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Abstract

The aim of this work is to get a relation between smectics (SmA) and relativity
theory. Through whose spacetime symmetries one obtain new insights about SmA.
The properties of SmA are decisive determined by “focal conic domains® (FCD)
respectively the “focal lines®. With FCD one attain to Minkowskispacetime and
identified SmA to projections of intersecting light cones. Then generalised that to
curved spacetimes: de-Sitter-spacetime and anti-de-Sitter-spacetime. Finally one
transform the free energy density between SmA’s by using spacetime symmetries.

Keywords: liquid crystals, focal conic domains, FCD, smectic, relativity the-
ory, spacetime symmetry, light cones, projection, Minkowski, focal lines, de-Sitter-
spacetime, anti-de-Sitter-spacetime, free energy density

Zusammenfassung

Ziel dieser Arbeit ist es eine Beziehung zwischen smektischen Fliissigkristallen (SmA)
und der Relativititstheorie herzustellen. Uber dessen Raumzeitsymmetrien werden
neue Erkenntnisse iiber SmA gewonnen. Eigenschaften von SmA sind mafigeblich
durch “focal conic domains“ (FCD) bzw. den “focal lines” bestimmt. Mithilfe der
FCD gelangt man zur Minkowskiraumzeit und identifiziert SmA mit Projektionen
von sich schneidenen Lichtkegeln. Verallgemeinert wird dieses auf gekriimmte Raum-
zeiten: de-Sitter-Raumzeit und anti-de-Sitter-Raumzeit. Schlieflich transformiert
man die freie Energiedichte zwischen SmA’s mithilfe von Raumzeitsymmetrien.

Stichworter: Flissigkristalle, focal conic domains, FCD, smektisch, Relativitats-
theorie, Raumzeitsymmetrien, Lichtkegel, Projektion, Minkowski, focal lines, de-
Sitter-Raumzeit, anti-de-Sitter-Raumzeit, freie Energiedichte
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1 Introduction

Friedrich Reinitzer first described liquid crystals in 1888 [I]. He observed a further
phase between solid and liquid. Liquid crystals distinguish by the fact, that they
have fluid properties as well as show anisotropy. The most of them are thermotropic,
which means they form different liquid crystalline phases depending on temperature.
They are subdivided into nematic, smectic and columnar phases. The molecules of
the nematic liquid crystals are rod shaped. The nematic phase is characterized by
a preferred orientation, although the barycenters of the molecules are statistical
distributed. The smectic phase, which also consist of rod shaped molecules, has
additional a layer order. Inside a layer exists also a preferred orientation. Both
phases have no postion long range order. The columnar phase is a little bit dif-
ferent. Columnar liquid crystals consist of discoidal or wedge-shaped molecule. To
form pillars is characteristic for this phase.

Under the microscope with crossed polarizers every phase has typical textures.
Thread-like and schlieren textures are typical for nematics, Schlieren and fan tex-
tures are typical for smectics and amongst others mosaic textures for the columnar
phase. One constrains on smectic liquid crystals (Sm). They are chronological de-
noted after their discovery with SmA, SmB, SmC etc.. Precise examination shows
that they are only five phases (SmA, SmB, SmC, SmF, SmI).

Today, Liquid crystals play a big role in different areas. Thermotropic liquid
crystals, which change the color depending on the temperature, can be use as
temperature-dependent sensors. In flat screens one takes advantage of optoelec-
tric effects. The liquid crystals change their polarisation by changing the applied
electric tension.

In the context of this report one constrains on SmA phases. One makes a mathe-
matical analogy to relativity theory to use spacetime symmetries to get new insights
of the smectic liquid crystals.

The geometry of smectics is leading determined by “focal conic domains” (FCD)

which are introduced in chapter One use FCD to get an relation to relativity
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theory (see chapter . At first one consider the flat Minkowski spacetime (see sec-
tion . Then use the Minkowski symmetries to relates different smectic textures
and look what changes by Lorentz boosting (see section . After that, one gen-
eralised then the insights to general realtivity (see section . The description of
smectics as projection from a higher dimensional spacetime will be generalised to the
de-Sitter and anti-de-Sitter spacetime (see section . How the free energy of the
liquid crystals changes by changing textures trough Lorentz boosting is discussed in
section [4] In the end one conclused the report by giving a résumé about the main

results (see chapter [5)).
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Figure 2.1: Focal Conic Domains: The blue ellipses shows the molecules of the liquid
crystals. Left: schematic side and bird’s eye view. Center: schematic
presentation of one focal conic domain. Right: cross section of focal
conic domains. [2].
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When one put thin films of smectic liquid crystals on silicon they are laid to two
different interfaces. At both the silicon-liquid crystal and liquid crystal-air interface
apply different boundary conditions. The liquid crystals align themselves in parallel
with the silicon layer, this implies that the layers of the liquid crystals are perpen-
dicular to the silicon layer. On the other hand the crystals align perpendicular to
the air layer (the layers of the liquid crystals are in parallel to the air layer). In
order to satisfy both boundary conditions, single layers of the smectic liquid crystal
are forced to bend. Because of these two opposite boundary conditions ”focal coni(ﬂ
domains” (FCDs) form. Figure shows a simple sketch of the molecule config-
urations and the profile of the layers. One use the same definition of FCDs as M.
Kléman and O.D. Lavrentovich [3] 4]:

”A focal conic domain (FCD) is the region in space
of the sample which relates to a given pair of conjugate

conics. In effect, in a sample where the only defects present

LA conic is an abbreviated version for cone intersection.
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are pairs of conjugate conics, any molecule either belongs
to a given domain which can be ascribed to a given pair,

or belongs to none.”

In the center of Fig. it is illustrates the cross section of one single FCD with
film thickness H and diameter 2r. A characteristic for layer ordering are conics as
defects, how one can see by FCDs [5]. What conjugates conics are and what they
have do with FCDs will be explained in the next section ({2.1]).

