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Abstract: The stabilization of laminar flows on the base of linearizations and feedback
controllers has been the subject of many recent theoretical and computational studies. However,
the applicability of the standard approaches is limited due to the inherent fragility of observer
based controllers with respect to arbitrary small changes in the system. We show that a slight
variation in the Reynolds number of a flow setup amounts to a coprime factor perturbation in
the associated linear transfer function. Based on these findings, we argue that known concepts
from robust control can be exploited to come up with an output feedback law that can stabilize
the cylinder wake over the transition period from a stable to a stabilized regime.
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1. INTRODUCTION

The feedback stabilization of laminar flows based on con-
trollers designed to attenuate deviations from a stationary
working point has got a substantial theoretical foundation,
see Raymond (2005, 2006). The basic idea is to linearize
the model about an unstable target steady-state and to
define a controller based on the linearization that is ca-
pable to damp small perturbations of the target state
also in the actual nonlinear model. This approach has
been successfully applied in numerical experiments both
with state feedback, cf. Bänsch et al. (2015), and with
low-dimensional output feedback, cf. Benner and Heiland
(2015a), see also Breiten and Kunisch (2014) for an ex-
ample with a FitzHugh-Nagumo model. However, there
remains a major conceptual problem: in applications, the
unstable target state, which is the starting point of the
stabilization process, may never be attained.

Therefore, we need stabilizing controllers that can operate
in, say, two different regimes and in the transition between
them so that the system can be safely transferred from a
possible state to the desired state.

We opt for the particular scenario of a flow that is stable
for low Reynolds numbers (Re) and unstable for a medium
Re which is the target of the controlled process. Changing
the Re in the course of evolution results in a change in
the internal dynamics which needs to be modelled as an
inherent system uncertainty. There are three commonly
used classes of system uncertainties that are best described
in terms of the transfer functions G and G̃ of the system
and its perturbation:

(1) The additive uncertainty δGa that adds to the trans-

fer function: G̃ = G+ δGa,
(2) the multiplicative uncertainty δGm that multiplies

the transfer function: G̃ = (1 + δGm)G, and

(3) the coprime factor uncertainty δN , δM , that perturbs
a coprime factorization G = NM−1 to give a coprime
factorization of the perturbed system as G̃ = (N +
δN)(M + δM)−1.

Roughly speaking, a coprime factorization M−1N of a
transfer function G is given through proper and real ratio-
nal stable transfer functions N and M , with M bounded
away from zero in the right half-plane, that are coprime.
These factorizations play an important role in robust con-
trol design; cf. Zhou et al. (1996). Similarly, coprime fac-
torizations can be defined for infinite dimensional systems
with finite dimensional inputs and outputs (Curtain and
Zwart (1995)) and used for the design of robust controllers.

In view of applying the robust control strategies given in
Curtain (2003) in the considered flow setup, we argue that

The low-Re regimes can be interpreted as a coprime factor
perturbation of the medium-Re system.

In this work, we state a functional analytical framework
for the boundary control of incompressible flows that uses
a relaxation of the boundary conditions which makes the
input of distributional type, cf. the discussion in Benner
and Heiland (2015b). We derive the abstract formulation
and we extend known results to show that a linearization
about a target steady state can be put into the linear sys-
tems framework investigated in Curtain and Zwart (1995).
We show how the Reynolds number affects a coprime
factorization of the considered system’s transfer function
and that the linear system meets the necessary conditions
for robust stabilization by finite dimensional controls. For
the test case of the cylinder wake, we show that a sequence
of space discretizations also fulfills sufficient conditions for
robust stabilizability. In view of applications we make sure
that the numerical tests are suitable for large scale prob-
lems. We conclude the paper with summarizing remarks
concerning also future research on the topics.
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Fig. 1. Computational domain of the cylinder wake.

2. MODEL OF THE CONTROL PROBLEM

Before introducing the semigroup setting for the consid-
ered Navier-Stokes Equations (NSE), we derive the con-
sidered equations on an informal level.

