(| GEORG-AUGUST-UNIVERSITAT Fakultat fur
\ '/ GOTTINGEN Physik @

MAX-PLANCK-GESELLSCHAFT

Bachelor’s Thesis

Framework zur computergestiitzten Analyse
von Bildern vaskularer Netzwerke

Computational Analysis Framework for Vascular
Network Images

presented by
Jana Lasser

from Graz, Osterreich

at the Max-Planck-Institut fiir Dynamik und Selbstorganisation

Thesis period: 17th December 2012 until 25th March 2013
First Referee: Eleni Katifori, Ph.D.

Second Referee: Prof. Dr. Sarah Koster

Abstract

In this thesis, we develop a framework for the processing of high resolution images of
vascular networks. The framework processes high resolution scans of plant leaves and
extracts the topological and geometric information of the vein networks present on the
leaves. This framework consists of modular Python scripts, modules and classes. The
main goal of the work is to provide as fast and highly automated processing of the data
as possible while preserving the properties of the networks. The resulting framework can
be used cross-platform and on PCs as well as on clusters. With a few adaptations it can
be a good basis for the processing of images from many networks in different biological
systems.

Keywords: Biological Networks, Image Processing, Python

Abstract

Das Ziel dieser Arbeit ist die Entwicklung eines Frameworks zur Datengewinnung aus
hochauflosenden Bildern vaskulérer Netzwerke. Das Framework verarbeitet hochauflosen-
de Scans von Pflanzenblédttern, um Informationen tiiber die Topologie und Geometrie der
darauf vorhandenen Transportnetzwerke zu gewinnen. Das Framework ist modular aus
Python-Skripten, -Modulen und -Klassen zusammengesetzt. Es soll den Nutzer in die
Lage versetzen, so automatisiert wie moglich Netzwerkdaten auszulesen, wéahrend die
Eigenschaften des Netzwerkes weitestgehend erhalten bleiben. Augenmerk liegt auch auf
der Plattform- und Hardwareunabhéangigkeit des Frameworks, welches, mit einigen An-
passungen, auch als Werkzeug zur Gewinnung von Daten aus Bildern anderer biologischer
Netzwerke verwendet werden kann.

Stichworter: Biologische Netzwerke, Bildverarbeitung, Python

1ii

Contents

(L._Introductionl

[1.3. Framework Requirement

S|, .

(1.4. Network Modeling| . .

[1.5. Framework Structure an

dDesignl 0L

[2. Image Handling]
[2.1. Language and Libraries|

[2.2. Digital Image Representation],

[2.3. Dealing with Image Size|
[2.3.1. Image Tiling]. .

[2.3.2. Tiling Implementation| L.

[3. Image Enhancement]|
[3.1. Point Operations| . . .

[3.1.1. Grayscale Conversion|

[3.1.2. Histogram kqualizationl

[3.1.3. T'hresholding| .

[3.2. Neighborhood Operations|

[3.2.1. Blurringl

[3.2.2. Directional Derivatives

[3.3.2. Unsharp Masking|

[3.3.3. Blurring and Loc

al Histogram Equalization|.

[3.4. Summary| L

[3.4.1. Comparison and Choice of Method|

B3.4.2. Intermediate Resultsl 0000

[4.2. Skeletonization by Thinning|00

[4.3. Skeletonization based on Constrained Delaunay ‘Iriangulation|

4.3.1. Contour Extraction and Linearizationl.

[4.3.2. Constrained Delaunay ‘Iriangulation|

Contents

[4.3.3. 'lTechnical Triangulation Limitations|.

434, Skeleton Construction|

[4.4. Euclidean Distance Map|,
[4.5. Summary and Results|o o000

5. Results|
[b.1. Summary|

[A. Module: tile functions]|

[B._Module: filters

[C. Module: triangulation_functions|

vi

1. Introduction

1.1. Motivation and Overview

When looking at biological systems, networks are omnipresent. The blood vessels which
supply animal and human bodies with nutrients and oxygen, the vascular networks in
plants or neuronal networks responsible for the transport of information - networks are
the backbone of life. Understanding the topology, geometry and formation of these net-
works is a main goal of research in biological physics.

