (not visible
in Fig. 5). As expected, there exist large thermal fluctuations
in the high-temperature regime.

0.01p

-0.011

-0.0% 20 40 60 80 100
particle’s index i

FIG. 4. (Color online) The mean difference A.y§; of the position
of each particle from its expected equidistant position as a function of
the particle’s index i for temperatures T = 107> (blue circles), 1073
(green line), 10~! (magenta squares), 1 (cyan triangles), 10% (black
line with circles), and 10* (red stars). Note that the t = 107!, 1 curves
for Ay are on top of those for T = 1073, 1073, and therefore hardly
visible.
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FIG. 5. (Color online) The density of charge (p(£)) as a function
of the particles’ positions & for temperatures T = 107> (blue line), 1
(green circles), 10° (black line with triangles), 10° (estimated mean
red line and fluctuations red stars). The particle number is N = 100.

C. Crossover from the crystalline to cluster phase

As has been stated above, the quantity A§; is very useful in
the determination of the density of charges p(£), a continuum
limit of the distribution of the equilibrium positions {§;}. In
this subsection we present the results for the distribution of
AE;, p(A§;) at various temperatures (Fig. 6). It turns out that
this quantity contrary to p(&;) is well defined for this discrete
system, and even more, it carries significant information for
its thermodynamic behavior. It has been computed through the
histograms of A&; for 10* configurations and N = 100. For
low temperatures [Figs. 6(a) and 6(b)] a crystalline structure
is observed as p(A&;) clearly contains a part formed by
discrete peaks for small distances. Thus, the particles occupy
well-defined positions leaving specific distances between
each other. The mean value of A§; for all the histograms
approximately coincides with the equidistant spacing (A&) ~
0.0101 ~ ﬁ The most probable value (max A&; = 0.0108)
is slightly larger than the mean, denoting an anticlustering
effect and a crystallization of ions. The peaks are broadening
and merging with an increase of the temperature, and the
overall distribution becomes smoother [Fig. 6(c)]. More
positions become accessible to the particles, and the most
probable value decreases tending to the mean one. At 7 = 10
the form of p(A§;) becomes almost symmetric [Fig. 6(d)], and
its line shape resembles a Gaussian as is verified by a x2 fit
(red line). Here max A§; =~ 0.0097 is slightly less but actually
very close to (A&). In the high-temperature regime we observe
a clustering effect [Fig. 6(e)] directly opposite to that of the
low-temperature case. The effect is strongly pronounced as
can be seen by inspecting max A§; = 0.0036, which is much
less than the mean Ag; value. This trend is enhanced for
ultra-high temperatures (t = 10%) as illustrated in Fig. 6(f).
The most probable value of the spacing is almost zero, and
the distribution is well described by an exponential (red line
fit with a coefficient of determination R?> = 0.9962 [36]). Its
characteristic length scale is approximately 0.0096, which is
also close to the equidistant spacing of the particles ﬁ This
reflects the fact that for high temperatures the particles have
the opportunity to occupy almost every available position,
and each particle’s position is completely independent from
the positions of the neighboring particles. The continuous
change of p(Ag;) implying the transition from a crystalline
to a cluster configuration with the change of temperature

042116-4



FINITE-TEMPERATURE CROSSOVER FROM A ...

10000 : : ‘ ‘
<A&>=10.0101, max A ¢ =0.0108
(a) s000f |
A I AT
5(x 10738 7 8 9 10 11
4000
(b) 2000 <A§>=0.0101, max A& =0.0108 |
(]
5 x 1098 7 8 9 10 11
1000
(c) s00f <A&>=0.0101, maxAg =0.0107

5( 10_3? 8 9 10 11 12
X

y(x)=al exp(—((x-b1)lc1)2) 4
a1=0.003738 b1=0.009939
¢1=0.002904 R>=0.9962

| <A£>=00101
200 max A £ = 0.0097

0 0.005 0.01 0.015 0.02 0.025

<A &>=0.01, maxA &i = 0.0036 J

0.04 0.06 0.08 0.1 0.12 0.14

0.02

<AE>=0.0101, max A & = 0.0003 1

y(x)=a exp(-bx)
a=0.0126, b=103.7, R?=0.9962

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
AE,

FIG. 6. (Color online) The distributions of A§&;, p(Ag;), for
different temperatures: (a) T = 107>, (b) t = 1073, (c) T = 107},
(d) T = 10 (the red line is a Gaussian fit), (e) T = 10°, (f) T = 10°
(the red line is an exponential fit). In each figure the mean value of
the interspace distance (A&) and its most probable value (max A&;)
are provided.

is a strong indicator of a crossover occurring at a transi-
tion temperature 7. ~ 10, where the distribution becomes
Gaussian [Fig. 6(d)].