Textures of liquid crystal can viewed with a petrographic microscope. This is a
light microscope with crossed polarizers, that is their optical axef] are rotated by
90°. Anisotropic materials rotate the polarization of the propagating light. Thereby,
the second polarizer lets pass only a fraction of incoming light. Isotropic constituent
parts leaves the direction of vibrations unchanged and generate black areas. Multi
colour pictures can originate from interference. For different liquid-crystalline phases
(nematic, smectic, comlumnar) exist different characteristic textures under the pet-

rographic microscope [6].

2.1 Geometry of Focal Conic Domains

Understanding the geometry of FCDs is important to investigate the behavior of
smectics. G. Friedel developed geometrical rules liquid crystals obey [3, 4, [§]. He
observed thread-like defects, so called disclinationsﬂ and deduced the molecules
structure of nematics. Namely that the molecules lie parallel but random located.
He also discovered the lamellar structure of SmA’s by using the petrographic micro-
scope and seeing large scale defects in the shape of conjugate pairs of conics. First
one consider some elementary properties of FCDs, especially in the case of parallel
layers. Then explain the two laws of Friedel.
The balance of dilation and curvature terms in the free energy F = 1 [ d"z{C((V¢)*—

1)%+S(V?¢)?} is the reason for having preferred elastic distortions, so that the lay-
ers maybe curved stays parallel [3, [4]. This dominate the large scale defects [3] 4].

If one talk about a layer L; one means the mid-surfaces instead of material layers,

2An optical axis is an imaginary line in that direction light rays propagates through an optical
system like crystals. In our case smectics behaves like crystals in z direction.

3Disclination is a topological line defect. It is any defect in rotational symmetry, especially in the
orientation of the director, which is equivalent to defects in the orientation of the molecules of
liquid crystals [4, @, [10]. F.C. Frank first used the word “disinclination” and later this word
changed to disclination [10].
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Figure 2.2: Osculating Circle. The parametric plane curve 7(s) is regular, in which
s is the arclength. The osculating circle (blue circle) at point p with unit
tangent vector T'(s), unit normal vector N(s), radius of curvature r(s)
and center of curvature M is the circle which approximate the curve in
this point at best [7].

which are also parallel [3] 4 [11].

The osculating circleﬂ of a curve at point p is the circle which approximate the
curve in this point p at best (shown in Fig. (2.2))). Let v(s) be a regular parametric
plane curve with s as arclength. Then one can define the unit tangent vector f, the

unit normal vector N , the signed curvature o(s), the Gaussian curvature G and the

4From Latin “circulus osculans® which stands for “kissing circle“, named by Leibniz
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Figure 2.3: Left: Corresponding of the focal surface F' and the set of parallel layers
L. The intersections with the layers L and the normals are describe as
p. It is only shown the one-dimensional case. Right: Focal conic domain
with negative Gaussian curvature bounded by cones with apexes at P
and (). The ellipse and the hyperbola form a pair of conjugate conics

13, 4.

radius of curvature r as follow [12]:
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If one have instead a regular surface then exist at every point p a minimum and a
maximum value of the curvature. This values are the principal curvatures at point
p [12]. Connected to these curvatures one have two osculating circles and two prin-
cipal radii. The center of the osculating circles are called centers of curvature.

An elementary result of the geometry of parallel surfaces (especially layers) is that

the same surfaces have the same osculating circles, one for each principal curvature,
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Figure 2.4: Left: schematic 2D view of the law of corresponding cones. Right: Law
of corresponding cones in 3D with the FCDs [3] ]

at every intersection point p with the layers and one normal. The centers of cur-

vature M and P are always the same at these intersections but shifted. Because of

having the same osculating circles at every p one has always the same principal radii
1 1

of curvature ry; = uM, rp = P and the same principal curvatures oy, = = oM
1 1

and op = - = -5 [3]. If one consider all centers of curvature M’s and P’s at all p
so one will get two surfaces Fiy and Fp (shown in Fig. ) This surfaces are the
envelopes of the normals and are called focal surfaces. One radius of curvature at
the contact between one layer L; and one focal surface is zero, so that the curvature
is infinite. For this reason the focal surfaces are on a par with the set of singularities
of the parallel layers [3, 4]. To describe the defects one must describe the singulari-
ties.

There exist an analogy between this properties of parallel layers and geometrical
optics. The normals to the layers L;’s are analogs to light rays, which propagate
through the medium. The layers L;’s are analogs to equal phases and focal surfaces

are analogs to caustics, because the free energy density (4.4]) diverge at the focal
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surfaces and the light intensity diverge by caustics [3].
Because of the analogy to the caustics in geometrical optics the focal surfaces, two-
dimensional defects, degenerate in focal lines, one-dimensional defects for SmAP] [3].

A famous theorem by Dupin says [3], 4 [11]:

“If the focal manifolds are both lines, these lines are necessarily a pair of conju-

gate conics.”

Two conics which lie in mutually orthogonal planes in such a way that the foci
of one conic conform with the apexes of the another and the other way round are
by definition conjugated. A common situation is when ellipse and hyperbola form a
pair of conjugate conics (so the foci of the ellipse are the apexes of the hyperbola)lﬂ.
Then the layers adopts the shape of Dupin cyclidesﬂ [3, [4, 11]. The easiest case is
a circle instead of an ellipse, then the hyperbola is a straight line and the Duplin
cyclides are parallel tori [3] 4].

A torus splits into two parts, one part with positive and one part with negative
Gaussian curvature. In a physical experiment an observer can only see one part
of the torus [3]. Therefore one restrict our treatment to the part with negative
Gaussian curvaturd®l A FCD of negative Gaussian curvature with an ellipse and a
hyperbola as a pair of conjugate conics is shown right in Fig. . At all intersec-
tions of the line M P with the layers L;’s (i = 1,2,3) M and P are the centers of
curvature [3] 4].

