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Abstract

Equilibrium is a state of maximal entropy or disorder; it �looks boring�. In con-

trast, systems maintained far from equilibrium exhibit a diversity of fascinating

behaviour including pattern formation and turbulence. These systems still pose

fundamental questions.

In this thesis we report on a study of a granular, far-from-equilibrium system

consisting of macroscopic, spherical particles con�ned in a narrow, cuboidal cell

with a square base and large aspect ratio. The cell is vibrated sinusoidally in the

direction perpendicular to the long sides. In previous work the system has been

shown to behave as a two-dimensional granular gas. If the number of particles

in the box exceeds a certain threshold, then we can observe several patterned

states upon varying the driving amplitude. The patterns are found to consist

of subharmonic standing waves reminiscent of Faraday waves in molecular �uids.

We observe time-independent patterns as well as a spatiotemporally chaotic state

in which the pattern changes its shape rapidly. At higher driving amplitudes

impressive wave fronts sweep across the system and destroy the patterns. The

waves are replaced by a large-scale circulation if the amplitude is increased further.

These states show characteristics of turbulence. We ascertain that the system has

no characteristic length-scale after descending into the turbulent state.
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Chapter 1

Introduction

The diversity of patterns found in nature is breathtaking. Patterns can be observed

in cloud formation, animal hides, ripples on sand and many other natural scenarios,

see Fig. 1.1. During the last decades the study of pattern formation in laboratories

developed into an important branch of nonlinear physics. Pattern-forming labo-

ratory systems often show a transition to chaotic or turbulent behaviour upon a

variation of the experimental parameters.

(a) (b) (c)

Figure 1.1: Patterns found in nature: (a) geological formations [1], (b) sand dunes [2],
(c) gira�e fell marking [3].

In this thesis we report on the analysis of patterns formed in a granular system.

The system studied consists of macroscopic, spherical, dry particles. The particles

are con�ned in a narrow cuboidal cell with a square base. To agitate the particles

the cell is vibrated vertically using an electromagnetic shaker. By varying the driv-

ing parameters (driving amplitude, A, and driving frequency, f) of the vibration,
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1.1. Granular Matter

we observe a sequence of patterns emerge in the system as well as a transition to

states that show characteristics of turbulence. The patterns consist of standing

waves oscillating at subharmonics of the driving driving frequency. The di�erent

patterned and turbulent-like states could be observed at di�erent mean volume

�lling fractions1, φ, driving frequencies, f , and for di�erent cell geometries.

In this chapter we brie�y introduce granular systems, pattern formation and

turbulence including a short literature review to place our research in context.

The subsequent chapter contains a description of the experimental methods and

the apparatus. The driving amplitude of the electromagnetic shaker needed to be

calibrated, the calibration process is described in Sect. 3. In the following chapter

we brie�y discuss a liquid-gas-like phase separation that can be observed in the

system at low �lling fractions. This work was carried out to familiarise myself

with the apparatus. In Chap. 5 we present the measurements and observations of

the pattern-forming behaviour and the transition to turbulent-like states. Section

5.4 contains quantitative evidence that the wave-like state of the system is indeed

turbulence. We verify the oscillation frequency of the standing waves that form

the patterns in Sect. 5.5. In the penultimate chapter we critically discuss the

experimental imperfections of the apparatus and the methods used. The �nal

chapter contains a summary of the thesis, an evaluation putting the results into

context and comparing them to observations in di�erent pattern-forming systems

as well as ideas for future work.

1.1 Granular Matter

A granular material is an agglomeration of large numbers of solid, macroscopic

particles. For macroscopic particles, the complex microscopic interactions between

particles can be modelled as a simple contact interaction when two particles col-

lide. Granular materials are dissipative systems. The collision of two particles is

inelastic, that is the kinetic energy decreases upon every collision [4].

In practice one refers to granular systems even if other interactions are present

but negligible and the particle-particle collisions dominate the behaviour. This

1We de�ne the mean volume �lling fraction as φ = NVparticle/Vcell here N is the number of
particles in the cell, and Vparticle and Vcell are the volume of one particle and the cell respectively.
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1.1. Granular Matter

yields a lower boundary for the particle size of approximately 100µm, because for

smaller particles van der Waals forces cannot be neglected. In principle no upper

range for the particle size exists and the concept of granular matter may even be

applied to such things as planetary rings [4].

Although the equations of motion determining the behaviour of each individ-

ual particle can easily be written down using classical mechanics, the collective

behaviour of many-body systems like granular systems still lacks a theoretical ba-

sis. Granular matter behaves di�erently from any of the four classical states of

matter: solid, liquid, gas and plasma. A granular system can show characteristic

features of two or more states, but also exhibits unique behaviour. Consequently,

granular matter is not only studied because of its wide application �eld in indus-

try2, but also for the fundamental questions it still poses [6, 7].

When the average kinetic energy of the particles is low and the motion of the

particles relative to each other is small, the system acts like a solid. Granular solids

can appear in disordered, glass-like, or highly ordered, crystalline states [7, 8]. If

the mean kinetic energy is increased and the particles are allowed to �ow, then a

granular system behaves like a liquid and can be described by a hydrodynamical

approach [7]. A further increase of the average kinetic energy in loosely con�ned

systems leads to a transition to gas-like behaviour [7]. The transition from solid-

like to liquid-like and gas-like behaviour can be observed experimentally [9�11].

Additionally, steady-state granular systems are known to separate into di�erent

phases. For example, in a certain parameter range, the system studied in this

project is known to separate into a hot, dilute, gas-like and a cold, dense, liquid-

like phase [9, 12]. A brief description of the phenomenon can be found in Chap. 4,

for more details see [9, 12].

As granular systems dissipate energy through collisions, the system can only

be in a steady state of a constant mean kinetic energy, if the dissipation is bal-

anced by energy injection through an external source. One way to realise this is

by vibrating or tapping the particles. By constantly injecting energy the system

is maintained in a far-from-equilibrium state. Like other dissipative systems they

exhibit a wide range of pattern formation (see Sect. 1.2). The pattern-forming

2Patrick Richard claimed: �Granular materials are ubiquitous in nature and are the second-
most manipulated material in industry (the �rst one is water)� [5].
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1.2. Pattern Formation

behaviour strengthens the analogy between granular systems and molecular �uids

which show pattern formation in a great variety of di�erent systems. In molecular

�uid pattern-forming behaviour is extensively studied both theoretically and ex-

perimentally [13]. Before describing the patterns observed in granular systems we

introduce the general principles of pattern formation in the next chapter.

1.2 Pattern Formation

Pattern-forming systems belong to a class of systems that are maintained out

of thermodynamic equilibrium by an external �control parameter�, such that the

mechanisms which drive the system out of equilibrium compete against dissipative

mechanism that restore equilibrium if the driving stops. The mechanisms that

drive the system out of equilibrium could be a �ux of momentum, energy or mass

[13, 14]. Examples of a control parameter are a temperature gradient, a gradient

in the chemical concentration or parametric forcing. The restoring, dissipative

mechanisms can be viscous friction, heat conduction or di�usion [14].

Typically the system has some kind of basic, homogeneous state that looses

stability if the control parameter passes a critical threshold. At this point, the

homogeneous state is replaced by a patterned arrangement known as the �primary

pattern� or �primary instability�. Especially close to the instability threshold of

the primary pattern, similar behaviour in very di�erent systems can be observed

[13, 14]. The primary pattern often shows no time-dependence and has a simple

spatial structure.

A further variation of the control parameter can cause a transition from the

primary pattern to another state where a new pattern forms, the secondary insta-

bility. In many cases secondary patterns are slight modi�cations of the primary

pattern [13, 15]. Instabilities of tertiary and higher order can lead to a succession

of time-independent and time-dependent patterns with growing complexity until

the system transitions into a chaotic or sometimes turbulent state [14].
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1.2. Pattern Formation

(a) (b) (c)

Figure 1.2: Examples of convective patterns observed in a Rayleigh-Bénard convection
experiment with silicone oil. Image (a) shows a straight line pattern. Image (b) a zig-zag
instability and image (c) a cross-roll instability. The cross-roll instability and the zig-zag
instability have developed out of the straight line pattern. The images (a) -(c) are taken
from [16].

Rayleigh-Bénard Convection

Rayleigh-Bénard convection (�RBC�) is one of the simplest sustained nonequilib-

rium systems and one of the most studied examples of a convective pattern-forming

system [17]. A general introduction to Rayleigh-Bénard convection is given in [13,

14, 18], recent developments are summarised in [19].

An RBC experiment consists of a layer of �uid between two horizontal plates.

The bottom plate is kept at a warm temperature T = T1, whereas the top plate

is cold T = T2 < T1, so that �uid near the bottom plate is warmed with respect

to that near the top plate. The �ux of energy is the mechanism that drives the

system out of equilibrium. The temperature di�erence ∆T (control parameter)

creates a density gradient in the �uid, because the warmed �uid expands. The

density di�erence results in a buoyancy force. For a small temperature di�erence,

∆T , viscous forces exceed the buoyancy force so that heat is transferred solely

through heat conduction (restoring mechanism) from the bottom to the top plate.

When the temperature di�erence exceeds a critical threshold ∆T ≥ Tcrit (�primary

instability threshold�), the buoyancy forces exceed viscous forces and convection

sets in. If ∆T remains close to the primary instability threshold, a steady �ow

forming a straight roll-pattern is established. With increasing temperature dif-
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1.2. Pattern Formation

ference, the �uid can undergo instabilities of higher order, and various kinds of

secondary patterns like zig-zag, skewed-varicose, wavy roll or crossroll instabilities

(see Fig. 1.2), can be observed. When the temperature is increased further, the

�ow can lose its spatial or temporal coherence and becomes chaotic (�spatiotem-

poral chaos� see Fig.1.3). The system transitions into turbulence, often phrased

as a �descending into turbulence�, at even higher ∆T .

Figure 1.3: Snapshot of a spatiotemporally
chaotic pattern, �Spiral Defect Chaos�. The
photograph shows a cylindrical Rayleigh-
Bénard convection cell with CO

2
-gas. The

spiral structures move in time. The defects
emerge randomly in the system and either
merge with neighbouring spirals or disappear.
The image is taken from [20].

In the �soft turbulent� state the �ow exhibits random characteristics in space

and time. If ∆T exceeds a certain, higher threshold, the coherence of the �ow is

restored and a large-scale circulation sets in [21�23]. This regime is referred to as

�hard turbulence�. Summarising: upon increasing the temperature di�erence the

system undergoes various pattern-forming instabilities, exhibits spatiotemporal

chaos and descends into soft and hard turbulence.3

Faraday Experiment

The Faraday experiment is a common example of a periodically forced pattern-

forming system. For a brief introduction see [14]. Its basic element is a layer of

�uid in a container that is shaken vertically with a �xed frequency and amplitude.

3To the extent of my knowledge, in the literature there is no clear distinction between be-
haviour labelled as spatiotemporal chaos and that labelled as turbulent. A turbulent regime is
also spatiotemporally chaotic, but a spatiotemporally chaotic regime is not necessarily turbulent;
for example, it is not necessarily characterised by the absence of a typical length scale.
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1.2. Pattern Formation

(a) (b)

Figure 1.4: Primary patterns observed in Faraday waves with single-frequency forcing:
In low-viscous �uids squares (a) emerge, whereas in high-viscous �uids stripes (b) form.
Panel (a) shows a Faraday experiment with oil in a rectangular cell at a forcing frequency
f = 20Hz. The primary pattern emerges as nearly perfect squares. The image is taken
from [24]. A pattern of essentially parallel lines is observed with high-viscous �uid, a
mixture of 88% glycerol and 12% water at a forcing frequency f = 80Hz. The image is
taken from [25].

If the acceleration exceeds a critical threshold the �at surface of the �uid becomes

unstable and standing surface waves can be observed oscillating at subharmonics

of the driving frequency, f . These surface waves are known as �Faraday waves�,

named after Michael Faraday who �rst described them in an appendix to an article

in 1831 [26].

The shape of the surface wave depends on the properties of the �uid. Close

to the primary instability threshold, low-viscous �uids typically develop a square

pattern, whereas in high-viscous �uids stripe pattern, analogous to the straight

roll patterns in RBC, can be observed [25]. Higher instabilities include hexagonal

lattice patterns [14, 25]. Figure 1.4 shows examples of patterns observed in Faraday

experiments. The surface waves of primary instabilities oscillate at half the driving

frequency, that is the period doubles with respect to the homogeneous state. With

increasing driving acceleration faraday systems can show a sequence of period

doublings, that is patterns oscillating at f/4, f/8..., before the system descends

into a turbulent regime [14, 15].

Multiple frequency forcing allowed to discover a great variety of di�erent pat-

terns and �quasi-patterns�4[25].

4Quasi-patterns are analogous to two-dimensional quasicrystals. A quasicrystal describes a
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1.2. Pattern Formation

Pattern Formation in Granular Systems

During the last decades pattern formation in granular matter has been observed

and studied experimentally, numerically and theoretically in two- and three-dimensions.

A detailed review can be found in [7]. Various types of patterns in di�erent cell

geometries have been reported [29�34].

To our knowledge, all reported experiments of the pattern formation process

in granular media were carried out in open-top or very high cells, in which a

shaking bottom plate injects energy and drives the particles and gravity acts as

a con�ning force keeping the system together [31, 32, 35, 36]. If the driving

acceleration exceeds a critical threshold, then the �at surface of the granular layer

becomes unstable and a standing wave oscillating at a subharmonic of the driving

frequency f appears. Figure 1.5 illustrates the structure of the pattern showing

a side-view of a standing wave. Figure 1.6 shows examples of patterns (top-view)

including squares, stripes and hexagons observed in a granular bed. The patterns

oscillate at f/2 and f/4 respectively. Other investigations have revealed localized

excitations (�oscillons�) [37], as well as spiral patterns [31], crossroll patterns [38]

and skew-varicose patterns [38] which look strikingly similar to patterns observed

in Rayleigh-Bénard convection. Like the Faraday experiment, the granular system

is an example of a periodically forced pattern-forming system undergoing surface

instabilities. In both the granular and molecular �uid systems the patterns appear

as a surface instability. Additionally some patterns observed in granular systems

(squares, stripes, hexagons) are strongly reminiscent of patterns observed in the

Faraday experiment. It is important to note di�erences between the systems:

In the molecular �uid, surface waves with a dispersion relation f(k) exist in the

absence of external forcing, and the forcing ampli�es the modes with f(k) close

to subharmonics of the driving frequency. In the granular system surface waves

cannot exist without external forcing (indeed the system does not remain in the

�uid-like state without the external forcing) and the driving frequency does not

�x the wavenumber of the patterns [28].

