
Fakultät für
Physik

Bachelor’s Thesis

Framework zur computergestützten Analyse
von Bildern vaskulärer Netzwerke

Computational Analysis Framework for Vascular
Network Images

presented by

Jana Lasser
from Graz, Österreich

at the Max-Planck-Institut für Dynamik und Selbstorganisation

Thesis period: 17th December 2012 until 25th March 2013

First Referee: Eleni Katifori, Ph.D.

Second Referee: Prof. Dr. Sarah Köster

Abstract
In this thesis, we develop a framework for the processing of high resolution images of
vascular networks. The framework processes high resolution scans of plant leaves and
extracts the topological and geometric information of the vein networks present on the
leaves. This framework consists of modular Python scripts, modules and classes. The
main goal of the work is to provide as fast and highly automated processing of the data
as possible while preserving the properties of the networks. The resulting framework can
be used cross-platform and on PCs as well as on clusters. With a few adaptations it can
be a good basis for the processing of images from many networks in different biological
systems.

Keywords: Biological Networks, Image Processing, Python

Abstract
Das Ziel dieser Arbeit ist die Entwicklung eines Frameworks zur Datengewinnung aus
hochauflösenden Bildern vaskulärer Netzwerke. Das Framework verarbeitet hochauflösen-
de Scans von Pflanzenblättern, um Informationen über die Topologie und Geometrie der
darauf vorhandenen Transportnetzwerke zu gewinnen. Das Framework ist modular aus
Python-Skripten, -Modulen und -Klassen zusammengesetzt. Es soll den Nutzer in die
Lage versetzen, so automatisiert wie möglich Netzwerkdaten auszulesen, während die
Eigenschaften des Netzwerkes weitestgehend erhalten bleiben. Augenmerk liegt auch auf
der Plattform- und Hardwareunabhängigkeit des Frameworks, welches, mit einigen An-
passungen, auch als Werkzeug zur Gewinnung von Daten aus Bildern anderer biologischer
Netzwerke verwendet werden kann.

Stichwörter: Biologische Netzwerke, Bildverarbeitung, Python

iii

Contents

1. Introduction 1
1.1. Motivation and Overview . 1
1.2. State of Research . 2
1.3. Framework Requirements . 3
1.4. Network Modeling . 4
1.5. Framework Structure and Design . 6

2. Image Handling 7
2.1. Language and Libraries . 7
2.2. Digital Image Representation . 8
2.3. Dealing with Image Size . 9

2.3.1. Image Tiling . 9
2.3.2. Tiling Implementation . 10

3. Image Enhancement 13
3.1. Point Operations . 14

3.1.1. Grayscale Conversion . 14
3.1.2. Histogram Equalization . 15
3.1.3. Thresholding . 16

3.2. Neighborhood Operations . 18
3.2.1. Blurring . 18
3.2.2. Directional Derivatives . 19
3.2.3. Local Histogram Equalization . 20

3.3. Filter Combinations . 22
3.3.1. Sobel Filter . 22
3.3.2. Unsharp Masking . 23
3.3.3. Blurring and Local Histogram Equalization 24

3.4. Summary . 25
3.4.1. Comparison and Choice of Method 25
3.4.2. Intermediate Results . 26

4. Binary Processing: Skeletonization and Distance Maps 29
4.1. Skeletonization . 29
4.2. Skeletonization by Thinning . 31
4.3. Skeletonization based on Constrained Delaunay Triangulation 34

4.3.1. Contour Extraction and Linearization 34
4.3.2. Constrained Delaunay Triangulation 37

v

Contents

4.3.3. Technical Triangulation Limitations 39
4.3.4. Skeleton Construction . 40
4.3.5. Possibilities for Error Minimization and Stabilization 43

4.4. Euclidean Distance Map . 45
4.5. Summary and Results . 46

5. Results 47
5.1. Summary . 47
5.2. Outlook . 48

A. Module: tile_functions 51

B. Module: filters 54

C. Module: triangulation_functions 58

vi

1. Introduction

1.1. Motivation and Overview

When looking at biological systems, networks are omnipresent. The blood vessels which
supply animal and human bodies with nutrients and oxygen, the vascular networks in
plants or neuronal networks responsible for the transport of information - networks are
the backbone of life. Understanding the topology, geometry and formation of these net-
works is a main goal of research in biological physics.
The information that can be obtained by understanding biological networks is diverse and
ranges from the search for the most efficient way of supplying a system with nutrients to
the properties of these networks when exposed to extreme circumstances or inflicted with
defects. Understanding how a plant can keep alive a leaf even with a deep cut dividing
parts of that leaf can have significant impact on the way we build our transportation
and information networks. This results in making them more efficient and more resistant
against disturbances.
This work focuses on the networks present in leaves and their characteristics. The goal
is to model these networks as accurately as possible to allow analysis of their reaction to
defects and dependence on various parameters. To reach that goal, network models need
to be supplied with data from natural leaves. Vein networks of leaves can be digitized by
scanning the leaf the network belongs to.
Before the leaf is scanned, it is prepared to improve the visibility of its vein network.
One way of preparing the leaf is clearing it by submerging it into several chemicals until
the tissue material between the veins is transparent. The veins will also become trans-
parent after such processing, so the samples are treated (commonly with acid fuchsin) to
stain the veins. Clearing and staining the leaves greatly improves the contrast between
vein and no-vein regions but most scans still have defects and shadows from non-uniform
staining on them. This further complicates recognition of the network. An alternative
way of preprocessing leaves is the removal of all tissue material that is not part of the vein
network, thus skeletonizing the leaf. On scans of skeletonized leaves, the veins are clearly

1

visible and there are no issues with non-uniform stains, but the highest branching orders
are destroyed in the process. When the surrounding tissue is removed, the locations of
the different network branches are no longer preserved and the appearance of the network
is distorted.
As we want to simulate networks as lifelike as possible, we use scans of cleared leaves
to ensure the integrity of the vein network. The samples were provided to us by the
New York Botanical gardens and our collaborator Douglas Daly. Thus the need arises
to correct the scans for non-uniform staining and improve the network’s visibility before
information about its properties can be extracted.
The databases of cleared leaves that already exist, for example [15], are very large and
contain thousands of scans. Therefore a tool for data extraction from all those scans needs
to be able to operate in a highly automated way, independent of user input with regards
to network extraction parameters, such as thesholding values.
The aim of this work is to create a tool that is able to handle scans with very high res-
olutions as well as large amounts of data, improve the scans in a way that the network
becomes clearly visible and extract the information that represents the network. A frame-
work that offers the possibility for automated processing of images and creation of data
fit for modeling can be adopted to a variety of fields that obtain their experimental data
from images.
The written part of this thesis will serve as documentation for the framework so that new
users or developers are able to become quickly acquainted with image processing and the
algorithms used.

1.2. State of Research

Attempts to extract data from images of biological networks already have been made with
various aims concerning usability, quality, scale of data and speed.
A graphical user interface (GUI) for enhancement and processing of images of leaves [7]
does already exist, but its possibilities are rather limited where automated processing of
large amounts of scans and images with a very high resolution is concerned. A commonly
encountered technique for dealing with processing issues concerning connectivity of veins
near the main vein or high branching orders is simply discarding those regions (as has
been done in the approaches described in [3] and [2]). This is not the path we follow
for this framework as our interest lies especially in the leaves as whole systems with high
branching orders where conduction of water and nutrients involves multiple scales. The

2

approach outlined in [6] uses skeletonized leaves which is not viable for our purposes as
explained above.
After due consideration of the existing approaches and their drawbacks, it was decided to
create a new framework to improve on the weaknesses of the already available tools and
to have an adaptable and GPL-licensed framework at hand.

1.3. Framework Requirements

In the following the main considerations for the development of a framework able to
extract network data from digital images will be outlined.

Quality

The first and most important goal is the extraction of data with high quality. During
the enhancement and processing steps, we will try to preserve as much data from as high
branching orders as possible. When encountering difficulties with network recognition,
we will not discard small details; and to get information about even the highest orders of
branches, digital image enhancement methods will be used.

Automation

We want to be able to extract the network data from whole libraries of cleared leaf
scans which consist of thousands of images. Therefore, the framework needs to be as
independent from user input at the processing time as possible. Methods developed for
the framework have to be applicable to a wide range of images, may they be small or
large, bright or dark, with high or low contrast.

Efficiency

As the images themselves have a high resolution and therefore their data files are very
large, and the amount of images that will be processed is very high, time efficiency is
an issue. Quality should not be sacrificed for efficiency, but for the computationally
demanding parts of the algorithm, ways to improve performance such as parallelizing or
outsourcing of calculations to lower level programming languages are actively searched
for.

3

Usability

For the selection of the language the framework is written in, platform independence as
well as hardware independence and availability of public licenses have to be ensured. The
framework is intended to be a solid foundation for image processing and data extraction
and it is very important that it is expandable and adaptable to other problems and ques-
tions. This is not the case for software written in licensed languages such as MATLAB,
because to use and expand such a tool, for every machine it is installed on a separate
license has to be bought. As this is not feasible in most cases, Python is the language of
choice. To make the framework adaptable to different hardware environments (especially
concerning the random access memory the individual computer has at its disposal), op-
tions to dynamically adapt the memory consumption are needed. The target hardware
is commonly used desktop computers and the framework is designed with their limited
CPU and RAM capacity in mind. All used languages and libraries conform to the GNU
General Public License.

1.4. Network Modeling
In the following I will outline one approach to network modeling using the example of the
phloem network in plants to identify the data input needed to model real plants.
The phloem network in plants transports sugar away from its production sites in the
leaves. We model the network as an assembly of tubes which transport that sugar, solved
in water. A point where two different tubes connect is called a node. The water volume
current Qij through a tube from node i to node j is assumed to be laminar (i.e. the water
flows in parallel layers). Under this assumption, in a network with n nodes, the water
flow can be described by a system of n2 Hagen-Poiseuille equations

Qij = Cij

`ij

· (pj − pi) ,

where Cij ∝ r4 is the pipe’s conductivity, r the pipe’s radius, `ij the pipe’s length and pj

the hydrostatic pressure at node j.
This already identifies the three types of information we need to model a network:

• The topology of the network, i.e. which node is connected to which other nodes.

• The geometry of the network, i.e. the length of the tubes (or equivalently the
coordinates of the nodes).

• The conductivity of the tubes which is identified with their width in phloem networks.

4

15

3 2

4

6

Figure 1.1.: Network with 6
nodes.