Now one will focus our treatment on the work of Friedel and his laws about the
geometrical and physical behavior of FCDs. This laws allow a correct analysis of
FCDs at large scales [3] 4]. Both make a point about the contact of two FCDs. The
first, the law of impenetrability, says that parts of two FCDs can not occupy the

same space at the same time. Or in Friedel’s words [3], 4], §]:

“Law of impenetrability: two FCDs cannot penetrate each other; if they are in tan-

5Also for SmC

6There also exist FCDs with other conjugate conics as focal lines, like parabolic FCDs, in which
the two conics are parabolae. This kind of FCD was proofed theoretically and considered
experimentally [13].

7A Dupin cyclide is any geometric inversion of a cylinder, double cone or a standart torus. Here
one consider with that an inversion of a standart torus. This geometrical object is named after
Charles Dupin a french mathematician.

8By interest in FCDs with positive Gaussian curvature look at [14].



2.1 Geometry of Focal Conic Domains

gential contact at a point M, they are tangent to each other along at least one

generatrix common to two of the bounding cones.”

This is a experimental insight. Physically that means FCDs behave like solid ob-
jects. The second law is the law of corresponding cones (shown in Fig. (2.4))) [3] 4} 8]:

“Law of corresponding cones (l.c.c.): when two conics C; and Cy belonging to two
different FCDs (FCD; and FCDs ) are in contact at a point M , the two cones of
revolution with common vertex M , which rest on the two other conics C] and C} of

the two FCDs, coincide. Therefore C] and C, have two points of intersection P and

(@ on the common cone, and the straight lines PM and QQM are two generatrices

along which the two FCDs are in contact.”

This law is true in general for arbitrary conics C}, Cy, C] and C) but one will sim-
plify this and consider only the case that C; and Cy are ellipses and C] and C
are two hyperbolae. The first part describe the following situation. One have two
FCDs (FCD; and FCDs) which are in contact at point M. FCD; has the conics C4
(ellipse) and Cf (hyperbolae). Similarly FCDy has Cy (ellipse) and C (hyperbolae).
Every conic lies by definition on a cone, so one have four conics and therefore four
cones. The two ellipses are in contact at point M (shown in Fig.(2.4)). Then the
l.c.c. says that the two hyperbolae lie on a single cone, which means the two cones
belonging to Cy and C} are identical. The reason for this is that they have the same
symmetry axis. The tangent between C and C5 at point M is the symmmetry axis
of the cone of revolution belonging Cy and C). The second part elucidated that the
two hyperbolae have two common points, two intersection points P and (), because
of they are on the same cone (shown in Fig. and Fig. (2.4)). Moreover M
is the common apex of the cone and the lines PM and PQ are generatrices of the
same cone. So if two FCDs have two contacts on their generating cones and have
one common generatrix then they obey l.c.c. [3, [4].

The left of Fig. shows the case of coplanar ellipses. The foci of the ellipses
are Fy, F|, Fy and Fj. The three points Fy, M and F} are collinearﬂ exactly like
F|, M and F; [3, 4]. The point A is the projection of P to the plane. It is also the
projection of @ [3, [4].

9that means the three points are on one line.
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3.1 Flat Spacetime

AW B | \ [\ /
/o | #} F t\ | F | DN
| | \ / N,
/ / \
| | L] | ] \ \
v | v vl [ /2 v v N
\ \ A N A \\
| | \ | f \ B\ B
| | / B\ R\ AN
| /AN N,
| IS¢ 8 & F RN AN
/ Iy vV v § | \
L v J Y v A \\
N | a0 0 T ] \ /
| \ | B\ [ I / . /
| / \ | i N T /
/ f [ ] N
| | | /8 1] VY ¥V AN e
vV Ve \ v N i .
[1N)) \ A AN 4 i )
\ \ ) = =
| )))‘ | ( // P
| | 1] | [ .
\ /] V t / . Z
v v \J v V Y s ]\7 K
T TN T\ /
[ \ | | A S
F/ e
| | | 11l /i ya
y v v v )
\ \ \ /
| | //
IV ’
| | I
|

Figure 3.1: Left: Schematic of SmA liquid crystal. The blue ellipses shows the
molecules of the liquid crystals. The constant layer thickness is a and
the director 7 is perpendicular to the layers [7]. Right: The tangent

vector T' and normal vector N are both on the light cone. In respect to
the Minkowskimetric they are both null [7].

Now one want to get a relation between smectic liquid crystals and the relativity
theory. An undisturbed smectic liquid crystal consist of equidistant layers, that is
the layer thickness a is constant; without confinement of generality in z-direction
(shown in Fig. (3.1)). A one-dimensional density wave

p(7) = po + plCOS[Qij(j)] (3.1)

characterize the smectic phase [10} 15 [16]. The function ¢(7) is called smectic phase

11
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field and is implicit defined by (3.1). The director 7 of a smectic is defined as the
optical axis. The normal N = V¢ coincides with the director . Hence the phase
field ¢(7) could also defined implicit by the director [17]

i = V(7).

In the ground state the smectic consist of equidistant flat layers [I5]. The free en-
ergy (see Equation (4.4) in Chapt. (4))) is invariant under following transformations
[15]

n— —n
¢ — ¢ + constant
Vo =+ Vo & ¢— —¢.

For this reason ¢ € S'/Z,, where S' is the unit circle and S'/Z, means that the
antipodal points are identified [I5]. To work with completely R, one assign ¢ for
every point 7 € R (in the material) another point in R [I5].

To define the layers and describe smectic textures consider level sets

() = na (3.2)

with n € Z the set of integers. By introducing ¢(7) as a timelike additional coor-
dinate, beside the local coordinates 7, one will get a relation to relativity theory
respectively to the Minkowski M spacetime [15, 17, [I8]. The focus will be on con-
figurations with vanishing compression (see Chapt. ().