Skewness. A more precise determination of the transition
temperature can be achieved by examining the skewness y;
of the distributions p(A&;) as a function of the temperature
(Fig. 7). Skewness is a measure of the asymmetry of a
probability distribution p(x) and is defined as the third
standardized moment:

where o is the standard deviation of p(x). It is evident that in
our case the skewness goes from negative to positive values
as temperature increases (Fig. 7). Its absolute value possesses
a minimum at a temperature t; & 6, which can be conceived
as the critical one. At higher temperatures it saturates at the
value 2, which is indeed the skewness of the exponential
distribution.
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FIG. 7. (Color online) The skewness of the distributions p(A&;)
as a function of the temperature 7.

Cluster size and temperature. We have mentioned above
that for temperatures T > 10 the particles tend to form clusters
of various sizes. Let us now explore how the temperature
affects the size of the clusters formed. In what follows we
consider as cluster size 1 the size of a neighborhood which
includes only one particle, i.e., the case when no cluster is
formed. Furthermore, a particle i is assumed to belong to the
same cluster as its previous neighbor i — 1 if they are separated
by a distance smaller than a threshold d. The value of this
threshold is taken to be the minimum interparticle distance
AE; of the mean configuration of particles at temperature 7.
This choice helps in focusing on thermal fluctuations, thereby
avoiding effects emerging from the specific structure of the
crystal. Note that this quantity depends as well on the number
of particles N. We observe (Fig. 8) that the probability of
forming a larger cluster is generally increased with the increase
of the temperature tending to a limiting form for ultra-high
temperatures. This form coincides with the one obtained
for randomly chosen configurations of particles confined in

Probability

5 10 15 20 25
cluster size

FIG. 8. (Color online) The probability distribution of cluster sizes
for different temperatures (semilogarithmic scale): T = 5 (blue line
with squares), 7 = 10 (green line), T = 50 (red line with circles),
7 =5 x 10? (cyan line with triangles), = 10* (purple line with
diamonds), T =5 x 10* (yellow line with circles), T =5 x 10*
(brown line), T = 10° (black line with stars). The blue dashed
line indicates the probability distribution of cluster sizes in the
case of noninteracting particles confined in the box (purely random
configurations).
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FIG. 9. (Color online) The mean cluster size as a function of the
reduced temperature 7 for systems with different numbers of particles:
(a) N =50, (b) N =100, (c) N = 200. The horizontal dashed lines
indicate the values of the mean cluster size for the respective numbers
N of noninteracting particles confined in the box.

a box of length L =1, i.e., for the noninteracting case.
Therefore, for arbitrarily high temperatures the singularity of
the Coulomb potential at small interparticle distances becomes
irrelevant.

This behavior is also reflected in the dependence of the
mean cluster size on the temperature, which is presented
in Fig. 9 for the particle numbers N = 50,100, and 200.
The variation with the temperature is similar for the three
cases being almost constant (one) for low temperatures, then
increasing logarithmically, and finally saturating at a value
close to 2.6, which is essentially the value of the mean
cluster size of noninteracting particles confined in the box.
For N = 100 the mean cluster size starts to increase around
7 = 10, which, as we have seen, is close to the transition
temperature of the system. For N = 50 this temperature is
slightly less (approximately T = 4), whereas for N = 200 it
is around 30. Thus, we can make the crude statement that the
transition temperature for this finite system increases (faster
than linearly) with the number of particles.

Correlation functions. Concerning the correlation functions
of the particles’ positions

A(m) = ((ixm&i)) — ((Eivm)) (&)

(where ((...)) denotes the average both over the indices i and
the ensemble of configurations), we encounter [Fig. 10(a)]
a very slow decay with increasing distance m, taken as the
magnitude of the difference of the particles’ indices. The form
of these functions is very close to a quadratic polynomial. A
remarkable feature of the position correlation functions is that
temperature does not affect them contrary to the typical case for
most statistical systems (e.g., the spin correlation functions of
the classical Ising model [37]). This, however, is in agreement
with the fact that the mean configuration of the particles does
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FIG. 10. (Color online) The normalized correlation functions
A(m)/A(0) for T = 107> (blue line), T = 10~ (cyan circles), 7 = 10
(gray triangles with black line), T = 10° (red line with stars), and for
two different quantities: (a) the absolute positions of the particles &;,
(b) the interspace distance A§;. Note that for (a) all the curves for
different T are on top of each other and therefore not distinguishable.

not change much with the increase of temperature [Figs. 3(c)
and 3(d)].