For a diffusion parameter ν, we consider a NSE that mod-
els the velocity V and the pressure P of an incompressible
flow for time t > 0 and in a domain Ω with boundary
Γ = Γ0 ∪ Γw ∪ Γout ∪ Γ1 ∪ Γ2, as illustrated in Figure 1,

V̇ + (V · ∇)V +∇P − ν∆V = 0, (1a)

div V = 0, in Ω, (1b)

with inflow and outflow boundary conditions

V = −ng0 · α on Γ0 and ν ∂V
∂n − np = 0 on Γout, (1c)

with boundary control

V = −ng1 · u1 on Γ1 and V = −ng2 · u2 on Γ2,
(1d)

where g0, g1, and g2 are shape functions modelling the
spatial dimension of the boundary values, where n is the
outward normal vector, where α > 0 is a scalar, u1 and
u2 are scalar input functions depending on time t, and
with no-slip conditions at the walls, i.e. V = 0 on Γw. By
means of α, describing the magnitude of the velocity at
the inflow, we will parametrize the Reynolds number and,
thus, the varying flow regimes.

If one sets Reα = αr
ν , where r denotes the cylinder radius,

and rescales the domain Ω, the nondimensional equation
for the nondimensional velocity v := V

α reads

v̇ + (v · ∇)v +∇p− 1

Reα
∆v = 0, (2a)

div v = 0, in Ω, (2b)

with the inflow boundary condition

v = −ng0 · 1 on Γ0 (2c)

and the remaining boundary conditions adapted accord-
ingly. Here and in what follows, we tacitly redefine the
pressure variable p in every step of the derivations.

Let vα∗ be the steady-state solution for a given target
regime α∗ and for u1 = u2 = 0. Then, with v =: vα∗ + vδ,
the system (2) can be rewritten as

v̇δ + L(α∗)vδ +∇p = −(vδ · ∇)vδ, (3a)

div vδ = 0, (3b)

with the control boundary conditions

vδ = −ng1 · u1 on Γ1, vδ = −ng2 · u2 on Γ2,

as well as the inflow and outflow conditions,

vδ = 0 on Γ0,
1

Reα
∂vδ

∂n − np = 0 on Γout,

no-slip conditions on Γw, and with

L(α∗)w := (vα∗ · ∇)w + (w · ∇)vα∗ − 1

Reα∗

∆w.

If one parametrizes the steady state solution over α(t), the
equation for the current difference state vδ := v−vα reads

v̇δ + L(α)vδ +∇p = −(vδ · ∇)vδ − v̇α, (4a)

div vδ = 0, (4b)

with boundary conditions as above.

The theoretical and numerical treatment of time-depending
Dirichlet conditions is a delicate problem (Benner and
Heiland (2015b)) which is beyond the scope of this inves-
tigation. Thus, for a straight-forward variational formula-
tion, we relax the present Dirichlet boundary conditions
to Robin-type conditions:

v = −ngiui → v ≈ −ngiui − γ( 1
Reα

∂v
∂n − pn) on Γi,

with u0 := α and a parameter 0 < γ � 1, cf., e.g., Hou
and Ravindran (1998) for convergence properties of this
relaxation in optimal control of flows.

We introduce the spaces

V 1
Γw

:= {z ∈ H1(Ω) : div z = 0 and z
∣∣
Γw

= 0},
V 0
n,Γw

:= {z ∈ L2(Ω) : div z = 0 and z · n
∣∣
Γw

= 0},

and the dual space V −1
Γw

with respect to the dense embed-

ding V 1
Γw

↪→ V 0
n,Γw

, cf. Nguyen and Raymond (2015). For
later use, we also define the orthogonal projector

Π: L2(Ω) onto V 0
n,Γw

⊂ L2(Ω).

Here and in what follows, we do not distinguish nota-
tionally between scalar and vector valued Sobolev spaces.
Also, since the dualities are defined as extensions of the L2

inner product, we can identify the pivot spaces L2(Ω) and
V 0
n,Γw

and their duals. We will make use of this by tacitly

identifying forms and vectors in L2(Ω) and V 0
n,Γw

.

For i = 0, 1, 2, let gi ∈ H1/2(Γi) and define the form
bi : H

1(Ω) → R via biv := − 1
γ

∫
Γi

ngiv ds for v ∈ H1(Ω).

With this, for a given α, we define the steady state solution
vα as the (weak) solution that satisfies

c(v, v, w) + a(α; v, w)−
(
p, divw

)
L2 = b0w, (5a)(

div v, q
)
L2 = 0, (5b)

for a suitable p ∈ L2(Ω), for all w ∈ H1(Ω) with w = 0 on
Γw and for all q ∈ L2(Ω), and where the forms a : H1(Ω)×
H1(Ω) → R and c : H1(Ω) × H1(Ω) × H1(Ω) → R are
defined as

a(α; v, w) :=
1

Reα

(
∇v,∇w

)
L2 +

1

γ

∫

Γ0∪Γ1∪Γ2

vw ds, (6)

and

c(u, v, w) :=
(
(u · ∇)v, w

)
L2 . (7)

Note that (5) is derived from (2) through partial inte-
gration considering the Robin relaxation of the nonzero
Dirichlet conditions.