The ground state of equidistant smectics layers is ¢ = r [I5], so that the surface
S = {(F,6(")T|F € R4} C R is a plane. One other possibly important example

of smectics states includes the point defect [15]

6= |7, (3.3)

Equation (3.3)) is equivalent to |72 —|¢|? = 0, which is an equation for a right circular
cone. If one adopt the convention that the light velocity is ¢ = 1, Eq. (3.3) defines

1One only consider SmA. By this phase of smectic liquid crystals the molecules are perpendicular
to the layers, so it valids N = 7. In general the director is not perpendicular to the layer, so

that the normal of the layers N and the director 7 include an abritrary angle unequal 0; such
as SmC

12



3.1 Flat Spacetime

the surface S of a light cone. One can interpretate the apex of the cone as an event
in the Minkowskispacetime M, in which the value of the apex is the value of the
quasi timelike phase field ¢ [15, I7]. Smectic textures are identified to projections
of level sets (Eq. ) of nullhypersurfaces like light cones in a one dimensional
higher spacetime onto the plane [I5, [I7, 18]. One have found a relation between
smectic textures and nullhypersurfaces in Minkowskispacetime. This is not the only
way to get a corresponding between spacetimes, nullhypersufaces and smectics.
Another possibility is to consider Eq. and use the layer ordered structure
of smectics. The constraint imposed by Eq. means to cut the graph S with
planes spaced by the distance of the layer thickness a perpendicular to the ¢(7)-
direction. At first one only consider flat spacetime. Equidistant planar layers are
the only possibility to get no curvature and no compression [19, 20]. Then the
surface S assumes a constant angle with the ¢-direction [I7, 21]. Because in the zz
plane the layer thickness is a, the projections of the graph to the xz plane is unique
determined. If one split the tangent vector T of S in a horizontal Az and in a vertical
A¢(T) component, one will obtain a ratio of the two components %(j) =2 =1,
which leads to a unique angle © between the tangent vector T and the z-direction,

or alternatively between the normal vector N and the z-direction:

AP(T)
Az

© = arctan( ) = arctan(1) = %

The Euclidean space R%*! is isomorphic to the Minkowski space M = R%!. Because
of the Minkowski metric is not positive definite, but has a signature (—, —, —, +),
the local coordinates 7 will mirrored onto the ¢-axis after bijection. Thereby the
Minkowski metric ds? = d¢? — di? denotes the square of the spacetime generalized
distance functionﬂ. The tangent and normal vectors of the graph S form because
of the constant angle © = 7 by the convention, that the light velocity is set ¢ = 1,
again a nullhypersurface. Then respective to the Minkowski metric ds? = d¢? — di?
the tangent vectors as well as the normal vectors are null (also called lightlike),
because they are lying on a light cone (shown in Fig. (3.1)).

Moreover different possible configurations of the layers of the liquid crystals can

?In contravariant notation it reeds: ds* = 7, dz"dz”. The diagonal matrix
Nuy=diag(-1,-1,-1,+1) is often called Minkowski metric in physics. Strictly speaking this dis-
tance square represents the squared Minkowski norm [22 23]. In this report, if not specify
otherwise, one define the Minkowski metric g depending on context as the infinitesimal or not-
infinitesimale distance square (z —y) - (z — y) = (As)? = nuAz*Ay”; z,y € M; in which one
use the Einstein notation for repeated indeces.

13



3 Relation to Relativity Theory

be related which each other by means of the symmetry of the Minkowski spacetime
M [I7]. A isometry is a transformation, which leaves the metric invariantﬂ. The
symmetry group respectively the isometry group of the Minkowski spacetime is the

Poincaré group [22], 24]
T »x O(3,1),

which consist of the semidirect product of the group of translations T and the Lorentz
group O(3,1). The Lorentz group consist thereby of all linear automorphism, which
leave the metric invariantf]

The semidirect product combines two groups G, F into a new one. Let ¢ : F —
Aut(G) be a homomorphism. Aut(G) is the group of all automorphism of G. At
first constitute the Cartesian product of G and F. With the aid of this the following

operation

(91, f1) - (92, f2) = (g1 - ¥ (f1)(92), f1- f2), Vg€ GVfieF i€ {l,2}

generate a new group, which is denoted as G x F. Let t, € T be a translation in
direction z € R¥! and A a Lorentz transformation. Set G = T, F = O(3,1) and
choose 1(A)(t;) = ta, as a homomorphism, then the semidirect product G x F yields
the Poincaré group.

Consider the intersection of two light cones, whose projection onto R? is visible
under light microscope. Because a Lorentz boost leaves the metric invariant, but
changes the intersection of the light cones, mixes the ¢-coordinate with the compo-
nents of 7 and therefore also changes the projection, one realize a hidden symmetry
between equidistant ground states on different substrates [17].

One can interpret the situation also in such a way that different observers see
different projections and therefore different smectic textures from the same nullhy-
persurface [15], [I7]. So the common nullhypersurface is an underlying structure [15].

Every nullhypersurfaces has points of singularity, e.g. the apex of the light cone.
These singularities corresponds to focal sets and one can use them to describe smec-
tic textures. Because of ill-defined normals at these points the projection of these

points is also ill-defined and this leads to topological defects like disclinations and

3Isometries have a group structure
10(3,1) = {A € M(4,R): (Az) - (Ay) = A" 2 Ay = ety =z -y, Va,ye R3’1}
with M(4,R) as the set of all 4 x 4 matrices over R

14



3.1 Flat Spacetime

kinks in the director [15].

One need all kinds of focal sets to get all nullhypersurfaces corresponding to any
focal conic texture [I5, I7]. To specify all focal sets of the nullhypersurface one
reduce the problem from two dimension (surface) to one dimension (focal lines). To
characterize the focal sets one first consider nullhypersurfaces with focal sets, which
build a dual pair. A dual pair is a 3-tuple (X, (-,-)) [25], in which X and Y are

vector fields over the same field K and (-, -) is a bilinear operation
()X xY > K
With the following properties

Vee X\ {0} JyeY:(z,y)#0
Vye Y\ {0} dre X:(x,y)#0.

The bilinear operation (-, -) establishes a duality between the vector fields X and Y.

Two elements are orthogonal if
(x,y) =0, for z€X and yeY. (3.4)

Two sets X' C X and Y’ C Y are orthogonal if equation (3.4) is obtained for all
' € X' and for all ¥y € Y'. To consider dual pairs is useful, because one can
generalize that from dual to multiple domain configurations, which are seen in the

experiments [15].