On the other hand, the correlation functions of the spacing
between the particles

A(m) = ((A§i1mA&;)) — ((Aipm)) ((A&;))

exhibits a strong dependence on the temperature [Fig. 10(b)].
In particular, for low temperatures we observe a slower decay
of the correlation function A(m), whereas at high temperatures
(r > 10) the decay is in general abrupt becoming practically
zero form > 1.

Energy dependence on N, T, L. The mean potential energy
is in general a function of the temperature 7', the length
of the box L, and the number of particles N separately,
ie., (E) = f(T,L,N). In order to study numerically this
dependence we need to deal with dimensionless quantities.
We have already introduced the reduced temperature 7 and the
dimensionless positions {£;}. The next step is to introduce
the reduced specific mean energy (e) = ;gf\}, in analogy
with the dimensionless reduced temperature 7, and to study
the behavior of (¢) = h(r,N) keeping one of the parameters
constant and varying the other. Note that the 7', L dependence
is reduced to a dependence on the single parameter 7, which
exclusively determines the behavior of the system as discussed
above. Following this procedure we have computed (e(t)) for
N = 100, using both the Metropolis and the Wang-Landau
algorithm. Obviously [Fig. 11(a)] both algorithms give overall
similar results, which can be interpreted as evidence for
convergence. However, the Wang-Landau algorithm fails to
describe the regime of ultra-high temperatures due to the
predefined limited energy space available for the simulation.
The reduced specific mean potential energy (¢) is almost
constant for low 7, as the mean energy there is fully
characterized by the minimum value of W and
increases almost linearly with the logarithm of the reduced
temperature [(¢) o log(z)] for higher temperatures. Thus for
low temperatures we obtain the familiar (E) ~ L~! law for
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FIG. 11. (Color online) (a) The dependence of the dimensionless specific mean energy (¢) on the reduced temperature T on a semilog scale
for N = 100 (Metropolis: cyan circles; Wang-Landau: blue line). (b—d) The dependence of the dimensionless specific mean energy (¢) on N
on a log-log scale for (b) T = 1072 (circles for numerical values, blue line fit), (c) T = 10 (triangles, red line linear fit), (d) T = 10° (squares,

black line linear fit).

the Coulomb system. At temperatures close to 7, & 10 a weak
change in the sign of the curvature can be observed [Fig. 11(a)
(inset)], a fact that, as we will discuss below, leads to a smooth
maximum in the heat capacity C . The dependence of (E) on T
(onboth L and T') for higher temperatures can be interpreted as
a consequence of the dependence of the transition temperature
T, on L, which is confirmed by the behaviour of Cp
(see below).

We have used as well the Metropolis algorithm to obtain the
dependence of (¢) on N for three reduced temperatures, char-
acterized by a different qualitative behavior, corresponding to
the low-, intermediate, and high-temperature regimes, respec-
tively: T = 1072, 10, and 10°. The diagrams of Figs. 11(c) and
11(d) show alinear relation on alog-log scale which indicates a
power law relation between the involved quantities. The results
of the linear fits lead us to the following conclusions. For
Fig. 11(b) (low-temperature region) the fit contains not only
a linear but also a logarithmic term, indicating a relationship
(&) o« N log(N). This logarithmic correction is expected for
1D Coulomb systems in this temperature regime [23], due to
the formation of a crystal and the fixed particle positions. For
larger temperatures the relation becomes linear, resulting in a
characteristic exponent around 1.12 for t = 10 and 1.04 for
T = 10°, thus approaching 1 for high temperatures ((¢) o N).
It is clear that since the reduced mean specific energy (e)
depends on N extensivity is violated, a fact that is expected for
systems with long-range interactions. In summary, the mean
Coulomb energy scales roughly as (E) o NTZ, which coincides
with our intuition for Coulomb systems, but looking more

precisely at T — O the scaling of the mean potential energy
takes the form [Fig. 11(b)]:

NZ%log(N)

(E) ¢ ———, 3)

which will be used below in an attempt of interpreting the
thermodynamic limit in such a system.