For the time being, we make the following assumption:

Assumption 1. Let 0 < ε < 1/2 define the degree of
regularity of the corresponding Stokes solutions on the
considered domain with mixed boundary conditions, cf.

IFAC CPDE 2016
June 13-15, 2016. Bertinoro, Italy

33



	 P. Benner et al. / IFAC-PapersOnLine 49-8 (2016) 031–036	 33

Nguyen and Raymond (2015). Then for all α in a suffi-
ciently small neighborhood around a given α∗ ∈ R, the
steady state solution vα to (5) is in H3/2+ε(Ω) ∩ V 1

Γw
and

the map α �→ vα ∈ V 1
Γw

is continuous.

Here, the critical part is the existence of a solution vα
to (5), that has not been proven for the general case and
that also depends on the data b0, cf. also the appendix
in Nguyen and Raymond (2015). For small α or in the
neighborhood of a known solution, existence can be stated
using the arguments in Kučera (1998). In Hou and Ravin-
dran (1998), existence has been proven for the case that
there are no more pure Dirichlet boundary conditions. The
continuity of α �→ vα is a condition for the existence
of a branch of nonsingular solutions which is commonly
assumed for convergence of space discretizations and which
has been established for several setups of Navier-Stokes
equations; cf. Ch. 3 in Girault and Raviart (1986).

With the same ε and for given α, we can define the Stokes
operator Aα;0 : D(Aα;0) ⊂ V 0

n,Γw
→ V 0

n,Γw
via

D(Aα;0) := {v ∈ H3/2+ε(Ω) ∩ V 1
Γw

:

there exists a p ∈ H1/2+ε(Ω) such that

a(α; v, ·) +
(
p, div ·

)
L2 ∈ L2(Ω) and

1
Reα

∂v
∂n − np = 0 on Γout}

and Aα;0 = Πσ.

Using the estimates used in the proof of (Nguyen and
Raymond, 2015, Thm. 2.8) and noting that for a smooth
bounded domain Ω, the space L4(Ω) is embedded in L2(Ω),
we find that the form Cαv := c(vα, v, ·) + c(v, vα, ·) is an
element of L2(Ω) and we can define the Oseen operator Aα

as in Nguyen and Raymond (2015) via D(Aα) = D(Aα;0)
and Aα = Aα;0 +ΠCα. Note that a variation in α is but a
scaling in the form a and in the boundary term, so that one
can show that the domain of definition D(Aα) = D(Aα;0)
is defined independently of α.

3. OSEEN LINEARIZATION AND ROBUST
CONTROLLER DESIGN

As suggested by theoretical, cf. Raymond (2006), and
numerical studies, cf. Benner and Heiland (2015a); Bänsch
et al. (2015), a stabilizing controller for (3) can be designed
on the base of projected linearizations for the difference vδ
from the target state vα∗ ,

v̇δ +Aα∗vδ = ΠBu in V 0
n,Γw

, (8)

where

Bu(w) := − 1

γ

2∑
i=1

(∫

Γi

ngiw ds

)
ui.

We will consider controller design on the base of an output

y = Cvδ, (9)

with a linear output operator C : V 0
n,Γw

→ Rk, k ∈ N.

Note that ΠB : R2 → V 0
n,Γw

, since for gi ∈ H1/2(Γi) and
given values of u1 and u2, the functional Bu is bounded
on V 0

n,Γw
, since w ∈ V 0

n,Γw
⊂ H(div,Ω) has a well defined

trace wn ∈ H−1/2(Γ), cf. Girault and Raviart (1986).

Theorem 2. For a given α, the operator Aα : D(Aα) ⊂
V 0
n,Γw

→ V 0
n,Γw

is the generator of a C0-semigroup.

Proof. For a Lipshitz boundary Γ and a part Γp ⊂ Γ of
nonzero measure, the form H1(Ω) × H1(Ω) � (v, w) �→
1

Reα

∫
Ω
∇v∇w dx + 1

γ

∫
Γp

vw ds is coercive, cf. Equation

(1.27) in Nečas (2012), provided that γ is sufficiently small,
cf. Lemma 3.3 in Hou and Ravindran (1998). Thus, one
can show that the Stokes operator (6) with the Robin
relaxation is coercive and use the arguments of Theorem
2.8 in Nguyen and Raymond (2015) to conclude that also
the related shifted Oseen operator is coercive and therefore
a generator of a C0-semigroup.