The information that can be obtained by understanding biological networks is diverse and
ranges from the search for the most efficient way of supplying a system with nutrients to
the properties of these networks when exposed to extreme circumstances or inflicted with
defects. Understanding how a plant can keep alive a leaf even with a deep cut dividing
parts of that leaf can have significant impact on the way we build our transportation
and information networks. This results in making them more efficient and more resistant
against disturbances.

This work focuses on the networks present in leaves and their characteristics. The goal
is to model these networks as accurately as possible to allow analysis of their reaction to
defects and dependence on various parameters. To reach that goal, network models need
to be supplied with data from natural leaves. Vein networks of leaves can be digitized by
scanning the leaf the network belongs to.

Before the leaf is scanned, it is prepared to improve the visibility of its vein network.
One way of preparing the leaf is clearing it by submerging it into several chemicals until
the tissue material between the veins is transparent. The veins will also become trans-
parent after such processing, so the samples are treated (commonly with acid fuchsin) to
stain the veins. Clearing and staining the leaves greatly improves the contrast between
vein and no-vein regions but most scans still have defects and shadows from non-uniform
staining on them. This further complicates recognition of the network. An alternative
way of preprocessing leaves is the removal of all tissue material that is not part of the vein

network, thus skeletonizing the leaf. On scans of skeletonized leaves, the veins are clearly

visible and there are no issues with non-uniform stains, but the highest branching orders
are destroyed in the process. When the surrounding tissue is removed, the locations of
the different network branches are no longer preserved and the appearance of the network
is distorted.

As we want to simulate networks as lifelike as possible, we use scans of cleared leaves
to ensure the integrity of the vein network. The samples were provided to us by the
New York Botanical gardens and our collaborator Douglas Daly. Thus the need arises
to correct the scans for non-uniform staining and improve the network’s visibility before
information about its properties can be extracted.

The databases of cleared leaves that already exist, for example |15], are very large and
contain thousands of scans. Therefore a tool for data extraction from all those scans needs
to be able to operate in a highly automated way, independent of user input with regards
to network extraction parameters, such as thesholding values.

The aim of this work is to create a tool that is able to handle scans with very high res-
olutions as well as large amounts of data, improve the scans in a way that the network
becomes clearly visible and extract the information that represents the network. A frame-
work that offers the possibility for automated processing of images and creation of data
fit for modeling can be adopted to a variety of fields that obtain their experimental data
from images.

The written part of this thesis will serve as documentation for the framework so that new
users or developers are able to become quickly acquainted with image processing and the

algorithms used.

1.2. State of Research

Attempts to extract data from images of biological networks already have been made with
various aims concerning usability, quality, scale of data and speed.

A graphical user interface (GUI) for enhancement and processing of images of leaves [7]
does already exist, but its possibilities are rather limited where automated processing of
large amounts of scans and images with a very high resolution is concerned. A commonly
encountered technique for dealing with processing issues concerning connectivity of veins
near the main vein or high branching orders is simply discarding those regions (as has
been done in the approaches described in 3] and [2]). This is not the path we follow
for this framework as our interest lies especially in the leaves as whole systems with high

branching orders where conduction of water and nutrients involves multiple scales. The

approach outlined in [6] uses skeletonized leaves which is not viable for our purposes as
explained above.

After due consideration of the existing approaches and their drawbacks, it was decided to
create a new framework to improve on the weaknesses of the already available tools and

to have an adaptable and GPL-licensed framework at hand.

1.3. Framework Requirements

In the following the main considerations for the development of a framework able to

extract network data from digital images will be outlined.