This is the information needed to model the network
itself. To model transport in the network, we can then
designate certain nodes as flow sources (production sites)
and sinks, leading to values for the pressures pi.
A network is represented by a graph consisting of nodes
and edges (i.e. connections between nodes). The topol-
ogy of a graph often is represented by its adjacency ma-
trix. The adjacency matrix of a network with n nodes is
a n× n matrix where the diagonal entry aii is the num-
ber of edges from the node to itself (which is usually zero
for phloem networks) and the non-diagonal entry aij is
the number of edges from node i to node j. For phloem networks, each node is usually
connected to another node by a maximum of one edge, therefore the adjacency matrix for
such a network will be a binary connection matrix.
The connection matrix A of the small network shown in figure 1.1 is:

A =



− 1 2 3 4 5 6
1 0 1 0 0 0 0
2 1 0 1 0 1 0
3 0 1 0 1 0 0
4 0 0 1 0 1 1
5 0 1 0 1 0 1
6 0 0 0 1 1 1


The conductivities of the tubes can be included in the connection matrix, thus creating a
weighted connection matrix where the entry aij is the conductivity between nodes i and
j. A conductivity of zero signifies that nodes i and j are not connected.
The geometry of the network can be described by the distance matrix where the entry aij

is the distance between nodes i and j. Therefore, if the weighted connection matrix and
the distance matrix of a network are known, it can be described with the model outlined
above.
To create those two matrices from an image of the network, we need to identify the parts
of the image that belong to the network and then recognize whether a part of the network
is node or edge. This, and the handling of big data sets consisting of very large images
are the tasks of the framework.

5

1.5. Framework Structure and Design
The structure of the framework can be divided into three main parts: image handling,
image enhancement and binary processing. The framework therefore is organized in three
Python modules that provide functions and custom classes for the tasks the framework
has to fulfill. Also included in the framework several scripts that combine the methods
provided in the modules to efficiently handle large images, digitally enhance them, vec-
torize the features present in the images and finally extract the network data.
The course of this thesis will follow the outline of the framework’s design, describing
theoretical background as well as actual implementation. The description will follow the
order naturally given by the way an image passes through the framework, from the raw
scan at the beginning to the data extraction at the end.
It has to be emphasized that the result of this work is the framework itself and not the
data it will eventually produce. As this thesis is a software project, a lot of time was
spent on quality assurance and documentation. In the appendix, a complete documen-
tation of the three modules (tile_functions (appendix A), filters (appendix B) and
triangulation_functions (appendix C)) representing the implementation of each of the
three main parts of the framework can be found.
The main body of the thesis exceeds the standard length of 40 pages. This is due to the
inclusion of many pictures. As this is a work about image processing, those pictures are
necessary to illustrate the operating principles of the methods introduced.

6

2. Image Handling

2.1. Language and Libraries
The language the framework is written in is Python. This language was chosen because
of its four main advantages which help fulfill the requirements stated in chapter 1.3:

• Scriptability, which supports high development activity.

• Extendability, especially with C and C++ , which helps improve efficiency when used
in parts of the framework which do computationally intensive work.

• Platform independence; the standard installation for the language is freely available
for all major platforms. This ensures portability and the possibility to modify and
adapt the framework.

• The Python Software Foundation (PSF) license is compatible with the GNU Public
License. Other languages such as MATLAB require expensive licenses that limit
portability.

Python’s standard library, although already extensive, is expanded by various third-party
libraries, called modules, most of them especially designed for scientific computing. The
most important ones used in this framework are:

• NumPy and SciPy [14] for array operations, linear algebra and access to the Python
Imaging Library (PIL)

• PyTables [1] for reading and writing image data

• OpenCV [4] for advanced image processing and computer vision algorithms

• PyGame [20] for visualization

• poly2tri [10] for triangulations

• Sphinx [5] for documentation

7

2.2. Digital Image Representation

A raster digital image is a two-dimensional ordered accumulation of discrete pixels - a
matrix. It is defined by its resolution, number of channels and depth. The number of
pixels per length is called the resolution of the image. The scans that are processed with
this framework have a resolution of 6400 dpi (dots per inch) which allows identification of
up to five orders of vein-branches (beginning with the main vein as 0th order). Figure 2.1
illustrates how much information an image with such a resolution holds by showing a
series of zoomed in details of a raw scan, each subsequent detail enlarged by a factor of
four. The image quality is ultimately only limited by the optical resolution of the scanner.

Figure 2.1.: Successively zoomed in details of a leaf scan.

A grayscale image has one single channel in which information is stored. A color image
usually has three channels.
The range of different values each pixel can hold is called depth of the image. During the
processing within our framework, three different types of images will be used:

• Color images hold visible color information. The scans natively are color images
and are converted to grayscale in the first step of the processing. The scans have a
depth of 24 bits which corresponds to 28 = 256 values per pixel for each of the three
color channels.

• Grayscale images only hold the brightness information of the image, this requires
one single channel which has a depth of 8 bits per pixel in the images we will process
with the framework.

8

• Binary images hold information about the affiliation of each pixel to either fore-
ground or background of features present in the image. Binary images therefore
consist of only zeros and ones (one bit) stored in one single channel.

For the internal representation of image data NumPy’s data type ndarray is used which
can store an n-dimensional array containing any commonly used number format and
supports a wide range of array and linear algebra operations.

2.3. Dealing with Image Size

Processing an image sometimes involves copying it multiple times and holding all copies in
the RAM of the computer. As the images for which this framework is designed typically
have a size of up to 3 gigabytes, simply duplicating the image will almost inevitably lead
to reading and writing image data from and to the hard drive because on most machines,
the available RAM is not large enough. This dramatically slows down processing speed
and has to be avoided under all circumstances.
As filter-specific dependencies between pixels are, if existent, only local, we can divide
the image into different subregions, which will be called tiles; the tiles then are processed
independently. The parts of the image which are not currently processed are stored on
the hard drive and only loaded when needed, to keep RAM-consumption at a minimum.
All routines dealing with efficient tiling, loading and storing of images as well as sup-
plying a socket for the insertion of a filter (see section 3) are gathered in the module
tile_functions.

2.3.1. Image Tiling

When the loading and storing mechanism only needs to supply data for a filter performing
point operations (see section 3.1), the image can simply be “cut” into smaller pieces which
can be loaded one by one. The task gets more challenging when dealing with neighborhood
operations (see section 3.2). When a pixel situated at a tile boundary is processed and not
all neighboring pixels are supplied, the result of the filtering will be distorted. Therefore we
also need to supply the overlap between the different tiles to be able to process boundary
pixels correctly.
For a filter that requires an overlap of width d, when the tiling mechanism loads the
first quadratic tile with edge length a, it can only process the region which has at least
distance d to the tile’s boundary. A slice of width 2 · d is stored for the right and lower

9

boundary of the tile to be able to process the currently left out regions later on (as can
be seen in figure 2.2). The processing starts at the upper left corner of the image and
iterates through the image from left to right and top to bottom.
The tiling mechanism combines every tile loaded after the first one with one or two slices
from the memory (one if the tile is touching a boundary of the image, two otherwise)
containing the overlap from previously processed tiles.
When not touching any boundaries, the processible region is quadratic with edge length
a but is shifted from the newly loaded tile by d (as can be seen in figure 2.3).
To be able to also process the pixels at the outermost boundaries of the image without
too much error, the image is padded with a frame of additional pixels of width d. The
padding can either consist of the addition of pixels with a constant value, a reflection
of the pixels inside the original image or a linear interpolation from the boundary pixels
to a constant value. The method A.7 tile_functions.NewBoundaries() handles the
padding functionality and at the same time also ensures that the image has dimensions
fitting to a discrete number of square tiles.

currently loaded

currently processible

overlap to pass

loaded next

processible next

original image

padding

processing
direction

a

d

Figure 2.2.: Start of the image processing, beginning at the first tile.

2.3.2. Tiling Implementation

The core of the image tiling implementation is a so-called “Hierarchical Data Format” (in
our case HDF5 [11]). The data format supports storing of data in tree-like structures in
a file. We do this by creating one node for every line of tiles and then placing every tile
under the node as a leaf (the tree-like structure is illustrated in figure 2.4). This ensures
that only the data chunk that is currently needed is loaded into memory and makes nav-
igating between different tiles easy. Before we process an image, it is split into different

10

processible next

overlap to pass

previously saved
overlap

currently loaded

currently
processible

processed
a

d

Figure 2.3.: Ongoing iteration showing processing of a tile in the middle of the image.

tiles and stored on the hard drive. For processing, the framework reads every tile one at
a time, and stores the result of the processing in another HDF-file for further processing.
Dividing the image into chunks and creating an HDF-file can be done by calling the
method A.10 tile_functions.WriteChunkData(), whereas the method A.4
tile_functions.getImageFromH5() handles the recomposition of an image from an
HDF-file.

Figure 2.4.: Illustration of a hierarchical data structure for image storing.

11

3. Image Enhancement
As soon as we have read an image from the hard drive and fed it to the tiling mechanism,
the image enhancement itself can be started. The raw scans that we process often are not
perfect and parts of the network, especially regions near the main vein and high branching
orders, might not be accurately parsed by simple segmentation algorithms. Figures 3.1a
to 3.1d show several details of images which illustrate that the vein network often initially
is not separable from the background, or where high brightness differences may confuse
the processing algorithms. Therefore, before we can extract the network data without too
much error, the visibility of the vascular network needs to be increased. The framework
offers several filters and methods for image enhancement that can be chosen and combined
freely to adapt to a given set of images with characteristic contrast, brightness and defects.
All filters are gathered in the filters-module documented in B.
In the following I will describe those filters along with the method that worked best for
the example images that I processed during the course of the work on this thesis.

(a) Overall poor contrast. (b) Low contrast at main vein.

(c) Regional low contrast. (d) Brightness difference.

Figure 3.1.: Different occurrences of poor/uneven contrast in raw cleared leaf scans.

13

3.1. Point Operations

When we talk about filtering an image, we need to distinguish two classes of filtering
operations: point operations and neighborhood operations. Point operations are operations
on an image that only need information from one single pixel to calculate the resulting
pixel. The three main filters implemented in this framework that use point operations are
grayscale conversion, histogram equalization and the thresholding filter.

3.1.1. Grayscale Conversion

The scans we process in this framework are color-images. The first thing we need to do
before we apply further filters is a conversion from a color-image to a grayscale one. As
the color images use the RGB color space for color representation (information about
color spaces can be found for example in [19]43), this is done by adding one third of
the value of each color channel together to form the brightness information of each pixel.
Therefore the image now appears in 256 grayscale values. The color information of images
could at some point be used to do defect correction for defects that have characteristic
color information but at this stage in the framework’s development, color information is
neglected and the scans are immediately converted to grayscale.

(a) Detail of color-image. (b) Detail after grayscale conversion.

Figure 3.2.: Application of grayscale conversion.