4. REGIME CHANGE AS COPRIME FACTOR
UNCERTAINTY

We are after an output-based controller that stabilizes (8)
and which is robust enough to also stabilize an Oseen
linearization in a different regime α in the neighborhood
of α∗. We will show that the change in the regime can be
interpreted as a change in the coprime factorization of the
associated transfer functions.

In this case the robust controllers proposed in Curtain
(2003) will be able to stabilize the system between both
regimes.

First we show that a small regime change leads to a small
change of the semigroup generator.

Theorem 3. Let Assumption 1 hold. Then, for given α,
the operator δAα := Aα − Aα∗ : D(Aα) ⊂ V 0

n,Γw
→ V 0

n,Γw

is bounded with ‖δAα‖L(V 1
Γw

,V −1
Γw

) ≤ Cδ with Cδ → 0 as

|α− α∗| → 0.

Proof. This claim follows from Assumption 1, the obser-
vation that the Reynolds number Reα is but a factor in
the form a, and from the continuity properties of the form
c as laid out, e.g., in Nguyen and Raymond (2015).

We point out that, since Aα is not necessarily bounded as
an operator in L2(Ω), we can not establish a convergence
result in the stronger ‖·‖L(L2(Ω)) norm. The latter would
be sufficient (Pandolfi and Zwart (1991)) for the propo-
sition, that if a feedback ΠBF stabilizes Aα∗ , then for α
sufficiently close to α∗, the same feedback also stabilizes
Aα which we assume in the following theorem:

Theorem 4. Let the system (8) and (9) with the oper-
ators (Aα∗ ,ΠB,C) be β-exponentially stabilizable and
detectable and let F ∈ L(V 1

Γw
,R2) and L ∈ L(Rk, V 1

Γw
)

so that Aα∗ +BF and Aα∗ +LC generate β-exponentially
stable semigroups. If α is such that Aα + BF and Aα +
LC generate β-exponentially stable semigroups, then the
associated transfer functions Gα∗ ∼ (Aα∗ ,ΠB,C) and
Gα ∼ (Aα,ΠB,C) have coprime factorizations that differ
by a coprime factor perturbation.

Proof. By Theorem 7.3.6 in Curtain and Zwart (1995),
we have the coprime factorizations Gα∗ = Nα∗M

−1
α∗

and

Gα = NαM
−1
α , where

Nα∗ = C(sI −Aα∗ −ΠBF )−1ΠB,

Mα∗ = I + F (sI −Aα∗ − LC)−1ΠB,

and

Nα = C(sI −Aα −ΠBF )−1ΠB,

Mα = I + F (sI −Aα − LC)−1ΠB.
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Fig. 1. Computational domain of the cylinder wake.

2. MODEL OF THE CONTROL PROBLEM

Before introducing the semigroup setting for the consid-
ered Navier-Stokes Equations (NSE), we derive the con-
sidered equations on an informal level.

For a diffusion parameter ν, we consider a NSE that mod-
els the velocity V and the pressure P of an incompressible
flow for time t > 0 and in a domain Ω with boundary
Γ = Γ0 ∪ Γw ∪ Γout ∪ Γ1 ∪ Γ2, as illustrated in Figure 1,

V̇ + (V · ∇)V +∇P − ν∆V = 0, (1a)

div V = 0, in Ω, (1b)

with inflow and outflow boundary conditions

V = −ng0 · α on Γ0 and ν ∂V
∂n − np = 0 on Γout, (1c)

with boundary control

V = −ng1 · u1 on Γ1 and V = −ng2 · u2 on Γ2,
(1d)

where g0, g1, and g2 are shape functions modelling the
spatial dimension of the boundary values, where n is the
outward normal vector, where α > 0 is a scalar, u1 and
u2 are scalar input functions depending on time t, and
with no-slip conditions at the walls, i.e. V = 0 on Γw. By
means of α, describing the magnitude of the velocity at
the inflow, we will parametrize the Reynolds number and,
thus, the varying flow regimes.

If one sets Reα = αr
ν , where r denotes the cylinder radius,

and rescales the domain Ω, the nondimensional equation
for the nondimensional velocity v := V

α reads

v̇ + (v · ∇)v +∇p− 1

Reα
∆v = 0, (2a)

div v = 0, in Ω, (2b)

with the inflow boundary condition

v = −ng0 · 1 on Γ0 (2c)

and the remaining boundary conditions adapted accord-
ingly. Here and in what follows, we tacitly redefine the
pressure variable p in every step of the derivations.

