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Abstract

Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena

in ultrafast science, such as the dynamical evolution of the electron density during complex chemical

and biological processes. Scattering of ultrashort x-ray pulses from an electronic wavepacket would

appear to be the most obvious approach to image the electronic motion in real-time and real-space

with the notion that such scattering patterns, in the far-field regime, encode the instantaneous

electron density of the wavepacket. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci.

U.S.A., 109, 11636 (2012)] have put this notion into question and shown that the scattering in the

far-field regime probes spatio-temporal density-density correlations. Here, we propose a possible

way to image the instantaneous electron density of the wavepacket via ultrafast x-ray phase contrast

imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering

in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence

of an interference effect. We illustrate our general findings by means of a wavepacket that lies in

the time and energy range of the dynamics of valence electrons in complex molecular and biological

systems. This present work offers a potential to image not only instantaneous snapshots of non-

stationary electron dynamics, but also the Laplacian of these snapshots which provide information

about the complex bonding and topology of the charge distributions in the systems.

PACS numbers: 31.10.+z, 42.50.Ct, 82.53.Hn, 87.15.ht

1

http://arxiv.org/abs/1302.6751v1


In the past, momentum spectroscopy was used to study the internal dynamics of elec-

trons in stationary states [1–3]. According to quantum mechanics, the outcome of mea-

surements on stationary states is time-independent. In contrast, electronic wavepackets are

non-stationary states which undergo time-evolution and thus give rise to time-dependent

measurements. Therefore, access to the dynamics of non-stationary electrons provides new

information about phenomena at the microscopic level. The distinctive timescale of elec-

tronic motion, responsible for chemical bonding and electron transfer processes in molecules

and complex biological systems, ranges from a few femtoseconds (1 fs = 10−15 s) to several

attoseconds (1 as = 10−18 s). In order to gain insight into ultrafast chemical or physical

processes, one has to unravel the motion of electrons with spatial and temporal resolutions

of order 1 Å and 1 fs, respectively [4–6]. Pump-probe experiments are the most direct ap-

proach to investigate fast-evolving microscopic processes, where first a pump pulse triggers

the dynamics and then subsequently a probe pulse interrogates such triggered dynamics as a

function of pump-probe delay time. In the last few years, with the availability of laser pulses

on the sub-fs timescale [7, 8], remarkable progress has been made towards the understanding

of electronic motion in real time [9–15]. In recent years, due to advancement in technology,

it has become possible to generate ultraintense, ultrashort and tunable x-ray pulses from

novel light sources such as free-electron lasers (FEL) [16, 17], laser plasmas [18] and high-

harmonic generation [19, 20], which may provide a unique opportunity to investigate these

ultrafast processes with atomic-scale spatial and temporal resolution. Since the beginning

of the operation of the first FEL in the hard x-ray regime, the Linac Coherent Light Source,

high-intensity x-ray experiments have been carried out for systems ranging from atoms [21],

small molecules [22], complex biomolecules [23], to matter in extreme conditions [24].

To image electronic motion in real-time and real-space, which is important to understand

several ultrafast complex processes, one can perform far-field scattering of ultrashort x-ray

pulses from the dynamically evolving electronic system. By varying the pump-probe time

delay one obtaines a series of scattering patterns that serve to image the electronic motion

with atomic-scale spatio-temporal resolution. Based on experience with elastic scattering

from electronically stationary targets, one might expect to be able to retrieve the instanta-

neous electron density (IED) of the electronic wavepacket via ultrafast scattering in far-field

regime. However, for probing the motion of the wavepacket on an ultrafast timescale, one

needs an ultrashort pulse with unavoidable bandwidth. Due to the inherent bandwidth,
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there is no way to know whether the probe pulse induces transitions among the eigenstates

spanning the wavepacket, or to other states closer in energy than the bandwidth. As a result,

the probe pulse inevitably changes the wavepacket and the pattern contains contributions

from all the states within the bandwidth, that were accessed during the scattering process.

Therefore, it is impossible to transfer the concepts underlying stationary coherent scattering

to the ultrafast regime. Recently, Dixit et al. [25] have investigated ultrafast scattering from

an electronic wavepacket in the far-field regime and shown that the scattering patterns en-

code spatial and temporal correlations that deviate completely from the notion of the IED

as the key quantity being probed [4, 26]. Moreover, they have shown that, ultimately this

is a consequence of quantum electrodynamics and can not be captured semiclassically [25].

Therefore, it is not possible to retrieve direct information about the dynamical structural

changes during the complex processes from these correlations. On the other hand, if one

can retrieve the IED at different instants of time during the processes, it will provide direct

insight about these processes. In light of this, one may wonder if there is any way, using

light, to image the IED of the wavepacket in real-space at different instants of time during

the motion of the wavepacket.