3.1.1 Curves of Intersection

Depending on the sign of the invariant interval I = Az, Axz" between two events
in spacetime, their separation is said to be spacelike, I < 0, timelike, I > 0, and
lightlike or null, I = 0. At first one consider the case of spacelike separated events.
These two events generates two light cones. Without less of generality the events
have the coordinates (£7,0,0) in the rest frame and in general (after a Lorentz boost

in the a:—directionED (£vr,0,Fv0r) where r € R. The curve of intersection of the

SFor two events at (0,=r,0) one consider the Lorentz boost in y-direction, which produce the
coordinates (0, yr, Fy4r).

15



3 Relation to Relativity Theory

two light cones lies in the z = 0 plane (shown in Fig. , thereby follows that

¢ = 4(6— B,y =16 = 6 = %d (3.5)
¥ = (@ — B)|,_y = —1B6 = —Bd. (3.6)

The structure of a nullhypersurface does not change after a Lorentz boost, because
Lorentz boosts let the metric invariant, so in general nullhypersurfaces stay null
after boosting [15], [17]. Focal conics inherit this symmetry [I5]. For every constant
timelike coordinate ¢', a point of the spacetime M = R*! is on one of the two light
cones if and only if the coordinates after Lorentz boost x’, 1/, ¢’ satisfy the equation
of a circle. Light cones are cones of revolution by rotating the angle bisector about
the ¢-axis. The special property of the angle bisector is that for every point on it
the z- and the ¢-coordinate have the same value. Therefore the ¢ coordinate, the
radius R of the circle and the light cone form a isosceles triangle. The value of the
radius R and absolute value of the ¢ coordinate are the same (shown in Fig. (3.2)).

boost
e

Figure 3.2: Schematic representation of the lightcones. Left: The intersection of
two light cones of two spacelike separated events in (a) and two timelike
separated events in (b). Left in their rest frame and right in a general
frame. The corresponding smectic textures are below each surface. The
red lines denotes the focal lines [I5]. Right: A cone of revolution by
rotating the angle bisector about the ¢-axis. The ¢ coordinate, the
Radius R and the light cone form a isosceles triangle. So the absolute
value of ¢ and the radius are the same [7].
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3.1 Flat Spacetime

From this it follows that the points of the curve of intersection of two light cones,

in this case, are given by the solution of the two equations:

(&' +r)? +y? = (¢ —pr)?
(a' —r)? 4+ y? = (¢ +Br)*.

By using Equation (3.6) and expanding the brackets one will get:

62¢/2 _ 2’7ﬁ¢/7‘ + ,.>/27,2 + y/2 — ¢/2 _ 2’7ﬁ¢/7‘ + ,.)/2ﬁ27,2
ﬁ2¢/2 + 2’}/5¢IT _}_72742 + y/2 — ¢/2 + 2’}/5¢/T _}_72527”2.

Substract the second from the first equation and cancel the term 2vy3¢'r:

—4yB¢'r = =4y B’
B2 4 422 4y = ¢ + 42822,

The first equation is trivial, i.e. it is equivalent to 1 = 1. The equation of the curve
of intersection is given by the second one:
62¢/2 + 72742 + y/2 — ¢/2 4 /72/827’2
= y/2 — _,727,,2 _}_7252712 + ¢/2 . BQQS/Q

1 1
= —*r? +9%(1 - ﬁ)ﬂ +¢% —(1-

¥)¢/2

¢\’
_ —727“2 +727"2 — 24 ¢/2 _ ¢I2 + ()

Y
A 2
~
where one used 3% =1 — %2 Then

y? - <¢/>2 =—r (3.7)

v

N 2
=y — (%) = —r? (3.8)
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3 Relation to Relativity Theory

where one used the equation (3.6). This is the equation of a hyperbola. It results
that in general the curve of intersection of two spacelike separated light cones is a
hyperbola. Equation (3.8]) is the projected curve onto the z'y’ plane.

In the rest frame, as a special case, the equation of the intersection is:
(rEr)y+yi=r+yi=¢* = y? — ¢* = -1~

In the rest frame v is 1 and 3 is 0. So one will get the same equation for the rest
frame by setting v = 1 in the general equation (3.7). From (3.8]) follows:

x=\r2+y?-yf=1/r?+y>-1-0=0.

The projected curve to the xy plane in the rest frame is the y-axis.

The case of timelike separated light cones are very similar. The steps of calculation
are technically the same. The two events have the coordinates (0,0, £7) in their rest
frame and (Fvfr, 0, £7r) after Lorentz boosting. The intersection now lies on the
¢ = 0 plane (shown in Fig. |3.2)):

1
=y = BP)ymg =T = T = 535

¢ = (o - 5x)|¢:0 = —yfx = —p". (3.9)

The equations of circle are now

(' = 9Br)? +y? = (¢ +r)°
(&' +9Br)? + 42 = (¢' —m)*.

By using equation (3.9) and expanding the brackets:

:L‘/2 _ 275$/7" + 72&2,,42 + y/2 — 52$/2 _ 2’75I/’f‘ + ’)/27“2
2%+ 290 r + 2372 + y? = B2 + 2y Bl r + Pt

After substracting the second equation from the first and canceling the term 2ySz/r

one will get:

—4~Ba'r = —4ypa'r
5(1/2 + ’)/2,827“2 + y/2 — 62x,2 + 72702'
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3.2 Curved Spacetime

The first equation is again trivial. If one consider the second one, one obtain the

equation of an ellipse:

2 £ A2B%2 4y = 320 4 A2
= 2 — B2 1y = 2 42422

1 1
= x/z _ (1 o ﬁ)lﬂ 4 y/2 — 727,2 - 72(1 - ¥)T2

x/

2
S B <7> oy = a2 22 g2

AN
= () -+ le = 'rQ_ (310)
v

The intersection of two timelike light cones is in general an ellipse. The projected

curve is now equation (3.10)).

