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1 Introduction

The collective behaviour of active swimmers has received a lot of attention in the

past years [1, 2]. Active swimmers are self-propelled particles, each having their own

energy source which allows them to move individually, thus forming a nonequilibrium

system. The collective dynamics of these particles are additionally influenced by

many-body and hydrodynamic effects which complexify the system. Real-world

examples for collective behaviour of active particles are bacteria [3], bird flocks [4]

or migrating mammals [5] but also non-living systems like active nematic fluids [6]

or traffic [7].

We study the behaviour of active swimmers confined to a spherical volume. The

active swimmers in our case interact nematically which means they tend to align

and move in parallel or anti-parallel directions. Similar systems have been investi-

gated before with different boundary conditions. There have also been experiments

and theoretical approaches and results concerning active swimmers confined to the

surface of a sphere. We are among the first to look at a spherical volume as a con-

straint. The goal of this project is to find out how the behaviour changes for this

curved and closed topology.
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2 Theoretical background

We model the active swimmers as spherical, hardcore particles with a diameter

σ = 0.5. The number of particles is varied and lies in the interval [303, 513]. They

move within a spherical volume with a diameter 2R ≥ 70σ. The particles all have

the same constant speed v0 = 0.5 and each particle moves along its orientation

vector êi. Chosing a constant speed is reasonable because at low Reynolds numbers

fluctuations in the speed are exponentially damped and can thus be neglected. The

direction of the velocity and the position are equally distributed in the initial state.

The particle-particle interaction is characterised by two potentials. The first is

the Weeks-Chandler-Anderson (WCA) potential [8]

UWCA(r) =







4ε
[

(
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r

)12

−
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r

)6

+ 1

4

]

, r < 21/6

0, r > 21/6
(1)

which describes the interaction between hardcore particles. When two particles

collide, they are repelled. The WCA potential is equivalent to the repulsive part

of the Lennard-Jones potential. The particles also have an orientational interaction

described by the Lebwohl-Lasher potential

U = −
1

2

N
∑

i=1

1

ni

∑

j∈ni

(êi · êj)
2 (2)

which induces nematic alignment. The first sum runs over all N particles and

the second one over the nearest neighbours ni of particle i. We consider nearest

neighbours all particles inside a sphere with radius ǫ = 1 = 2σ around the particle.

Nematic alignment means that the particles tend to align and move parallelly or anti-

parallelly. It is here used to describe the effects of the combined hydrodynamics on

the particles.

As follows from the explanations above, the equations of motion for one particle

i are given by

ṙ = v0êi, (3)

˙̂ei = −γ
∂U

∂êi
+ ξi(t). (4)

with êi the unit vector of the orientation, U the Lebwohl-Lasher potential and ξi(t)

the noise vector with random direction and absolute value η.

The interaction between the particles and the spherical wall is implemented through
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elastic collisions. The particle’s orientation is reflected at the tangent plane of the

interaction point and the speed remains the same.

We perform molecular dynamics simulations with 200 000 time steps of length

δt = 0.1. The equations of motion are integrated using an explicit Euler algorithm.

To satisfy the constraints on the orientation vectors we use Lagrange-multipliers as

in Ref. [9].

3 Recent research on active swimmers

3.1 Numerical investigation of point-like active nematic par-

ticles in a bulk

There has been considerable research in this area in the past years. A work very

closely related to ours is the work of Breier et al. [10], where almost the same system

to the one considered here was studied with the only differences that a different

topology was used and the particles were considered point-like. They investigated

particles in a bulk (periodic boundary conditions in all directions) and in a sandwich

configuration (walls in the z-direction and periodic boundary conditions in the x-

and y-direction). The results obtained in Ref. [10] is an important reference for

putting our results into context.

Figure 1: Phase diagram for pointlike particles in a bulk. The value of the global
nematic parameter S is indicated by the colours. The stars mark chiral states.
Source: Ref. [10].