In this Letter, we demonstrate rigorously how the IED of an electronic wavepacket can

be imaged via ultrafast phase contrast imaging (PCI). The two important classes of imaging

are near-field imaging and far-field imaging (see Fig. 1) [27, 28]. In the following, we discuss

the pros and cons of imaging the motion of the wavepacket in both regimes. In far-field

imaging, one only detects the scattered radiation and obtains the Fourier space image of the

object from which the scattering has taken place. This is what is normally done in x-ray

crystallography [27]. On the other hand, in near-field imaging, one detects the interference

between incident and scattered radiation [27]. X-ray PCI falls into the near-field imaging

regime, with many applications in various fields of science including biology [29, 30] and

condensed matter physics [31, 32]. Photoelectron holography [33–35] is an alternative ap-

proach to imaging electronic motion. We expect that the technique of ultrafast x-ray PCI

proposed here will be particularly useful for studying spatially extended systems, which are

often inaccessible to methods based on photoelectrons.

We apply a consistent quantum theory for the radiation field and the electrons, by treating

both using the language of quantum field theory. Following from the principle of minimal

coupling in Coulomb gauge, the Hamiltonian describing the interaction between radiation
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FIG. 1. (color online). Concept of radiation-matter interaction, where matter is represented by an

isosurface of an electronic charge distribution of an electronic wavepacket. The real-space phase-

contrast image is observed in the near-field region, whereas the Fourier-space scattering pattern is

observed in the far-field region.

field and electrons is [36]

Ĥint = −
e

m

∫

d3x ψ̂†(x)

[

Â(x) ·
~

i
∇

]

ψ̂(x)

+
e2

2 m

∫

d3x ψ̂†(x) Â2(x) ψ̂(x). (1)

Here, the field operator ψ̂†(x) [ψ̂(x)] creates (annihilates) an electron at position x; e and m

are charge and mass of the electron, respectively; (~/i)∇ represents the canonical momentum

of an electron, ~ being the reduced Planck constant; and Â is the vector potential operator

of the radiation field. Here, we only focus on scattering events induced by the Â2 operator

and will not consider the contribution from the Â(x) · ∇ term in Eq. (1) in the scattering

process as it is known that its contribution is negligibly small at photon energies much higher

than all inner-shell thresholds in the system of interest [27]. However, it is useful to mention

that the scattering induced by the Â(x) · ∇ term in second order gives rise to the Kramers-

Heisenberg cross section, which describes the powerful photon-in/photon-out technique of

resonant inelastic x-ray scattering [37–39]. Note that inelastic and elastic scattering at high

photon energy, i.e., Compton and Thomson scattering, is mediated by the Â2 operator.

Since we are working in a particular gauge (the Coulomb gauge), our approach is not gauge

invariant.

Let us assume that with the help of a pump pulse, one prepares a coherent superpo-
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sition of eigenstates (electronic wavepacket) with ρ̂elin = |Ψin〉〈Ψin| as the initial density

operator for the wavepacket. The multimode radiation field is treated as a collection of

photons occupying different electromagnetic modes with ρ̂Xin as the initial density oper-

ator of the field [40]. Before the interaction takes place, the entire system is therefore

prepared in the initial state ρ̂in = ρ̂Xin ⊗ ρ̂elin. The density operator evolves according to

ρ̂(t) = limt0→−∞ ÛI(t, t0) ρ̂in Û
†
I (t, t0), with the time-evolution operator ÛI satisfying the

equation of motion with respect to Ĥint in the interaction picture. Making a perturbation

expansion of the time evolution operator to first order with respect to Ĥint, the expectation

value of an observable Ô at time t is expressed as

〈Ô〉t = Tr
(

ρ̂(t)Ô(t)
)

= Tr
(

ρ̂inÔ(t)
)

+ 2Re

{

i

~

∫ t

−∞

dt′Tr
(

ρ̂inĤint(t
′)Ô(t)

)

}

+
1

~2

∫ t

−∞

∫ t

−∞

dt′dt′′Tr
(

Ĥint(t
′′)ρ̂inĤint(t

′)Ô(t)
)

. (2)

Here, Ô evolves with respect to Ĥ0 = Ĥel + Ĥrad, i.e., Ô(t) = exp( i
~
Ĥ0t) Ô exp(− i

~
Ĥ0t),

where Ĥel and Ĥrad are the Hamiltonians corresponding to the electrons and the radiation

field, respectively. If the observable is the intensity at the detector, the interpretation of

the terms on the right-hand side of Eq. (2) is straightforward. The first term describes the

intensity of the incident radiation; the second term describes the interference between the

incident and the scattered radiation; and the last term represents the scattered radiation

only (see Fig. 1).