Let vα∗ be the steady-state solution for a given target
regime α∗ and for u1 = u2 = 0. Then, with v =: vα∗ + vδ,
the system (2) can be rewritten as

v̇δ + L(α∗)vδ +∇p = −(vδ · ∇)vδ, (3a)

div vδ = 0, (3b)

with the control boundary conditions

vδ = −ng1 · u1 on Γ1, vδ = −ng2 · u2 on Γ2,

as well as the inflow and outflow conditions,

vδ = 0 on Γ0,
1

Reα
∂vδ

∂n − np = 0 on Γout,

no-slip conditions on Γw, and with

L(α∗)w := (vα∗ · ∇)w + (w · ∇)vα∗ − 1

Reα∗

∆w.

If one parametrizes the steady state solution over α(t), the
equation for the current difference state vδ := v−vα reads

v̇δ + L(α)vδ +∇p = −(vδ · ∇)vδ − v̇α, (4a)

div vδ = 0, (4b)

with boundary conditions as above.

The theoretical and numerical treatment of time-depending
Dirichlet conditions is a delicate problem (Benner and
Heiland (2015b)) which is beyond the scope of this inves-
tigation. Thus, for a straight-forward variational formula-
tion, we relax the present Dirichlet boundary conditions
to Robin-type conditions:

v = −ngiui → v ≈ −ngiui − γ( 1
Reα

∂v
∂n − pn) on Γi,

with u0 := α and a parameter 0 < γ � 1, cf., e.g., Hou
and Ravindran (1998) for convergence properties of this
relaxation in optimal control of flows.

We introduce the spaces

V 1
Γw

:= {z ∈ H1(Ω) : div z = 0 and z
∣∣
Γw

= 0},
V 0
n,Γw

:= {z ∈ L2(Ω) : div z = 0 and z · n
∣∣
Γw

= 0},

and the dual space V −1
Γw

with respect to the dense embed-

ding V 1
Γw

↪→ V 0
n,Γw

, cf. Nguyen and Raymond (2015). For
later use, we also define the orthogonal projector

Π: L2(Ω) onto V 0
n,Γw

⊂ L2(Ω).

Here and in what follows, we do not distinguish nota-
tionally between scalar and vector valued Sobolev spaces.
Also, since the dualities are defined as extensions of the L2

inner product, we can identify the pivot spaces L2(Ω) and
V 0
n,Γw

and their duals. We will make use of this by tacitly

identifying forms and vectors in L2(Ω) and V 0
n,Γw

.

For i = 0, 1, 2, let gi ∈ H1/2(Γi) and define the form
bi : H

1(Ω) → R via biv := − 1
γ

∫
Γi

ngiv ds for v ∈ H1(Ω).

With this, for a given α, we define the steady state solution
vα as the (weak) solution that satisfies

c(v, v, w) + a(α; v, w)−
(
p, divw

)
L2 = b0w, (5a)(

div v, q
)
L2 = 0, (5b)

for a suitable p ∈ L2(Ω), for all w ∈ H1(Ω) with w = 0 on
Γw and for all q ∈ L2(Ω), and where the forms a : H1(Ω)×
H1(Ω) → R and c : H1(Ω) × H1(Ω) × H1(Ω) → R are
defined as

a(α; v, w) :=
1

Reα

(
∇v,∇w

)
L2 +

1

γ

∫

Γ0∪Γ1∪Γ2

vw ds, (6)

and

c(u, v, w) :=
(
(u · ∇)v, w

)
L2 . (7)

Note that (5) is derived from (2) through partial inte-
gration considering the Robin relaxation of the nonzero
Dirichlet conditions.

For the time being, we make the following assumption:

Assumption 1. Let 0 < ε < 1/2 define the degree of
regularity of the corresponding Stokes solutions on the
considered domain with mixed boundary conditions, cf.
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With Aα = Aα∗ + δAα, we use the formula (7.27) in
Curtain and Zwart (1995) to express the inverse operators
in the coprime factors as

(sI −Aα −ΠBF )−1 = (sI −Aα∗ −ΠBF − δAα)
−1

= (sI −Aα∗ −ΠBF )−1 + δR

where

δR := (sI −Aα∗ −ΠBF )−1δAα(sI −Aα −ΠBF )−1.

By stability of Aα∗ +ΠBF and Aα +ΠBF , this reformu-
lation holds for all s ∈ C with positive real part. Thus, we
can write the factors like

Nα = Nα∗ + CδRΠB

and, using the same arguments for Mα, we conclude that
there are coprime factorizations of Gα∗ and Gα that
coincide up to an additive component in the factors.