14

3.1.2. Histogram Equalization

The histogram of an image holds information about how many pixels with each col-
or/brightness value are present in the image. When equalizing a histogram globally, it is
“stretched” so the whole range of possible values is used.
For each brightness level j in the image, the newly assigned value k is

k = 256
Ntotal

·
j∑

i=0

p(i) ,

where the sum counts the number of pixels in the image (by integrating over each bin of
the histogram) with brightness equal to or less than j, normalized by the total number
of pixels Ntotal. This enhances the contrast of the image and can make selection of a
global threshold for later thresholding easier. The effect of histogram equalization are
illustrated in figures 3.3a and 3.3b. As can be seen, subtle brightness differences that
are present in the original detail but are not visible to the naked eye are enhanced in
the processed detail. However, the overall brightness gradient between vein and no-vein
regions is unchanged and it still would be difficult to extract the vein network from this
image without disconnected veins or too much noise present.
Histogram equalization is a point operation but in a sense each pixel has a global depen-
dency on each other pixel as the histogram of an image that will be equalized needs to be
the histogram of the whole image to get a uniform result. As a consequence, we cannot
execute the creation of the histogram using the above described tiling mechanism whereas
the assignment of new values itself can be executed that way. The framework implements
histogram equalization in function B.2 filters.histeq().

(a) Detail with a brightness range of 131 values. (b) Brightness range stretched to 255 values.

Figure 3.3.: Application of global histogram equalization.

15

3.1.3. Thresholding

Thresholding is used to create a binary image from a grayscale one. When we threshold
an image, we select one global value - the threshold -, and map every pixel above it to 1
and every pixel below it to 0, thus distinguishing between foreground and background of
the image. For a given threshold T the thresholding function is

fT (x) =
{

0 if x < T

1 if x ≥ T .

By convention the value “0” (black) is used for foreground pixels and “1” (white) for the
background during image enhancement. When we perform operations on a binary image
(as described in section 4), this convention is often inverted. The framework implements
various thresholding functions which allow thresholding both with a single threshold and
within a range of values, as well as mapping to custom values, see for example func-
tion B.12 filters.threshold().
While performing the thresholding itself is easy, the selection of a proper threshold can be
challenging. When we manually look at an image, after a few iterations of trial and error
we are able to find a threshold that does not include too much noise in the foreground
selection as well as leaving most of the veins connected. To automate this, the framework
implements a method called “Otsu Thresholding” [16].
While searching for the best threshold T we minimize the intra-class variance, which is a
sum of the weighted variances σi of both the foreground and the background class:

σ2
intra(T) = ωB(T)σ2

B(T) + ωF (T)σ2
F (T) .

The same result can be achieved by maximizing the inter-class variance, using the class
means µi:

σ2
inter(T) = ωB(T)ωF (T) · [µB(T)− µF (T)]2

The weights and class-means are defined as

ωB =
T∑

i=0

p(i) , ωF = 1− ωB

µB =
(

T∑
i=0

p(i) · T
)
· 1
ωB

, µF =
(

255∑
i=T +1

p(i) · T
)
· 1
ωF

16

where p(i) is the number of pixels in the ith bin of the image’s histogram.
As connectedness of veins is very important to be able to later correctly extract the topol-
ogy of the network and the appearance of noise is acceptable as long as it is disconnected
from the network, a constant value c is added to the threshold found by Otsu’s method.
Trial and error yielded a value of c = 30 to be the best choice. This generally works well
on images that have a mean brightness in the middle of the spectrum and is implemented
in function B.8 filters.otsu_threshold(). On images that are either very light or
very dark, this can produce rather bad results. This is a problem that cannot really be
fixed computationally so the framework gives a warning if it encounters an image with
an overall brightness that lies at the outer boundaries of the spectrum and encourages
manual threshold selection.
Figures 3.4a to 3.4c show the results of the application of a thresholding filter with two
different thresholds applied to a grayscale detail of a raw scan without further processing.
It can be seen that in figure 3.4b only the main vein and one branching order is present
whereas the retention of higher branching orders is much better in figure 3.4c. Neverthe-
less, the result is far from perfect. This shows that the images need further processing
before the vein network can be extracted properly via thresholding at the end of the image
enhancement.

(a) Grayscale detail. (b) Threshold TO = 132. (c) Threshold TO + 30 = 162.

Figure 3.4.: Application of a thresholding filter with two different thresholds to a detail
of a grayscale image.

17

3.2. Neighborhood Operations
Neighborhood operations need information from the neighborhood of the pixel currently
processed, taking into account their values for the calculation of the new pixel’s value.
The majority of neighborhood operations can be described by the discrete convolution of
the matrix representing the image with a convolution kernel which we calculate by taking
the sum of the pixel values in the region of the kernel size, multiplied by weights specified
in the convolution kernel (as described in [19]209):

P ∗
x,y =

∑+m
i,j=−m ωi,j · Px+i,y+j∑+m

i,j=−m ωi,j

The size of the kernel determines the size of the neighborhood which will be taken into ac-
count, the values within the kernel determine the properties of the filter. In the following,
the filters implemented in the framework that make use of neighborhood operations and
their applications will be described. Those filters are a mixture between own implementa-
tions and improvements or adaptions of filters that already exist in libraries used for this
framework. Some filters are wrappers around filters from openCV which set options that
best fit the kind of images that are processed and handle the input and output formats.

3.2.1. Blurring

Applying a blurring (also called median) filter is a convolution with a kernel of the form

K = 1
Kwidth ·Kheight

·


1 1 1 · · · 1
1 1 1 · · · 1
...
1 1 1 · · · 1

 .

This averages over the values of all neighboring pixels and results in an overall decrease of
sharpness, thus blurring the features. The amount of blurring done to the image can be
controlled by adjusting the size of the filter kernel. Also, kernel shapes that approximate
a circular neighborhood around the processed pixel yield more “natural” results.
There are three functions for blurring filters in the framework:

• Function B.5 filters.median_dynamic()

• Function B.6 filters.nan_median()

• Function B.7 filters.openCV_median()

18

The dynamic filter supports creation and use of kernels with circular shapes, whereas the
nan_median filter supports the usage of NaN values in the image which specify pixels to
be ignored during the processing The openCV implementation is generally very fast.
At first glance, one might think that blurring is of limited use for the improvement of
contrast and sharpness of the image but this is not the case. Blurring an image with a
kernel-size smaller than the smallest features present in the image (in this case the highest
branching order) before applying other filters helps in reducing the amount of unwanted
noise. The blurring filter also is an essential part of the technique called “Unsharp Mask-
ing” [19]288-290 which is described in section 3.3.2. An application of the blurring filter
is shown in figures 3.5a to 3.5c.

(a) Grayscale detail. (b) Blurring, kernel size 11. (c) Blurring, kernel size 31.

Figure 3.5.: Application of a blurring filter with two different kernel sizes.

3.2.2. Directional Derivatives

A directional derivative filter approximates the directional derivative of the brightness
B [19]296. The filter kernels for the horizontal (x) and vertical (y) direction look as
follows:

∂B

∂x
corresponds to a convolution with

+1 0 −1
+2 0 −2
+1 0 −1

 ,

∂B

∂y
corresponds to a convolution with

+1 +2 +1
0 0 0
−1 −2 −1

 .

19

In the above directional derivative filters, the original central pixel’s value does not enter
into the calculation at all. Instead the differences are formed between neighbors to the left
and right or top and bottom respectively. Therefore brightness changes in one direction
are emphasized whereas brightness changes in all other directions are suppressed. The
directional derivative filter is implemented in function B.3 filters.dir_deriv(). An
application of the Directional Derivative filters in x- and y-direction with the addition of
a medium gray of value 128 to also make negative values visible is shown in figures 3.6a
to 3.6c.

(a) Grayscale detail. (b) Derivative in x-direction. (c) Derivative in y-direction.

Figure 3.6.: Application of a directional derivative Filter in x- and y-direction.

3.2.3. Local Histogram Equalization

Local histogram equalization is the local counterpart of global histogram equalization
(described in section 3.1.2). When performing local histogram equalization, we compare
the value of each pixel in a specified neighborhood to the value of the pixel currently
processed. The new value is the number of values that are smaller than the processed
pixel’s value. This cuts down the range of possible values to the number of pixels in the
neighborhood but ensures global and brightness independent contrast enhancement. The
tradeoff is that this method also enhances noise with the same intensity as it enhances
contrast differences between vein and no-vein regions.
As can be seen in figure 3.7b, local histogram equalization works well to enhance visibility
of veins in regions with low contrast. The blind spot that can be seen in figure 3.7a
vanished after application of the filter. The appearance of noise in between the veins
as well as on the main vein can be observed in figure 3.7d. This can be counteracted
to some extent by blurring an image with a small blurring kernel before applying local

20

histogram equalization. The local histogram equalization filter itself can be accessed in
the framework via function B.4 filters.lochisteq().

(a) Detail of low contrast spot. (b) Local histogram equalization.

(c) Detail near the main vein. (d) Local histogram equalization.

Figure 3.7.: Application of local histogram equalization with an 11× 11 neighborhood.

21

3.3. Filter Combinations

The image enhancement process aims to create an image with as low overall contrast dif-
ference and as high local contrast difference between vein and no-vein regions as possible.
If we have achieved that, we can select a global threshold value and then create a binary
image via application of the thresholding filter which can be used for further processing.
The filters introduced in the chapters above, on their own, have very limited possibilities
to improve the visibility of veins. To counter the weaknesses of each specific filter and
further improve visibility, they need to be combined. Filters can be combined by using
them one after another as well as by adding or subtracting images from different process-
ing states to create an enhanced image.
Commonly, the first step in image enhancement is a blurring operation with a relatively
small kernel size (smaller than the smallest feature that has to be preserved) to smooth
out some of the local noise. Blurring will be applied first in each of the following filter
combinations.

3.3.1. Sobel Filter

The Sobel filter is based on the directional derivative filter (described in section 3.2.2)
and computes the magnitude M of the vector that represents the brightness change, as
described in [19]301:

M =

√(
∂B

∂x

)2

+
(
∂B

∂y

)2

A combination of blurring and apllication of the Sobel filter results in an image with
greatly emphasized edges and smoothed local details (noise) at the expense of the inner
parts of the veins. This goes so far as to keep only the boundaries of the veins when
using larger kernel sizes for the Sobel filter. The framework implements the Sobel filter
in function B.9 filters.sobel() which in turn uses the directional derivative filter.
The fact that only information about the boundaries of the veins is retained gives rise
to the problem of how to decide what is outside the vein and what is inside the vein,
a problem which is not trivial to solve. The resulting appearance of contour-like shapes
after application of the Sobel filter can be seen in figures 3.8a to 3.8d.

22

(a) Detail at the tip of the leaf. (b) Sobel filter application.

(c) Grayscale detail. (d) Sobel filter application.

Figure 3.8.: Application of blurring and Sobel filter with a kernel size of 7.