Now we focus on those terms that are responsible for ultrafast PCI, i.e., the first and

second terms on the right-hand side of Eq. (2). Modelling the intensity observable at the

detector Ô by the Poynting operator that acts only on the radiation part [41], the state of

the electronic system after the scattering event remains undetected. Thus the second term

can be written as

Tr
(

ρ̂inĤint(t
′)Ô(t)

)

=
e2

2 m

∫

d3x TrX
(

ρ̂XinÂ
2(x, t′)Ô(t)

)

×Trel
(

ρ̂elinn̂(x, t
′)
)

, (3)

where TrX and Trel are the traces over radiation and electrons, respectively; and n̂(x) =

ψ̂†(x) ψ̂(x) is the electron density operator. In this case,

Trel
(

ρ̂elinn̂(x, t
′)
)

= 〈Ψin|n̂(x, t
′)|Ψin〉 = ρ(x, t′). (4)
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Here, ρ(x, t′) is the IED of the wavepacket at time t′. At this point, it is interesting to

note that the probe pulse inevitably changes the wavepacket. But due to the interference

between the incident and scattered radiation, described by Eq. (3), eigenstates outside the

wavepacket cannot contribute to the signal at the detector in the case of near-field imaging

[see Eq. (4)]. This present result is in contrast to the results obtained in the case of far-field

imaging, where one only observes scattered radiation. An analysis of the third term on

the right-hand side of Eq. (2) demonstrates that the patterns obtained via far-field imaging

contain the fingerprint of electronic transitions within the bandwidth of the probe pulse [25].

Now, the x-ray pulse is considered to be quasi-stationary, quasi-monochromatic, and spa-

tially coherent. Furthermore, we assume that the x-ray pulse duration is sufficiently short to

freeze the dynamics of the wavepacket, and the pulse propagates along the y axis. Therefore,

using quantum theory as shown in the case of x-ray PCI from a stationary sample [41], we

find that the time-resolved phase contrast image is related to the Laplacian of the projected

instantaneous electron density, ρ⊥(r⊥, τ) =
∫

dryρ(r, τ) with r = (rx, ry, rz), r⊥ = (rx, rz)

and τ is the pump-probe delay time. Therefore, the signal at the detector in the case of

ultrafast PCI is

I(r) = Iin

(

1−
2πreD

|kin|2
∇2ρ⊥(r⊥, τ)

)

, (5)

where Iin is the signal due to the incident radiation alone, kin is the wavevector of the

incident radiation, re is the classical electron radius, and D is the distance of the detector

from the object. The key quantity in ultrafast PCI is the Laplacian of the projected IED

of the wavepacket. The experimental parameters for performing ultrafast PCI are subject

to certain conditions. The near-field regime is in general characterized by a Fresnel number

F & 1, which relates the spatial extension a of the wavepacket with D and the wavelength λ

of the incident radiation via F = a2

λD
. Quasi-monochromaticity of the pulse is ensured by a

sufficiently long coherence time; however, τtc has to be short with respect to the propagation

time of the radiation to the detector, λ
2π c

≪ τtc ≪
D
c
, c denoting the speed of light.

The two-dimensional (2D) projection of the IED, ρ⊥, can be retrieved by applying a

suitable Poisson solver algorithm to a single recorded image. The full three-dimensional

(3D) tomographic distribution of the IED can be reconstructed by recording several 2D

projected images for many different projection angles. Several tomographic methods to

reconstruct the 3D distribution have been developed, as reviewed by Burvall et al. [42]. A

direct method for reconstructing the 3D IED, without intermediate reconstruction of the 2D
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projected IED ρ⊥, was presented in Ref. [43]. By taking images of the object rotated around

the z axis about an angle θ, described by the density ρθ, one obtains the data sets gθ = ∇2ρθ⊥

from Eq. (5). The reconstruction algorithm has the form of a filtered backprojection. By

the Fourier projection theorem [44] the Fourier transform of a data function gθ corresponds

to a rotated plane in Fourier space of the 3D object. The 3D object can be reconstructed

by applying the filter function Q(kxθ
, kz) = |kxθ

|/(k2xθ
+ k2z) in Fourier space and integrating

over all rotation angles,

ρ(r, τ) =
1

4π2

∫ π

0

dθF−1[QF [gθ]](xθ, z) , (6)

where xθ = x cos θ + y sin θ and F denotes the 2D Fourier transform. The 3D Laplacian of

the IED, ∇2ρ(r, τ), can be obtained by applying the filter Q(kxθ
, kz) = |kxθ

| in the filtered

backprojection. Therefore, ultrafast PCI provides the full 3D Laplacian of the IED, which

highlights internal and external boundaries of the wavepacket e.g., zero flux boundaries—a

very useful and informative quantity according to Bader’s theory of atoms in molecules,

where the Laplacian of the electronic density is used to provide detailed information about

the complex bonding and topology of the charge distributions in molecules [45, 46].