The rest frame shows a special case in which the curve of intersection is a circle:
Py = (pkr) i, =17

This equation also follows from equation by setting v = 1.

Moreover, one recognises that the vertical projections of the two apexes (= the
two events) are the foci of one branch of the projected hyperbola in the case
of spacelike separated light cones [I5]. The same is valid for the timelike separated

case; the apexes are projected to the foci of the projected ellipse (3.10)) [15].

3.2 Curved Spacetime

Because the FCD have curved layers it is useful to consider curved spacetimes too.
The correspondence between the nullhypersurfaces and smectic liquid crystals is
generally valid also for curved spaces [15, 17]. Equidistant smectic textures can be
described by level sets of nullhypersurfaces with the metric ds?> = d¢? —dI?, in which
dl? = h;;da’da? denotes the spatial section of the metric. The null geodesics, which
describe the surface S, will project onto geodesics of the spatial section di? of the
metric onto the spatial section U of the spacetime. The crucial point is that in
general ds? = d¢? — dI? is not invariant under Poincaré transformations. Therefore
a general spacetime exhibits other symmetries then Minkowski M. In general there

exist no symmetries, which mix the time, respectively the ¢ coordinate, with the
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3 Relation to Relativity Theory

spatial coordinates. Consequently the whole curvature lies in the spatial section U
of the spacetime and it can described as U x R. A Lorentz boost would mix the
curved and flat sections and produce a new spacetime. In this spacetime the metric
has not the hidden symmetry [17].

The structure of nullhypersurfaces will be conserved by conformal®| rescaling of
the metric [17), 26]:

ds* = Q?[d¢® — hy(F)dz'da?],

in which Q(¢, ¥) is an arbitrary conformal factor. In particular, the structure of the
nullhypersurface is preserved, if U x R is conformal to Minkowski spacetime M. All
of these metrics can used to describe equidistant textures on U [17]. The system of
coordinates should be chosen in such a way that the hidden symmetry belonging to
the spacetime is preserved.

Before one turn to the choice of the coordinates and the conformal factor, one

consider the isometries of M and their consequences on U.

3.2.1 Maximally Symmetric Spaces

To examine the symmetries of U, one needs a few other ones mathematical tools,
like the Lie derivation. The Lie derivation is a generalisation of the directional
derivative. Let f : M — R be a smooth function and X a smooth vector field on
M. The Lie derivative Lx f(m) at point m € M is then defined as the directional
derivative of f at point X (m) in the direction m [12} 27]:

Lx f(m) = dn f(X(m)).

The Lie derivative enables the definition of Killing vector fields, which can be used
to make statements about the symmetries of manifolds. Killing vector fields are the

infinitesimal generators of isometries [22], 24]. That is, the metric is left unchanged
‘CXg = 07

where £ is the Lie derivative, X the Killing vector field and ¢ is as always the

metric. The Noether-Theorem states that every conserved quantity belongs to a

6conform means that the angle does not change by this kind of transformation
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3.2 Curved Spacetime

symmetry, every Killing vector field X belongs to a symmetry. A vector space with

an additional bilinear operation, the Lie bracket
['7']:VXV_>V7 (l’,y)'ﬁ[l’,y],
satisfying the following properties

[z, [y, 2]] + [y, [z, 2]] + [z, [z, 9]] =0 Va,y,z€V (3.11)
[z,2] =0 VYx eV,

is called a Lie algebra [12), 27]. The first constraint is the Jacobi identity. The
set of all Killing vector fields on one manifold generates the Lie algebra of the isom-
etry group. One can use the Lie algebra to describe symmetries. The Lie algebra
of the isometry group of one manifold of the dimension d can at most be gener-
ated by @ Killing vector fields. Spaces which symmetry group is generated from
the maximal number of Killing vector fields d(dTH) are called maximally symmetric
[22], 4]

The Minkowski sapcetime M is trival local homeomorphic to R%*! and the dimen-
sion is therefore d 4+ 1. Furthermore one consider the Poincaré group T x O(d,1).
The group of translations T in R®! is generated from d + 1, and the Lorentz group
O(d,1) is generated from @ Killing vector ﬁeld. A short calculation shows,
that the Minkowski spacetime is maximally symmetric in every dimension:

dd+1) (d+1)(d+2)

dim(T) + dim(O(d,1)) = (d+ 1) + 5 = i :

It follows that U x R must also show maximal symmetry. With it this is warranted
U must be maximally symmetric [I7, 28]. This is an enormous constraint for the
spatial section of the spacetime. For U there exist only the following three possi-
bilities: R, S% and H? [17], 22, 24], where S is the d dimensional sphere and H? is
the d dimensional hyperbolic plane. With a similar short calculating, one can show
that they are all maximally symmetric.

One can also visualise that there can be only three possibilities for U. With the
help of differential geometry one can show that from maximal symmetry a constant
curvature of the spacetime follows [24]. A constant curvature can be either positive,

negative or zero. R has curvature zero. Whereas S? has constant positive and

"It valid dim(O(d,1))=dim(O(d+1))=441 1]
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3 Relation to Relativity Theory

H¢ constant negative curvature. Therefore there are only these three possibilities
for U. To every maximally symmetric spatial section exists a maximally symmetric
spacetime. Therefore, there are three spacetimes which receive the hidden symme-
try: M, dS (de-Sitter-spacetime) and AdS (anti-de-Sitter-spacetime). Moreover one
can show that the maximal symmetry is equivalent to the isotropy of the space and
isotropy in every point implies homogeneity [24]. Consequently the three spacetimes

are all isotropic and homogeneous.

3.2.2 Change of Coordinates

Figure 3.3: The same nullhypersurfaces, such as the intersection of two light cones,
in Minkowski spacetime M can be used to describe equidistant smectic
textures on the plane R?, or the sphere S?, or the hyperbolic plane H?.
Here one can see only the plane R? and the sphere S?. The left cases are
in the rest frame and the right cases are the general cases after Lorentz
boosting. The red line is the focal line. [17]

The coordinates and the conformal factor 2 must be chosen in such a way that
the hidden symmetry is preserved with respect to the spacetime. U must be of one
of three spaces.