The incentive of this section is to show that for small
changes in the regime, also the corresponding system oper-
ators only change slightly (Theorem 3) and that for small
differences in the operators, the corresponding transfer
functions differ only by coprime factor perturbations (The-
orem 4). However, there is a gap between the theorems
since the convergence in the operators has been established
only in a weaker norm. To close this gap one could try to
adapt perturbation results for unbounded perturbations
provided, e.g., in Pandolfi and Zwart (1991).

Also note, that the state feedback F from the assumptions
in Theorem 4, that is capable to stabilize the system for
varying regimes, is not the solution to the problem. It is
known from finite dimensional theory that a state feedback
has a certain robustness while an observer based controller,
the actual subject of this investigation, has no guaranteed
robustness margins, cf. Doyle (1978).

5. CONDITIONS FOR ROBUST STABILIZATION
AND NUMERICAL APPROXIMATIONS

Another assumption in Theorem 4 was the stabilizability
and detectability of the considered system. In this sec-
tion, we review known sufficient conditions and propose
a numerically accessible test for these properties. We will
restrict our considerations to the stability issue.

In the considered case, where the input operator ΠB
is of finite-rank, a necessary and sufficient condition for
exponential stability, cf. (Curtain and Zwart, 1995, Thm.
5.2.6), is that the spectrum of Aα∗ can be decomposed at
β so that the system can be split into

a.) a subsystem that is β-exponentially stable and
b.) a finite-dimensional subsystem that is controllable.

One can show that the operator Aα∗ , also with the
boundary conditions considered here, fulfills condition a.)
since it allows for a spectrum decomposition into a β-
exponentially stable subsystem and a finite-dimensional
remainder system, cf. (Nguyen and Raymond, 2015, Sec.
3.1).

As for the condition b.), Nguyen and Raymond (2015)
investigate controllability of the finite-dimensional sub-
system via a Hautus-type criterion due to Badra and
Takahashi (2011) and the theoretical result that, under

certain conditions, there are finitely many control shape
functions which can stabilize the system. In the present
situation, however, where the shape functions g1 and g2
are defined by the setup, we will assess controllability
numerically for the model problem and for a sequence of
spatial discretizations.

Concretely, we consider the cylinder wake setup as in
Benner and Heiland (2015a); cf. also Figure 1. As the com-
putational domain we define the rectangle [0, 2.2]×[0, 0.41]
with the cylinder of radius 0.05 centered at (0.2, 0.2). The
two control outlets Γ1, Γ2 are centered at the cylinder
periphery at ±π/3 occupying π/6 of the circumference.
The two shape functions g1 and g2 are defined as parabolas
that are zero at the edges and 1 at the center of the outlets.

We set Reα∗ := 100, calculated with the peak inflow
velocity and the cylinder diameter. For the Robin-type
relaxation of the boundary conditions, we use γ = 10−5.

LetN be a mesh parameter, namely the number of velocity
nodes of the discretization, and let

MN v̇N = ANvN +BNu (10)

be a corresponding finite element approximation to (8)
with MN , AN ∈ RN,N , and BN ∈ RN,2 denoting the
mass matrix and the discrete approximation to the system
and input operators Aα∗ and ΠB. System (10) is obtained
via a discretization of the associated (v, p)-formulation, cf.
(3), with LBB -stable Taylor-Hood mixed finite elements
and a subsequent projection onto the discrete divergence
free subsystem as described, e.g., in Benner and Heiland
(2015a) and Heinkenschloss et al. (2008).

The finite dimensional system (10) is exponentially stabi-
lizable if the unstable modes are controllable, i.e., if for
all left eigenvectors ηN of the pencil (MN ,AN ) associated
with an eigenvalue λ with real part �λ > 0, the product
ηTNBN is not zero.

Thus, for a given discretization N , we compute the un-
stable modes ηN,1, ηN,2, . . . , ηN,du

and estimate the angle
between these modes and the input directions via the
quantity θN that we define as

θN := min
i=1,...,du

{[ ∑
j=1,2

|ηTN,iBN,j |
ηTN,iMNηN,i ·BT

N,jM
−1
N BN,j

] 1
2

}
,

where BN,j denotes the j-th column of BN .