In order to illustrate the generality of our proposed method for imaging the IED of the

wavepacket, we apply ultrafast PCI to the same electronic wavepacket as was considered by

Dixit et al. [25]. In this case, the electronic wavepacket is prepared as a coherent superpo-

sition of the 3d and 4f eigenstates of atomic hydrogen, each eigenstate having a population

of 50% and the projection of orbital angular momentum being equal to zero. The oscillation

period of the wavepacket is T = 6.25 fs, which is inversely related to the energy spacing be-

tween the 3d and 4f eigenstates (0.66 eV). It is important to emphasize that the considered

wavepacket lies in the energy and timescale of the valence electronic motion in more complex

molecular and biological systems [47–50]. Moreover, in many-electron systems, where only

few electrons get excited and participate in the formation of an electronic wavepacket, the

electronic density of the system can be decomposed into a time-dependent density of excited

electrons and a static density of the stationary electrons.

Figure 2(a) shows phase contrast images calculated with the Laplacian of the projected

IED, ∇2ρ⊥ as a function of the delay time at times 0, T/4, T/2, 3T/4, and T. Figure 2(b)

shows the projected IED, ρ⊥, of the wavepacket, where the electronic charge distribution

periodically undergoes localization to delocalization from positive to negative z axis within
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FIG. 2. (color online). Phase contrast images and projected instantaneous electron density of the

wavepacket. (a) Laplacian of the projected instantaneous electron density, and (b) the instanta-

neous electron density integrated along the direction of propagation of the incident x rays (y axis)

at pump-probe delay times 0, T/4, T/2, 3T/4, and T, where the oscillation period of the electronic

wavepacket is T = 6.25 fs.

6.25 fs. The spatial extension of ρ⊥ is 14–17 Å along the z axis and 7.5–9 Å along the x

axis. As the electronic charge distribution oscillates from positive to negative z axis and

returns back to its original position, the patterns obtained by ultrafast PCI follow the same

trend of the oscillation and provide the correct time period of the oscillation. At delay times

T/4 and 3T/4, the charge distributions are completely delocalized and identical to each

other, and the phase contrast images are also identical (see Fig. 2). The present results are

fundamentally different from the scattering patterns obtained via far-field scattering, where

the patterns are completely different at delay times T/4 and 3T/4, whereas the electronic

charge distributions are identical at those times [25]. Similarly, the charge distributions are

completely different at times 0 and T/2, which is also reflected in the phase contrast images

at those delay times, whereas the far-field scattering patterns are identical at times 0 and

T/2 [25]. Clearly, the images obtained with ultrafast PCI are directly related to the IED of

the wavepacket.

The patterns obtained via ultrafast PCI are rich in information. Figure 2(a) shows more

structures than the corresponding ρ⊥ shown in Fig. 2(b). It is important to notice that the

images have both positive and negative lobes, whereas the densities have only positive lobes.
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The 3d and 4f eigenstates in the wavepacket have no radial nodes, they only have angular

nodes. The PCI images show the curvature of these angular nodes in the wavepacket. The

electronic charge distribution is locally concentrated where ∇2ρ⊥ < 0 and depleted where

∇2ρ⊥ > 0. Therefore, these images provide the topology of the electronic charge distribution

with detailed information about the nodal structure of the wavepacket.

In conclusion, we have demonstrated that the IED of the wavepacket can be imaged via

ultrafast PCI. Therefore, ultrafast PCI can provide direct information about the dynamical

changes in the spatial electron probability distribution at different instants of time. Morever,

ultrafast PCI provides the Laplacian of the IED, which reveals the internal structures of

the wavepacket through local variations in the IED. Ultrafast PCI does not rely on any

assumptions such as the single-active-electron approximation [51, 52]. The technique is

therefore applicable to large and strongly correlated systems and ultrafast PCI would be very

powerful for imaging electronic quantum motion in real-time and real-space with potentially

unprecedented spatio-temporal resolution. Ultrafast PCI may be expected to shed light on

non-equilibrium quantum motion, for example, in peptides and biological systems [47–49].

Therefore, with the tremendous technological advancement in x-ray imaging technologies [53,

54], one might expect ultrafast PCI measurements to be feasible in the future.
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