Specific heat capacity cy . In order to proceed in our study
of the temperature dependence of (¢) we have also calculated
the specific heat capacity c; = #(%)L of the Coulomb
gas confined in a 1D box. Due to the fact that numerical
differentiation usually encounters large errors, it is difficult
to extract the heat capacity’s values from the results of the
Metropolis algorithm as shown in Fig. 11(a). A calculation of
the heat capacity via the energy fluctuations

‘L 1o 2

P v AT = (e))
proved also to be insufficient with the use of the Metropolis’
results, especially in the low-temperature regime. The main
problem was again the large errors involved in the calculation
of the energy’s variance. When calculated with the jackknife
method [37], they were found to have a value up to 70%, a fact
that renders the results useless. Thus, we have used instead
the density of states g(e) obtained from the Wang-Landau
algorithm, in order to compute the quantities (g),(g?) and
finally the reduced specific heat capacity via the relation
(4). We present our results for N = 100 in Fig. 12 using
a semilogarithmic scale. A smooth maximum occurs which
is located at T &~ 11, thus within the temperature region in

“4)
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FIG. 12. (Color online) The temperature dependence of the
specific heat capacity £ for N = 100 on a semilogarithmic scale:
(blue line) Wang-Landau results, (orange circles) Metropolis results.
The dashed purple line indicates the temperature 7, at which the
skewness becomes zero.

which the histogram of the interparticle distance A§; takes
approximately a Gaussian form [Fig. 6(d)] at the transition
point from the crystalline to cluster phase. The temperature
7 at which the skewness of the distributions becomes zero
(dashed purple line) coincides with the temperature at which
the caloric curve starts to increase significantly. The results of
Metropolis for high temperatures are found to be in accordance
with the Wang-Landau results. The complete behavior of
¢ reinforces the evidence that in this temperature region
around 10 there is a crossover, whose transition temperature
T. decreases as L~' since for fixed N = 100 we obtain
.~ 10 T, ~ 1%

The thermodynamic limit. As depicted in the dependence
of the mean potential energy (E) on N, L [Eq. (3)] the system
of ions confined in a 1D box presents strong deviations from
extensivity. The statistical treatment of nonextensive systems
is a challenging task, and many of its aspects remain still open
questions. A detailed study of the handling of nonextensivity
in order to obtain thermodynamic quantities and parameters
that remain finite in the thermodynamic limit can be found
in Ref. [38]. Although this procedure is beyond the scope
of the present paper, which aims only at the description of
finite systems, we present some basic results obtained with the
methods discussed in Ref. [38].

The main idea is to normalize the thermodynamic quantities
except the entropy S with the excessive powers of N, a fact that
is justified in the context of finite systems and resembles the
procedure we have followed to define dimensionless quantities
independent of the system’s size, like the reduced temperature.
Assuming a uniform distribution of charges with p = gz%, the
mean potential energy per particle scales roughly as

(E)

N
T:p/, r~tdr = plog(N) =g

» N log(N)
—

Note that this expression is the same as the one we have ob-
tained for the low-temperature regime [Eq. (3)]. The excessive
dependence N* in N is then given by N* = N log(N), and
one can define a normalized energy (E*) = ﬁ) , which is a
pseudo-extensive quantity [38]. This is used in order to obtain
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the thermodynamic limit in the following way:

. F(T,N) . (E(T,N)) T S(T,N)
Iim ——— = lim —— — lim e —
N—ooco NN* N—ooo NN* N—oo N* N

(&)

In order to keep entropy an extensive quantity we need to

define a pseudo-intensive temperature 7" = %, which leads
to a normalized reduced temperature:
L S (6)
N* N log(N)

This quantity is dimensionless and independent of the size
(N, L) of the system; thus its use helps to interpret our results
in the thermodynamic limit. The critical temperature of our
system is then found to be

T
= x~0.022. 7
W= 7

Since 7, = 0.022N log(N) we conclude that indeed 7. in-
creases with the number of particles N faster than linearly.
What is more, for N = 50 we are led to a value 7, ~ 4.2,
whereas for N = 200 the critical valueis 7, ~ 23. These values
are very close to the crude results obtained above from the
study of the mean cluster size as a function of temperature
(Fig. 9).