Although several instabilities of higher order have been studied in granular

systems and a period-doubling route has been observed [28, 34, 39], turbulent

structure that is ordered but not periodic [27].

8



1.2. Pattern Formation

Figure 1.5: Side-view of standing waves taken from [28]: �Photograph of the grain layer,
stroboscoped at the excitation frequency. The double-period motion is clearly visualized
by the two superposed shapes, indicating four regions of the layer oscillating successively
out of phase.�[28]

Figure 1.6: Standing wave patterns observed in experiment (left) and simulation(right)
of driven granular matter [29]. Γ indicates the dimensionless driving acceleration
Γ = A(2πf)2/g, here A, is the driving amplitude, f the driving frequency and g the
gravitational acceleration. The patterns are described as: �(a) squares, (b) stripes, (c)
and (d) alternating phases of hexagons, (e) �at layer, (f) squares, (g) stripes, and (h)
hexagons. Patterns (a) - (e) oscillate at f/2, (f) - (h) at f/4. The dimensionless layer
depth [n] is 5.42. The brightness indicates the height of the layer. The experiments use
lead spheres sieved between 0.5 and 0.6mm.�[29]
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1.3. Turbulence

states have only been observed in simulations of two-dimensional systems [40�42].

1.3 Turbulence

Our understanding of turbulence was �rst based on observations in molecular �uid

dynamics. Turbulence is a �ow regime characterised by chaotic changes in various

observables and rapid �uctuations. A turbulent �ow is highly irregular, it is often

characterised by vortex generation. Compared to laminar �ow, turbulent �ow is

highly di�usive (�good mixing properties�) and highly dissipative (�high rates of

kinetic energy are converted into heat�) [43].

Several attempts have been made to develop a theoretical model for turbulence

in molecular �uids: The phenomenology is usually phrased in terms of �eddies�,

vortex-like structures. Turbulence causes the formation of eddies of many di�erent

length scales. Figure 1.7 shows two examples of turbulent �ow. In Fig. 1.7 (a) the

three-dimensional vortex generation in the turbulent �ow of a free jet is illustrated.

Figure 1.7 (b) shows a quasi-two-dimensional turbulent �ow observed in Jupiter's

atmosphere. As the images illustrate, two- and three-dimensional turbulence looks

(in general) signi�cantly di�erent from each other [43].

In three-dimensional turbulence, it is usually assumed that energy is injected

in large-scale structures and �cascades� towards smaller length scales in the so-

called �inertial range� until the structures are small enough that the energy is

dissipated through viscous mechanisms. Based on this energy cascade and the

assumption of self-similarity, Kolmogorov proposed a �rst phenomenological theory

for the energy transfer in the inertial range [46]. According to this theory the

cascade is independent of the �uid properties and the nature of the energy injection.

The theory predicts that the energy spectrum of the velocity �eld E(k), follows

a power-law E(k) ∼ kα, where k denotes the local wavenumber. The power-

law dependence re�ects the assumption of scaling invariance, in this case self-

similarity at each length-scale. In subsequent work the theory was re�ned and

further theories were developed predicting a power-law dependence of the energy

spectrum. The literature reports an exponent of α = −5/3 (Kolmogorov-Obukhov

(KO) scaling) for the range in which inertial forces dominate [46]. If instead

buyoncy forces dominate, then an exponent of α = −11/5 (Bolgiano-Obukhov

10



1.3. Turbulence

(a) 3D (b) 2D

Figure 1.7: Three- and two-dimensional turbulence. Panel (a) shows the three-
dimensional vortex generation of a free jet. At the left hand side of the photograph,
the �ow is still laminar, but smoothly transitions into turbulence at the right hand side.
Panel (b)shows a quasi-two-dimensional turbulent �ow: A false colour image of Jupiter's
Great Red Spot. The large-scale vortex is characteristic of two-dimensional turbulence.
The images are taken from [44] (a) and [45] (b), respectively.

(BO) scaling) is predicted [47, 48].

Two-dimensional turbulence is extremely di�erent. Through eddy-cannibali-

sation large-scale structures develop out of small scale structures [43]. In 1967

Kraichnan [49], Leith [50] and Bachelor [51] pioneered the theoretical study of

two-dimensional turbulence based on Kolmogorov's concept for three-dimensional

turbulence. The theory is based on the assumption that the forcing injects energy

and enstrophy in a narrow band of intermediate length scales and that energy

is transferred to larger length scales, an �inverse cascade�, and all enstrophy �ows

downscale to smaller length scales, �direct cascade� [43, 52]. The Kraichnan-Leith-

Batchelor (�KLB�) theory predicts a power-law scaling of the energy spectrum E(k)

with a scaling exponent of α = −5/3 in the upscale energy range and α = −3 in

the downscale enstrophy range with a possible logarithmic correction [53]. To our

knowledge, clear evidence of the coexistence of the two cascades on an extended

range has not been reported yet [54]. As Bofeta et al. [54] point out, the inverse

energy cascade has been observed in many experiments (for example [55]), and

in numerical simulations (for example [56�58]). For the direct cascade earlier
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1.3. Turbulence

numerical simulations (for example [59]) and experiments [60] show spectra slightly

steeper than KLB's prediction of α = −3 [54]. More recent investigations (e.g.

[61, 62]) report on spectra closer to the prediction α = −3 [54]. It has been shown

that a large-scale drag force, which is always present in experiments, requires a

correction to the exponent −3 [63].

Although turbulence has already been studied by Leonardo Da Vinci in the

years 1508�1513 [64] and especially in the last century much research has been

done on this subject, a complete description of turbulence remains one of the most

signi�cant unsolved problems in modern physics5 [66].

5The problem is also listed as one of the Millenium Prize Problems in mathematics [65].
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Chapter 2

Methods and Experimental

Apparatus

The experiments are carried out in a closed, cuboidal cell with a square base.

The cell contains an approximately monodisperse sample of dry, spherical bronze

particles. Using dry particles and preventing electric charging, we ensure, that

long-range particle interactions are negligible so that the behaviour is dominated

by the contact forces when two particles collide. To agitate the particles, the cell

is placed on the head of an electromagnetic shaker that vibrates vertically. Figure

2.1 shows a photograph and a sketch of the apparatus.

2.1 Main Components

Below, we brie�y describe the main components of our experimental apparatus.

Particles

Throughout this work, we use dry, spherical, bronze particles. The density of

bronze is ρ = 8900 kgm=3 and collisions of bronze particles can be modelled by a

coe�cient of restitution of ε = 0.7 [29].

The diameter of the particles is in the range 180 µm < d < 200 µm. The size

of the particles was controlled by sieving them. In order to check the shape, the

particles were rolled on sand paper. Nearly spherical particles roll on the paper,

13



2.1. Main Components

(a) (b)

Figure 2.1: Photograph (a) and sketch (b) of the experimental set-up (side view). In
panel (b) the letters denote: a. the electromagnetic shaker, b. the head of the shaker, c.
the substructure, d. the bottom plate and the side walls, e. the bronze particles, f. the
top glass plate, g. the position of the observer/camera. The arrows indicate the lighting.
The cell is shaken vertically (z-direction) and observed through the top plate from above,
parallel to the driving.

whereas particles of irregular shape stick to it. Sticky particles were picked out

manually. The remaining particles were examined under a microscope.

To remove residual moisture from the surface of the particles, the particles

were washed with two solvents, isopropanol and ethanol and dried in an oven at

200 ◦C for approximately 45min. Before every experimental run the particles were

rolled in an aluminium tray so that the grains could discharge. Figure 2.2 shows

a photomicrograph of randomly chosen particles.

Cells

The cells are rectangular cuboids with square base areas and large aspect ratios

γ = L0/h; here h denotes the height and L0 the side length of the cell. In total

three cells with two di�erent aspect ratios γb > γs were used: Two large cells C3,

14



2.1. Main Components

Figure 2.2: Photomicrograph of randomly chosen particles taken with tenfold magni�ca-
tion.

C1 (γ = γb) and a small cell C2 (γ = γs). An overview of the di�erent geometries

is given in Tab. 2.1.

The height of every cell is h = 3mm ≈ 15.8 d. The side lengths of the small and

the large cells are L0 = 75mm and L0 = 180mm respectively. Each cell consists of

four main components: a bottom plate, the sidewalls, a glass top plate (lid) and a

frame that holds the system together. The bottom plates are metallic in order to

prevent electric charging.1 The cell is connected to the shaker via a star-shaped

substructure that can be bolted directly to the head of the electromagnetic shaker.

One arm of the substructure is extended so that an accelerometer can be attached.

It is desirable to make the system as light as possible, because the strength of the

shaker is limited.

Large Cell C1

Figure 2.3 shows a sketch and a photograph of the large cell C1. Except for the

glass top plate, all components are made out of duraluminium, an age-hardening

aluminium alloy. Duraluminium was chosen because of its high rigidity and low

1We used a glass bottom plate in preliminary experiments, because glass plates are typically
�atter than metal plates, but for high driving accelerations the particles charged up very quickly
and stick to the glass.
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2.1. Main Components

h/mm L0/mm γ comment

C1 3 180 60 corners with curvature of �nite radius
C2 3 75 25 sharp corners
C3 3 180 60 sharp corners

Table 2.1: Overview of the geometry of the di�erent cells. All cells are rectangular
cuboids with square base.

density. The thickness of the square bottom plate is hbp = 5mm, the side lengths

are Lbp = 22.4 cm each. At the outer edges the height of the bottom plate is

reduced by 1mm over a 1.2 cm wide stripe. The one-piece sidewalls are slot to

this indent such that the inner horizontal dimension of the cell is L0 = 18 cm.

The side walls are screwed to the substructure with two screws on each side. The

6mm-thick top glass plate is slot on an indent of the sidewalls at the top inner

edges. The glass plate is locked into position by a frame that rests on the edges

of the top plate and can be screwed to the sidewalls on each side thus holding

the system together. At each corner screws running from the frame, through the

sidewalls and the bottom plate into the substructure, provide additional �xing of

the cell components and �x them to the substructure. Several holes are milled in

the substructure and the sidewalls to reduce the weight of the system. Figure A.1

in the appendix shows the di�erent components of the large cell C1 in detailed

engineering sketches.

To prevent cracks in the glass, the edges of the glass plate are covered with one

layer of rubber adhesive tape. For the same purpose the screws at the side walls

need to be tightened before the screws at the corners, because the screws in the

corners can create signi�cant tension in the glass.

The particles are very sensitive to vibrations and irregularity in the driving of

the cell. Therefore the bottom plate is �xed to the substructure with double-sided

tape, which was found to be useful to damp vibrations. Additionally, close to the

head of the shaker, small screws run from the substructure to the bottom plate.

These screws were added to ensure the contact between the double-sided tape, the

substructure and the bottom plate. As inhomogeneities in the bottom plate can

a�ect the behaviour of the particles severely, the screw holes in the bottom plate

are only 2.5mm deep so that the 3.5mm-thick top region of the bottom plate is
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2.1. Main Components

undisturbed.

It is important that all components �t �ush to each other, because any gap

broader than the particle diameter is likely to cause a particle leakage. To ensure

(a)

(b)

Figure 2.3: Sketch (a) and photograph (b) of the large cell C1. In panel (a) the bottom
plate is shown in transparent green. It is placed on the star-shaped substructure. Between
the one-piece sidewalls and the frame a glass plate is placed.
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2.1. Main Components

the precision of less than 100 µm in the manufacturing process, the corners of the

cell are not sharp, but have a curvature of �nite radius.

Small Cell C2

The small cell C2 is considerably smaller in size. This allows to use material of

higher density and thicker plates without exceeding the limit of the mass that the

shaker can drive. This cell consists of a steel bottom plate and a glass top plate.

Both plates are 10mm-thick. The plates are separated by 3mm-thick glass stripes

that are glued to the top plate and serve as the side walls. They form sharper

corners. The cell is held together by a steel frame that rests on the edges of the top

plate. At the corners the frame is screwed onto a steel substructure similar to the

one of the large cell C1. This set-up does not require additional screws between

the substructure and the bottom plate, because the smaller, thicker system is more

stable and less likely to �ex. Images of the small cell C2 and the substructure are

shown in Fig. 2.4.

Large Cell C3

The early measurements were carried out in a preliminary set-up similar to the

small cell C2, but made out of duraluminium instead of steel and of inner dimen-

sions equal to the inner dimensions of the large cell C1. Compared to the cell C3,

the re�ned set-up C1 is considerably more rigid and stable when shaken. Addition-

ally, the amount of particles lost when �lling or emptying the cell is signi�cantly

reduced in cell C1.

Electromagnetic Shaker

The electromagnetic shaker is shown in Fig. 2.1. It drives the cell in the vertical

direction perpendicular to the long sides. The vertical movement of the head

of the shaker is controlled by a signal generator. The frequency f , the peak-to-

peak voltage di�erence (�input voltage�), ∆Uin, and the shape of the signal can be

modi�ed. We choose a sinusoidal signal such that the vertical position of the cell

can be described as

z(t) = A sin(2πft+ ϕ0) + z0 . (2.1)
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2.1. Main Components

(a)

(b)

Figure 2.4: (a) Photograph of the small cell C2. (b) Photograph of the substructure of the
small cell C2. An accelerometer can be attached to the extended arm of the substructure.

Converting the peak-to-peak voltage ∆Uin into the shaking amplitude, A, requires

additional calibration (see Chap. 3).

The shaker is four-footed. The height of each foot can be changed by turning it.

To avoid a drifting motion of the shaker, heavy rubber mats are placed underneath

each foot. This is important because the �oor is not su�cient �at to ensure that

the system remains level if the shaker moves.
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2.2. Camera and Image Analysis

2.2 Camera and Image Analysis

To take photographs of the system, a camera was placed above the cell. Pho-

tographs are taken with a Olympus Digital E-500 camera or a high-speed PCO.1200s

camera. The frame rate of the high-speed camera is 500 s=1. High-speed photo-

graphy requires signi�cant lighting, we use a 500W halogen �ood light. Due to

the inhomogeneous nature of the lighting, the images show a considerable inten-

sity gradient. To remove this gradient, for every pixel the mean value of the

corresponding column and row is subtracted.