3.3.2. Unsharp Masking

Another common processing technique for sharpening edges in images is the unsharp
masking (USM). In order to sharpen the image, we first create a blurred (unsharp) version
of the image. With that we can create a mask by taking the absolute value of the difference
between the original and the blurred image and thresholding it (typically with a very small
threshold T because the difference will not be too large). The mask is a map filled with
Boolean values which are true where brightness changes in the original image happen and
false otherwise. We then create the sharpened image by subtracting the blurred image
from the original (optionally weighted with a constant value ω) and inserting those newly
created values into the original image wherever the mask holds a “true” value.
The unsharp masking process can be modified via the Gaussian standard deviation s of
the blurring filter (which is equivalent to the kernel size), the threshold T and the weight
ω. This offers a wide range of adjustability but also imposes the need to exhaustively
adjust each mask to a given image. Doing this in a mostly automated way proved to
be very difficult. Nevertheless the USM method including all parameters to adjust it is
implemented in function B.13 filters.unsharp_mask().
The process of unsharp masking as well as the results of two iterations with different

23

blurring filter sizes are shown in figures 3.9a to 3.9e. As can be seen, the USM with a
blurring filter with a standard deviation of s = 1 produces nearly no visible effect, whereas
the USM with a standard deviation of s = 3 emphasized steep brightness changes and
suppressed slower ones.

(a) Grayscale detail. (b) Mask created with a stan-
dard deviation of s = 1.

(c) USM filter with T = 3, ω = 2,
s = 1.

(d) Mask created with a stan-
dard deviation of s = 3.

(e) USM filter with T = 3, ω = 2,
s = 3.

Figure 3.9.: Illustration of the application of the unsharp mask filtering method.

3.3.3. Blurring and Local Histogram Equalization

The local histogram equalization introduced in section 3.2.3 combined with a blurring
filter of suitable size can be a very powerful tool to emphasize edges regardless of position
in the brightness spectrum and large variances in brightness and contrast.
To counteract the appearance of edges where there are none (e.g. within larger veins), we
can combine the processed image with the original one. Trial and error has shown that a
proportion of one third of the processed image to two thirds of the original to form the
resulting image works well in keeping a balance between noise and emphasized edges.
The results of the above described method are shown in figures 3.10a to 3.10c. As can be

24

seen, edges were emphasized in different regions of the leaf (tip, main vein, region with
former low contrast) and all connections between the veins are well preserved. A lot of
noise appeared in between the veins as well as on the main vein but the superposition
with the original image ensured that the brightness of the noise is not too different from
the surrounding regions to compromise correct thresholding.

(a) Detail at the leaf tip. (b) Detail near the main vein. (c) Former low contrast region.

Figure 3.10.: Examples processed with blurring (s = 5), local histogram equalization
(k = 11) and combination of processed and original image (1/3 to 2/3).

3.4. Summary

3.4.1. Comparison and Choice of Method

With the possibilities of digital image enhancement and availability of many different
filters and algorithms, countless different, promising ways to reach the goal of sharpen-
ing the edges of the vein network and emphasizing contrast are imaginable. As this is a
Bachelor’s thesis, I have focused on the methods introduced in section 3.3, utilizing the
tools introduced in sections 3.1 and 3.2, and proceeded to binary processing as soon as I
found a method that suited the needs of the framework.
While the Sobel filter emphasized edges very well and might have yielded some very good
results, it introduced the additional problem of refilling the interior of the veins. Unsharp
masking is a very versatile tool with many different possibilities to adapt and adjust to
a given data set and can yield results of high quality when enough time and thought ad-
justing the parameters are invested. The need for higher time investment and user input
conflicts with the requirement for the framework to be able to operate mostly automated,
therefore USM is not the method of choice to base binary processing upon.
The properties of local histogram equalization (LHE) fit best into the requirements for

25

the framework. The fact that local, disconnected noise (the appearance of which is one
of the major drawbacks of LHE) can be dealt with in binary processing as well as the
advantage of the method being very independent of the specific image it is used on led to
the decision of using this method as the basis for further processing.
One other major drawback of LHE which should be mentioned here is its time consump-
tion. Most of the methods mentioned above are adaptions from already existing, optimized
methods in libraries. As a method for LHE was not readily available in a form that would
fit our workflow, I had to develop it in its entirety. Despite my effort to optimize the code
for speed, the method consumes a sizeable portion of the total time needed to complete
the image processing from raw scan to extraction of raw data (around 30 min for a 1 GB
image).

3.4.2. Intermediate Results

To show a few intermediate results, I selected some scans of leaves belonging to plants
of the Burseraceae family which are representative of the plethora of scans in the cleared
leaf database, and processed them from the raw state to the binary image. Figure 3.11
shows the scan that is the source of most of the details shown in this thesis to illustrate
various concepts. Figure 3.12 (with its size of 1 GB) was one of the biggest images I had
at hand for testing. Figure 3.13 was chosen because it is a relatively dark scan with a
lot of poor contrast regions near the main vein. Finally figure 3.14 is a relatively bright
scan with very sharp contrast between vein and no-vein regions and therefore yielded very
appealing results.

26

(a) Original Scan: complete leaf. (b) Original Scan: detail.

(c) Binary image: complete leaf (d) Binary image: detail.

Figure 3.11.: Original and processed versions of a scan of Protium Grandifolium.

(a) Original Scan: complete leaf. (b) Original Scan: detail.

(c) Binary image: complete leaf. (d) Binary image: detail.

Figure 3.12.: Original and processed versions of a scan of Brosimum Guianensis.

27

(a) Original Scan: complete leaf. (b) Original Scan: detail.

(c) Binary image: complete leaf. (d) Binary image: detail.

Figure 3.13.: Original and processed versions of a scan of Protium Cubense.

(a) Original Scan: complete leaf. (b) Original Scan: detail.

(c) Binary image: complete leaf. (d) Binary image: detail.

Figure 3.14.: Original and processed versions of a scan of Protium Apiculatum.

28

4. Binary Processing: Skeletonization
and Distance Maps

After we have created a suitably enhanced image by application of the methods mentioned
in section 3 to the scan of the leaf, we create a binary image by application of the
thresholding filter (described in section 3.1.3) with a threshold calculated with Otsu’s
method. A binary image consists of only zeros and ones, representing foreground and
background of the image. Such an image, which needs only one bit for the storage of
information for every pixel, also consumes notably less memory. The binary versions
of the images that I processed during the development of the framework typically only
had 1/90 th of their original size, therefore making concerns about memory consumption
negligible for the following course of the processing.
It should be noted that in binary processing, the convention of which value represents the
foreground often is contrary to the convention used in previous chapters: white (value
“1”) is now used as foreground or feature and black (value “0”) represents the background.
The next step before the nodes and edges of the leaf’s network can be extracted is the
retrieval of the skeleton of the network.

4.1. Skeletonization
The skeleton of a feature is a one pixel thin line that has the same distance from all
corresponding boundary points and preserves the topology of the shape (i.e. points that
are connected in the original image are also connected in the skeleton - no additional loops
and endpoints appear) as well as its size. In figure 4.1 an illustration of the skeleton of
a vein-network-like shape can be seen. In image processing, skeletons usually are used to
save information about objects in an image in a more compressed way and make them
comparable. In our case we need the skeleton to identify the nodes and edges of the
network.

29

Figure 4.1.: Sketch of a skeleton.

We distinguish between two fundamentally different approaches for skeletonization: pixel-
wise thinning approaches and vectorization approaches that “construct” the skeleton of
the features. Pixel-wise thinning is the most general approach and can be applied to
any class of features that are represented in a binary image. Vectorization approaches by
design presuppose additional information about the shape of the features in an image (such
as ribbon-like shapes for vein networks on leaf-images) and vectorize them based on this
information. During the development of the framework I have tested both approaches and
will describe their operating principles and the results from application to binary images
of leaves in the following sections.

30

4.2. Skeletonization by Thinning

(a) Not redundant.

(b) Not redundant.

(c) Redundant.

(d) Not redundant.

(e) Redundant.

Figure 4.2.: 3× 3 neighborhood
examples.

To create the skeleton of a shape via pixel-wise
thinning, the algorithm traverses the image multi-
ple times and removes redundant pixels. To decide
whether a pixel is redundant, in each iteration it
compares the 3 × 3 neighborhood of the currently
processed pixel with the elements of a lookup table
containing all possible 28 = 256 binary 3× 3 neigh-
borhoods. A pixel is not redundant if it is necessary
for the connection of two other pixels or if it is an
endpoint. The pixel’s removal also must not change
the number of connected background or foreground
areas in the neighborhood.
It has to be noted that by convention connectedness
is defined differently for foreground and background.
Foreground is so-called eight-connected which means
that a foreground pixel is connected to another fore-
ground pixel if it is touching the other pixel either
at an edge or at a corner point. Background is four-
connected which means that background pixels are
only connected if they are touching at the edges.
Examples of possible 3 × 3 neighborhoods can be
seen in figures 4.2a to 4.2e. In every example, the
figure shows the currently processed pixel at the cen-
ter of the neighborhood, marked red. Figure 4.2a
shows an example of an endpoint, therefore the cen-
tral pixel is essential and will not be removed by the
thinning algorithm. In figure 4.2b the central pixel
connects the two pixels at the edges. Removal of the
central pixel would create two separate foreground
regions, therefore the central pixel is again essen-
tial. Figure 4.2c shows an example of a redundant
pixel. The central pixel is neither an endpoint nor
does its removal change the number of foreground
and background regions in the neighborhood. The

31

example also illustrates one of the major drawbacks of this method: depending on the
rest of the shape the central pixel is part of, during further processing its removal might
lead to the creation of additional end points, thus creating branches in regions that were
one single vein before the thinning.
Figure 4.2d shows an example where removal of the central pixel would not change the
number of foreground regions but increase the number of background regions by one, as
background pixels are only four-connected. Finally, figure 4.2e shows an example where
the central pixel is redundant and its removal will not cause the appearance of additional
endpoints either.

The thinning algorithm “melts” the features in the image layer by layer and needs as
many iterations over the whole image as the width of the widest feature in pixels. Thin-
ning is very prone to irregularities and small protrusions at the vein-boundaries.
The results of a skeletonization of network parts with a MATLAB implementation of
thinning are shown in figures 4.3a to 4.3d and figures 4.4a to 4.4d. It can be seen that
a lot of additional small branches appear - especially at the boundaries of larger veins -
and therefore the topology of the network is distorted.

(a) Binary detail. (b) Zoomed in detail.

(c) Skeleton detail. (d) Zoomed in detail.

Figure 4.3.: Skeletonization of a binary detail via thinning implemented in MATLAB.

32

(a) Binary detail. (b) Zoomed in detail.

(c) Skeleton detail. (d) Zoomed in detail.