Quality

The first and most important goal is the extraction of data with high quality. During
the enhancement and processing steps, we will try to preserve as much data from as high
branching orders as possible. When encountering difficulties with network recognition,
we will not discard small details; and to get information about even the highest orders of

branches, digital image enhancement methods will be used.

Automation

We want to be able to extract the network data from whole libraries of cleared leaf
scans which consist of thousands of images. Therefore, the framework needs to be as
independent from user input at the processing time as possible. Methods developed for
the framework have to be applicable to a wide range of images, may they be small or

large, bright or dark, with high or low contrast.

Efficiency

As the images themselves have a high resolution and therefore their data files are very
large, and the amount of images that will be processed is very high, time efficiency is
an issue. Quality should not be sacrificed for efficiency, but for the computationally
demanding parts of the algorithm, ways to improve performance such as parallelizing or
outsourcing of calculations to lower level programming languages are actively searched

for.

Usability

For the selection of the language the framework is written in, platform independence as
well as hardware independence and availability of public licenses have to be ensured. The
framework is intended to be a solid foundation for image processing and data extraction
and it is very important that it is expandable and adaptable to other problems and ques-
tions. This is not the case for software written in licensed languages such as MATLAB,
because to use and expand such a tool, for every machine it is installed on a separate
license has to be bought. As this is not feasible in most cases, Python is the language of
choice. To make the framework adaptable to different hardware environments (especially
concerning the random access memory the individual computer has at its disposal), op-
tions to dynamically adapt the memory consumption are needed. The target hardware
is commonly used desktop computers and the framework is designed with their limited
CPU and RAM capacity in mind. All used languages and libraries conform to the GNU

General Public License.
1.4. Network Modeling

In the following I will outline one approach to network modeling using the example of the
phloem network in plants to identify the data input needed to model real plants.

The phloem network in plants transports sugar away from its production sites in the
leaves. We model the network as an assembly of tubes which transport that sugar, solved
in water. A point where two different tubes connect is called a node. The water volume
current ();; through a tube from node ¢ to node j is assumed to be laminar (i.e. the water
flows in parallel layers). Under this assumption, in a network with n nodes, the water

flow can be described by a system of n? Hagen-Poiseuille equations

_ Gy
-7

: (pj —pi))

where Cj; o< r* is the pipe’s conductivity, r the pipe’s radius, {;; the pipe’s length and p;
the hydrostatic pressure at node j.

This already identifies the three types of information we need to model a network:

o The topology of the network, i.e. which node is connected to which other nodes.

o The geometry of the network, i.e. the length of the tubes (or equivalently the

coordinates of the nodes).

e The conductivity of the tubes which is identified with their width in phloem networks.

This is the information needed to model the network
itself. To model transport in the network, we can then
designate certain nodes as flow sources (production sites)
and sinks, leading to values for the pressures p;.

A network is represented by a graph consisting of nodes
and edges (i.e. connections between nodes). The topol-
ogy of a graph often is represented by its adjacency ma-

triz. The adjacency matrix of a network with n nodes is

a n X n matrix where the diagonal entry a;; is the num-

ber of edges from the node to itself (which is usually zero Figure 1.1.: Network with 6
for phloem networks) and the non-diagonal entry a;; is nodes.

the number of edges from node ¢ to node j. For phloem networks, each node is usually
connected to another node by a maximum of one edge, therefore the adjacency matrix for
such a network will be a binary connection matriz.

The connection matrix A of the small network shown in figure is:

[— 1 2 3 4 5 6]
1 010000
2101010
A=13 01010 0
4 001011
5 010101
6 00 0 1 1 1

The conductivities of the tubes can be included in the connection matrix, thus creating a
weighted connection matrix where the entry a;; is the conductivity between nodes 7 and
j. A conductivity of zero signifies that nodes ¢ and j are not connected.

The geometry of the network can be described by the distance matriz where the entry a;;
is the distance between nodes ¢ and j. Therefore, if the weighted connection matrix and
the distance matrix of a network are known, it can be described with the model outlined
above.