A phase diagram was plotted by varying the number density ρ ≡ N
V
and the Péclet

number

P ≡
advection

diffusion
=

ǫv0
ǫ2η2/γ

=
v0γ

ǫη2
. (5)

The variables have the same meaning as in our simulations (see Sec. 2). The density
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ρ and the Péclet number P are two parameters commonly used to describe bacterial

suspensions [11]. To quantify the state of the system they introduced the nematic

order parameter S as the largest eigenvalue of the nematic order tensor

Q =
1

2N

N
∑

i=1

[3êi ⊗ êi − I], (6)

where ⊗ denotes the tensor product, and I is the unit tensor. S ∈ [0, 1] indicates

how aligned the particles are with S = 0 indicating an isotropic state and S = 1

a perfectly aligned configuration. This order parameter is calculated for each pair

(ρ,P). The resulting phase diagram is shown in Fig. 1. As one can see there

is a clear phase transition from an isotropic state to a nematic state. For very low

Péclet numbers (which means high noise) the system is always in the isotropic state.

When the Péclet number is large enough, the system is in the nematic state for all

densities. This is consistent with the fact that a high Péclet number means low

noise η and thus small fluctuations of the directors.

3.2 Experiments and simulations on motile bacteria in a

droplet

Figure 2

Recently, swimmers in a confined geometry have also been subject to investigation.

In their experiments Vladescu et al. [12] studied E. coli bacteria confined within

spherical droplets in a water-in-oil emulsion. The walls of the droplets were given by

the interface of water and oil. They varied the average cell density ρ0 and the radius

R of the droplet. For small densities ρ0 → 0 they observed wall hugging, a peak of

the density at the inner surface of the droplet. Increasing the average cell density,

the density in the main part of the sphere increases uniformly. The density peak
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at the inner surface survives and its absolute height increases whereas the relative

peak ρ
ρ0

decreases. They found this behaviour for all radii they studied. In the top

of Fig. 2 one can see snapshots of the experiments.

Vladescu et al. were also able to reproduce their results in simulations. In their

model the E. coli cells are trapped at the surface with a certain probability when

arriving at an empty section of the surface. Once trapped at the surface, they move

along the surface until they move away spontaneously or are scattered by another

cell. Results of the simulations are shown in the bottom of Fig. 2.

3.3 Experiments with active nematic vesicles

Recently, swimmers in a confined geometry have also been subject to investigation.

In experiments by Keber et al. [13] microtubules were attached to the inner surface of

lipid vesicles, creating a dense monolayer of microtubules. Kinesin proteins supplied

with energy by adenosine triphosphate (ATP) hydrolysis then wandered along these

microtubules. The evolving structures were visualised with the help of confocal

microscopy. From topology we know that it is impossible to spread parallel lines

on a curved surface without a defect. For a sphere the sum of the charge of all the

defects has to be s = 2 where 2πs describes the rotation angle of the director field.

Basic nematic defects have a charge of s = ±1

2
corresponding to a rotation of π.

These defects will be placed in a way that minimises the free energy of the system.

Under the assumption that the bend and splay elastic moduli are equal the most

favourable defect configuration in equilibrium is given by four +1

2
defects placed at

the corners of a tetrahedron. The tetrahedral structure appears because the defects

repell each other and thus maximise their distances. These theoretical results were

confirmed in experiments by Keber et al. [13].
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Figure 3: Hemispherical projections of a nematic vesicle. This shows a time series of
projections over one oscillation period. The coloured dots mark the defects. One can
see the system transforming from a tetrahedral to a planar and back to a tetrahedral
structure. Source: Ref. [13].

They also observed the system for nonequilibrium conditions with finite ATP

concentration. The resulting nematic stresses lead to motility of the four defects.