2.3 Method

Taking measurements requires additional preparation: (i) The top and bottom

plate of the cell are cleaned with two solvents, ethanol and isopropanol; (ii) an

anti-static spray is applied to the glass top plate to help avoid static charging.

Before the cell is put together, the spray must be dry. (iii) The particles are

weighed out and rolled in an aluminium tray, so that the grains can discharge. In

the tray the particles are inspected visually, any wet-looking material and dirt is

picked out using tweezers.

If the grains get stuck to the internal structure of the electromagnetic shaker,

they can severely damage the solenoid. Therefore a vacuum cleaner is used to

ensure that no particles from the cell remain on the surface of the shaker.

The behaviour of the system is very sensitive to a tilt of the cell. Any slope

results in a density gradient in the particles that adds additional weight to one

corner and thus is likely to cause an avalanche. A steady state with homogeneous

�lling is therefore only possible in an extremely carefully levelled cell. The levelling

changes slightly when the cell is driven, so that the levelling must be carried out

when the electromagnetic shaker is switched on at the target driving amplitude

and frequency. To level the cell, the feet of the shaker are turned.

At the beginning of each measurement the particles are to be distributed ho-

mogeneously throughout the cell. This is realized by driving the system at a high

amplitude and exposing it to some amplitude modulation.
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2.4. Parameters

2.4 Parameters

We characterise our measurements in terms of the driving frequency, the driving

amplitude and the mean volume �lling fraction of the cell. The driving frequency

of the shaker is the frequency of the input signal, but the driving amplitude cannot

be obtained directly from the input voltage, ∆Uin. The conversion of the input

voltage into the driving amplitude is described in Sect. 3. Typically we express

the amplitude in terms of the particle diameter, d. We de�ne the mean volume

�lling fraction as

φ = NVparticle/Vcell ,

whereN is the number of particles in the cell, and Vparticle and Vcell are the volume of

one particle and the cell respectively. The mean volume �lling fraction is related to

the total mass,M , of all particles in the cell via the particle's density: M = ρφVcell.

To check for the loss of particles, we measured the weight of the particles before

and after the experiment and found that we can control the mean �lling fraction

within an experimental error of δφ = 0.5%.2 The frequency is assumed to be

error free. The error in the amplitude can be estimated by the precision of the

signal generator δUin = 1mV. The calibration process introduces an additional,

systematic error in the amplitude of approximately 5%.

2It is nearly impossible to �ll and empty the cell without loosing particles; δφ = 0.5% refers
to the large cell C3 and the small cell C2. If using the large cell C1, the error is less than
δφ = 0.05%.

21





Chapter 3

Calibration of the Electromagnetic

Shaker

The vertical position of the head of the shaker is controlled by a signal generator.

We require the shaker to reproduce the shape of the signal faithfully such that a

sinusoidal input signal Uin(t) of frequency fin creates a sinusoidal shaking of the

same frequency fshak = fin =: f . The amplitude of the shaking Ashak is controlled

by the peak-to-peak voltage di�erence of the input signal which we call the �input

voltage� ∆Uin . The relation Ashak(∆Uin) depends on the mass that is shaken. The

total mass of the particles Mp is small compared to the mass of the cell Mc, that

is Mp < Mc, so that for each cell the relation Ashak(∆Uin) is independent of the

�lling fraction.

The calibration process consists of two steps:

1. A known input voltage ∆Uin is converted with an accelerometer into an

output voltage ∆Uout which is directly proportional to the acceleration Γ

of the cell. We de�ne the output voltage ∆Uout as the peak-to-peak voltage

di�erence of the accelerometer signal. For the output voltage ∆Uout Eq. (2.1)

yields the relation ∆Uout = αΓ = αAshak(2πf)2, α = const.

2. The output voltage of the accelerometer needs to be converted into SI units

and then into amplitudes. The constant of proportionality between the volt-

age and the acceleration needs to be ascertained experimentally, because the

value given in the handbook of the accelerometer is known to be wrong.
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3.1. Step 1: ∆Uin → ∆Uout

The conversion ∆Uin → ∆Uout depends on the cell (mass) shaken, whereas the

constant α needs to be ascertained only once.

3.1 Step 1: ∆Uin → ∆Uout

0 500 1000 1500 2000

Input Voltage  ∆U
in

 (mV)

0

0.5

1

1.5

2

2.5

3

O
u

tp
u

t 
V

o
lt

ag
e 

 ∆
U

o
u
t
(V

)

Large Cell, C
1

Small Cell, C
2

Figure 3.1: Dependence of the acceleration of the maximal input voltage di�erence of
the signal generator ∆Uin for the large cell C1 (upward triangles) and the small cell
C2 (downward triangles) at driving frequency f = 100Hz. The peak-to-peak voltage
di�erence of the accelerometer ∆Uout is directly proportional to the peak acceleration.

The following procedure was carried out with the large cell C1 and the small

cell C2. If the values for C1 and C2 are identical, only one value is given, otherwise

the values in brackets always refer to the small cell C2. The accelerometer was

�xed at the extended arm of the substructure and its output was connected to

an oscilloscope. The cell was shaken at di�erent input voltages ∆Uin. The input

voltage was varied between ∆Umin
in = 300mV and ∆Umax

in = 2000mV(1800mV)

in steps of 100mV. For every ∆Uin the output voltage ∆Uout was read from the

oscilloscope. The driving frequency was kept constant at f = 100Hz.

The results are shown in Fig. 3.1. The error bars correspond to one scale
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3.1. Step 1: ∆Uin → ∆Uout

gradation of the oscilloscope and show the experimental precision of the oscillo-

scope read-o�. For both the small cell C2 and the large cell C1 ∆Uout increases

approximately linearly with ∆Uin, but the slope of the curves di�ers signi�cantly.

By repeating the measurements with the large cell C1 at another driving fre-

quency f̃ = 60Hz < f = 100Hz, we veri�ed that the relation ∆Uout(∆Uin) is

frequency-independent, that is the peak acceleration depends only on the mass to

be shaken and not on the frequency.

(a) 100Hz, 1400mV (b) 100Hz, 1900mV (c) 60Hz, 800mV

Figure 3.2: Photographs of the display of the oscilloscope showing the output voltage
of the accelerometer. The accelerometer was attached to the shaking large cell C1. The
numbers under the panels indicate the input parameters f [Hz] and ∆Uin [mV] of the
signal generator. For all images one scale unit of the oscilloscope corresponds to δU = 1V.

Figure 3.2 shows three photographs of the display of the oscilloscope - the

accelerometer measurement - for the large cell C1 at three di�erent driving param-

eters. They illustrate that the sinusoidal signal is a�ected by considerable noise.

The noise was found to increase with decreasing driving frequency and increasing

input voltage.

Calibration of the large cell C3

The accelerometer cannot be attached to the substructure of the cell C3. Conse-

quently the process described above could not be carried out with the this cell. To

calibrate measurements taken in the large cell C3, the measurements of the lowest

amplitudes of the di�erent states (see Sect. 5.2) taken in the large cell C3 were

repeated in the small cell C2.
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3.2. Step 2: ∆Uout → Ashak

3.2 Step 2: ∆Uout → Ashak

To calibrate the voltage from the accelerometer the shaking amplitude was mea-

sured directly from sequences of images recorded using the high-speed camera.

Experimental Procedure

Figure 3.3: Sketch of the experimental set-up used for the calibration of the accelerome-
ter; the letters denote A: high-speed-camera, B: large cell C1, C: electromagnetic shaker.
The arrow indicates the shaking direction and the dotted line the viewing direction of
the camera.

The large cell C1 was mounted on the shaker and the high speed camera placed

such that the viewing direction of the camera was perpendicular to the shaking

direction of the cell. The set-up is sketched in Fig. 3.3.

Sequences of 800 images were taken of the shaking cell using the maximum

frame rate of fcam = 500 s=1. The shaking frequency was kept constant at f =

100Hz. For each data set the amplitude was varied between ∆Uin = 300mV and

∆Uin = 1800mV in steps of 100mV for ∆Uin ≤ 1000mV and in steps of 200mV for

∆Uin ≥ 1000mV. Additionally one image of a static cell was taken. The position

of the camera and the shaker were not changed during the calibration procedure.

Data Analysis

For every image sequence we used a bright line on the cell to mark the vertical

position of the cell (see Fig. 3.4). A sinusoidal regression of the position versus

time was carried out to determine the amplitude of the shaking. The amplitude

measured from the images in pixel was converted into metric units according to

the following procedure.
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3.2. Step 2: ∆Uout → Ashak
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Figure 3.4: (a) Image of the static cell as taken for the measurements of the vertical
position. The region marked red shows the area to which the images of the driving cell
were cropped. The position of the cell is measured by identifying the position of the
bright horizontal line (the line separating the frame from the sidewalls) in the cropped
images. (b) Horizontal average of the brightness plotted against the vertical position.
The data were normalised such that the maximum value equals unity. The maximum of
this curve corresponds to the position of the line separating the frame from the sidewalls.

(1) The images are cropped such that the image section shows only a part of the

substructure and the sidewalls (see Fig. 3.4). The separating line appears bright

in the image and is approximately horizontal in this image section. Therefore

we ascertain the vertical position of the line by identifying the maximum of the

horizontally averaged intensity for each image section.

(2) We assume that the position of the cell in time t can be described as

z(t) = A sin(2πft+ φ0) +B , (3.1)

here A denotes the shaking amplitude that is to be determined, B represents a

vertical o�set, φ0 to a phase shift and f ≈ 100Hz to the frequency.

To account for any errors or irregularities in the shaking frequency or the frame

rate of the camera f is used as a free parameter. For the same reason we do not �t

one curve to the whole dataset at once. Instead, we carry out multiple regressions

and limit the �tting range of an individual regression to two full shaking periods

(0.02 s, 10 images). In steps of ∆t = 0.002 s (1 data point), the position of the

�tted range is moved from the �rst two shaking periods to the last two full cycles.

The regressions are carried out using the fit-command provided by gnuplot. The

resultant values of A and f are stored for every regression.
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3.2. Step 2: ∆Uout → Ashak
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Figure 3.5: (a) Vertical position of the large cell C1 driven at f = 100Hz and an input
voltage of ∆Uin = 1400mV. The red symbols show the measured position of the cell in
the image sequence versus time, the blue curve shows the obtained regression for the last
two driving periods that are shown. (b) Distribution of the resultant frequency of the
measurements at an input voltage of ∆Uin = 1400mV. N is the number of �ts with a
resultant frequency in the corresponding frequency interval. The green bars correspond
to �ts with a resultant frequency f ∈ [99.5Hz, 100.5Hz]. The resultant amplitudes of
these �ts were included into the calculation of the mean. The red bars correspond to
excluded �ts.

Figure 3.5 shows a typical �t of one dataset with a sinusoidal regression. The

plotted range exceeds the �tting range of the regression by one period, but the

curve describes all data points very well. To obtain a value of the amplitude for

the whole image sequence we calculated the arithmetic mean of all regressions,

excluding data where the di�erence between the resultant frequency and 100Hz

exceeds 0.5Hz. As an example, Fig. 3.5 shows the distribution of the resultant

frequency for the dataset taken at an input voltage of ∆Uin = 1400Hz.

(3) To convert the motion measured from the images into metric units, we

measure the outer height of the cell in the image of the static cell, him, as well

as the true height of the cell ht. The ratio ht/him = 0.135(4)mm px=1 is the

constant of proportionality between the resultant amplitudes and the true shaking

amplitudes.

The error is dominated by the conversion of the height di�erences in images

into true height di�erences. This yields a relative uncertainty of less than 5%.
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3.2. Step 2: ∆Uout → Ashak
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Figure 3.6: Ratio of the shaking amplitudes A and the peak-to-peak voltage di�erence of
the accelerometer ∆Uout at di�erent input voltages ∆Uin. The amplitude measurements
and the accelerometer measurements were taken in two di�erent experimental runs. The
red stars show the measured data. The blue, continuous line shows the mean value and
the blue, dotted lines correspond to the mean plus (minus) the standard deviation. The
length of the lines indicate the range of the �tted data points. Both, the error of the
individual measurements and the standard deviation are less than 5%.

Figure 3.6 shows the ratio of the shaking amplitudes derived from image se-

quences A and the maximal voltage di�erence of the accelerometer ∆Uout for given

input voltages from the signal generator. Note that the image sequences and the

accelerometer measurements were obtained in two independent experimental runs.

The data �uctuate around a mean value. The deviations are caused by er-

rors in the measurements of the driving amplitude as well as a variation of the

true shaking amplitude between di�erent experimental runs with the same driving

parameters. The relative error in the amplitude measurements increases for low

driving amplitudes. In contrast, we have observed that the shaker behaves less re-

producibly at high driving amplitudes.1 Therefore we calculate the mean and the

1If driven close to the limit, the shaker heats up. This leads to a small decrease of the shaking
amplitude at constant ∆Uin with increasing experimental time.
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3.3. Result: Calibration Curve

standard deviation only for data ranging within 600mV ≤ ∆Uin ≤ 1400mV. The

standard deviation gives an estimate of the statistical error of the measurements

and is approximately 4%. It is in the same order of magnitude as the estimated

experimental uncertainty of the individual measurements.

3.3 Result: Calibration Curve

Figure 3.7 shows the calibration curve obtained for the small cell C2 and the

large cell C1 at driving frequency f = 100Hz. The red symbols mark the points

at which the acceleration was measured with the accelerometer. In both cases

the data points do not follow a perfect linear curve. To convert intermediate

values of ∆Uin, we use the spline-function provided by matlab - a cubic spline

data interpolation - if ∆Umin
in ≤ ∆Uin ≤ ∆Umax

in . If ∆Uin exceeds this range, we

interpolate linearly using the two closest data points. The interpolation is shown

in Fig. 3.7.
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Figure 3.7: Calibration curve of the small cell C2 and the large cell C1 at driving frequency
f = 100Hz. The red symbols mark points at which the acceleration was measured with
the accelerometer. The blue curves show the interpolation.
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3.3. Result: Calibration Curve

Most of the experiments were carried out at a driving frequency f = 100Hz,

but some of the measurements were carried out at another driving frequency.