For simplicity, from now on one will use ¢ instead of ¢ as the timelike coordi-
nate. The mathematical statements are valid in all dimensions,however, here one

limit ourselves to the important (2+41)-dimensional case. One look at the (2+1)-
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3.2 Curved Spacetime

dimensional Minkowski spacetime M = R?! and carry out the following coordinate

transformations:

t = Qpsin(t')

z + iy = Qpsin(a)e’”
1
cos(t') + cos(a)

with QP =

Thereby the Cartesian coordinates (x,y,t) were transformed into Carter-Penrose-
coordinates (o, 8,t') [I7]. This induced the metric [17), 26]:

ds? = Q%[dt"”? — da? — sin(a)?d ).

By this choice of coordinates the Minkowski spacetime is conformal to S? X R (shown
in Fig.. Nullhypersurfaces in M correspond to equidistant level sets on U = S?

[T7]. If one choose instead

t = ¢!’ cosh(a)

x4 iy = e sinh(a)e’,

as coordinates, then M is conform to H? x R [17].

Although S? and H? are curved, nevertheless, it concerns the Minkowski spacetime
M. The metric remains with conformal transformations those of the Minkowski
spacetime, completely regardless of the choice of the coordinates [I7, 29]. The
spatial section is only flat in Cartesian coordinates. By using the other coordinates
it stays the Minkowski spacetime, but with curved spatial section.

One summarise: the same nullhypersurface in M is able, according to coordinate
choice, to describe equidistant smectic textures on R?, S* or H? (the cases R? and
S? are shown in Fig.. In addition, one have the freedom to view smectic liquid
crystals with one and the same spacetime, but to different spatial sections U, or
with one and the same U, but with different spacetimes (M, dS, AdS) [17].
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4 Frank Free Energy

' 7
—_-— =T YN,

Figure 4.1: Schematic of translational and rotational distortion. (a): By a trans-
lation distortion there is no elastic modulus of moving layer. (b): One
needs a twist modulus to describe the twist of the upper layer with
respect to the bottom one [16].

This chapter will explain how the Frank free energy of smectics will change under
Lorentz boosting. But before considering the correspondence between different focal
lines and the energy one introduces the elementary basic ideas to get a formula for
the energy. The energy depends on the distortions. Several people were involved
in the development of a continuum theory of elasticity for liquid crystals, at first
for nematics. Oseen, Ericksen, Leslie and Frank have given the largest contribution
[9, (10} 16, B0]. Oseen had the idea to use the vector field of the director 77 to describe
the elasticity of liquid crystals [16, 31]. Ericksen was the to who use the asymmetry
of the stress tensor for hydrostatics of nematic liquid crystals. He developed the
basics for a general theory of continuum theory of liquid crystals, based on the
conservation laws for mass, linear and angular momentum [16] [32]. But this were
all about a static continuum theory of elasticity. The dynamics were developed by
Leslie [16]. Nowaday the theory is known as the Ericksen-Leslie theory [9} 10, [16].
And finally Frank helped to understand the hydrostatic parts of the Ericksen-Leslie
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4 Frank Free Energy

theory and defects like disclinations in liquid crystals [16], B3]. The energy formula

is named by him.

4.1 Distortions

For a fixed direction of the director the shear modulus is vanishing. Figure
shows the difference between translational and rotational distortions in a liquid
crystal. In solids a change in the distance of the next neighbor points causes the
stress, but in liquid crystals the curvature of the director field n; ; = g%; causes the
stress [16]. Different boundary conditions can be the cause of stress like electric or
magnetic fields, or mechanical bending etc. For a more general case one consider

also the quadratic terms of the distortion free energy density fuis [10, [16]:

on; 1 on; Ony

. :KA.i_f_, Gl —— * ——, 4.1
fdzst iJ 8:16]- 9 ijlm afﬂj axm ( )
where K;; and Kjj, are elasticity tensors. Now one consider the elementary dis-
tortions of an undistorted director n = (0,0, 1) aligned along the z-axis (that is

n,=const = g:; =0 Vj €{1,2,3}):

ong, ong, ong, on, on, on,
= Qa s — = s — = s — = —Q s — = Q s — = s
ox ! oy 2 0z 5 ox ! oy b 0z 0

where a; and as are the elementary splay distortions, as and a4 the elementary twist
distortions, ag and ag are the elementary bend distortions [I6]. The minus sign in
front of a4 appears because of having different signs in the variations én, and dn,
[16]. Then the components of the director n = (n.(z,y, ), ny(z,y, 2),n.(z,y, 2))"
are [16]

Ny = a1 + agy + azz + O(r?)
n, = a2 + asy + agz + O(r?)
n, = const + O(r?),

1One identified 21 = z, £o = y and 23 = 2.
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4.1 Distortions

where O(r?)f] are higher terms in 72 = 22 + y? + 2%. In general the director is not

parallel to the z-axis and one has a more general curvature distortion tensor:

Ong  Ong Ona

On: ox Jy 0z ap az as
N s = 1 - Ony  Ony  Ong .
) T 8% - oz Ay 9z =la as Qe | >

ony Ony Ong
oz dy 0z

a7y ag Qg

where a7, ag and ag are the missing elementary distortions if the director is not

parallel to the z-axis.

4.1.1 Elasticity Tensors

At first one considers the elasticity tensor K;;. This tensor has nine components,
because of i,j € {1,2,3} = 3% = 9. One has uniaxial (cylindric) symmetry and
therefore Eq.(4.1]) is invariant under the rotation about the z-axis [10), [16]:

r =Y,
y =,
2=z
Then K;; reduces to [10, [16]
Ky Ky 0O
Kij - _K2 Kl O
0 0 0

By molecules with mirror symmetry (achiral molecules) the distortion free energy
density Eq. (4.1]) get invariant under [16]

n— —n.

Then Ky = 0.