For the same reason as in the equilibrium state the defects favour again a tetrahedral

structure but with activity as an additional factor the defects start to move. As seen

in Fig. 3 the defects move from a tetrahedral configuration to a planar configuration

and then again to a tetrahedral one. This behaviour persists on large time scales.

The system oscillates between these two states with a frequency depending on system

size and ATP concentration.

They found that the radius of the vesicle influences the dynamics. For small radii

they observed a band rotating around the equator.

3.4 Numerical approach on active swarms on a sphere

A more theoretical approach is given by the work of Sknepnek et al. [14]. They

simulated self-propelled particles with polar alignment confined to the surface of a

sphere. They studied the influence of the velocity v0 of the particles, the noise and

the size of the system.

For low velocity v0 the particles form a polar vortex structure with two +1 defects

at the poles. The particles move around the axis going through these poles. The

particle velocity is decreasing from v0 at the equator to zero at the poles. As v0

is increased, the particles are compressed at the equator, forming a moving band

with empty areas at the poles. Increasing v0 further, the empty areas get bigger
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Figure 4: (a), (b) and (c) show the
system for increasing v0. (d), (e) and
(f) show the trajectory of a single par-
ticle for the corresponding velocity.
Source: Ref. [14].

Figure 5: Pressure curves of the band
for different radii. Source: Ref. [14].

and particles get more and more compressed as seen in Fig. 4. They compared

their results to a planar counterpart of their system and could not find any similar

phenomena appearing in flat space. In this way they could exclude other factors as

a cause of the observed results and confirm that the formation of the polar vortex

and the moving band is curvature-driven.

The system size influences the features of the band. For increasing radius R the

width of the band decreases and the edge angles increase as seen in Fig. 5 and 6(a)

and (b). As one would imagine, the band disappears for increasing noise as seen in

Fig. 6(c)-(f).

Figure 6: The influence of radius and noise. (a) and (b) are at a low noise strength
at different radii. (c), (d), (e) and (f) are for the same radius but with increasing
noise. Source: Ref.[14].

4 Method of investigation

We have now seen different ways of investigating active systems. As a first step, we

want to find out if we can observe a phase transition as seen by Breier et al. [10]. We

therefore set out to calculate a similar nonequilibrium phase diagram. The particles
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in our system are of finite volume so instead of the density we use the filling fraction

Φ =
Nv

V
(7)

with v the volume of a single particle and V = 4

3
πR3 the volume of the sphere. To

gain a better understanding of the factors that lead to our results we vary the filling

fraction in two different ways: By varying the radius of the sphere (see Sec. 5.1) and

by varying the number of particles (Sec. 5.3). As an observable we use the nematic

order parameter S (see Sec. 3.1). The order parameter is calculated every 500 time

steps. To minimise the error due to fluctuations we calculate the time average over

50 000 time steps in the steady state of the system (see Sec. 5.1). Varying filling

fraction Φ and Péclet number P (Eq. 5) and calculating the time average of the

nematic order parameter S for each pair (P ,Φ) we then plot two phase diagrams.

This gives us an overview of the particles’ behaviour under different conditions.

Further a phase diagram allows the comparison to results of Ref. [10].

We also take a closer look at the structures formed by the active particles as the

nematic order parameter does not provide a unique characterisation of the system’s

state. It only indicates how aligned the particles are but not what topology they

form. Therefore we take snapshots of the system for different parameters and times.

To confirm the results we find in these snapshots and to investigate the time evo-

lution of the system we create videos consisting of snapshots taken every 500 time

steps.

5 Results

5.1 Varying Péclet number P and radius R

To make sure that we study the system in its steady state we plot the nematic order

parameter S as a function of the time step (Fig. 7). We can see that the system

has reached a steady state after 150 000 time steps for most values of P and Φ.

In Fig. 8 one can see the phase diagram in terms of Péclet number P and filling

fraction Φ(R). We varied the filling fraction by varying the radius R of the sphere,

the particle number is constant (N = 27 000). The colour indicates the value of S.