For driving frequencies f̃ 6= f = 100Hz the curves need to be modi�ed: For

a �xed mass and input voltage the peak acceleration Γ = d2z/dt2 is frequency-

independent. Thus Eq. (3.1) yields the relation

Ã

A
=
f 2

f̃ 2
;

here A, and Ã denote the corresponding shaking amplitudes.

The calibration process introduces a systematic error in the amplitude mea-

surements. For the large cell C1 and the small cell C2 the error is dominated by the

conversion of the accelerometer measurements into metric units and is less than

5%. For the large cell C3, the error is more di�cult to quantify, it is dominated

by the additional intermediate step of comparing the input voltage di�erences of

the instabilities in the large cell C3 with those for measurements in the small cell

C2. We estimate the error to be less than 10% by using the standard deviation of

these measurements.
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Chapter 4

Liquid-Gas-Like Phase Separation

At low �lling fractions the system can separate into a dense, cold (liquid-like) and

a dilute, hot (gas-like) phase. The phenomenon was closely studied [9, 12]: The

separation is spinodal driven and emerges from a resonant motion of each particle

in the gas-like phase leading to an excess in the granular temperature of the di-

lute phase. The amplitude at which phase separation occurs is independent of the

driving frequency. The coarsening dynamics of the separation are described by the

Cahn-Hilliard equation [67], also called model B in the Hohenberg-Halperin classi-

�cation of dynamic critical phenomena [68]. Model B describes di�usive dynamics

of systems minimising interfacial energy with a conserved order parameter. For a

classical, molecular �uid the typical length scale l grows with time according to a

power-law with a scaling exponent α = 1/3 such that l(t) ∼ tα. For the granular

system, the scaling was reproduced experimentally and in simulations [12].

To familiarise myself with the apparatus we tried to reproduce parts of the

work. In the following we discuss brie�y our measurements and observations.

Measurements and Observations

The transient behaviour of the phase separation depends on the protocol used,

while the steady-state is history-independent. If we jump instantaneously from

an amplitude A = 0 up to an amplitude where the system phase separates and

let the system evolve without changing the driving parameters until it stabilises,
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we observe the following dynamics: At early times small droplets of the gas phase

emerge throughout the whole cell. The pattern coarsens as the droplets push liquid

areas between them aside and form larger domains of the dilute phase. These

domains appear to minimise the interface by forming circular structures. For late

times, smaller droplets evaporate and only large domains remain. A sequence of

images of the coarsening dynamics is shown in Fig. 4.1. Similar dynamics were

reported by Clewett et al. [12].

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Sequence of photographs showing the time-evolution of the spinodal decom-
position in the coexistence region following an instantaneous jump from A = 0 up to
A ≈ 2.5d. The mean volume �lling fraction is φ = 5%, the driving frequency is kept con-
stant at f = 60Hz. The measurements were taken in the large cell C3. The photographs
were converted to greyscale. The boundaries of the pictures correspond to the bound-
aries of the cell. In (a) the system is homogeneous. Gradients in the intensity result
from inhomogeneous lighting and re�ections. The photograph was taken directly after
the jump, t = 0. Images (b) - (f) were taken after the system was shaken for t ≈ 0.1 s
(b), t ≈ 1 s (c), t ≈ 3 s (d), t ≈ 5 s (e) and t ≈ 8 s (f). The dark domains are the dilute,
hot (gas-like) phase. The light area is the dense, cold (liquid-like) phase. Scratches in
the bottom plate cause bright light re�ections.

If the amplitude is not kept constant but increased slowly, we can explore

the steady states for di�erent amplitudes. At low amplitudes the system begins
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in an approximately homogeneous state. At a critical amplitude a dilute bubble

nucleates spontaneously and develops a circular shape. The bubble grows until its

radius exceeds the dimensions of the cell, when the amplitude is increased further.

At a second, higher, critical threshold the bubble completely �lls the cell and the

system is homogeneous again.

Phase Diagram

We measured the phase diagram in the large cell C3 at a �xed driving frequency

f = 60Hz.

Experimental Procedure

During an individual experimental run, only the driving amplitude was changed,

while other parameters were kept constant. For a �xed frequency f = 60Hz and

a �xed �lling fraction we measured the lowest and highest amplitude at which

the system exhibits phase coexistence. We refer to these amplitudes as Amin(φ)

and Amax(φ) respectively. It is important to note that the phase transition shows

hysteresis. The data reported here were measured only for increasing amplitude.

Starting with a homogeneous distribution of the particles in the whole cell (see

section 2.3), we turned up the maximal input voltage di�erence in steps of δUin =

10mV. This is the limit of the precision and gives an error of δA ≈ 0.06 d in our

measurements.

After each step, the system was allowed to relax to a steady state, before we

took a photograph and analysed it as described in Sect. 2.2. The phases can be

distinguished by the colour or greyscale intensity in the photograph. We deter-

mined whether a system is phase-separated by visually inspecting the manipulated

images. The input voltage di�erence ∆Uin was converted into amplitudes as de-

scribed in Sect. 3. This introduces a systematic error of less than 10% in the

measurements.

Results

The phase diagram is shown in Fig. 4.2. The symbol size exceeds the size of the

error-bars.
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Figure 4.2: Phase diagram of the liquid-gas phase separation for constant driving fre-
quency f = 60Hz. φ denotes the mean volume �lling fraction and A the driving ampli-
tude measured in particle diameters d. The upward (downward) triangles mark the mea-
sured lowest (highest) amplitude of phase coexistence, Amin(φ) (Amax(φ)). The shaded
area shows the region of phase coexistence. The size of the triangles exceeds the size
of the error-bars. All measurements were taken by increasing the driving amplitude in
steps of ∆A = 0.06 d.

For high �lling fractions, φ > 16%, no phase separation could be observed.

We were unable to validate data for very low �lling fractions, φ < 1.3%, for

the following reasons: the size of the dense phase is so small that it becomes

indistinguishable from tiny regions of higher density that are induced by a not

perfectly level cell or because the steel base is slightly uneven. Additionally, the

contrast of the bronze particles versus the light grey steel base is very low, so that

variations of the local �lling fraction are barely visible for small φ.

The shape of the locus Amin(φ) is approximately linear. The locus Amax(φ)

rises steeply for φ ≤ 2%, but �attens for higher φ. It saturates at A ≈ 5 d.

The shape of the phase diagram matches qualitatively with the one reported

by Roeller et al. [9] for glass beads. The lowest and highest �lling fraction of

phase coexistence also agree quantitatively within small deviations with the data

reported for the glass beads [9].
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Chapter 5

Pattern Formation and Turbulence:

Observations and Results

In the dense phase of the liquid-gas phase-separated system as well as for φ > 15%,

we have observed di�erent types of patterns. Each pattern consists of standing

waves. As such, all patterns are inherently time-dependent, periodic. We call a

pattern time-independent (or stationary in time) if the positions of the nodes and

the maxima of the standing waves are stationary in time, that is if the pattern does

not move in the horizontal plane. In contrast we call a pattern time-dependent if

the nodes and maxima show a horizontal movement in the steady state.

At higher amplitudes the system descends into turbulent-like states: Waves

sweep across the cell and a cell-�lling large-scale circulation emerges when the

amplitude is increased still further.

This chapter contains �rst a qualitative description of the di�erent states and

the development of the system with increasing driving amplitude for a �xed driving

frequency and �lling fraction. In the next part, we present the phase diagram

obtained for a �xed frequency of f = 100Hz mapping out the stability regions of

the di�erent states in terms of the �lling fraction and the driving amplitude. The

frequency dependence of the di�erent states is yet to be analysed in detail, but we

present preliminary measurements of the frequency dependence of the lowest and

highest amplitudes of the turbulent, wave-like state.

In the last part of this chapter we characterise the di�erent states quanti-
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5.1. Overview of the Di�erent States

tatively by measuring the topography spectra and frequency spectra for a �xed

driving frequency of f = 100Hz and a �xed �lling fraction of φ = 34%. Most

experiments were carried out at f = 100Hz, because the system is more sensitive

to levelling at lower frequencies and the shaking acceleration approaches the limit

of the electromagnetic shaker at higher frequencies.

5.1 Overview of the Di�erent States

Figure 5.1 shows the pattern formation in the cell for steadily increasing driving

amplitudes from 0.7 d up to 2.5 d at a �xed driving frequency of f = 100Hz and a

volume �lling fraction of φ = 32.5%.

At high driving frequencies the human eye cannot resolve the oscillation of the

standing wave correctly, but perceives only the boundaries between countermoving

regions. The e�ect can be visualized by changing the exposure time of photographs:

If the exposure time exceeds the oscillation period, the boundaries show up as dark

shadows; if the exposure time is small compared to one period of oscillation, the

areas of di�erent heights are resolved. Particles close to the top plate show up

brighter than particles close to the bottom plate.

We have not observed a qualitative change in the di�erent states upon changing

the driving frequency or �lling fraction. A typical development of the system with

increasing driving amplitude is described below. In each case the new instability

typically coexists with the previous state for a short range of amplitudes.

At the lowest amplitude, A = 0.7 d, Fig. 5.1 (a), the particles are distributed

homogeneously in the cell. If the amplitude is increased above a critical threshold,

then the homogeneous surface becomes unstable and the system develops a stripe-

like pattern. The pattern, shown in Fig. 5.1 (b) (A = 1.2 d), is time-independent.

We refer to this pattern as �low frequency stable stripes� (LFSS).
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(a) homogeneous

A ≈ 0.7 d

(b) LFSS

A ≈ 1.2 d

(c) LFSC

A ≈ 1.7 d

Patterns observed in the cell: homogeneous; low frequency stable stripes (LFSSS); low

frequency stable crossrolls (LFSC). See page 41.



(d) STC

A ≈ 1.9 d

(e) HFSS

A ≈ 2.0 d

(f) HFL

A ≈ 2.1 d

Patterns observed in the cell: spatiotemporal chaos (STC); high frequency stable

stripes (HFSS); high frequency lattice (HFL). See page 41.



5.1. Overview of the Di�erent States

(g) ST

A ≈ 2.2 d

(h) HT

A ≈ 2.5 d

Turbulent states observed in the cell: soft turbulence (ST); hard turbulence (HT).

Figure 5.1: Sequence of images of the pattern formation in the cell for steadily increasing
driving amplitudes from A = 0.7 d (a) up to A = 2.5 d (h). The mean volume �lling
fraction φ = 32.5% and the driving frequency f = 100Hz were kept constant. The
images were cropped to the boundaries of the large cell C1 and converted to greyscale.
The photographs at the left hand side were taken with long exposure time T = 20ms
(2 cycles) the photographs at the right side with short exposure time T = 2ms (1/5 of
a cycle). The pictures were taken in di�erent experimental runs: Panels (b), (c) and
(h) show di�erent structures of the same state. A description of the development of the
pattern can be found in Sect. 5.1.

In general, the shape of the pattern depends on the protocol used. In the

steady state the pattern consists of parallel stripes or a cell-�lling spiral. The

stripes tend to align perpendicular to the side-walls and could be observed in

all cells. Spiral patterns emerged only in the large cell C1, we attribute this
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5.1. Overview of the Di�erent States

to the rounded corners of that cell. If, starting from a stable �at surface, the

driving amplitude is increased slowly above the instability threshold, only stripes

emerge. If instead the critical amplitude is crossed by abruptly increasing the

driving amplitude, patterns of circles, spirals (only in cells with rounded corners)

or striped regions which contain many defects appear. The dynamics are slow,

but after a long time (approximately 10min) the circles annihilate into stripes and

defects migrate outward and disappear at the boundaries of the cell. Figure 5.2

shows the di�erent structures of the LFSS. The ordering dynamics are shown in a

video in the supplementary material (see Sect. A.2). Close to the critical amplitude

the wavenumber of the low frequency stable stripes is k/(2π) ≈ (50 d)−1, this is

independent of the structure of the pattern. With increasing driving amplitude,

the typical length scale of the pattern increases.

(a) Stripes (b) Spiral (c) Circles

Figure 5.2: Di�erent structures of the low frequency stable stripes at driving frequency
f = 100Hz, driving amplitude A ≈ 1.2d and �lling fraction φ = 32.5% The stripes (a)
and the spiral (b) show a steady-state pattern. The circles (c) are only an intermediate
state and �nally develop into a stripe or a spiral pattern. The photographs were taken
with short exposure time T = 2ms and converted to greyscale. The edges of the image
correspond to the boundaries of the large cell C1.

Figure 5.1 (c) (A = 1.7 d) shows the pattern after the system bifurcated again.

Parallel stripes and spirals of the low frequency stable stripes develop into a pattern

that looks very similar to the well-known cross-roll instability [18]. Circles of the

LFSS develop an additional domain in the centre (see Fig. 5.3). This pattern is

also time-independent. We refer to this state as �low frequency stable crossrolls�

(LFSC).

42



5.1. Overview of the Di�erent States

Figure 5.3: Picture of the low frequency stable
crossrolls that can be observed upon slowly increas-
ing the driving amplitude, if the low frequency sta-
ble stripes consisted of droplets. The bifurcation
emerged as additional droplets in the circles. The
photograph was taken with short exposure time
T = 2ms and converted to greyscale. The edges
of the image correspond to the boundaries of the
large cell C1.

As the driving amplitude increases further the stripes begin to shiver up to

a point when the pattern changes its shape rapidly. The movement grows from

the centre of the cell. Single snapshots of the time-dependent pattern is shown

in Fig. 5.1 (d) (A = 1.8 d). The images also show examples of short-lived circular

structures which coexist with the stripes at this driving amplitude. The circles

appear rapidly and either merge with a nearby stripe or disappear equally rapidly.

We refer to this state as �spatiotemporal chaos� (STC).

The next bifurcation, Fig. 5.1 (e) (A = 2.0 d), introduces high-wavenumber

(k/(2π) ≈ (25 d)−1) parallel stripes at the edge of the cell. The stripes grow

until they �ll the whole cell and tend to align perpendicular to the walls. The

pattern is again time-independent. We refer to this state as �high frequency stable

stripes� (HFSS). As for the LFSS the pattern can emerge with several defects that

disappear if the system is allowed to relax. Only at very high �lling fractions,

φ ≥ 45%, this pattern develops a time-dependence at higher driving amplitudes,

such that the stripes move (�high frequency moving stripes� (HFMS)).

Figure 5.1 (f) (A = 2.1 d) shows another time-dependent pattern. In contrast

to the other states this state develops at the edge of the cell independently of

the existing high-wavenumber stripes. Suddenly, the system exhibits a hexagonal

lattice of valleys and peaks. The typical length scale of this lattice is larger than

the typical length scale of the HFSS, but smaller than the length scale of the LFSS.