IV. THE INFLUENCE OF THE TRAPPING POTENTIAL

We have studied the statistical properties of a 1D chain
of ions confined in a box. Let us now briefly investigate
the effect of the trapping potential on these properties. We
focus especially on the case of the harmonic trap since it is
the most frequently used and convenient trapping potential.
In the low-temperature regime 1D systems of ions under
harmonic confinement have been extensively studied [23-28].
It has been found that a crystal is obtained whose length
depends nontrivially on the number of particles. The crystalline
structure represents a nonuniform ion distribution with the
opposite behavior of the one encountered for the box trap
(Fig. 5) since the ions tend to accumulate in the inner region
rather than the edges. This leads to a discrete but positively
skewed distribution of interparticle distances p(A&;) even for
ultra-low temperatures [Fig. 13(a)]. For temperatures until
T ~ 1 the skewness y; is almost constant. Then it starts
to increase up to T ~ 102, and from then on it saturates
at a value close to 7. No minimum or zero value exists.
Although the distribution p(A§;) still undergoes a transition
from a discrete form to a continuous one with a maximum
at A§; approaching zero, it is not possible to identify a clear
transition temperature by requiring this distribution to become
symmetric. A clustering (most probable value: A§; — 0) is
observed for higher temperatures in the harmonic trap, but
the form of the distribution does not tend to an exponential,
but to one with a much longer tail as indicated by the very
large value of the skewness. In general the deviation of the
statistical behavior of the ions under harmonic confinement
from the observed one for the box trap can to a large extent be
attributed to the change of the chain’s length with temperature
[Fig. 13(b)]. In the low-temperature regime the length of the
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FIG. 13. (Color online) Statistical properties of a system of
N = 100 ions confined in a harmonic trap with me?® = 32: (a) The
skewness of the distributions p(Ax;) as a function of the temperature
kpT . (b) The temperature dependence of the chain’s mean length (L).
(c) The mean cluster size as a function of the temperature kg7 . The
horizontal dashed line indicates the value of the mean cluster size for
N noninteracting particles confined in the same harmonic trap.

chain is approximately constant with a value given by [23]

gz 1/3
Lo(N) ~ 2 [BNlog(N)m] . ®)

In our case this yields L ~ 7. For temperatures larger than
T =~ 10> we encounter the behavior (L) oc T'/2, which is
clearly what would be obtained for noninteracting particles
under harmonic confinement in one dimension. Thus for very
large temperatures all the properties are dominated essentially
by the trapping potential.

Concerning the formation of the clusters, sizes larger than
one are possible even for comparatively low temperatures
[Fig. 13(c)]. The mean cluster size increases with temperature
and saturates finally at T &~ 10 at a value smaller than the re-
spective one for the box (Fig. 9). In this case too, the saturation
value coincides with the value of the mean cluster size obtained
for an identical system in the absence of interactions, and it
thus constitutes a feature completely determined by the size of
the system and the trapping potential. A definition of a reduced
temperature is not feasible since the Hamiltonian contains parts
with different spatial dependencies. However, it is possible to
use the relation obtained for the box t* = kBTﬁg(M and
substitute the length L of the box with the minimum length of
the chain Lo(N) [Eq. (8)]. We find then a critical temperature
kgT,. ~ 1.4. Close to this value the skewness and the mean
length start to rise whereas the mean cluster size reaches half
of its maximum value. Therefore, this could be interpreted as
a critical temperature for the system of ions under harmonic
trapping.

To conclude, the transition from a crystalline to a cluster
phase holds independently of the trapping potential. All the
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statistical properties seem to be affected by temperature,
in a way similar to the case of the box trap and thus
using the appropriate length scale, the expression obtained
for the critical temperature [Eq. (7)] provides us with valid
results for different trapping potentials. However, the specific
forms of the distributions p(&;),p(AE;) are affected by the
change of the trapping, since the minimum configuration
of the total potential V = V¢ + Vi, i.e., the shape of the
crystal, is qualitatively different for each case. Furthermore,
for high temperatures these distributions are predominantly
characterized by the trapping potential, tending to the forms
that would be obtained in the case of noninteracting particles
confined in the same traps.

V. CONCLUSIONS

We have explored the statistical and thermodynamical
properties of a system of equally charged particles confined
in a box of length L. This finite system exhibits a crossover
from a crystalline to a cluster phase at a transition temperature
T., which depends on both the number of particles N and
the length L of the box, as T, « M This expression
comes from an interpretation of the thermodynamic limit for
nonextensive systems, where a normalized temperature 7* is
introduced scaling with the system’s size in the same way as
the mean potential energy per particle. The thermodynamic
behavior of the finite system is properly described by the
characteristic distributions and correlations of the scaled
relative distances A&; of the particles, whereas quantities based
on the absolute positions of the particles are barely affected
by the temperature. Concretely, the probability density of A§;
undergoes a marked transition from a discrete accumulative
to an exponential form as the temperature increases. In the
transition regime it acquires a symmetric form, and the
corresponding heat capacity shows a maximum. For high
temperatures the particles form clusters whose size grows
with temperature and finally saturates. When the trapping
conditions are altered a similar transition occurs, but the critical
temperature is not clearly identifiable through the forms of the
distributions as described above.