By its definition, the quantity θN serves the following
purposes. Firstly, θN is nonzero if and only if there is
not a single unstable mode such that ηTN,iBN = 0,
i.e., if and only if the discretized system is stabilizable.
Secondly, because the chosen metrics are consistent with
the corresponding norms in the infinite dimensions, if the
discrete unstable modes ηN,1, ηN,2, . . . converge to some
modes η1, η2, . . . ∈ V 1

Γw
of the infinite dimensional system

(8), then θN converges to

θ := min
i=1,...,du

{[ ∑
j=1,2

|bjηi|
‖ηi‖L2(Ω)‖bj‖V −1

Γw

] 1
2

}
.

Thus, provided these modes η1, η2, . . . , ηdu are exactly the
unstable modes of the infinite dimensional system (8), the
resulting θ is nonzero if and only if (8) is exponentially
stabilizable.
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Fig. 2. Distribution of 50 eigenvalues λ of (MN ,AN ) for
N = 68048 and γ = 10−5 in the vicinity of the origin
including the two unstable ones.

Remark 5. The computation of all unstable eigenmodes
is a difficult task in terms of computational time and
memory requirements. To make the approach feasible for
large scale systems we proceed as follows. Firstly, we will
make use of the known facts that the eigenvalues of the
projected matrices can be computed via a saddle point
formulation, see Bänsch et al. (2015), and that the infinite
eigenvalues can be shifted to an arbitrary location, cf.
Cliffe et al. (1994). Secondly, we use the shift and invert
algorithm to iteratively compute some eigenvalues around
the origin. Finally, we rely on the common observation that
at moderate Re-numbers, the cylinder wake possesses two
unstable modes so that we stop the iteration when we have
found them, cf. Figure 2.

In the considered setup, over a large range of discretiza-
tion grades N , the quantity θN is nonzero, cf. Table 1,
meaning that the corresponding discrete systems (10) are
exponentially stabilizable. Moreover, since θN stays more
or less constant, stabilizability seems inherent for ever finer
discretization which indicates stabilizability also for the
associated infinite dimensional system (8).

The code used for the computation of θN is available from
the author’s public git repository (Heiland (2015)).

Table 1. The value of θN (scaled by 107) for
varying discretization levels N .

N 19512 28970 38588 48040 58180 68048
θN · 107 0.4 1.9 1.5 1.2 0.6 1.4

6. CONCLUSIONS

We have presented the idea of interpreting a regime change
in a flow simulation as a coprime factor perturbation
to conclude that a certain class of robust controllers
would allow for the stabilization of flows over a small
range of Reynolds numbers. Therefor, we have provided
a functional analytic framework that models the control
problem through an infinite-dimensional linear system and
investigated how a regime change affects the underlying
linear operator.

In view of applications, we have described a numerical
approach to assess the stabilizability of the system which
is feasible for large-scale discretizations.

However, more analytical insight into the infinite dimen-
sional system would be desirable. This concerns stabiliz-
ability, like the convergence of the discrete unstable modes,
as much as the crucial assumption for Theorem 4 that a

feedback F can be stabilizable for a certain range of Re-
numbers. The validity of the latter assumption has been
observed, at least in finite dimensional approximations, cf.
Benner and Heiland (2015a) where feedbacks that were
stabilizing for low Re-numbers proved to be stabilizing
initial guesses for the design of controllers for higher Re-
numbers.
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With Aα = Aα∗ + δAα, we use the formula (7.27) in
Curtain and Zwart (1995) to express the inverse operators
in the coprime factors as

(sI −Aα −ΠBF )−1 = (sI −Aα∗ −ΠBF − δAα)
−1

= (sI −Aα∗ −ΠBF )−1 + δR

where

δR := (sI −Aα∗ −ΠBF )−1δAα(sI −Aα −ΠBF )−1.

By stability of Aα∗ +ΠBF and Aα +ΠBF , this reformu-
lation holds for all s ∈ C with positive real part. Thus, we
can write the factors like

Nα = Nα∗ + CδRΠB

and, using the same arguments for Mα, we conclude that
there are coprime factorizations of Gα∗ and Gα that
coincide up to an additive component in the factors.

The incentive of this section is to show that for small
changes in the regime, also the corresponding system oper-
ators only change slightly (Theorem 3) and that for small
differences in the operators, the corresponding transfer
functions differ only by coprime factor perturbations (The-
orem 4). However, there is a gap between the theorems
since the convergence in the operators has been established
only in a weaker norm. To close this gap one could try to
adapt perturbation results for unbounded perturbations
provided, e.g., in Pandolfi and Zwart (1991).