We refer to this state as the �high frequency lattice� (HFL).

In the penultimate state, Fig. 5.1 (g) (A = 2.2 d), remarkably pronounced waves
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5.1. Overview of the Di�erent States

sweep across the cell. In the experiment the waves always emerge from the side

walls. They are accompanied by a loud pulsing sound. The evolution of the pat-

terns that exist at lower amplitudes is somewhat similar to those observed in RBC

experiments of molecular �uids. In RBC, for very high temperature di�erences,

the system reaches a turbulent state. This invites the question: are the waves ob-

served here an example of turbulence in a granular system? In Sect. 5.4 we present

evidence that this state is indeed turbulent. For now we refer to this state as �soft

turbulence� (ST). Near the instability threshold the pattern of the previous state

still underlies the waves. The patterns are gradually destroyed with increasing

amplitude.

For very high amplitudes, A ≈ 2.5 d a slow large-scale circulation (LSC) pushes

the waves to the edges of the cell until only the circulation remains. Large-scale

circulation can also be observed in two-dimensional turbulence and in the hard

turbulent regime of Rayleigh-Bénard convection in molecular �uids [69, 70]. We

call this state �hard turbulence� (HT), once again drawing the analogy with RBC

experiments at very high temperature di�erences. In this state the cell looks

homogeneous in photographs, Fig. 5.1 (h). In Fig. 5.4 and in a video in the sup-

plementary material (see Sect. A.2) the �ow is visualized with tracer particles. No

preferred orientation of the �ow could be observed. The speed of the circulation

increases with driving amplitude until it eventually breaks up into smaller eddies.

Ultimately the granular gas looks somewhat jelly-like.

The videos of the di�erent states in the supplementary material (see Sect. A.2

show the dynamics of the system. The normal-speed videos illustrate the dy-

namics of defect annihilation in the LFSS- and the HFSS-state as well as the

time-dependence of the STC. The videos taken with the high-speed camera show

the frequency of the pattern with respect to the driving frequency.

Visualization and dynamics of the large-scale circulation

The �ow usually forms one large, nearly cell-�lling vortex, but sometimes two

counterrotating eddies are observed. The orientation of the vortex varied upon

every experimental run. We also observed, though very rarely, the cessation of

a LSC and its restarting with the opposite orientation. The circulation does not
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5.1. Overview of the Di�erent States

immediately set in when the driving amplitude is set to the target amplitude of

the HT-state. The time required to establish the �ow varies slightly upon every

experimental run and increases signi�cantly with increasing �lling fraction.

To visualize the large-scale circulation, a few spherical, steel tracer particles

of diameter D = 2mm = 10 d were placed in the cell. Particles of the same size

or smaller than the bronze particles would �disappear� in the bulk and could not

be distinguished visually when the cell is shaken. The experiment was carried out

in the small cell C2 with a �lling fraction of φ = 40% at a driving frequency of

f = 100Hz and an amplitude of A = 4.25 d. Initially the tracer particles were

distributed homogeneously in the cell and the amplitude was increased rapidly to

the target amplitude of the HT-state to avoid segregation.1 Nevertheless only one

steel particle caught up the mean �ow whereas the others clustered in one corner of

the cell. In photographs of very long exposure time, T ≥ 0.5 s, the tracer particle

is blurred out by noise such that it cannot be distinguished. Instead we took a

sequence of photographs with a time step of ∆t = 0.4 s and marked the position

of the particle in each image. Figure 5.4 shows the superposition of the images.

The speed of the tracer particle does not necessarily equal the speed of the bulk

�ow, because the tracer particle di�ers in mass, size and coe�cient of restitution

from the bronze particles.

Figure 5.4: Visualization of the large-scale circu-
lation using a tracer particle. The image shows
the superposition of a sequence of photographs
of a large-scale circulation in the small cell C2.
The photographs were taken with a time-step of
∆t = 0.4 s and the position of the tracer particle
was marked with a big, red circle in every picture.
The images were superimposed such that the opac-
ity of the circle increases with time. The arrow
indicates the direction of the �ow. The experi-
ment was carried out in the small cell C2 with a
�lling fraction of φ = 40% at a driving frequency
of f = 100Hz and an amplitude of A = 4.25 d.

1Molecular �uids usually mix when being stirred. In contrast a mixture of granular materials
often unmixes when it is stirred, shaken or sheared [71]. A di�erence in particle size, shape,
density or even surface roughness can cause segregation. For a detailed review see [71].

45



5.2. Phase Diagram

�Pre-Pattern�

At very low driving amplitudes, we have observed a labyrinthine pattern with a

wavenumber of k/(2π) ≈ (10 d)−1, that means that the typical length scale of this

pattern is much smaller than the typical length scale of the patterns described

above. An image of the pattern is shown in Fig. 5.5; the additional material

contains a high-speed movie of the pattern illustrating, that this pattern oscillates

at f/2, too. If the driving amplitude was increased slowly fromA = 0 d, the pattern

usually emerges directly after the ��uidisation point�, the driving amplitude at

which the peak acceleration equals the gravitational acceleration, such that the

particles leave the bottom plate. If the amplitude is increased further, the pattern

usually disappeared below the instability threshold of the patterns described above.

We did not study this pattern further.

Figure 5.5: Photograph of the small �pre-pattern� ob-
served at very low driving amplitudes A ≤ 1 d. The pho-
tograph shows one quarter of sthe large cell C1 with �lling
fraction φ = 32.5%, driving frequency f = 100Hz and
amplitude A = 0.8 d. The image was taken with short
exposure time T = 2ms and converted to greyscale.

5.2 Phase Diagram

We measure the phase diagram for a �xed driving frequency f = 100Hz. The

parameter space in which we map out the stability regions of the di�erent states

is spanned by the driving amplitude and the volume �lling fraction. We obtain

the phase diagram by identifying the onset amplitudes of the di�erent states. All

bifurcations show hysteretic behaviour. We measure the phase diagram only for

slowly increasing driving amplitude.

We observe pattern formation and turbulence at �lling fractions ranging be-

tween φ = 15% and φ = 60%. No experiments were carried out at �lling fractions

φ > 60%. The amplitude of the di�erent states ranges between 1 d and 4.75 d.
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5.2. Phase Diagram

Experimental Procedure

We mapped out the phase diagram by measuring the bifurcation points of the

system, i.e. the amplitudes (�onset amplitude�) at which the di�erent phenomena

appear �rst when the amplitude is increased slowly. Typically, the phenomena

emerge locally in one region and �ll the entire cell when the amplitude is increased

slightly. A small range of coexistence of two di�erent patterns can be observed

even in a carefully levelled cell. We mark only the �rst appearance of a pattern.

The �lling fraction was increased up to φ = 60% in steps of 2.5%. Measurements

with �lling fractions φ ≤ 42.5% were taken in the large cell C3. For practical

reasons we could not �ll the large cell C3 beyond 42.5%, therefore we continued the

measurements using the small cell C2. In order to compare the di�erent systems,

we repeated the measurements taken with the large cell C3 at φ = 32.5% in the

small cell C2.

To avoid experimental bias, the measurements were taken by two people. One

turned up the amplitude slowly, the other watched the cell and identi�ed the onset

amplitude of the di�erent states without looking at the amplitude display of the

signal generator. The data were recorded in terms of the peak-to-peak voltage

(�input voltage�) of the signal generator. Great care was taken that the cell was

level at each amplitude.

Data Analysis

The onset amplitudes recorded in terms of the input voltage ∆Uin need to be

converted into driving amplitudes. In the following, the superscripts �3, 2� refer

to the large cell C3 and the small cell C2 respectively. For measurements with the

small cell C2, ∆U2
in is converted into a driving amplitude as described in Sect. 3.

For the large cell C3 we use the measurements at φ = 32.5% that were taken

in both systems. Figure 5.6 shows the ratio of the input voltages of the onset

amplitudes ∆U3
in/∆U

2
in (red symbols). The blue, continuous line shows the mean

value β = 〈∆U3
in/∆U

2
in〉. The standard deviation of the sample σβ is less than

10%. The range [β + σβ, β − σβ] is indicated by the blue, dotted lines. In this

way we convert the input voltages of measurements taken with the large cell C3

into corresponding input voltages in the small cell C2 by a multiplication with
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〈∆U3
in/∆U

2
in〉 and proceed as described in Sect. 3.
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Figure 5.6: Ratio of the input voltage di�erences ∆U3
in/∆U

2
in at which the di�erent states

appear for experiments taken with the large cell C3 and the small cell C2. ∆U3
in is the

required input voltage of the signal generator for experiments with the large cell C3

and ∆U2
in refers to experiments with the small cell C2. The abbreviations refer to the

di�erent states as introduced in Sect. 5.1. The red symbols show the measured data.
The blue, continuous line shows the calculated mean value; the blue, dotted lines show
the mean plus/minus the standard deviation respectively. The standard deviation is less
than 10%, the size of the symbols exceeds the size of the error bars of the experimental
precision of an individual measurement.

Results

Figure 5.7 shows the measured onset amplitudes for the di�erent states that we

observe. For the sake of clarity the �gure does not contain error-bars. The ex-

perimental precision of an individual measurement is limited by the step size of

the signal generator, it is less than 1%. The corresponding error-bar is smaller

than the symbol-size. The systematic error caused by the calibration process was

estimated to be less than 5% for measurements in the small cell C2 (φ > 45%)

and less than 10% for the measurements in the large cell C3 . In each case the

new instability typically coexists with the previous state for a short time.
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5.2. Phase Diagram

Pattern formation was present for �lling fractions ranging between 15% up

to the highest realised �lling fraction φ = 60%. At low �lling fractions, φ ≤
15%, neither pattern formation nor turbulent states could be observed. At �lling

fractions in the range of 1% ≤ φ ≤ 16%, the system separates into a dilute,

gas-like and a dense, liquid-like phase (see Chap. 4). Pattern formation can be

observed only in the liquid phase, where the local �lling fraction φl exceeds the
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Figure 5.7: Phase diagram at �xed driving frequency f = 100Hz: The data points mark
the bifurcation points of the system, that is the onset amplitudes of the di�erent states.
The diamonds show the instability threshold of the di�erent patterns and the circular
symbols mark the transition to the turbulent states. Above φ = 60% no experiments
were carried out, below φ = 15% neither pattern formation nor turbulent states can be
observed. The size of the symbols exceeds the size of the error bars of the experimental
precision. The �rst instability decreases abruptly at φ = 20% and �uctuates around a
mean value for higher �lling fractions. The amplitudes of instabilities of higher order
decreases within small deviations monotonically with increasing �lling fraction. The
dashed lines are guides for the eye.
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mean �lling fraction φ.

The onset amplitude of the low frequency stable stripes, the �rst bifurcation,

drops signi�cantly at φ = 20%. The jump coincides approximately with the

disappearance of the liquid-gas phase separation. At higher �lling fractions, φ >

20%, the onset amplitude of the low frequency stable stripes is approximately

�lling fraction-independent and �uctuates around a constant value Afirst ≈ 1.25 d;

it is slightly higher for measurements taken in the small cell C2 (φ ≥ 45%) than

for measurements in the large cell C3 . In contrast the amplitudes of all other

instabilities decrease within small deviations monotonically with increasing �lling

fraction.

The system shows the high frequency states (HFSS and HFL) only if the �lling

fractions exceeds 25%. The transition from the high frequency stable stripes into

a time-dependent pattern of the same typical length scale could not be observed

at �lling fractions φ ≤ 45%. In turn, the low frequency states disappear at very

high �lling fractions. We note that, at low �lling fractions the �rst temporal

instability (STC) precedes the high frequency stripes. However, for very large

�lling fractions the high frequency stripes occur at a lower amplitude than the

�rst temporal instability.

With increasing �lling fraction the visibility of the patterns is reduced. It is

possible that above 52.5% the measured amplitudes of the high frequency stable

stripes and the high frequency moving stripes should actually correspond to the

low frequency stable stripes and spatiotemporal chaos respectively.

Discussion

The measurements taken in the large cell C3 are concatenated with the measure-

ments in the small cell C2 between φ = 42.5% and φ = 45%. The transition

shows up clearly in the phase diagram. As for the measurements at φ = 32.5%

that were taken in both systems the onset point of the low frequency stripes in

the small cell C2 is higher than in the large cell C3. In both cases the data vary

by less than 10%. The deviations might be caused by a �exing of the large cell

C3 at high accelerations.

The transition to the small cell C2 coincides with the appearance of the high
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5.3. Frequency Dependence

frequency moving stripes in the phase space. We assume, that the change of system

does not cause the appearance of this state, because the behaviour in the large cell

C3 at lower �lling fractions can be reproduced in the small cell C2. Qualitatively

the small cell C2 shows the same patterned and turbulent states and quantitatively

the ratio ∆U3
in/∆U

2
in of the onset points varies less than 10%.

Except for the onset point of the low frequency stable stripes, the onset points

of all other states decrease with increasing �lling fraction. As a �rst approxima-

tion, the decrease seems linear. The slope of the curves varies for the di�erent

instabilities and seems to increase with increasing order of the instabilities. The

data di�er from a perfect linear curve. As an example we illustrate the discrepancy

for the amplitudes of the transition to the soft turbulent state. This instability

threshold decreases from A ≈ 4.25 d at φ = 15% to A ≈ 1.7 d at φ = 57.5%.

A detailed understanding of the �lling fraction dependence of the onset ampli-

tude of the instabilities would be an important step towards a theoretical modelling

of the instabilities and dynamics of this system.

5.3 Frequency Dependence

We observed the patterned and turbulent states at driving frequencies ranging

between 50Hz and 130Hz. For very low driving frequencies f < 50Hz the cell

could not be levelled adequately.2 No experiments were carried out at high driving

frequencies f > 130Hz, because the shaking acceleration, Γ ∝ f 2, approaches the

limit of the electromagnetic shaker at these frequencies and we did not want to

damage the shaker.

A detailed study of the frequency dependence of the di�erent states is yet

to be carried out, but we have measured the lowest and highest amplitudes (or

equivalently accelerations) of the soft turbulent state for a �xed �lling fraction φ =

40% for 50Hz < f < 130Hz. For f > 100Hz only the lowest amplitude of the soft

turbulent state was measured, because at these frequencies the acceleration at the

transition to the hard turbulent state was beyond the limit of the electromagnetic

shaker in this frequency range.