S is calculated every 500 time steps. For the phase diagram we average over 50 000

time steps in the steady state.

It is visible at first sight that large areas of the phase diagram are dark blue,

corresponding to an order parameter S ≈ 0 which describes an isotropic state. For

filling fractions larger than Φ = 0.080 the system is in an isotropic state for all values
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Figure 10: Dependence of the nematic order parameter S on the Péclet number P
for various filling fractions.

All in all this figure confirms what we saw in the phase diagram.

5.2 Configurations

The phase diagram (Fig. 9) gives us a good overview of the states of the system. We

find two phases, an isotropic and an ordered phase, and also a region of low order for

high values of (P ,Φ). What we cannot see is what the value of the order parameter

means for our system. We want to know what kind of configurations correspond to

a certain S. To find out we take snapshots of the system in the steady state and

create videos to examine the time evolution. A description of the videos can be

found in the appendix of this thesis (Sec. A).

5.2.1 Structures in the steady state

The following observations were made after the transient, so after 100 000 time steps.

At first we look at the isotropic state. In Fig. 11 we see a plot of the system with

P = 0.005 and Φ = 0.027 after 150 000 integration steps. The blue arrows represent

the orientation vectors êi of the particles. The configuration looks as expected: Both

particle positions and orientation vectors are equally distributed and we do not find

any structure in this configuration.

Let us now take a look at the other states of the system. We can find four main

structures in the ordered region of the phase diagram:

I A stream of particles going diametrically through the centre of the sphere, Fig.

12 and Video 1.
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II A stream that splits up at one end, resulting in a Y-like structure, Fig. 13 and

Video 2.

III A stream splitting up at both ends in orthogonal directions resulting in a tetra-

hedral structure, Fig. 14 and Video 3.

IV A band of particles moving at the surface of the sphere like a belt, Fig. 15 and

Video 4.

The Y-like and the tetrahedral structure often show clusters in the centre. The

geometries I, II and III also appear combined with the belt structure. Videos 5, 6

and 7 show these configurations.

Figure 11: Snapshot of the system in the isotropic state with P = 0.004 ⇔ η = 3.4
and Φ = 0.027 after 150 000 time steps.

The occurrence of the structures and their combinations depend on filling fraction

and Péclet number.

We start with our analysis at the upper left corner of the phase diagram, so for

low Péclet number and high filling fraction. We already know what the isotropic

state looks like so we start investigating at the phase transition line. At the low-P

boundary of the nematic phase we find structures similar to Fig. 12. The stream

is noisy close to the transition line and becomes more clear for larger values of P .

Increasing the Péclet number further we find the Y-structure and the tetrahedral

structure. When we reach the region of the phase diagram where S decreases again

an additional belt appears. The belt moves around the long axis of the Y or the

tetrahedron, leading to structures as seen in Fig. 17 and 18.
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Figure 12: Snapshots of the system showing the stream configuration with P = 0.011
and Φ = 0.021 after 150 000 time steps from one side and rotated by 90◦S. The
coloured dots indicate the topological defects.

Figure 13: Snapshot of the Y-configuration after 150 000 time steps with P = 0.008
and Φ = 0.062.

This explains the lower order parameter for high values of (P ,Φ). The additional

belt consists of particles moving in different directions than the particles in the

main structure (e.g. stream). At this point it becomes clear why the nematic order

parameter does not give a unique description of the system state.

For high filling fractions we often find clusters in the centre of the sphere. With

decreasing filling fraction the clusters disappear which is plausible as a high filling

fraction favours the formation of clusters. The tetrahedral structure appears less

often and the stream becomes more important. The right edge of the ordered region

is now dominated by configurations featuring a stream and a belt moving around
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Figure 16: Snapshots of the system showing the stream and belt configuration com-
bined with P = 0.013 and Φ = 0.031 after 150 000 time steps. The second picture
shows the system after a rotation by 90◦.