To create those two matrices from an image of the network, we need to identify the parts
of the image that belong to the network and then recognize whether a part of the network
is node or edge. This, and the handling of big data sets consisting of very large images

are the tasks of the framework.

1.5. Framework Structure and Design

The structure of the framework can be divided into three main parts: image handling,
image enhancement and binary processing. The framework therefore is organized in three
Python modules that provide functions and custom classes for the tasks the framework
has to fulfill. Also included in the framework several scripts that combine the methods
provided in the modules to efficiently handle large images, digitally enhance them, vec-
torize the features present in the images and finally extract the network data.

The course of this thesis will follow the outline of the framework’s design, describing
theoretical background as well as actual implementation. The description will follow the
order naturally given by the way an image passes through the framework, from the raw
scan at the beginning to the data extraction at the end.

It has to be emphasized that the result of this work is the framework itself and not the
data it will eventually produce. As this thesis is a software project, a lot of time was
spent on quality assurance and documentation. In the appendix, a complete documen-
tation of the three modules (tile_functions (appendix [A)), filters (appendix [B]) and
triangulation_functions (appendix|C])) representing the implementation of each of the
three main parts of the framework can be found.

The main body of the thesis exceeds the standard length of 40 pages. This is due to the
inclusion of many pictures. As this is a work about image processing, those pictures are

necessary to illustrate the operating principles of the methods introduced.

2. Image Handling

2.1. Language and Libraries

The language the framework is written in is Python. This language was chosen because

of its four main advantages which help fulfill the requirements stated in chapter
« Scriptability, which supports high development activity.

o Extendability, especially with C and C++ , which helps improve efficiency when used

in parts of the framework which do computationally intensive work.

o Platform independence; the standard installation for the language is freely available
for all major platforms. This ensures portability and the possibility to modify and

adapt the framework.

o The Python Software Foundation (PSF) license is compatible with the GNU Public
License. Other languages such as MATLAB require expensive licenses that limit

portability.

Python’s standard library, although already extensive, is expanded by various third-party
libraries, called modules, most of them especially designed for scientific computing. The

most important ones used in this framework are:

o NumPy and SciPy [14] for array operations, linear algebra and access to the Python

Imaging Library (PIL)
o PyTables |[l1] for reading and writing image data
 OpenCV [4] for advanced image processing and computer vision algorithms
« PyGame [20] for visualization
« poly2tri [10] for triangulations

 Sphinx [5] for documentation

2.2. Digital Image Representation

A raster digital image is a two-dimensional ordered accumulation of discrete pixels - a
matrix. It is defined by its resolution, number of channels and depth. The number of
pixels per length is called the resolution of the image. The scans that are processed with
this framework have a resolution of 6400 dpi (dots per inch) which allows identification of
up to five orders of vein-branches (beginning with the main vein as Oth order). Figure
illustrates how much information an image with such a resolution holds by showing a
series of zoomed in details of a raw scan, each subsequent detail enlarged by a factor of

four. The image quality is ultimately only limited by the optical resolution of the scanner.

E—

Figure 2.1.: Successively zoomed in details of a leaf scan.

A grayscale image has one single channel in which information is stored. A color image
usually has three channels.
The range of different values each pixel can hold is called depth of the image. During the

processing within our framework, three different types of images will be used:

e Color images hold visible color information. The scans natively are color images
and are converted to grayscale in the first step of the processing. The scans have a
depth of 24 bits which corresponds to 2% = 256 values per pixel for each of the three

color channels.

o Grayscale images only hold the brightness information of the image, this requires
one single channel which has a depth of 8 bits per pixel in the images we will process

with the framework.

o Binary images hold information about the affiliation of each pixel to either fore-
ground or background of features present in the image. Binary images therefore

consist of only zeros and ones (one bit) stored in one single channel.