2The cell is less sensitive to levelling for higher driving accelerations, because gravity becomes
less important.
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Figure 5.8: Frequency dependence of the turbulent state for a �xed �lling fraction of 40%.
Panel (a) shows the lowest and highest amplitude A/d of the soft turbulent state and
panel (b) the corresponding accelerations Γ/g; here g is the gravitational acceleration.

The experiments were carried out in the large cell C3. The experimental pro-

cedure for an individual measurement is the same as the procedure for the mea-

surements of the phase diagram. A precise description is given in Sect. 5.2. The

data were converted into amplitudes and accelerations as described in Sect. 3 and

5.2.

In Fig. 5.8 (a) the onset amplitudes, A, are plotted against the driving fre-

quency, f . Figure 5.8 (b) shows the corresponding onset accelerations Γ = A(2πf)2.

As for the previous measurements the experimental precision is given by the step

size of the signal generator. The size of the corresponding error-bars is less than

the size of the symbols. The systematic error due to the calibration is less than

10%, because the measurements were taken in the large cell C3. Within small de-

viations the lowest and the highest amplitude of the soft turbulent state decrease

monotonically with increasing driving frequency. At low frequencies, f < 70Hz,

both curves fall steeply. The slope decreases a little at higher frequencies. In con-

trast the curves of the highest and lowest acceleration Γ raise at low frequencies

and seem to saturate for higher frequencies f ≥ 90Hz at accelerations of Γ ≈ 12 g

and Γ ≈ 20 g respectively; g is the gravitational acceleration.
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5.4. Spatial Power Spectra of the Topography

Discussion As discussed in Chap. 6 a saturation of the onset amplitudes would

suggest that gravity becomes negligible, whereas a saturation of the acceleration

implies, that gravity, though one order of magnitude smaller than the peak shaking

acceleration Γ still plays a crucial role. The measured data might be in�uenced

signi�cantly by a frequency-dependence in the shape of the driving wave function.

The calibration performed with the accelerometer shows that the sinusoidal driving

is a�ected by noise. The level of noise depends on the amplitude and the frequency.

The data collected thus far does not allow for a clear interpretation. In order to

ascertain the frequency dependence of the patterned and turbulent states closely,

it would be necessary to reduce the noise in the shape of the driving.

5.4 Spatial Power Spectra of the Topography

In this section we characterise the spatial structure of the states for a �xed �lling

fraction φ = 34% and a �xed driving frequency f = 100Hz quantitatively. The

experiments were carried out in the large cell C1. Therefore, we measure the spatial

power spectra of the images for the di�erent states. The brightness in the image

is correlated to the topography, because particles sticking to the top glass plate

show up brighter than particles at the bottom of the cell. Consequently we assume

that we obtain the power spectrum of the topography Ss(k) from the images. We

exclude the hard turbulent state from this analysis, because the system appears

homogeneous in photographs.

Experimental Procedure

During all experiments, the driving frequency f = 100Hz and the �lling fraction

φ = 34% were kept constant. Except for the low frequency stable stripes, the

amplitude dependence of the typical length scale of the pattern is within the range

of our experimental precision, so that we present only one dataset at one driving

amplitude (�target amplitude�) for each of these states. The target amplitudes

were chosen such that the pattern �lls the whole cell: 2.5 d (LFSC), 2.7 d (STC),

2.8 (HFSS), 2.9 d (HFL) and 3.3 d (ST). The pattern of the low frequency stable

stripes coarsens signi�cantly with increasing driving amplitude so that we mea-
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sure the spectra for seven di�erent target amplitudes 1.2 d, 2.3, 1.5 d, 1.6 d, 1.8,

2.1 d and 2.2 d. The amplitudes cover nearly the whole amplitude range from the

onset amplitude of the low frequency stable stripes up to the transition to the low

frequency stable crossrolls.

The spectra are obtained from images recorded with the Olympus Digital

E-500 Camera at a short exposure time T = 2ms. For each dataset (each target

amplitude) 10 sets of 10 images at the target amplitude were taken. Each set of

images was obtained in an individual experimental run to ensure some statistical

accuracy.

Protocol

At the beginning of each experimental run the particles were distributed homoge-

neously throughout the cell. The target amplitude was approached by decreasing

the driving amplitude quickly from a value where the system is in the soft tur-

bulent state, and as such, well mixed. At the target amplitude the system was

allowed to relax until the typical length scale did not change in time. The images

were recorded at di�erent phases of the shaking, because the camera was controlled

manually.

Additionally, one image sequence of each state was taken with the high-speed

PCO.1200s camera. The frame rate of the high-speed camera was �xed at the

maximum frame rate of 500 s=1, so that every �fth image of a set corresponds to

the same phase of the shaking.

Data Analysis

The images are manipulated as described in Sect. 2. We calculate the discrete, two-

dimensional Fourier transform of the manipulated images using the fft2-function

provided by matlab. We consider the spatial Fourier transform of the patterns

with wave vector ~k = (kx, ky)
t. For every set the average of the Fourier transforms

of all images at the same target amplitude appears rotationally symmetric.3 This

allows us to perform a radial average over all directions. Thus, we reduce the

3Note that only the average of the Fourier transform of all images and not the Fourier trans-
form of one individual image is rotationally symmetric.
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complexity and characterise the spectrum of an image in terms of the single scalar

value k =
√
k2
x + k2

y. We ignore the DC-term k = 0 as it only represents the mean

brightness of the images.

The lighting of the cell does not only create an intensity gradient at the length

scale of the cell, but can also cast small-scale shadows. The shadows are not re-

moved by the previous image manipulation and appear as additional peaks in the

spectra. The presence of the shadows in the images depends on the phase of shak-

ing when the image was taken. We identify the peaks corresponding to shadows

as described below and exclude the images, where these peaks are dominant in the

spectrum We average the power spectra of the remaining images of each target

amplitude.

To identify the arti�cial peaks, we use the sequence of images taken with the

high-speed camera at constant frame rate. For these images we carry out the data

analysis as described before, but �nally average only over the spectra taken at the

same phase of shaking. Some peaks appear in the averaged spectra independent

of the phase of shaking, whereas other peaks disappear entirely at a particular

phase. As an example, Fig. 5.9 shows the averaged spectra at di�erent phases

for the high frequency stable stripes. The peak at the main maximum appears

in each spectrum, whereas minor maxima disappear entirely at one phase. The

length-scale that corresponds to the minor maxima is in the range of the width of

the shadows, so that we identify these peaks with the shadows.

Results

Figure 5.10 shows the datasets corresponding to the �rst bifurcation into the low

frequency stable stripes. All spectra show one clear single peak. At the lowest

realised shaking amplitude A = 1.2 d the corresponding wavenumber is k/(2π) =

0.72 cm=1, such that the corresponding typical length scale is L = 1.39 cm. With

increasing shaking amplitude, the position of the peak decreases to lower k-values,

which corresponds to an increase in the typical length scale. At the highest realised

amplitude for the low frequency stable stripes, the spectrum peaks at k/(2π) ≈
0.39 cm=1 such that the typical length scale is L = 2.56 cm.

The typical length scale does not increase linearly with the shaking ampli-
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Figure 5.9: Dependence of the power spectrum of the topography on the shaking phase
for the high frequency stable stripes. The di�erent curves correspond to di�erent phases
of the shaking. The main maximum appears clearly in every dataset. The minor maxima
disappear entirely at one particular phase of shaking.

tude, but raises steeply within a small range of low amplitudes and increases only

marginally in a wide range of higher amplitudes. There was not time to complete

a full analysis of the change in the length scale with driving amplitude.

Figure 5.11 shows the spectra obtained for the other states as well as the spec-

trum of the highest amplitude for the low frequency stable stripes. The spectrum

of the low frequency stable crossrolls shows a peak at k/(2π) ≈ 0.5 cm=1 that

is about the same wavenumber as the peak of the low frequency stable stripes.

Additionally a minor peak at a higher wavenumber k/(2π) ≈ 1.06 cm=1 corre-

sponding to an additional, clear, smaller typical length scale L ≈ 0.94 cm appears

in the power spectrum. In the spectrum for the spatiotemporal chaos, the �rst two

peaks reappear at slightly smaller wavenumbers and additionally a clear tertiary

peak appears at k/(2π) ≈ 1.44 cm=1 emerges in the spectrum.

The spectrum of the high frequency stripes peaks only once at k/(2π) ≈
1.39 cm=1. This corresponds to a typical length scale L ≈ 0.72 cm of the pat-

tern. In the second high frequency state, the peak shifts to a smaller wavenum-
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Figure 5.10: Power spectra of the topography for the low frequency stable stripes at
di�erent driving amplitudes obtained from the two-dimensional Fourier transform of
short exposure photographs. The spectra were normalised such that the peak value
equals unity. All spectra show one clear maximum. The position of the maximum moves
to lower k-values with increasing driving amplitude.

ber k/(2π) ≈ 0.78 cm=1 such that the typical length scale of this pattern is

L ≈ 1.28 cm.

The spectrum of the turbulent state does not show any peaks, but is monoton-

ically decreasing. Within small deviations the power spectrum can be described

by a power-law with exponent α = =3.5 in the range between k/(2π) ≈ 0.7 cm=1

and k/(2π) ≈ 0.9 cm=1 ; a power-law with α = =3.5 is shown in Fig. 5.11 as a

reference. The Kraichnan-Leith-Bachelor theory for two-dimensional turbulence

predicts a scaling exponent of αtheo = =3.0 for the power spectrum of the kinetic

energy E(k) in the downscaling regime. Although these numbers are comparable,

they refer to di�erent observables.

Discussion

The spatial resolution of the analysis is limited: The discrete Fourier transform

provides a step size of ∆k = 2π/L, so that the length scales resolved are L̃ = L/n,
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n ∈ N. Consequently, the spatial resolution for low k-values, that is large length

scales, is not limited by the resolution of the camera but by the cell size. For high

k-values, that is small length scales, noise due to re�ections on individual particles

and dust increases and we get close to the camera resolution. This appears as a

cut-o� in the spectrum at k/(2π) ≈ 10 cm=1. As this corresponds to length-scales

much smaller than the typical length-scales of the patterns, it does not in�uence

the measurements signi�cantly.

During the data analysis arti�cial peaks induced by the lighting need to be

identi�ed. The very small peaks in the spectra of the low frequency crossrolls

and the spatiotemporal chaos between k/(2π) ≈ 2 cm=1 and k/(2π) ≈ 4 cm=1 are

likely to be residuals from shadows cast in the system that were not removed by the

previous image processing. Our data do not allow us to decide, if the clear third

peak in the spectrum of the spatiotemporal chaos corresponds to a third typical

length scale in the pattern or if it is an arti�cial lighting-e�ect. To answer this

questions the experiments would need to be repeated with a homogeneous lighting.

Homogeneous lighting could be realised by using multiple light sources arranged

symmetrically in a circle above the cell. Unfortunately this was not possible within

the limits of this project.

Despite the experimental imperfections we can identify the characteristic length

scales of the patterned states in the power spectra of the images (see Fig. 5.11). In

contrast to the patterned states the power spectrum of the topography for the soft

turbulent state shows a power-law-like behaviour. This suggests a coexistence of all

length-scales resolved within our experimental precision. We obtain an exponent

of α ≈ =3.5. Surprisingly, this is close to the theoretical prediction of the power

spectrum of the kinetic energy E(k) predicted by the Kraichnan-Leith-Bachelor

theory for two-dimensional turbulence. It is by no means clear, how the measured

spectrum ST(k) is related to E(k) in our system. A relation ST(k) ∝ E(k) · kx,
with x = const would be possible. Yet, the power-law-like behaviour strongly

indicates that the system indeed descends into turbulence.
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Figure 5.11: (a) Power spectra of the topography for the di�erent states obtained from the
two-dimensional Fourier transform of short exposure photographs. The driving frequency
f = 100Hz, and mean volume �lling fraction φ ≈ 34% were kept constant. From bottom
to top the driving amplitude are 2.2 d (LFSS), 2.5 d (LFSC), 2.7 d (STC), 2.8 (HFSS),
2.9 d (HFL) up to 3.3 d (ST). The spectra were normalised such that the peak value equals
unity. For the sake of clarity, the zero-point of the ordinate was shifted for the di�erent
spectra. The spectra of the low-frequency stable stripes, the high frequency stable stripes
and the high frequency lattice pattern show each one clear maximum. The spectrum of
the low frequency crossrolls shows two maxima, that is the pattern is characterised by
two di�erent length scales. The spectrum of the spatiotemporal chaos resembles the
spectrum of the crossrolls, but shows additional minor peaks at higher wave-numbers.
(b) Close-up images of the low frequency stable stripes, the low frequency crossrolls, the
high frequency stripes and the high frequency lattice. The length scales corresponding
to the peaks are marked in the images.
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5.5 Frequency Spectra at Fixed Points in Space

In this section we characterise the inherent time-dependence of the di�erent states

at �xed position. Therefore we measure the power spectra of the time-evolution

of the image intensity at �xed points in space St(f). The intensity is correlated to

the topography, that is to the mean height of the particles with respect to the cell,

so that our measurements represent the time-evolution of the mean height at a

�xed position. The data presented are obtained for a �xed volume �lling fraction

φ = 34% and a �xed driving frequency fshak = 100Hz.4 The experiments were

carried out in the large cell C2.

Experimental Procedure

We use the sequences of images recorded with the high-speed camera for the mea-

surements of the spatial power spectra of the topography. The experimental pro-

cedure is described in the previous section (Sect. 5.4). The time di�erence between

two adjoining images of a sequence is ∆t = 2ms. For each state the amplitude

was chosen such that the pattern �lls the whole cell: A ≈ 2.0 d (LFSS), (A ≈ 2.5 d

(LFSC), A ≈ 2.7 d (STC), A ≈ 2.8 d (HFSS) and A ≈ 2.9 d (HFL).

Data Analysis

The images are cropped to the size of the cell and the light gradient is removed

as described in Chap. 2. For each sequence of images we randomly choose 1000

image points (pixels) and record the image intensity at this point in time. We

measure the power spectrum of the time-evolution of the intensity for each chosen

image point by using the fft-function provided by matlab. We average over the

spectra at the di�erent image points and normalise the averaged spectra such that

the peak value equals unity.