Figure 17: Snapshot of the Y-configuration and the belt combined after 150 000 time
steps with P = 0.017 and Φ = 0.062.

stream, Y- or tetrahedral configuration, explaining the drop of the order parameter

on the right handside of the phase diagram.

5.2.2 Evolution of the structures

The snapshots were all taken after 150 000 time steps in the steady state of the

system. To learn more about the time evolution of the structures and the formation

during the transient we created videos of the configurations.

We observe that the length of the transient depends on the parameters. The lower

the Péclet number, the later the formation of the structure starts. For parameters
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Figure 18: Snapshot of the tetrahedral configuration and the belt combined after
150 000 time steps with P = 0.017 and Φ = 0.046. Here again the blue dots define
a plane P with the centre of the sphere, the green dots and the centre of the sphere
lie in the plane P⊥ orthogonal to P .

close to the phase transition line the structure becomes visible after 80 000 to 90 000

time steps whereas it only takes 25 000 steps for systems with the highest values of

P . This can also be seen in the Videos 8 and 9. An explanation for the different

lengths of the transient could be the high noise at low Péclet numbers making it

harder for structures to form and thus slowing down the process.

In systems with a high filling fraction the formation of clusters during the transient

can be observed (see Video 10). For very high filling fractions clusters appear for all

Péclet numbers in the nematic phase. They form during the transient and persist

for the full length of our simulations. The clusters are always situated in the centre

of the sphere, often at the branching point of a Y- or tetrahedral configuration (Fig.

13 and 14). In most cases there is only one cluster which is often disc-shaped.

Sometimes we find two discs, arranged parallely as can be seen in Fig. 19. This

structure does not persist, the two discs eventually merge into one cluster. For

lower filling fractions (Φ ≤ 0.031) clusters only appear during the transient and

vanish afterwards. There are only single clusters, often in the centre of a stream

configuration.

The videos also let us observe the time evolution of the structures in the steady

state. We find that the structures described in Sec. 5.2.1 persist for the full length

of our simulations. Once the structure is formed there are only minor changes. As

mentioned before, we observe that for systems close to the phase separation line

the transient phase is longer and the formation of structures begins later. Due to

this some of these systems have barely reached the steady state by the end of our
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Figure 19: Snapshot of the system after 170 000 time steps with P = 0.009 and
Φ = 0.062 showing two disc-like parallel clusters.

simulations. For example in Fig. 20 one can see the nematic order parameter as a

function of time steps for a system with P = 0.007 and Φ = 0.031. As we averaged

over the last 50 000 time steps for our phase diagram and the transient phase takes

place in this interval, the calculated order parameter in Fig. 9 is misleading. To

correct this, it would be necessary to run longer simulations for systems near the

phase transition.
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Figure 20: Temporal dependence of the nematic order parameter S for P = 0.007
and Φ = 0.031.

5.3 Varying Péclet number P and particle number N

In the previous sections we presented the results we obtained from varying the

system parameters by changing the noise η (and thus the Péclet number P) and
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Figure 24: Comparison of the order parameters as a function of the filling fractions
S(Φ(N)) and S(Φ(R)) for different Péclet numbers.

S(Φ(R)) for the case when we vary N or R, respectively. In Fig. 24 one can see

this comparison for different Péclet numbers. We notice that at low Péclet numbers

the two graphs coincide for small filling fractions. For larger filling fractions they

show a similar behaviour but also quantitative differences. With increasing Péclet

number the graphs differ more and more. A possible explanation is that for high

Péclet numbers and thus low noise the influence of the noise is so weak that other

influences such as curvature and particle number determine the behaviour of the

particles. Also at high Péclet numbers the graphs resemble most for small filling
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fractions. An explanation for this could be that the denser the particles are packed,

the more they interact with the walls. The geometry thus plays a more important

role in systems with a high filling fraction.