Figure 4.4.: Skeletonization of a binary detail via thinning implemented in MATLAB.

Countering this without losing information of the highest branching orders proves very
challenging. Features can be “smoothed” to reduce the number of origins of surplus
branches. If we do not want to manually look at problematic regions, every “fix” for a
regional problem also affects the whole image and it is very difficult to find operations
that improve the image in a region without destroying information in other regions as
well.
Another way to get rid of surplus branches is the “pruning” of the network, i.e. cutting
off all branches with a length shorter than a given threshold. This naturally also affects
the small branches belonging to the highest branching orders, which will be lost in the
process. One would need to determine in an automated way whether a short branch
originates in a very large vein and therefore is an unwanted artifact or is situated in a
region of very delicate branches and actually belongs to the network. Such an operation,
though feasible, would be error prone and computationally cumbersome. In contrast, a
vectorization approach natively makes it possible to selectively remove branches according
to their neighborhood.
As the appearance of surplus branches could not be dealt with in a satisfactory way,
we decided to take a less general approach to the problem of skeletonization by using
the information that the features we are interested in are ribbon-like and implement a
skeletonization algorithm based on vectorization of the features.

33

4.3. Skeletonization based on Constrained Delaunay
Triangulation

The second class of approaches to the problem of skeletonization is the vectorization of a
shape and subsequent construction of the skeleton using information about the boundaries
of the shape by iterating only a few times or even only once over the whole image. As the
shape of the vein network consists of ribbon-like parts with many junctions and crossings
and of various widths, the approach proposed by Zou and Yan [12] is a good fit for our
data set.
For the construction of the skeleton, we first need the contours of the shape. On these
contours we can perform a Constrained Delaunay Triangulation (CDT) with the inclusion
of the contour segments as constraints. The result of the CDT-algorithm is a mesh of
triangles. By classifying those triangles into end triangles, normal triangles and junction
triangles, we can find the skeleton segments which approximate the exact skeleton. In
the following, I will describe a customized skeletonization algorithm based on a CDT: I
adapted the algorithm to the problem of the skeletonization of large vein networks, and
I will detail both its operating principles and implementational particulars.

4.3.1. Contour Extraction and Linearization

As a first step, we extract the contours of the shapes that are to be skeletonized. This can
be done in various ways and may already influence the resulting skeleton by a large degree.
The first and simplest approach is to extract every pixel that has at least one background
and one foreground pixel as a neighbor and build the contour with those pixels. This
results in a boundary that consists of a very large amount of pixels. As the triangulation
(described in section 4.3.2) triangulates every contour point, this leads to a very large
amount of triangles with extremely sharp angles, as one of their sides, by construction,
has a length of one pixel. This, in turn, slows down the triangulation significantly. Also,
if we select every pixel with one background and one foreground neighbor, this copies all
irregularities, small variations, curves and noise at the boundaries into the contour. The
result is a distorted skeleton that may even contain additional branches originating in
former noise-pixels. To prevent that, the contour has to be linearized before continuing to
work with it: we need to select dominant points representing the contour. The retrieval
of the contour, including several modes for dominant point detection is already available
via OpenCV’s function cv2.findContours(). OpenCV implements the contour retrieval
as suggested in [21]; the available contour approximation modes are:

34

• No approximation - all contour points are treated as dominant points and returned.

• Simple approximation - compresses horizontal, vertical and diagonal segments and
yields the endpoints of the segments as dominant points.

• The two flavors of the Teh-Chin Dominant Point Detection Algorithm (DPDA)
which differ by their curvature measure and further compress the contours, reducing
the number of dominant points.

The journal article [22] offers a thorough description of the DPDA as well as an up-
per boundary for the error between the original contour and the approximating polygon
formed by the dominant points. In the framework the default value for the DPDA is the
selection of the 1-curvature measure because it yields good compression results and is
the faster one of the two flavors of the algorithm. The framework’s function for contour
creation is function C.7 triangulation_functions.getContours() and it offers several
useful functions for the conversion of the list of contour coordinates into other formats
(functions C.10, C.11 and C.12).

Figure 4.5.: Linearization of a contour.

Figure 4.5 illustrates the principle of the selection of dominant points and approximation
of the original contour by a polygonal line. (The dominant points in the sketch do not
claim to satisfy the conditions of the DPDA.)
The result of the contour finding process is a hierarchical list of contours and sub-contours
with the outermost contour of the leaf at the top. The inner parts of the network are
formed by holes in the outermost contour. A plot of the outermost contour of a leaf as
well as a plot of the full hierarchy can be seen in figures 4.6a and 4.6b.
A contour technically is a list of points which form a polygonal line. The length of this

35

(a) Outermost contour of the leaf.

(b) Holes added to the longest contour.

Figure 4.6.: Illustration of the contour hierarchy of the vein network.

list (i.e. the number of contour points) is by trend proportional to the size of the contour,
thus shapes that appear larger in the image have a tendency to have longer contours.
During the course of the processing, we always accepted the appearance of disconnected
noise (small neighborhoods of connected pixels that are disconnected from the leaf vein
network) as a tradeoff for the advantages of local histogram equalization. This is because
at this stage of the processing, the contours belonging to noise can be removed by thresh-
olding the list of contours by length. This is possible as long as the noise-contour is not
connected to the network itself and therefore is represented by an additional entry in the
list of contours. As noise is usually smaller than network-forming holes, contours belong-
ing to noise will be the shortest in the list of contours. This not only applies to positive
noise (i.e. “isles” in the holes between the veins) but also to negative noise (i.e. holes in
the large veins). Nevertheless, we have to choose the length threshold for the contours
carefully because if the threshold is too high, thresholding will also remove the smallest
holes that form the highest branching orders. This results in the appearance of “blobs” at
the end of the vein network instead of small branches. The framework’s implementation of
contour thresholding is function C.8 triangulation_functions.thresholdContours().
The selection of a length threshold has not been automated yet. This could be done by
looking for a minimum in the length distribution among the contours with low length since

36

noise as well as the highest branching order each should have a characteristic length.
Figures 4.7a to 4.7c show an example of contour retrieval and removal of noise by thresh-
olding of the contour-length for a binary detail of an image. It should be noted that
in OpenCV’s implementation of the contour retrieval, the original image is changed and
the outermost pixels of the image (i.e. a one pixel thin rectangle around the image) are
substituted with boundary pixels. This explains the appearance of artificial boundary
lines at the edges of the example images.

(a) Binary detail. (b) All contours. (c) Thresholded contours.

Figure 4.7.: Contour retrieval and subsequent noise removal.

4.3.2. Constrained Delaunay Triangulation

After we have extracted the contours and thresholded them in such a way that only
contours belonging to the leaf are left, the resulting shape can be triangulated using a
Constrained Delaunay Triangulation. Triangulations and Constrained Delaunay Triangu-
lations are defined as follows:

• A triangulation is a subdivision of an n-dimensional geometric object into simplices.
(A simplex is an n-dimensional generalization of a polygon with n + 1 edges.) In
the two-dimensional case of images, it is a subdivision into triangles.

• A triangulation T (P) of a discrete set of points P ⊂ R2 is a subdivision of the
complex hull of the points into triangles. The triangles have to intersect either in a
common face (i.e. a side) or not at all and the set of all vertices of the triangles has
to coincide with P .

• A Delaunay Triangulation DT (P) of a set of points is a triangulation where no point
p ∈ P lies within the inside of any triangle’s circumcircle. Delaunay Triangulations

37

maximize the minimum angle of all angles of the triangles in DT (P). Therefore, an
optimal triangle in this sense is an equilateral one.

• A Constrained Delaunay Triangulation CDT (P) is a generalization of the Delaunay
Triangulation. In a CDT, required segments (such the line segments between the
contour points) can be forced into the triangulation. A CDT might contain edges
that do not satisfy the Delaunay condition and therefore itself often is not a Delaunay
Triangulation (CDT (P)) DT (P)).

Figure 4.8 illustrates the functionality of the CDT applied to a ribbon-like contour.

Figure 4.8.: Sketch of a Constrained Delaunay Triangulation.

For the actual execution of the CDT on the set of contour points of the network with
the edges between contour points as constraints, there were three different libraries for
Python available to me: MeshPy, poly2tri and Python Triangle. After looking into
all three of them, I chose poly2tri because it was the only library with some available
documentation and usage-examples to work with. The other two choices might perform
better, be more versatile or yield better results but since they were undocumented I did
not use them for the purpose of this thesis.
To perform the triangulation, we have to add the polygon representing the outermost con-
tour to a triangulation object and then add all smaller contours to the same triangulation
object as holes. Performing the triangulation yields a list of all triangles the triangulation
consists of. The triangulation function which yields the list of triangles is function C.9
triangulation_functions.getTriangulation().
Figure 4.9a shows a CDT of the contours from figure 4.7c. We can observe that the
disconnected shape in the lower half of the image is not part of the triangulation, which
is another safeguard against the transfer of disconnected components into the network
representation. In this case, the disconnected feature only is disconnected because the

38

detail of the image was chosen that way and is very likely connected to the network if a
larger detail is examined.
The additional boundaries at the detail’s edges somewhat distort the triangulation, but
the triangles filling the veins quickly “stabilize” and the principle of the triangulation can
be seen clearly.

(a) CDT of thresholded contours. (b) Triangulation at a junction.

Figure 4.9.: Constrained Delaunay Triangulation of a thresholded contour.

4.3.3. Technical Triangulation Limitations

As the triangulation library is written for triangulations over much shorter and better
behaved contours with a much smaller number of holes, several problems arose during the
application of the CDT to the contours of whole leaves.
Singular contour points (or “bottlenecks”) cause the poly2tri algorithm to crash. Bottle-
necks are points where both boundaries of the contour meet in a single pixel and afterward
split again and continue. The contour extraction and linearization algorithm does not pre-
vent the appearance of those points and bottlenecks can appear wherever in the original
binary image the shape is only connected by a single pixel. We can observe the formation
of such a bottleneck from a binary image in figure 4.10a.
We solve this problem by resizing the binary image by an odd factor ≥ 3 before the con-
tours are created. This simply triplicates (or more) the size of every pixel in the binary
image and does not create additional edges. Afterward the algorithm for contour cre-
ation is now able to trace around the formerly singular point and find two separate,

39

(a) Formation of singular points from a binary feature. (b) Solution by inflating the
image.