4For the sake of clarity we use the index �shak� throughout this section to mark the shaking
frequency.
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Results

Figure 5.12 shows the power spectra St(f) for the low frequency stable stripes, the

low frequency stable crossrolls, the spatio-temporal chaos and the high frequency

stripes. The curves are nearly indistinguishable. The power spectra show a main

maximum at fpat ≈ 50Hz = fshak/2. Minor peaks can be found at harmonics of

fpat = fshak/2. The value of the main maximum exceeds the minor maxima by

more than one order of magnitude.
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Figure 5.12: Normalised frequency spectra of arbitrarily chosen image points at a driving
frequency fdriving = 100Hz and �lling fraction φ = 34%. The di�erent curves correspond
to di�erent patterned states: low frequency stable stripes (A ≈ 2.0 d), low frequency
crossrolls (A ≈ 2.5 d), spatio-temporal chaos (A ≈ 2.7 d) and high frequency stripes
(A ≈ 2.8 d). The curves are nearly indistinguishable. One clear peak appears at fpat =
50Hz = f/2, that is the patterns oscillate at half the driving frequency. Minor peaks
appear at harmonics of fpat and represent the shape of the signal.

In Fig. 5.13 the power spectra of the high frequency stripes and the high frequency

lattice are shown. They di�er signi�cantly from each other: The spectrum of the

high frequency lattice shows a main maximum at fpat = fshak/3 ≈ 33Hz. Minor

maxima appear at harmonics of fpat = fshak/3. The value of the �rst harmonic

at f = (2/3)fshak is of the same order of magnitude as the value of the main
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maximum. Additionally we observe a small peak at f = 100Hz = fshak.
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Figure 5.13: Normalised frequency spectra of arbitrarily chosen image points at a driving
frequency fdriving = 100Hz and �lling fraction φ = 34%. The brown curve corresponds to
the high frequency stable stripes (A ≈ 2.8 d) and the orange curve to the high frequency
lattice (A ≈ 2.9 d). The zero-point of the ordinate axis was shifted for the high frequency
lattice. The spectrum of the HFSS shows one clear main maximum at fpat = 50Hz. Its
spectral density exceeds the side maxima at harmonics of f/2 by one magnitude. The
spectrum of the HFL has a main maximum at f ≈ 33Hz ≈ f/3, a clear minor maximum
at the �rst harmonic as well as less pronounced minor maxima at higher harmonics. The
pronounced maximum at the �rst harmonic shows that the shape of the signal di�ers
substantially from a perfect sine wave (see Fig. 5.16 and 5.15). Experimental parameters:
fdriving = 100Hz, A ≈ 3.25 d, φ = 34%.

Discussion

The spectra presented were obtained from images, where a lighting gradient and

also the mean brightness were removed. If we do not correct the data, the spec-

tra change. Figure 5.14 shows the spectra of the high frequency stable stripes

obtained from the raw, non-corrected image and from the lighting-corrected data.

The spectrum of the non-corrected images shows a very pronounced maximum at

a frequency equal to the driving frequency f = fshak = 100Hz as well as a pro-
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Figure 5.14: Frequency spectra of the high frequency stable stripes: The red curve
shows the spectra of the raw image data, the black curve the spectra of the images after
subtracting the intensity gradient. The spectra were normalised and the zero-point of the
ordinate axis shifted. Experimental parameters: fdriving = 100Hz, A ≈ 2.8 d, φ = 34%.

nounced minor maximum at the �rst harmonic of the driving frequency f = 200Hz.

Both peaks are signi�cantly smaller in the lighting-corrected images. This indi-

cates that the vertical position of the cell in�uences mainly the mean brightness

of an image.

All measured power spectra of the lighting-corrected images St(f) show a clear

main maximum and several minor maxima at harmonics. The main maximum

correspond to the frequency of the signal, whereas minor maxima show the shape

of the signal. This is illustrated in Fig. 5.15. If the input signal is not a perfect

sine, but a square wave, the Fourier transform does not show a single peak at the

frequency, but minor peaks at even harmonics. Therefore the measurements reveal

clearly the oscillation frequency of the standing waves that form the patterns: Ex-

cept for the high frequency lattice pattern (HFL) all patterns oscillate at half the

driving frequency. The period doubles with respect to the homogeneous state in

which the particle layer follows the motion of the plates. The high frequency lattice

pattern oscillates at a third of the driving frequency fpat = fshak/3. The period
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Figure 5.15: Normalised Fourier spectrum of a square wave with frequency f = 1. The
input signal is shown in the inset. The spectral density was normalised such that the
value of the main maximum (at f = 1) equals unity. The plot does not show the peak of
the main maximum. Clear minor maxima can be found at even subharmonics f = 1+2n;
n ∈ N.

tripling is accompanied by a threefold symmetry in space: The hexagonal lattice

can be modelled as a superposition of three plane waves of the same wavenumber

at an angle of β = 2π/3 with respect to each other. Compared to the previous

patterned states the period increases abruptly by 3/2. This discontinuity in the

time-dependence of the oscillation coincides with a discontinuity in space: In con-

trast to all other patterns, the hexagonal lattice pattern develops independently of

the high frequency stripes, whereas the other patterns develop through a smooth

transition. It seems likely, that the discontinuity of the oscillation frequency cause

the abrupt change in space.

The spectrum of the lattice pattern also shows more pronounced maxima at har-

monics of the oscillation periods and a broadening of the peaks with respect to the

former states. This shows that the oscillation di�ers signi�cantly from a perfect

sine wave. Figure 5.16 shows a typical extract of the time-evolution of the inten-

sity at an arbitrarily chosen image point. As expected the signal is characterised
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by a huge level of noise and a systematic asymmetry between the maxima and

minima. The noise in the oscillation exceeds the noise in the oscillation of the

previous pattern. The increase in the noise might be a precursor of the transition

into turbulence when the driving amplitude is increased a little further.
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Figure 5.16: Time-evolution of the brightness of one arbitrarily chosen image-pixel at a
driving frequency f = 100Hz, driving amplitude A = 2.9 d and �lling fraction φ = 34%.
During the measurement, the high frequency lattice pattern �lled the entire cell. The
signal does not show a clear sine wave, but is overlaid by noise and slightly asymmet-
ric. The asymmetry and the noise explain the spectral density of the harmonics in the
spectrum shown in Fig. 5.13
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Chapter 6

Discussion

In this chapter we discuss the relevant parameters of the system. We analyse the

experimental imperfections of the system components and conclude with a short

dimensional analysis to identify the relevant quantities.

6.1 Experimental Imperfections

Particles

We intended to work with a sample of monodisperse, spherical particles that in-

teract solely through contact forces. The photomicrograph (Fig. 2.2) in Sect. 2.1

reveals that the particles vary signi�cantly in shape and size. A less polydisperse

sample would be preferable. The behaviour of the system depends crucially on the

dryness of the particles: On humid days surface of the the particles is more wet,

so that we observe a signi�cant change in the behaviour. As an example, Fig. 6.1

shows a pattern that we observed only in the wet system. We could not observe

a clear stripe-pattern or a hexagonal lattice pattern in the wet system. Instead

labyrinthine patterns emerged and the system descended into a state very similar

to the soft turbulence in the dry system at a driving amplitudes signi�cantly lower

than the instability threshold of the soft turbulent state in the dry system.

67



6.1. Experimental Imperfections

(a) (b)

Figure 6.1: Pattern observed in a slightly wet system at driving frequency f = 100Hz,
amplitude A ≈ 2 d and �lling fraction φ ≈ 32.5%. The pattern corresponds to the low
frequency crossroll-pattern in the dry system. The photographs were taken with long
exposure time T = 0.02 s (a) and short exposure time T = 2ms (b).

Cell

We could not observe a change in the pattern upon changing the material of the

bottom plate (duraluminium and steel) or the material of the side walls (glass,

duraluminium). Besides, the side length of the cell did not in�uence the phenom-

ena signi�cantly. The side length of the system should be relevant in containers

with small aspect ratio, if γ ∼ 1 or smaller; the in�uence of the side length should

become negligible in the limit of high aspect ratios γ → ∞. Although we used

cells with large aspect ratio, we cannot neglect boundary e�ects: For example,

the striped-patterns tend to align perpendicular to the side walls and spirals could

only be observed in the cell with round corners.

We could also observe a strong dependence on the cell height on one occasion

we unintentionally increased the cell height by approximately 1mm by placing a

stripe of spongy tape between the side walls and the bottom plate . In the higher

cell a huge variety of patterned states, that cannot be observed in the low system,

emerged. In our system, the height of the cell might vary slightly due to a bending

of the bottom or top plate, but we assume that the variation is less than 0.1mm.

Inhomogeneities in the cell, e.g. in the bottom plate, might in�uence the di�erent

states, too. However, all states emerged independently of the cell used and the

region, where they �rst emerged, as well as the shape varied upon every experi-
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mental run. Besides, we could not observe a preferred direction in the large-scale

circulation. This suggests that the phenomena may be in�uenced, but not caused,

by inhomogeneities of the system.

Driving

The measurements with the accelerometer clearly show that the sinusoidal driving

signal is overlaid with noise. The subharmonic standing waves, that is the pattern,

should be destroyed if the noise exceeds a certain threshold. The experiments

show that the phenomena are robust to small deviations from a perfect sinusoidal

driving.

Nevertheless, inhomogeneities in the driving might provoke instabilities of higher

order, due to hysteresis they can remain stable even below the instability threshold.

If the noise is signi�cantly higher at certain shaking amplitudes, for example,

because of a resonance in the shaker, the plateaus of the instability curves could

emerge (see Fig. 5.7). Spatial inhomogeneities in the shaking can cause the same

e�ect and could be responsible for the observed coexistence of di�erent states

in carefully levelled cells. Both, spatial and temporal, inhomogeneities could be

reduced by using a more powerful shaker with a head of equal and not smaller size

than the cell.

Air E�ects

The behaviour of the system might be in�uenced by the air �ow around the parti-

cles, because the cells were not evacuated. The properties of the air, for example

pressure, temperature and humidity, varied slightly due to weather changes. As

Matas et al. [36] have shown, special subharmonic waves of rectangular pro�le,

occur uniquely in the two-phase case of granular matter and a surrounding �uid.

However, the surrounding �uid should become less important for higher densities

of the particle material. The high density of bronze suggests, that air �ow is

negligible in the system studied.
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Gravity

In the experiments, gravity introduces an asymmetry in the vertical direction. If

the cell is not carefully levelled, the particles follow the slope and are likely to

cause an avalanche. This illustrates the sensitivity of the system to gravity. With

increasing driving acceleration, Γ = A(2πf)2, levelling the cell becomes consider-

ably easier. In the limit of high driving accelerations, gravitation should become

negligible. Most of the experiments were carried out at peak accelerations ranging

within 7 ≤ Γ/g ≤ 30, such that the driving acceleration exceeds gravitation in

most cases by one order of magnitude. Nevertheless, the frequency dependence of

the soft turbulent state shows, that within the parameter range studied gravitation

cannot be neglected.

6.2 Dimensional Analysis

The system can be described by a set of few parameters, if experimental imper-

fections like the polydispersity of the particles, inhomogeneities in the shaking, air

�ow, inhomogeneities in the cell construction and residual long-range interactions

between the particles are neglected. The individual particles can be described

by their diameter d, mass Mp; the cell geometry can be reduced to the height h

and the side length L0; the driving to the driving amplitude A and the frequency

f . The particle-particle interactions and collisions with the cell boundaries can

be modelled with the coe�cients of restitution ε and εboundary. The number of

particles can be described by the mean volume �lling fraction φ and gravity is

characterized by the gravitational acceleration g. We assume, that the coe�cient

of restitution for collisions with the cell boundaries εboundary has only a negligi-

ble in�uence, because we did not observe a change in the system behaviour upon

changing the material of the cell.

Consequently nine parameters, d, Mp, ε, h, L0, A, f , φ and g, remain. The

quantities can be expressed by three fundamental physical units, for example mass

[kg], length [m] and time [s]. The Buckingham π theorem states that the parameter

set can be reduced to 6 = 9− 3 dimensionless quantities. The mass of the particle

Mp is the only quantity with a dimension of a mass, therefore it can be reduced
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to 1. The coe�cient of restitution ε and the mean volume �lling fraction are

expressed in dimensionless form already. The typical length scale could be set by

the diameter of the particles. This allows to reduce d, h, L0 and A to 1, h/d, L/d

and A/d. Including gravity, we can reduce the gravitational acceleration g and the

driving frequency f to 1 and Γ/g := A(2πf)2.

In total we obtain one set of six dimensionless quantities ε, h/d, L0/d, A/d, φ

and Γ/g. Di�erent, equivalent sets could be chosen. In the limit L0/d→∞, this

quantity can be neglected. As we observed all states in the small and the big cells,

we assume, that the phenomena are nearly independent of the side length. This

justi�es the measurements taken for the phase diagram that were taken in cells

with di�erent aspect ratios.

If we assume that gravity is negligible, the nondimensionalization of Γ can not

be carried out. The typical acceleration must then be written as d(2πf)2 so that

Γ reduces to A/d, too. This means the system's behaviour does not depend on

the driving frequency and only ε, φ, h/d, (L0/d) and A/d remain as relevant

parameters.

Although the peak acceleration Γ exceeds gravity by about one order of magni-

tude, the instability thresholds of the turbulent states expressed in terms of the

amplitude decrease monotonically with increasing driving frequency, whereas the

shaking acceleration Γ/g of the instability thresholds seem to saturate, see Fig. 5.8.

This suggests that gravity, though small compared to the driving acceleration,

plays a crucial role.
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Chapter 7

Conclusion and Outlook

The �rst part of this chapter contains a brief summary of the thesis. In the second

part we put our research in context by comparing it to other pattern-forming

systems. In the last part of this chapter we present ideas for future work.

7.1 Summary

The experimental set-up is simple: sand in a shaking box. Yet, the system shows

two complex phenomena that are typical of far-from-equilibrium systems, phase

separation and pattern-forming route to chaos.

The liquid-gas phase separation occurs at low �lling fractions φ ≤ 16% and has

been closely studied in a similar system [9, 12]; in our system, we could reproduce

the observations qualitatively and parts of the measurements quantitatively within

good approximation. At higher �lling fractions φ ≥ 15% the system exhibits a set

of patterned states as well as two distinct turbulent states. One of the turbulent

states is characterised by remarkably pronounced waves (�soft turbulence�), the

other by a large-scale circulation (�hard turbulence�). We successfully mapped

out the stability regions of the di�erent states for a �xed driving frequency in the

parameter space spanned by the driving amplitude and the mean volume �lling

fraction.