5.4 Comparison of configurations with different curvature κ

and particle number N
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Figure 25: Time evolution of the order parameter for P = 0.009 and Φ = 0.027 for
different curvature and particle number.

(a) R = 16.5 (b) R = 19 (c) R = 21 (d) R = 23 (e) R = 25 (f) R = 30

Figure 26: Snapshots of the system with P = 0.009 and Φ = 0.027 for increasing
radius showing the stream structure.

As stated before, the nematic order parameter does not give a unique description

of the system’s state. We therefore want to check if similar order parameter values

actually correspond to similar configurations of the system and plot configurations

with the same Péclet number and filling fraction but with a different curvature and

number of particles. We also plot the order parameters of these different systems as

a function of time as a reference.
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In Fig. 26 one can see the configuration of a system with P = 0.009 and Φ = 0.027

for different radii and particle numbers. All snapshots show the stream configuration

and the order parameter is the same for all systems (Fig. 25). We see that for

these values of (P ,Φ) the change of curvature does not affect the formation of the

structures.
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Figure 27: Time evolution of the order parameter for P = 0.020 and Φ = 0.027 for
different curvature and particle number.

(a) R = 16.5 (b) R = 19 (c) R = 21 (d) R = 23 (e) R = 25 (f) R = 30

Figure 28: Snapshots of the system with P = 0.020 and Φ = 0.027 for increasing
radius showing (c) the stream structure and (a),(b),(d),(e) and (f) configurations
with stream and belt.

We already saw in Sec. 5.3, Fig. 24, that the influence of the curvature increases

with Péclet number and filling fraction. This observation can be confirmed by the

order parameter plots and the configuration plots: In Fig. 28 we see snapshots of

the system with a higher Péclet number P = 0.020 and the same filling fraction

Φ = 0.027 for different radii and particle numbers. Most snapshots show a stream

and a belt configuration but the relative intensities of belt and stream vary and for

R = 21 there is no belt at all. Also the time evolutions of the order parameters,
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Figure 29: Time evolution of the order parameter for P = 0.009 and Φ = 0.062 for
different curvature and particle number.

(a) R = 17 (b) R = 21

(c) R = 23 (d) R = 27

Figure 30: Snapshots of the system with P = 0.009 and Φ = 0.062 for increasing
radius showing the tetrahedral structure. There are two snapshots from different
angles (rotated by 90◦) for each radius.

shown in Fig. 27, differ more than the ones in Fig. 25. All time evolutions show a

similar course but are of different quantitative values.

The same holds for the time evolutions of the order parameters in a system with

P = 0.009 and a higher filling fraction Φ = 0.062 in Fig. 29. The snapshots

corresponding to these values of (P ,Φ) show tetrahedral configurations but they
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Figure 31: Time evolution of the order parameter for P = 0.020 and Φ = 0.062 for
different curvature and particle number.

(a) R = 17 (b) R = 21

(c) R = 23 (d) R = 27

Figure 32: Snapshots of the system with P = 0.020 and Φ = 0.062 for increasing
radius showing (a) a configuration with stream and belt, (b) a Y-like structure and
(c) and (d) tetrahedral structures.

look different, especially Fig. 30 (a).

The configurations shown in Fig. 30 with both a high Péclet number P = 0.020

and a high filling fraction Φ = 0.062 vary even more. We find a configuration with

stream and belt, a Y-like structure and tetrahedral structures. This is also visible

in the order parameter plot in Fig. 31: the time evolutions of the order parameters
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look very different.

In Fig. 27, 29 and 31 we see oscillations of the nematic order parameter for certain

parameters. To understand this phenomenon we look at videos of the systems. We

find out that the oscillations can correspond to a periodic formation and dissolution

of clusters (Video 11). In this case the lower order parameter describes the state

with a cluster whereas the higher order parameter describes the state without a

cluster. Another cause for the oscillation is a change of the relative intensity of

structures, for example in Video 12 one can see that the intensities of belt and

stream decrease and increase periodically. As the particles moving in the band

structure are not aligned with the ones in the stream, the order is lowest when the

particles are equally distributed on stream and belt. The oscillations mostly appear

for high filling fractions.