Figure 4.10.: Feature in a binary image that is only connected by one single pixel and
resulting contour with singular point. “Bloating” the feature solves the
problem.

non-intersecting contour courses. “Inflating” the image by a factor of three also triples
its size but even in the worst case of a 3 GB image the size of the inflated binary image
is still far below a size that threatens to exceed a usual RAM.
Another potential problem is the appearance of collinear points during the triangulation.
Collinear points are points that lie on a straight line between two other points. As the tri-
angulation algorithm does not create new points, those points must already be contained
in the contours fed to it. However, the DPDA algorithm should inherently eliminate all
those points and thorough checks of the triangulated point sets that caused crashes did
not reveal any collinearities in the contours. This leads to the assumption that crashes of
the triangulation algorithm due to collinear points might originate in a bug in the library
itself which I was not able to fix in the given time.
As a consequence, the framework can only process sub-regions of whole leaves so far.
Nevertheless the results gained by processing details of images show that in principle,
the triangulation does work well for these kinds of shapes when the contour points are
selected properly.

4.3.4. Skeleton Construction

After we have created a contour and a CDT of the network shape and therefore vectorized
it, the last and final step is the construction of the skeleton based on the triangles contained
in the triangulation.
As suggested in [13], we divide the edges forming the triangles into two classes: an edge

40

is called external edges if it is a contour segment and internal edge otherwise. This leads
to a distinction between four species of triangles that form the triangulation from which
the skeleton will be constructed:

• An end triangle (ET) is a triangle that has one internal edge.

• A normal triangle (NT) is a triangle that has two internal edges.

• A junction triangle (JT) is a triangle that has three internal edges.

• An isolated triangle (IT) is a triangle that has three external edges.

ITs do not appear in the triangulation as only connected components of the network are
triangulated. Figure 4.9b illustrates the appearance of a junction triangle in the previously
shown triangulation.
The skeleton segments of each of the triangle species are formed as follows:

• ET: a straight line from the centroid of the triangle to the midpoint of the internal
edge.

• NT: a straight line that connects the midpoints of the internal edges.

• JT: three straight lines that connect the centroid of the triangle with each of the
midpoints of its edges.

Figure 4.11.: Different triangle species and their skeleton segments.

41

Figure 4.12.: Construction of the approximation of the exact skeleton using the midpoints
of internal edges.

The skeleton segments of all triangles together form the skeleton of the network. Fig-
ure 4.11 shows the three different triangle species and their skeleton segments and fig-
ure 4.12 shows the approximation of the exact skeleton by the skeleton segments of several
NTs.
Figures 4.13a to 4.13l demonstrate the triangle classification based on the CDT as well as
the extraction of the skeleton segments. At this point, all information about the position
of the nodes and edges and the connections between the nodes is present in the list of
triangles and the list of contour segments. The last thing left to do is to gather this
information and compile it into suitable data formats.
For this purpose, the module triangulation_functions introduces several custom classes
for the handling of points, segments and triangles:

• The point class C.1 triangulation_functions.point

• The segment class C.2 triangulation_functions.segment

• The ET class C.4 triangulation_functions.end_triangle

• The NT class C.5 triangulation_functions.normal_triangle

• The JT class C.6 triangulation_functions.junction_triangle

The characteristic of the three triangle classes is that each triangle knows its skele-
ton segment, which reduces the problem of skeleton segment extraction to a classifi-
cation of the triangles in the triangulation to the three triangle classes. We do this
by comparing the edges of the triangles with the contour segments. Function C.13
triangulation_functions.triangle_classify() handles the classification process and
function C.14 triangulation_functions.extract_skeleton() extracts the skeleton

42

segments from all triangles and adds them to a global list of skeleton segments. The clas-
sified triangles also offer the possibility to extract all nodes and/or all endpoints present
in the network simply by looking at the centroids of the triangles in the corresponding
class.
The (skeleton) segments export a segment.connects() method which makes it easier to
determine whether two segments share a common point and therefore trace the skeleton
from node to node.
It should be noted that the pixels in the image are discrete but calculating the centroids
of triangles and midpoints of edges will produce non-integer values in many cases. To
prevent that a point that belongs to two skeleton segments is not equal in both segments
and therefore ensure connection of the segments, rounding of the non-integer values to
the nearest integer is done right after the calculation of the point.

4.3.5. Possibilities for Error Minimization and Stabilization

As we can see in figures 4.13d to 4.13f and 4.13j to 4.13l, the triangulation and therefore
the classification of the triangles is largely dependent on the selection of contour points.
We can observe (e.g. figure 4.13h), that the triangles in the middle of the veins are
“padded” with tiny triangles at the vein’s boundaries. The triangulation produces those
triangles because the “bloating” of the image (as described in section 4.3.3) somewhat
fools the DPDA algorithm and tricks it into selecting more contour points than needed.
Normally, the triangulation should mostly consist of NTs but the padding results in a lot
of ETs (figure 4.13j) at vein boundaries. In turn a lot of JTs (figure 4.13l) appear in the
middle of veins. This leads to the conclusion that in concept, the vectorization of the vein
network via CDT and triangle classification does work but needs refinement before the
resulting skeletons represent the real topology of the network without too much error. As
bloating of the image seems to be the cause for imprecise skeleton creation later on, we
have to think of a better solution for singular points in contours.
Apart from that, future improvements will have three main targets: the smoothing of the
vein’s boundaries, the stabilization of the triangles at critical points, and error minimiza-
tion (i.e. the overall reduction of the deviation from the true skeleton).
To smooth the vein’s boundaries, the previously mentioned “padding” ETs have to be
removed or merged into the triangles that lie in the middle of the vein. An approach to
detect and remove these so-called “protrusions” can be found in [13]. In this approach,
a protrusion (when viewed as a ribbon-like shape) is considered perceptually insignificant
if its length is smaller than its width which is by trend the case for irregularities of the
vein-boundaries.

43

(a) Contour. (b) Complete CDT. (c) Skeleton Segments.

(d) End Triangles. (e) Normal Triangles. (f) Junction Triangles.

(g) Contour. (h) Complete CDT. (i) Skeleton Segments.

(j) End Triangles. (k) Normal Triangles. (l) Junction Triangles.

Figure 4.13.: Triangle classification and skeleton extraction based on a CDT.

44

The course of the skeleton near and at junctions can differ by a large degree from the
true skeleton if the junction is represented by more than one junction triangle. Clarifying
the course of the skeleton in this region is called stabilization of the triangles and is done
by merging them into junction polygons rather than triangles [13]. [18] also proposes the
refinement of the triangulation near junctions and sharp bends by insertion of additional
contour points at strategic places.
The overall deviation of the skeleton from the true skeleton can be reduced by controlling
the “skeletonization error” as described in [17]. This approach tries to adapt the number
of contour points chosen in a specific region dynamically to the curvature of the contour.

4.4. Euclidean Distance Map

Figure 4.14.: Distance Map of an image detail.

The only information that we
need to fully describe the network
that we have not been extracted
yet is information about the con-
ductivity of the veins which cor-
responds to the thickness of the
edges that connect the nodes.
The approach to retrieve this in-
formation is to create a so-called
Distance Map from the binary im-
age and superimpose it with the
skeleton. Then every pixel in the
skeleton has a corresponding con-
ductivity value. Pixels not be-
longing to the skeleton are dis-
carded.
A Distance Map of a binary image holds information about the distance each foreground
pixel has to the nearest background pixel. As the image is discrete, such a map can only
be an approximation of the actual Euclidean distance. As a first approach for the creation
of the Distance Map, we search originating at each foreground pixel, for the nearest back-
ground pixel by “walking” in each of the four directions (up, down, left, right) until we
encounter a background pixel. We then save the shortest number of steps that is needed
to reach a background pixel in a matrix at the coordinates of the origin-pixel. The matrix

45

in turn can be represented by an image. To refine this approach we can increase the num-
ber of directions which are searched for the nearest background pixel until the searched
regions with each additional step approximate concentric circles around the origin pixel.
To reduce the error that results from the discrete size of “one-pixel-steps”, diagonal steps
are counted as a length of

√
2 pixels.

We create the Distance Map by utilizing openCV’s function cv2.distanceTransform()
(the algorithm used is described in [9] and [8]) which supports various modes
for distance types and search area shapes. The framework’s function C.15
triangulation_functions.cv_distanceMap() handles input and output formats and
sets default values for the parameters.
The Distance Map is the final result of the framework regarding conductivity of the veins
because it allows for easy extraction of the vein thickness at any given point of the skele-
ton: the thickness/conductivity C of the vein at pixel pi,j is

C = 2 · di,j

where di,j is the distance to the nearest background pixel found in the Distance Map.

4.5. Summary and Results

Skeletonizing the vein network using a pixel-wise thinning algorithm yielded non-satis-
factory results. Therefore I chose a vectorization approach which makes use of the gen-
erally ribbon-like structure of vascular networks. The skeletonization of the vein network
is done via an approach based on a constrained Delaunay Triangulation of the contours
forming the network-features. The triangulation yet needs to be refined to yield qualita-
tively fully satisfying results but in concept the approach works for the skeletonization of
a vein-network.
The first result of the binary processing of the image is the list of edges of the network
which we extract from the classified triangles the CDT yielded. Based on this list, a con-
nection matrix and a distance matrix can be constructed by tracing connected skeleton
segments.
The Distance Map of the binary image holds information about the distance from each
foreground pixel to the nearest background pixel. We create the Distance Map by utiliz-
ing OpenCV’s cv2.distTransform() function with parameters fitting the problem set.
The Distance Map is the second result of binary processing which, superimposed with
the previously created skeleton, yields information about the thickness of the veins and
therefore makes the construction of a weighted connection matrix possible.

46

5. Results

5.1. Summary

In this thesis, I developed an adaptable and portable framework for the processing of
images containing vascular networks. The data we want to extract from the vascular net-
works present on the images includes the network’s topology, geometry and conductivity
(edge thickness). The tools provided by the framework span the whole range from efficient
loading and saving of images, to enhancing those images in various ways, vectorization of
the features on the image and extraction of network data.
The goal was to allow as little quality losses during the processing as possible and em-
phasize possible automation of the methods used. As the images processed are very large
and the number of images to be processed is very high, time efficiency also was a factor.
Last but not least the framework was developed to be portable and open for adaptations
and further development. In the following I will briefly summarize the three main parts
of the framework and to what extend they comply with the stated requirements.
The first part of the work on the framework was committed to the handling of large im-
ages. I was able to develop a stable and versatile tiling mechanism which makes it possible
to process images of a size that would otherwise exceed the computer’s RAM capacity.
The tiling mechanism divides the image into tiles which are loaded from the hard drive
independently and handles the overlap between those tiles so no artifacts are generated.
The images are saved in a hierarchical data format which makes hard drive access very
efficient. The tiling mechanism in this sense fully met the goals set for the framework’s
development.
Subsequent to the tiling of the image, in the second part of the framework I developed
and implemented several filters and filter combinations to enhance the images. During
the work on the image enhancement I encountered a lot of possibilities and different ap-
proaches to image enhancement and had to focus on one approach due to the limited
time of the thesis. The image enhancement method chosen reduces noise in the image
by blurring it and then performs a local histogram equalization to minimize the overall

47

contrast of the image and maximize the local contrast between vein and no-vein regions.
After the image is filtered in this way, it is combined with the original to counter some of
the tradeoffs of local histogram equalization. This approach yields results of high quality
when applied to images differing in brightness and/or contrast, but its execution time is
rather long. A rough value for the processing time of a 1 GB image from the raw state
to its binary version is 30 minutes. Processing time as well as variety of available filters
in the framework need further improvement. Quality of the processed images and the
possibility to automate the processing due to the robustness of the used filters fulfill the
requirements we set for the framework.
The third and last part of work on the framework was committed to skeletonization and
subsequent data extraction from the image. The approach of pixel-wise thinning to cre-
ate a skeleton of the network did not work out well, therefore I chose an approach of
vectorization based on Constrained Delaunay Triangulation. The available triangulation
libraries do not work for images of the size we are considering, so for the purpose of this
thesis I demonstrated the method using only image details. The skeletons produced by
the vectorization algorithm demonstrate current pitfalls of the method but serve as proof
of principle for the CDT method and as basis for further development.