We also presented preliminary results on the dependence of the phenomena on the

driving frequency. The results suggest that gravity, though small compared to the
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driving acceleration, plays a crucial role.

For a �xed �lling fraction the system behaviour upon increasing the driving am-

plitude can be interpreted as a sequence of pattern-forming bifurcations that lead

into turbulence. The di�erent bifurcations show similarities to pattern formation

in Rayleigh-Bénard convection, the Faraday experiment with molecular �uids and

open-top granular systems. For one �lling fraction we characterised nearly all

states quantitatively with respect to their properties in space and time. The spa-

tial power spectrum of the topography of the soft turbulent state strongly suggests

that the system transition into fully developed turbulence. The temporal power

spectra of the topography of the patterned states reveal that a period doubling

and a period tripling with respect to the homogeneous state occurs.

Although the set-up is simple and the equations that determine the behaviour of

an individual particle can easily be derived from classical mechanics, the emerging

physics is rather complex.

7.2 Evaluation

With increasing driving amplitude the granular gas undergoes a sequence of

pattern-forming bifurcations before descending into turbulence. The bifurcations

are characterised by hysteresis, so that we observe a sequence of subcritical bi-

furcations. In this respect, they di�er substantially from the pattern-forming bi-

furcations in the Faraday experiment (see Sect. 1.2), where the system undergoes

supercritical bifurcations and the amplitude of the pattern varies continuously [14].

In granular open-top system both, supercritical and subcritical pattern-forming bi-

furcations have been reported [29, 72].

In our system, the bifurcations typically include a discontinuous change in the

spatial frequency or the time-dependence. The primary and secondary patterns

are stationary in time and show striking similarities with open-top granular sys-

tems, Faraday waves in viscous �uids and Rayleigh-Bénard convection. In all cases

striped patterns emerge when the control parameter is increased slowly through the

instability threshold. If the threshold is crossed abruptly, the coarsening dynam-

ics are also similar to Faraday waves and Rayleigh-Bénard convection. It is now

appreciated that the near-threshold dynamics close to the primary instability are
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�universal in some sense� and independent of the details of the underlying mech-

anisms [14]. However, high energy dissipation rates, present in all three systems

mentioned above, seem to play a crucial role in the formation of striped patterns,

as no striped patterns can be observed in Faraday experiments with low-viscous

�uids. Typically, the di�erences in the behaviour of di�erent systems increase with

increasing distance from the primary instability threshold. The secondary pattern

in our system still shows striking similarities to the crossroll-instability that can

be observed in Rayleigh-Bénard convection cells.

The third bifurcation introduces spatiotemporal chaos, a dynamical state in which

the pattern evolves in an exceedingly complex way in our system. Spatiotempo-

rally chaotic states have been observed in Rayleigh-Bénard convection and in the

Faraday experiment, too. In both cases, these states are found only in systems that

are su�ciently large. In cells with smaller aspect ratio, less disorganized patterns

are found [14]. Measured in terms of numbers of particles or particle diameters,

our experiment is incredibly small. Still we observe a complex, chaotic behaviour

(see Sect. 5 and the video in the supplementary material, Sect. A.2). A further

increase of the driving amplitude in our experiment restores a time-independent

again, but the spatial frequency of the pattern increases abruptly.

Up to this point, all patterns oscillated at half the driving frequency. Consequently

the primary instability induces a period doubling with respect to the homogeneous

state where the granular layer follows the motion of the plates. Similar frequency

dependence is usually observed in open-top granular systems and Faraday waves.

In these systems higher instabilities often induce another period doubling, that

is patterns oscillating with f/4. In contrast the next bifurcation in our system

produces a pattern with an oscillation period of three times the driving period - a

period tripling with respect to the homogeneous state and an increase by 3/2 with

respect to the previous patterned states. A pattern oscillating with f/3 has been

observed in a wet granular system [72]. In both systems, the threefold symmetry in

time is coupled with a threefold symmetry in space: The wet granular system shows

a three-armed rotating spiral, our dry system develops a hexagonal lattice, that is

the superposition of three standing plane waves. In the wet granular system, the

pattern with arises from the homogeneous state, so that indeed a period tripling

occurs. In contrast, in our system, the pattern oscillating with f/3 succeeds a
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pattern oscillating with f/2.

Although several sequences of period-doubling in pattern-forming granular systems

have been studied, experimental observations of a transition to turbulent states

have not been reported yet. In contrast, our system transitions into a state in

which we observe dramatic waves destroying the patterns. The measured power

spectrum of the topography ST(k) provides evidence of turbulence, so that we

most likely observe the full pattern-forming bifurcation route to turbulence.

This assumption goes in line with an observation prior to this work when the

experiment was carried out with glass particles: The particles charged up very

quickly as soon as the system transitions into the wave-like state. This indicates

a signi�cantly higher collision rate than in the patterned states and as such a

signi�cant increase of the dissipation rate. A high dissipation rate is also one of

the characteristic feautures of turbulence in molecular �uids.

Counterintuitively, a further increase of the driving amplitude restores spatial and

temporal coherence in form of a large scale circulation. This phenomenology is

strongly reminiscent of the transitions to soft and hard turbulence in Rayleigh-

Bénard convection.

In summary the route of pattern-forming bifurcations leading to turbulent-like

states that we observe combines a mixture of universality, that is independence

from the details of the interactions, and uniqueness, that makes it a most fasci-

nating subject and suggests, that a closer study of the phenomena might provide

a deepened understanding of universal pattern-forming behaviour.

7.3 Outlook

During the course of the experiments several questions arose that could not be

answered within the limited time scale. For example we have observed pattern

formation and turbulence at di�erent frequencies, but did not thoroughly study

the frequency dependence of all states. Closely related to the frequency dependence

is the impact of gravity that needs to be clari�ed. In numerical simulations gravity

could be varied arbitrarily. It would be interesting to test if the patterned states

and turbulence can be observed without gravity and how gravity e�ects the shape.

Besides, the system has shown to react sensitively to a change of the cell height.
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A systematic variation of the cell height is yet to be carried out and likely to allow

the observation of a great variety of di�erent patterns.

Although the energy is injected in the third dimension and the patterns correspond

to the topography, that is a variation in the third dimension, the system studied

seems to behave as a two-dimensional gas: In the phase coexistence the interface

minimised equals a line-interface and the exponent measured in the turbulent re-

gion is closer to Kraichnan-Leith-Bachelor-scaling for two-dimensional turbulence

than to exponents predicted for and measured in three-dimensional turbulence.

A variation of the height invites the question �Where is the transition from two-

dimensionality to three-dimensionality?�
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Figure 7.1: Power spectra of the
topography-evolution in time Sf (f)
in arbitrary units. The zero-point of
the ordinate axis was shifted for the
di�erent curves. The di�erent, continuous
curves correspond to the di�erent states.
The spectra of the patterned states are
described in Sect. 5.5 and show the
oscillation frequency of the patterns. The
spectrum of the soft turbulent states
shows maxima at fshak/3 and fshak/2
and harmonics of them. These maxima
can be explained, because the data were
obtained at an amplitude, where the pat-
terns (high frequency stable stripes and
high frequency lattice) still underlie the
waves. At higher frequencies f > 50Hz,
the spectrum resembles a power-law
decay. As a guide to the eye, the dotted
red-line shows a power-law decay with a
scaling exponent α = −1.1.

The power-law dependence of the image spectra of the soft turbulent state as well

as the similarities to turbulence in Rayleigh-Bénard Convection and Faraday ex-
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periments strongly suggests that the system descends into turbulence. Further

evidence of turbulence might be obtained by extending the analysis performed in

Sect. 5.5 for the patterned states to the soft and hard turbulence, that is by mea-

suring the power spectrum of the topography-evolution in time at a �xed point in

space Sf (f) (see Sect. 5.5). The data presented in Sect. 5.5 were obtained from

sequences of images recorded with the high-speed camera that were originally in-

tended only as additional material to illustrate the pattern-forming mechanism.

Because of overheating of the shaker, we could only record a sequence of images at a

driving amplitude where the soft turbulence is not fully developed. As the video in

the supplementary material (see Sect. A.2) shows, patterns still underlie the waves.

Due to the limited time-scale of the Bachelor's project, the measurements could

not be repeated. We analysed the data as described in Sect. 5.5. Figure 7.1 shows

the measured spectrum Sf (f) of the (not fully developed) turbulent state in com-

parison to the patterned states. The spectrum shows two main maxima at fshak/3

and fshak/2 and minor maxima at harmonics of these frequencies. These peaks

must be attributed to the underlying patterns. At higher frequencies f > 50Hz,

the spectrum is very noisy, but suggests a power-law decay with an exponent of

α = 1.1. From bottom to top in Fig. 7.1, that is with increasing driving amplitude,

it looks as if the system transitions into a state with no typical time scale. The

data are too noisy to state the evolution into a power-law-like behaviour, but hint

that by averaging over more measurements evidence of a power-law-dependence

can be obtained. This would be further evidence of turbulence. To compare the

measured spectrum Sf(f) with theoretical predictions E(k), the relation of the to-

pography and the energy, as well as the dispersion relation between f and k would

need to be ascertained. This might be di�cult in experiments, but all quantities

can be calculated in numerical simulations.

If the system should prove to be turbulent, then we might ask the question �What

changes in the behaviour of individual particles, when the system transitions to

turbulence?� This task is much easier to tackle in a granular system of macroscopic

particles than in molecular �uids. This approach to turbulence has been treated

only scarcely for molecular �uids [73], but might provide a new insight to �one of

the last unsolved problems of classical mechanics� [66].
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Appendix

A.1 Engineering Sketches of the Big Cell

(a) bottom plate

I



A.1. Engineering Sketches of the Big Cell

(b) one-piece side walls

(c) frame

II



A.1. Engineering Sketches of the Big Cell

(d) substructure

Figure A.1: Engineering sketches of the di�erent components of the big cell: the bottom
plate (a), the one-piece side walls (b), the frame (c) and the substructure (d). The
numbers denote the dimensions in mm.
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A.2 Videos in the Supplementary Material

The supplementary material contains two sets of videos and a visualization of the

large-scale circulation. All movies can be found in the public folder of the MPI-DS

computer �vegan�: �/scratch.local/data/public/sreimers/videos�.

One set of videos shows the dynamics in the cell C3 with a �lling fraction of

φ = 40% at normal speed. The frequency was kept constant at f = 100Hz. The

amplitude was increased abruptly from A = 0 d to a target amplitude A 6= 0 d. A

short description of the videos is given in Tab. A.1.

The other set of videos contains slow-motion movies of the di�erent states. The

images were taken with the PCO-1200s Camera at the maximal frame rate of the

camera 500 s=1. The speed of the movie is 3% of the original time. The videos

show the cell C1 with a �lling fraction of 34%. Within the time recorded, the

frequency and the amplitude were kept constant at f = 100Hz and at the target

amplitude which is speci�ed in Tab. A.2.

The movie of the large-scale circulation (�lename: LSC.avi) is obtained from pho-

tographs taken with the Olympus Digital E 500 camera at a constant frame rate

of 2.5 s=1. The playback speed of the video is four times of the original speed. The

experiment was carried out in the small cell C2 with a �lling fraction of φ = 40%

at a driving frequency of f = 100Hz and an amplitude of A = 4.25 d. We used a

steel tracer particle to visualize the �ow.
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Normal-Speed Videos

Filename Description

LFSS_ 1.5.MP4 Coarsening dynamics of the LFSS: At the beginning, the

pattern shows several defects and droplets. With increasing

time the defects and droplets disappear and a line-pattern

remains. The lines align perpendicular to the side-walls.

STC_ 2.6.MP4 Dynamics of the STC: The motion grows from the centre

of the cell. Small droplets emerge rapidly and either merge

with a neighbouring stripe or disappear. The stripes shiver

or move.

HFSS_ 2.7.MP4 Coarsening dynamics of the HFSS: At the beginning, the

pattern emerges as a defect-line pattern and shows small

droplets in the centre. With increasing time, the droplets

and the defects disappear. In the middle of the movie, the

LFSC-pattern emerges in the centre of the cell, probably

because the cell was slightly unlevel or because of an inho-

mogeneity in the driving.

ST_ 2.8.MP4 Waves in the soft turbulent state slightly above the insta-

bility threshold. Patterns still underlie the waves.

ST_ 3.0.MP4 Waves in the soft turbulent state in the fully developed tur-

bulent regime. The waves have destroyed the patterns com-

pletely.

Table A.1: Overview of the normal-speed videos. The number in the �lename indicates
the driving amplitude in particle diameters d. All experiments were carried out in the
cell C3 at a driving frequency f = 100Hz and a mean volume �lling fraction f = 40%.
The videos show the dynamics following a jump of the driving amplitude from A = 0 d
to the target amplitude speci�ed in the table.
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Slow-Motion Videos

Filename Description

Prepattern_ 0.9.avi Dynamics of the �Pre-pattern�. The amplitude was in-

creased slowly from below the �uidisation point to the target

amplitude.

LFSS_ 1.5.avi The LFSS forming a spiral. If the video is shown at normal

speed, the pattern looks stationary in time.

LFSS_ 2.0.avi The LFSS forming circles.

LFSC_ 2.5.avi The LFSC developing out of a LFSS-pattern forming circles.

The amplitude was increased slowly above the second insta-

bility threshold. The bifurcation emerged as the additional

droplets in the centre of the circles.

LFSC_ 2.6.avi The LFSC developing out of a LFSS-pattern forming a spi-

ral. The amplitude was increased slowly above the second

instability threshold.

STC_ 2.7.avi Spatiotemporal chaos developing out of a spiral structure.

HFSS_ 2.8.avi HFSS-pattern following a slow increase of the driving am-

plitude.

HFL_ 2.9.avi HFL-pattern following a slow increase of the driving ampli-

tude.

ST_ 3.0.avi Soft turbulence near the instability threshold. Patterns still

underlie the waves.

Table A.2: Overview of the slow-motion videos. The number in the �lename indicates the
driving amplitude in particle diameters d. All experiments were carried out in the large
cell C1 at a driving frequency f = 100Hz and a mean volume �lling fraction φ = 34%.
The total time of one movie corresponds to 1 s.
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