Another phenomenon we notice is that in Fig. 27 and 29 the order parameter is

still increasing or decreasing after 200 000 time steps for many parameters and has

not reached a plateau yet. We run longer simulations with 400 000 time steps for

three of these parameter sets. In Fig. 33 one can see the time evolutions of the order

parameters we obtained from these simulations. We see that they do not reach a

steady state in these longer simulations either: The order parameter increases or

decreases further. For two parameter sets the graph starts oscillating in the end

which could be the beginning of a steady state.
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Figure 33: Time evolution of the order parameter for P = 0.009 and Φ = 0.027 over
a length of 400 000 time steps for different curvature and particle number.

Looking at the videos of the systems with R = 16.5 (see Video 13) and R = 23,

we find the reason for the increase of S: Both show a configuration with stream
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and belt with a decreasing intensity of the belt. For R = 16.5 the belt completely

vanishes after approximately 210 000 time steps. The oscillations in the end can

again be explained by the formation and dissolution of clusters.

5.5 Summary of results

In the previous sections we presented how the collective behaviour of the active

swimmers is influenced by the Péclet number P , the filling fraction Φ, the radius

R and thus the curvature κ and the total number of particles N by examining the

system’s nematic order parameter S and investigating snapshots and videos of the

configurations. We found a phase transition from an isotropic to a nematic state and

back to a less ordered state when varying Péclet number and filling fraction. Except

for the isotropic state the system always forms one or a combination of four different

structures: a stream, a Y-like, a tetrahedral or a belt structure. We found out that

it does not make a significant difference whether we change the filling fraction by

varying the radius or the particle number, for most Péclet numbers the results are

roughly the same. Curvature and particle number only determine the behaviour for

very low noise and thus high Péclet number.

6 Discussion

One of the main sources of error in our results is the assumption that the system

has reached the steady state after 150 000 time steps for all parameter values. As

we have seen in Sec. 5.2.2 and 5.4, this is not always true. For some parameter sets

the transient sets in late (Fig. 20), for other sets there is a slow, continuous change

of order parameter over a long time (Fig. 33). Although our assumption is true for

most values we investigated, it still reduces the validity of our results, for example

the phase diagram. It is important to keep in mind that especially for parameters

close to the phase transition line the averaged order parameter should be treated

with caution. In spite of this the assumption can be justified because it holds true

for most values we investigated.

Another weak point is the order parameter itself. As stated several times before,

it only indicates the nematic order of the system but not order in general. It would

be useful to calculate an order parameter that takes the topology of the structures

into account. This could also help to quantify and automatise the observations of

the structures we now made manually by looking at snapshots and videos.

To get an impression of how our results fit into the context of recent research on

active swimmers, we compare them to the results by other groups we presented in
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6.2 Comparison to the behaviour observed by Vladescu et

al.

Vladescu et al. [12] observed wall hugging in their system of motile bacteria con-

fined within a spherical droplet. We also see a wall hugging phenomenon, the belt

structure. In their experiments they also found wall hugging for low filling fractions

whereas we only observe the belt configuration for filling fractions Φ ≥ 0.0125.

6.3 Comparison to the structures found in experiments by

Keber et al.

As explained in Sec. 3.3, Keber et al. [13] find tetrahedral defect configurations in

their experiments on the dynamics of active particles confined to a spherical surface.

Studying the configurations by taking snapshots of the system in Sec. 5.2.1, we also

observe tetrahedral structures for specific parameter values. They find out that

the system oscillates between two symmetric regular tetrahedra, passing through a

planar configuration. The tetrahedral structures we observe are often not regular

and we do not find an oscillation between different states but configurations that

persist for the full length of our simulations.