5.2. Outlook

During the course of the thesis I already mentioned several possibilities for improvements
and further development of the tools present in the framework. In the following I will give
an outlook on the most important and promising targets for further development catego-
rized into efficiency improvements, quality improvements, solutions for current problems
and quality of life improvements.

Efficiency Improvements

Algorithms that work more efficiently shorten processing times and enable us to process
more images in a shorter time. Time efficiency can be improved in the following ways:

• In principle, image enhancement is completely parallelizable. To make parallelized
processing possible, a non-sequential variant of the tiling mechanism needs to be
implemented.

• Parts of the framework that are computationally intensive can be coded in C using
Python’s C-interface Cython to speed up their execution.

48

• To reduce processing times of image enhancement methods, instead of in the spatial
domain they can be performed in frequency space.

Quality Improvements

Better quality of the enhanced images lead to a better quality and less errors in the
extracted skeletons, which in turn lead to simulations that resemble naturally grown
networks more closely. Quality improvements can be made at various points in the frame-
work:

• The possibilities of image enhancement can be explored further and techniques that
promise to produce images with an even better quality can be implemented, for
example gradient based thresholding.

• So far, defects in the images such as holes and bends in the leaves, and stains
and artifacts from the scanning process have been ignored. The implementation of
heuristic methods to remove or reduce such defects may further improve the quality
of the image.

• At the moment images processed in this framework are immediately converted to
grayscale images. In future attempts to correct defects, color information can be
used to develop heuristics for this purpose.

Current Problems and Possible Solutions

The most severe problems the framework has in its current state lie in the vectorization
algorithm. To enable the skeletonization to work properly, we have to solve various
problems:

• The problems caused by triangulation of singular contour points. Solving this prob-
lem by inflating the image caused further problems with the triangulation so a
different solution has to be found.

• Triangulation library issues that prevent us from skeletonizing whole images.

• The output of a triangulation that does not correctly represent the topology of
the network by improving the contour point selection algorithm and stabilizing the
triangles in the triangulation.

49

Quality of Life Improvements

To facilitate the handling of the framework, quality of life improvements for the user can
be made:

• Development of more intuitive ways for users to interact with the framework, pos-
sibly even development of a GUI.

• Implementation of functions to display the extracted network data in a more ac-
cessible way, e.g. conversion of the currently present list of segments and Distance
Map to a weighted connection matrix and a distance matrix.

In the following months, the framework presented in this thesis will be expanded and
streamlined, as part of a larger project interfacing with major cleared leaf collections at
Yale and the Bronx Botanical Gardens.

50

A. Module: tile_functions

The tile_functions module contains a collection of functions to deal with large images in the form of
numpy arrays and openCV matrices. It contains methods to efficiently dump data on the hard drive and
read it again using the HDF-5 format. It also provides wrapper methods for filtering the images in which
filters from the filters module B can be plugged in.

tile_functions.ChunksizeOptimizer(image, max_chunk_size)
Tries to find the optimal size for the data chunks so the least expanding of image boundaries is
needed
Parameters:
image: ndarray array containing the image data
max_chunk_size: integer maximum allowed size of data chunks
Returns:
best_chunk_size: integer best chunk_size with the lowest rest on the edges of the image

tile_functions.FilterImage(image, chunk_size, data_path, filter, flag1)
Filters an image with a given filter. Does not return an image but creates an HDF5 file with the
filtered image instead.
Parameters:
image: ndarray array containing the image data in 8 bit grayscale
chunk_size: integer size of the chunks the data is divided into
data_path: string directory of the .h5 file containing the image data
filter: function filter from the filters module B
filter_arguments:list list of arguments for the filter

tile_functions.getImage(image_path)
Helper for opening an image and converting it to a numpy array filled with floats
Parameter:
image_path: string path to the file containing the image
Returns:
image: ndarray array containing the image data read from the file as a grayscale image

51

tile_functions.getImageFromH5(image_path, image_name)
Recomposes an image from data chunks in an .h5 file
Parameters:
image_path: string path to the file containing the image
image_name: string name of the file containing the image
Returns:
image: ndarray array containing the image data read from the file

tile_functions.getExtrema(image)
Wrapper for getting the maximum and minimum value of pixels in an image, using numpy’s amin()
and amax() functions
Parameter:
image: ndarray image containing the pixels which will be searched for extrema
Returns:
extrema: tuple tuple containing the minimum and maximum values of pixels

tile_functions.MakeFile(file_name, file_path)
Checks if given file at given path exists, deletes existing file and creates a new file with the given
name.
Parameters:
file_name: string name of the file
file_path: string path to the file

tile_functions.NewBoundaries(image, chunk_size)
Expands the image at the edges so the chunks fit in without any rest at the borders. numpy’s
arraypad method does all the work.
Parameters:
image: ndarray array containing the image data
chunk_size: integer size of the data chunks
Returns:
image: nparray expanded image

tile_functions.ResizeImage(image, scale_factor)
Wrapper for the openCV resize method.
Parameters:
image_name: string name of the image to be resized
cource_image_path: string path to the directory containing the source image
scale_factor: float factor by which the image will be resized, can be > 1.0 as well as between
0 and 1.0.
Returns:
thumbnail: ndarray array containing the data of the resized image

52

tile_functions.RGBtoGray(image)
Helper function for opening an image and converting it to a numpy array filled with floats
Parameter:
image_path: string path to the file containing the image
Returns:
image: ndarray array containing the image data read from the file

tile_functions.WriteChunkData(image, chunk_size, image_path)
Divides the array with the image data into square chunks and writes them into a tree-like structure
in an .h5 file
Parameters:
image: ndarray array containing the image data
chunk_size: integer size of the data chunks
image_path: string path to the image

53

B. Module: filters

The filters module introduces a basic filter-class which can be extended to create custom filters. It
already implements a few useful filters needed to perform the image processing in this project. Custom
filters can be imported by calling the script of choice with the filter’s name as argument.

filters.blur(chunk, filter_arguments)
Wrapper for openCV’s cv2.blur. Blurs an image using a kernel filled with ones.
(See http://docs.opencv.org/modules/imgproc/doc/filtering.html#cv2.blur.)
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list, has to consist of: overlap (integer)
Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap

filters.histeq(image)
Wrapper for openCV’s cv2.equalizeHist which creates the histogram of an image, equalizes it and
returns the equalized image. Wrapper only handles type conversion into uint8.
(See http://docs.opencv.org/modules/imgproc/doc/histograms.html#cv2.equalizeHist.)
Parameter:
image: ndarray image to be equalized
Returns:
image: ndarray resulting image
Notes:
Does NOT work within the tiling mechanism as first a histogram of the WHOLE image needs to
be created which gets distorted if only parts of the image are looked at.

filters.dir_deriv(chunk, filter_arguments)
Wrapper for openCV’s cv2.Sobel function,
(see http://docs.opencv.org/modules/imgproc/doc/filtering.html#cv2.Sobel.)
which selects either the x or y directional derivative and kernel size. For processing of one single
image pad image before using this function.
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list, has to consist of: kernel size which has to be 1,3,5 or 7 (integer),
direction ’x’ or ’y’ (string) (in this exact order)

54

http://docs.opencv.org/modules/imgproc/doc/filtering.html#cv2.blur
http://docs.opencv.org/modules/imgproc/doc/histograms.html#cv2.equalizeHist

Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap

filters.lochisteq(chunk, filter_arguments)
Local histogram equalization, blurring before using this function to get rid of local noise is highly
recommended.
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list has to consist of: overlap (integer)
Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap
Notes:
Computationally intensive, might take long!

filters.median_dynamic(chunk, filter_arguments)
Wrapper that uses the _median_footprint() function for creation of a footprint to feed into
scipy’s ndimage.median_filter().
(see: http://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.filters.median_filter.html)
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list has to consist of: overlap (integer)
Returns:
chunk: ndarray resulting chunk which is smaller as original chunk by overlap
Notes:
As for now, only circular footprint shapes are supported.

filters.nan_median(chunk, filter_arguments)
Median filter that ignores values of np.nan and calculates the median value only with the values
that are not np.nan.
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list has to consist of: overlap (integer)
Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap

55

http://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.filters.median_filter.html

filters.openCV_median(chunk, filter_arguments)
Wrapper for openCV’s cv2.medianBlur
(see:http://docs.opencv.org/modules/imgproc/doc/filtering.html#cv2.medianBlur)
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list has to consist of: overlap (integer)
Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap

filters.otsu_threshold(image)
Implementation of "Otsu Thresholding" which will calculate the threshold of the image that has
the least intra class variance.
Parameter:
image: ndarray image for which the threshold will be calculated, needs to be single-channel
and grayscale
Returns:
t: integer optimal threshold for the image

filters.sobel(chunk, filter_arguments)
Sobel filter implementation utilizing directional derivative filter.
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list, size of the directional derivative kernel which has to be 1,3,5 or 7
(integer)
Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap.

filters.thresh_range(chunk, filter_arguments)
Thresholding filter which supports an upper and lower thresholding value and sets all values bigger
than the lower threshold and smaller than the upper threshold to 255 and all other values to 0
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list, has to consist of: overlap (integer), lower threshold (integer), upper
threshold (float), (in this exact order)
Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap
Notes:
Convention change: zeros are now background and ones (255) foreground!