Now one considers the other elasticity tensor. The tensor Kjj,, has 81 compo-
nents, because of 7, j,1,m € {1,2,3} = 3* = 81. By considering SmA the director is
again parallel to the z-axis and a7, ag and ag are vanishing [10] [16]. So this reduces

Kijim to 36 components (one has six elementary distortions a; to ag. Squaring

2The Landau notation O(r?) means that the terms growth slower as 2.
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4 Frank Free Energy

this to have a square matrix yields 6> = 36 components). The uniaxial symme-
try reduces the number of components to 18 [10, [16]. Only the five components
Ki1, K12, K99, Koy and K33 are independent [10, [I6]. The head-to-tail symmetry
implies that Eq. is invariant under the transformation:

=z,
!

y =Y,
2 =—z

Therefore the component K7j, vanishes [10, [16]. Finally there remains only the four
components Ky, Koo, K33 and Ky [10, [16] 30} B1].

4.1.2 Elastic Energy

For the distortion free energy fy: of SmA phases one obtains the linear combinations

of the elementary distortions corresponding to splay, twist and bend:

1
fdz’st = §[K11 (a1 —+ CL5>2 +K22 (CLQ + (14)2 +K33 (CL3 -+ CL4)2], (42)
[ twist bend
splay wis en

in which one has only the quadratic terms of Eq. (4.1)) [I5H17]. The term with Kgﬂ
only appears, if distortions have two or three dimensional structures [16]. Next, we
will deduce the Frank formula for the distortion free energy density. The divergence

of the director n gives the splay term [10), [16]:

_ e, Ony

ven ox y

- ((11 + CL5),

where one used dn, = 0, because n || z. For the twist term one writes [10), [16]

ony, Oong n on,  On, N on,  On,
“\ oz oy |

n.Vxn:—nxa%—nyaz 8x_8y>:<a2+a4)'

3The so called saddle-play modulus.
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4.1 Distortions

Since n = (0,0, 1)7 the first two terms can be neglected. By the conditions

Nz, Ny K N, ~ 1 one finally gets this expression for the bend term [0}, [16]

ong ., Ony
nxVxn:—<azez+aZyey>.

By squaring these terms we obtain (compare with Eq.(4.2)))

1 ong  On, 2 on,  Ony, 2 ong 2 on, 2
fdist—z[K“<ax+ay> +K22<ay ‘w) e\ ) Tla
1

= (K1 (V-n)* 4 Ko (n -V x n)* + Kg (n x V x n)?| (4.3)

For SmA the twist and the bend term vanish, so that the splay term is the only
one, which remains [10, [15, [I7]. The layer in SmA are flexible and easily distorted,
but preserve the layer thickness [10]. In addition one has a term for compression
[9, 10, [15], 17] and after integrating Eq. over the volume we obtain the Frank

free energy:

o ;/dd;,;{c(rﬁ —1)2+ 8(V -n)?}

_ ; [ e e(oy 1 + (v, (4.4)

where one replaces Kp; with S for the splay term and n = V¢. The compression

modulus is C.

Dependence on Focal Curves

In Sect. (3.1.1) we considered two cases: spacelike and timelike separated events
which produce two different curves of intersection. After Lorentz boosting the co-
ordinates (z,y, ¢(x,y)) transform to (z/, vy, ¢'(2',y’)). The Frank free energy (Eq.
(4.4)) depends indirect on the focal lines (curves of intersection) about the ¢ coordi-
nate. Lorentz boosting transfers F'(¢(z,y)) to F(¢'(2’,y')). Then one can expresses
the Frank free energy with the origin coordinates: F(¢/(z',y')) = F(¢(x,y)), where
F is the Lorentz boosted Frank free energy in dependence of coordinates (z,y,0).

So we need to distinguish the two different cases:
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4 Frank Free Energy

For spacelike separated events:

F@ ) = 3 [ (C(VeP — 12+ S(V6P) (49

= ;/ddI{C((vw)? —1)* + 5(V*9)*}

Fi(¢(xy))
2 2 2
-1 fatege ((wm) _ 1) 5 (V) )

ﬁ2 (d)({l?,y))

For timelike separated events :
F@ ) = 5 [A (O~ 12+ SV} (46)
= 5 [ '2{C(=TrB2)? ~ 17 + S(-F*52)%)

F3(¢(z,y))

In Eq.(4.5]) 7 is the half distance between the two apexes of the intersecting lightcones
and  and ~ are factors from the Lorentz boosts. By using Eq. (3.5 one obtains
Fi(¢(z,y)) and using Eq. (3.7) gives Fy(¢(x,y)). In the timelike separated case the

curve of intersection lies on the ¢ = 0 plane, so there is no dependence on ¢ instead,
by using (3.9), F5(¢(x,y)) (Eq. (4.6)) depends only on z.
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5 Conclusion

We have studied the geometry of liquid crystals in the specific situation of focal
conic domains. We described an elegant mathematical relation between focal conic
domains and relativity theory, largely based on [15, [I7]. The references of the figures
are declared or they are drawn with Inkscape version 0.48.5. The main results of

this report are:

o The law of impenetrability: FCD behave like physically solid objects. Over-
lapping is not possible as e.g. by waves (superposition principle). Two FCD

can only be tangent to each other.

o The law of corresponding cones: Two tangent FCD have two common points,
in such a way that two conics belonging to two different FCD are on a single

cone.

o It is a new interpretation to see SmA’s identified to projections of a one-

dimensional higher spacetime onto the plane.

e About the spacetime symmetry one get a hidden symmetry of SmA’s. Dif-
ferent configurations, textures corresponds to each other by using spacetime

symmetries.

e One can describe multiple-conic domain configurations by using dual pairs,
specifically dual conic domains. So it is useful to consider the intersections of

a pair of lightcones.

o There are only three possibilities (R, S¢, H?) for the spatial section to restore

the hidden symmetry. These are the only three maximally symmetric spaces.

o A consequence of the hidden symmetry is that smectics with different config-
urations and hence also different Frank free energy correspond to each other

by Lorentz boosting.
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