Keber et al. also found a dependency of the structures on the curvature of the

spherical surface. For a high radius R ⇔ low curvature κ they found only config-

urations with four defects. Decreasing the radius, the system oscillates between a

four-defect structure and a configuration where the particles rotate around the equa-

tor with two defects at the poles. This is different from what we find, we observe

the same kinds of structures for different curvature. Since the system of Keber et al.

is confined to a spherical surface it is to be expected that curvature plays a stronger

role.

6.4 Comparison to the structures found by simulations by

Skepnek et al.

Skepnek et al. [14] find a rotating band of particles similar to our belt structure

when simulating active particles confined to a spherical surface (see Sec. 3.4). They

observe that the band broadens with increasing noise and eventually disappears. We

do not observe a broadening but also find that there are no band structures for high

noise. Also they find that the band narrows with the radius R. We do not make

equivalent observations (see for example Fig. 28).
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7 Conclusion

In this work we investigate the behaviour of active nematic particles confined within

a spherical volume by performing molecular dynamics simulations. We find out

that the particles’ behaviour relates to previous experimental and theoetical results

by other groups in similar systems: We observe the phase separation found in a

curvature-free system combined with phenomena found on spherical surfaces and in

spherical volumes. It is interesting to see that the results in a three-dimensional

system with curvature can to a large extent be derived from these single effects.

Another remarkable aspect is that we do not find a significant influence of the

degree of curvature. Filling fraction and Péclet number are the parameters decisive

for the system’s state.

As a next step it could be interesting to investigate more complex topologies and,

as mentioned in Sec. 6, find a way to analyse the structures quantitatively. To check

if our theoretical results give a good description of active swimmers in a spherical

volume it would be helpful to compare them to experimental data.
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A Supplemental material

• Video 1: The system with P = 0.011 and Φ = 0.021, showing the time

evolution of the stream structure over the full length of the simulation (200 000

time steps).

• Video 2: The system with P = 0.008 and Φ = 0.062, showing the time

evolution of the Y-like structure over the full length of the simulation (200 000

time steps).

• Video 3: The system with P = 0.010 and Φ = 0.046, showing the time

evolution of the tetrahedral structure over the full length of the simulation

(200 000 time steps).

• Video 4: The system with P = 0.014 and Φ = 0.016, showing the time

evolution of the belt structure over the full length of the simulation (200 000

time steps).

• Video 5: The system with P = 0.013 and Φ = 0.031, showing the time

evolution of the stream and the belt structure combined over the full length

of the simulation (200 000 time steps).

• Video 6: The system with P = 0.017 and Φ = 0.062, showing the time

evolution of the Y-like structure and the belt structure combined over the full

length of the simulation (200 000 time steps).

• Video 7: The system with P = 0.017 and Φ = 0.046, showing the time

evolution of the tetrahedral and the belt structure combined over the full

length of the simulation (200 000 time steps).

• Video 8: Time evolution of the system with P = 0.022 and Φ = 0.031 over

the first 100 000 time steps.

• Video 9: Time evolution of the system with P = 0.006 and Φ = 0.031 over the

first 100 000 time steps. The transient is significantly shorter than in Video 8.

• Video 10: The system with P = and Φ =, showing the occurence of clusters

during the transient. still missing

• Video 11: The system with P = 0.020 and Φ = 0.027, showing a periodic

occurence and dissolution of clusters leading to the oscillation of the nematic

order parameter.
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• Video 12: The system with P = 0.009 and Φ = 0.062, showing a periodic

change of relative intensity of belt and stream structure leading to the oscil-

lation of the nematic order parameter.

• Video 13: The system with P = 0.020, Φ = 0.027 and R = 16.5 showing a

slow increase of the order parameter caused by a decrease of the intensity of

the belt structure over a length of 400 000 time steps.
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