In order to relate the results of our simulations to concrete
physical setups we need to assign specific values to the
parameters. Thus, for example, the temperature measured in SI
units (7%) is related to the normalized temperature t* through

g>Nlog(N)t* . Z2e*N log(N)t*
kBL - 47T8()kBL
N log(N
ogN)

TSI —

~ 1.7 x 107°2%¢* ,
where Z is the charge of the ions. We find then from
Eq. (7) that 7' = 3.7 x 107722 Y% M) gm_For cold atomic
ions, the formation of quasi-1D crystals with L ~ 1 mm [39],
N = 100 ions, and, e.g., Z = 1 leads to a critical temperature
TS '~ 1.7 x 107! K, which is easily accessible experimen-
tally. Therefore, by tuning the values of L and N it is possible
to study this crystalline-clustering crossover in laboratory
experiments with cold ions assuming a 1D trapping geometry.

Let us now speculate about potential applications of our
detected crossover and related phases to high energy collisional
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experiments of, e.g., highly charged nuclei. Although the
geometry of the highly energetic colliding ions is quasi-2D, it is
interesting to estimate some properties assuming roughly that
the 1D picture explored here is not a misleading description.
In nuclear systems the length scales are of order L ~ 10~ m
which for N = 100 nucleons leads to 75 ~ 10" K, i.e., to
a relative energy E. ~ 10 MeV. The nuclear mean binding
energy is of the order of 8 MeV per nucleon resulting in a total
energy of 800 MeV for the nucleus, somewhat larger than E..
Thus the nucleons confined in the colliding nuclei could be in
the cluster phase. Finally, we remark that the crossover physics
analyzed in this work could also appear in 1D systems showing
other long-range interactions, such as dipolar chains [40].
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APPENDIX: UNIQUENESS OF THE POTENTIAL
MINIMUM OF A FINITE 1D COULOMB CHAIN

Here we present a proof that the global minimum energy
configuration is the only minimum that the potential of the
finite 1D ion chain can acquire. We want only permutationally
different configurations, so we assume that we have N + 2
particles that are ordered in the sense that §) < & < --- <
En < Ent1 (& is the position of the first particle and &y the
position of the last one). We have shown (Sec. IIT A) that in
order to obtain a minimum the first particle has to be fixed
at the left edge of the segment, i.e., §y = 0, whereas the last
particle should always occupy its right edge &y = 1 (the
length of box is L = 1). Thus, the potential is given by the
expression

Differentiating this expression with respect to & we obtain

k—1

1
= La ey 51>2+,;l & — &)
1 1
AR

A second differentiation with respect to & leads to

k—1 k—1

2
3%‘13& Z(Ek E)3 Z(Sk &)3

i=1

- Z & sk>3 ot Z & sk>3 o

i=k+1 i=k+1

+ [3+#]5
g 1-gr ]
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Therefore, we obtaln for the Hessian matrix H of our

potential V (H;; = as 9E; 369E)

3%V 2 2 1

==+ —7=+2 0,
A (Ve DYy

Hy =

whereas the of-diagonal elements (I # k) are given by

92V 2
Hlk = = — 3 < 0.
08,05, 16 — &

It is known from multivariate calculus that if for arbitrary
dé f;‘ it holds that

H;;(§)d&dg; > 0,

N N
d2V=ZZZ

i=1 j=1

then the function V is strictly convex and it possesses at most
one minimum. In our case,

d*V = ZHkkd & + Z Z Hyd&dg

k=1 1=1
I#k
N
1 1
=2 -+ ———|d%
§ [5,3 a —&)*} ’
N N 1
+) Y ———— & —d&).
o = &l
I#k
Ttis obvious that Y3, 3°7_ | =5 (d& — d&)* > Oand

1#k
SALLE + 2 1d% > 0 for dE # 0, so the quantity d*V
is always positive and the potential a convex function with
only one minimum.

In general if a trapping potential of the form Vi, =
A Zk:l &, with A > O and an even numbern > 2is chosen, it
is evident from the above procedure that for the total potential
V = V¢ + Viggp it holds:

d*V =n(n — DA Zg" 24,

k=1

N N
dg, — d&)*,
+Z§|§k E|3(§k &)
I#k

k=1

which is also positive definite, and thus the total potential
possesses again a single minimum.
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