Also note, that the state feedback F from the assumptions
in Theorem 4, that is capable to stabilize the system for
varying regimes, is not the solution to the problem. It is
known from finite dimensional theory that a state feedback
has a certain robustness while an observer based controller,
the actual subject of this investigation, has no guaranteed
robustness margins, cf. Doyle (1978).

5. CONDITIONS FOR ROBUST STABILIZATION
AND NUMERICAL APPROXIMATIONS

Another assumption in Theorem 4 was the stabilizability
and detectability of the considered system. In this sec-
tion, we review known sufficient conditions and propose
a numerically accessible test for these properties. We will
restrict our considerations to the stability issue.

In the considered case, where the input operator ΠB
is of finite-rank, a necessary and sufficient condition for
exponential stability, cf. (Curtain and Zwart, 1995, Thm.
5.2.6), is that the spectrum of Aα∗ can be decomposed at
β so that the system can be split into

a.) a subsystem that is β-exponentially stable and
b.) a finite-dimensional subsystem that is controllable.

One can show that the operator Aα∗ , also with the
boundary conditions considered here, fulfills condition a.)
since it allows for a spectrum decomposition into a β-
exponentially stable subsystem and a finite-dimensional
remainder system, cf. (Nguyen and Raymond, 2015, Sec.
3.1).

As for the condition b.), Nguyen and Raymond (2015)
investigate controllability of the finite-dimensional sub-
system via a Hautus-type criterion due to Badra and
Takahashi (2011) and the theoretical result that, under

certain conditions, there are finitely many control shape
functions which can stabilize the system. In the present
situation, however, where the shape functions g1 and g2
are defined by the setup, we will assess controllability
numerically for the model problem and for a sequence of
spatial discretizations.

Concretely, we consider the cylinder wake setup as in
Benner and Heiland (2015a); cf. also Figure 1. As the com-
putational domain we define the rectangle [0, 2.2]×[0, 0.41]
with the cylinder of radius 0.05 centered at (0.2, 0.2). The
two control outlets Γ1, Γ2 are centered at the cylinder
periphery at ±π/3 occupying π/6 of the circumference.
The two shape functions g1 and g2 are defined as parabolas
that are zero at the edges and 1 at the center of the outlets.

We set Reα∗ := 100, calculated with the peak inflow
velocity and the cylinder diameter. For the Robin-type
relaxation of the boundary conditions, we use γ = 10−5.

LetN be a mesh parameter, namely the number of velocity
nodes of the discretization, and let

MN v̇N = ANvN +BNu (10)

be a corresponding finite element approximation to (8)
with MN , AN ∈ RN,N , and BN ∈ RN,2 denoting the
mass matrix and the discrete approximation to the system
and input operators Aα∗ and ΠB. System (10) is obtained
via a discretization of the associated (v, p)-formulation, cf.
(3), with LBB -stable Taylor-Hood mixed finite elements
and a subsequent projection onto the discrete divergence
free subsystem as described, e.g., in Benner and Heiland
(2015a) and Heinkenschloss et al. (2008).

The finite dimensional system (10) is exponentially stabi-
lizable if the unstable modes are controllable, i.e., if for
all left eigenvectors ηN of the pencil (MN ,AN ) associated
with an eigenvalue λ with real part �λ > 0, the product
ηTNBN is not zero.

Thus, for a given discretization N , we compute the un-
stable modes ηN,1, ηN,2, . . . , ηN,du

and estimate the angle
between these modes and the input directions via the
quantity θN that we define as

θN := min
i=1,...,du

{[ ∑
j=1,2

|ηTN,iBN,j |
ηTN,iMNηN,i ·BT

N,jM
−1
N BN,j

] 1
2

}
,

where BN,j denotes the j-th column of BN .

By its definition, the quantity θN serves the following
purposes. Firstly, θN is nonzero if and only if there is
not a single unstable mode such that ηTN,iBN = 0,
i.e., if and only if the discretized system is stabilizable.
Secondly, because the chosen metrics are consistent with
the corresponding norms in the infinite dimensions, if the
discrete unstable modes ηN,1, ηN,2, . . . converge to some
modes η1, η2, . . . ∈ V 1

Γw
of the infinite dimensional system

(8), then θN converges to

θ := min
i=1,...,du

{[ ∑
j=1,2

|bjηi|
‖ηi‖L2(Ω)‖bj‖V −1

Γw

] 1
2

}
.

Thus, provided these modes η1, η2, . . . , ηdu are exactly the
unstable modes of the infinite dimensional system (8), the
resulting θ is nonzero if and only if (8) is exponentially
stabilizable.
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