56

http://docs.opencv.org/modules/imgproc/doc/filtering.html#cv2.medianBlur

filters.thresh_value(chunk, filter_arguments)
Standard thresholding filter which sets all values below a given threshold to a given value and all
values equal or above the threshold to a second given value
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list, has to consist of: overlap (integer), threshold (integer), value1 (inte-
ger), value2 (integer) (in this exact order)
Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap

filters.threshold(chunk, filter_arguments)
Standard thresholding filter which sets all values below a specified threshold to 0 and all values
equal or above the threshold to 255
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list has to consist of: overlap (integer), threshold (float) (in this exact
order!)
Returns:
chunk: ndarray resulting chunk which is smaller than original chunk by overlap

filters.unsharp_mask(chunk, filter_arguments)
Implementation of unsharp masking. The unsharp mask is created by blurring the original image
and subtracting it from the original one.
Parameters:
chunk: ndarray currently processed tile
filter_arguments: list has to consist of: size of the blurring kernel (integer), σ of the gaus-
sian blur (integer), threshold for unsharp mask creation (integer), weight for the superposition of
original and masked image (float) (in this exact order)
Returns:
sharpened: ndarray resulting sharpened chunk which is smaller than original chunk by overlap

57

C. Module: triangulation_functions

The triangulation_functions module provides custom classes for the handling of points, segments
and triangles, along with methods to perform a triangulation, classify its triangles and extract skeleton
segments from each triangle.

triangulation_functions.point(x, y)
Simple custom point class.
Members:
x: integer x-coordinate
y: integer y-coordinate
Functions:
__eq__(point): True if coordinates of two points are equal, false otherwise
__ne__(point): inverse of __eq__(point)

triangulation_functions.segment(p1, p2)
Custom segment class.
Members:
p1: point
p2: point
midpoint: point midpoint between p1 and p2, rounded to the nearest integer
Functions:
__eq__(p1,p2): true if both points are equal
__ne__(p1,p2): inverse of __eq__(p1,p2)
connects(segment): returns True if the segments are not equal and share one point, False oth-
erwise
get_cp(segment): returns the connecting point between two segments or None if there is no con-
necting point

triangulation_functions.shape_triangle(p1, p2, p3)
Custom triangle class consisting of three points and three edges.
Members:
p1: point
p2: point
p3: point
s1: segment(p1,p2)

58

s2: segment(p2,p3)
s3: segment(p3,p1)

triangulation_functions.end_triangle(int_edge, ext_edge1, ext_edge2)
End triangle class consisting of one internal and two external edges.
Members:
int_edge: segment internal edge
ext_edge1: segment first external edge
ext_edge2: segment second external edge
p1: point
p2: point
p3: point
centroid: point centroid of the triangle, coordinates rounded to the neares integer
sks: segment skeleton segment from the centroid to the midpoint of the internal edge

triangulation_functions.normal_triangle(int_edge1, int_edge2, ext_edge)
Normal triangle class consisting of two internal and one external edges.
Members:
int_edge1: segment first internal edge
int_edge2:segment second internal edge
ext_edge: segment external edge
p1: point
p2: point
p3: point
sks: segment skeleton segment from the midpoint of the first internal edge to the midpoint of
the second internal edge

triangulation_functions.junction_triangle(int_edge1, int_edge2, int_edge3)
Junction triangle class consisting of three internal edges.
Members:
int_edge1: segment first internal edge
int_edge2: segment second internal edge
int_edge3: segment third internal edge
p1: point
p2: point
p3: point
sks1: segment skeleton segment from the centroid to the midpoint of the first internal edge
sks2: segment skeleton segment from the centroid to the midpoint of the second internal edge
sks3: segment skeleton segment from the centroid to the midpoint of the third internal edge

triangulation_functions.getContours(image)

59

Wrapper around openCV’s cv2.findContours() function.
(See: http://docs.opencv.org/modules/imgproc/doc/
structural_analysis_and_shape_descriptors.html#cv2.findContours.)
Sets suitable options and converts contours to a list of ndarrays.
Parameter:
image: ndarray input image
Returns:
contours: list list of contours

triangulation_functions.thresholdContours(contours, threshold)
Thresholds a given list of contours by length.
Parameters:
contours: list list of contours
threshold: integer length-threshold
Returns:
filtered_cont: list list of contours

triangulation_functions.getTriangulation(filtered_cont)
Creates a Constrained Delaunay Triangulation of a given list of contours using the Poly2Tri library.
Parameter:
filtered_cont: list list of contours
Returns:
triangles: list list of p2t.triangle

triangulation_functions.flatten_contours(contours)
Helper function for flattening contours consisting of nested ndarrays.
Parameter:
contours: list list of nested ndarrays
Returns:
flattened_contours: list list of flattened ndarrays

triangulation_functions.cont_to_points(contours)
Converts a list of contour point coordinates to a list of triangulation_function.points
Parameter:
contours: list list of contours consisting of coordinates
Returns:
new_contours: list list of contours consisting of points

triangulation_functions.cont_to_segment(contours)
Converts a list of contour point coordinates to a list of triangulation_function.segments
Parameter:

60

contours: list list of contour points
Returns:
new_contours: list list of contour segments

triangulation_functions.triangle_classify(triangles,contour_segments)
Classifies a given list of lists of p2t.triangles into end triangles, normal triangles and junction
triangles by comparing their segments to a given list of contour segments.
Parameters:
triangles: list list of p2t.triangles
contour_segments: list list of triangle_function.segments
Returns:
triangle_classes: list triangle_classes: list of lists of classified triangles consisting of (end_triangles,
normal_triangles, junction_triangles) (in exactly that order!)

triangulation_functions.extract_skeleton(triangle_classes)
Extracts the skeleton segments from a list of triangles depending on the triangle class.
Parameter:
triangle_classes: list list of triangle lists, consisting of one list respectively for end triangles,
normal triangles and junction triangles (in exactly that order!)
Returns:
skeleton: list list of skeleton segments

triangulation_functions.cv_distanceMap(image)
Wrapper for openCV’s DistTransform function.
(See http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html
#cv.DistTransform.)
which sets all options with values that fit the processing of leaves.
Parameter:
image: ndarray image for which the distance map will be created, has to be single channel
grayscale
Returns:
dst: ndarray distance map of the image with precisely calculated distances

61

Bibliography

[1] Francesc Alted, Ivan Vilata, et al. PyTables: Hierarchical datasets in Python, 2002–
2012. URL: http://www.pytables.org/.

[2] Hauser M. Baumgarten W. Detection, extraction, and analysis of the vein network of
the slime mould physarum polycephalum. Journal of Computational Interdisciplinary
Sciences, 2010.

[3] Hauser M. Baumgarten W. Computational algorithms for extraction and analysis of
two-dimensional transportation networks. Journal of Computational Interdisciplinary
Sciences, 2012.

[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[5] Georg Brandl. Spinx 1.1.3, oct 2012. URL: http://sphinx-doc.org/.

[6] Bohn S. et al. Constitutive property of the local organization of leaf venation net-
works. Physical Review E, Vol. 65, 2002.

[7] Price A. et al. Leaf extraction and analysis framework graphical user interface:
Segmenting and analyzing the structure of leaf veins and areoles. Plant Physiology,
2010.

[8] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Distance transforms of sampled
functions. Technical report, Cornell Computing and Information Science, 2004.

[9] Borgefors G. Distance transformations in digital images. Computer Vision, Graphics,
and Image Processing Vol. 34, 1986.

[10] Mason Green. poly2tri 0.3.3, may 2011. URL: http://code.google.com/p/
poly2tri/.

63

http://www.pytables.org/
http://sphinx-doc.org/
http://code.google.com/p/poly2tri/
http://code.google.com/p/poly2tri/

[11] The HDF Group. Hierarchical data format version 5, 2000-2010. URL: http://www.
hdfgroup.org/HDF5.

[12] Zou J. and Yan H. A new skeletonization algorithm based on constrained delaunay
triangulation. Fifth International Symposium on Signal Processing and its Applica-
tions,, 1999.

[13] Zou J. and Yan H. Skeletonization of ribbon-like shapes based on regularity and
singularity analyses. IEEE Transactions on Systems, Man, and Cybernetics, —Part
B: Cybernetics, Vol. 31, No. 3, 2001.

[14] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–2012. URL: http://www.scipy.org/.

[15] University of California Museum of Paleontology. Ucmp cleared leaf collection. URL:
www.ucmp.berkeley.edu/science/clearedleaf.php.

[16] Nobuyuki Otsu. A tlreshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics, Vol. SMC-9, No. 1, 1979.

[17] Morrison P. and Zou J. Skeletonization based on error reduction. Pattern Recognition
Vol. 39, 2006.

[18] Morrison P. and Zou J. Triangle refinement in a constrained delaunay triangulation
skeleton. Pattern Recognition Vol. 40, 2007.

[19] John C. Russ. Image Processing Handbook. CRC Press, Taylor & Francis Group,
2011.

[20] Pete Shinners. Pygame, January 2013. URL: http://www.pygame.org.

[21] Satoshi Suzuki and Keichi Abe. Topological structural analysis of digitized binary
images by border following. Computer Vision, Graphics, and Image Processing Vol.
30, 1985.

[22] Cho-Huak Teh and Roland T. Chin. On the detection of dominant points on digital
curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11,
No. 8, 1989.

64

http://www.hdfgroup.org/HDF5
http://www.hdfgroup.org/HDF5
http://www.scipy.org/
www.ucmp.berkeley.edu/science/clearedleaf.php
http://www.pygame.org

Erklärung nach §13(8) der Prüfungsordnung für den Bachelor-Studiengang Phy-
sik und den Master-Studiengang Physik an der Universität Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig ver-
fasst habe, keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe und alle Stellen, die wörtlich oder sinngemäß aus veröf-
fentlichten Schriften entnommen wurden, als solche kenntlich gemacht
habe.
Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch
nicht auszugsweise, im Rahmen einer nichtbestandenen Prüfung an
dieser oder einer anderen Hochschule eingereicht wurde.

Göttingen, den 12. März 2013

(Jana Lasser)

	Introduction
	Motivation and Overview
	State of Research
	Framework Requirements
	Network Modeling
	Framework Structure and Design

	Image Handling
	Language and Libraries
	Digital Image Representation
	Dealing with Image Size
	Image Tiling
	Tiling Implementation

	Image Enhancement
	Point Operations
	Grayscale Conversion
	Histogram Equalization
	Thresholding

	Neighborhood Operations
	Blurring
	Directional Derivatives
	Local Histogram Equalization

	Filter Combinations
	Sobel Filter
	Unsharp Masking
	Blurring and Local Histogram Equalization

	Summary
	Comparison and Choice of Method
	Intermediate Results

	Binary Processing: Skeletonization and Distance Maps
	Skeletonization
	Skeletonization by Thinning
	Skeletonization based on Constrained Delaunay Triangulation
	Contour Extraction and Linearization
	Constrained Delaunay Triangulation
	Technical Triangulation Limitations
	Skeleton Construction
	Possibilities for Error Minimization and Stabilization

	Euclidean Distance Map
	Summary and Results

	Results
	Summary
	Outlook

	Module: tile_functions
	Module: filters
	Module: triangulation_functions