For the internal representation of image data NumPy’s data type ndarray is used which
can store an n-dimensional array containing any commonly used number format and

supports a wide range of array and linear algebra operations.

2.3. Dealing with Image Size

Processing an image sometimes involves copying it multiple times and holding all copies in
the RAM of the computer. As the images for which this framework is designed typically
have a size of up to 3 gigabytes, simply duplicating the image will almost inevitably lead
to reading and writing image data from and to the hard drive because on most machines,
the available RAM is not large enough. This dramatically slows down processing speed
and has to be avoided under all circumstances.

As filter-specific dependencies between pixels are, if existent, only local, we can divide
the image into different subregions, which will be called tiles; the tiles then are processed
independently. The parts of the image which are not currently processed are stored on
the hard drive and only loaded when needed, to keep RAM-consumption at a minimum.
All routines dealing with efficient tiling, loading and storing of images as well as sup-
plying a socket for the insertion of a filter (see section |3) are gathered in the module

tile_functions.

2.3.1. Image Tiling

When the loading and storing mechanism only needs to supply data for a filter performing
point operations (see section, the image can simply be “cut” into smaller pieces which
can be loaded one by one. The task gets more challenging when dealing with neighborhood
operations (see section. When a pixel situated at a tile boundary is processed and not
all neighboring pixels are supplied, the result of the filtering will be distorted. Therefore we
also need to supply the overlap between the different tiles to be able to process boundary
pixels correctly.

For a filter that requires an overlap of width d, when the tiling mechanism loads the
first quadratic tile with edge length a, it can only process the region which has at least

distance d to the tile’s boundary. A slice of width 2 - d is stored for the right and lower

boundary of the tile to be able to process the currently left out regions later on (as can
be seen in figure . The processing starts at the upper left corner of the image and
iterates through the image from left to right and top to bottom.

The tiling mechanism combines every tile loaded after the first one with one or two slices
from the memory (one if the tile is touching a boundary of the image, two otherwise)
containing the overlap from previously processed tiles.

When not touching any boundaries, the processible region is quadratic with edge length
a but is shifted from the newly loaded tile by d (as can be seen in figure .

To be able to also process the pixels at the outermost boundaries of the image without
too much error, the image is padded with a frame of additional pixels of width d. The
padding can either consist of the addition of pixels with a constant value, a reflection
of the pixels inside the original image or a linear interpolation from the boundary pixels
to a constant value. The method [A.7] tile_functions.NewBoundaries() handles the
padding functionality and at the same time also ensures that the image has dimensions

fitting to a discrete number of square tiles.

v

D currently loaded

currently processible

»

processing

direction l'----= overlap to pass

loaded next
processible next

a :] original image

padding

rl
Figure 2.2.: Start of the image processing, beginning at the first tile.
2.3.2. Tiling Implementation

The core of the image tiling implementation is a so-called “Hierarchical Data Format” (in
our case HDF5 [11]). The data format supports storing of data in tree-like structures in
a file. We do this by creating one node for every line of tiles and then placing every tile
under the node as a leaf (the tree-like structure is illustrated in figure [2.4). This ensures
that only the data chunk that is currently needed is loaded into memory and makes nav-

igating between different tiles easy. Before we process an image, it is split into different

10

———— = e = — ——— ————— 1

1 1

+

1

1

1

> 1

1

1 I

1

1

- — = .

] 1

] 1 e ——-
] 1
1 1

[currently loaded processible next
] currently i 1 overlap to pass
a processible FA—
previously saved
processed overlap

Hi

Figure 2.3.: Ongoing iteration showing processing of a tile in the middle of the image.

tiles and stored on the hard drive. For processing, the framework reads every tile one at
a time, and stores the result of the processing in another HDF-file for further processing.
Dividing the image into chunks and creating an HDF-file can be done by calling the
method tile_functions.WriteChunkData(), whereas the method

tile_functions.getImageFromH5() handles the recomposition of an image from an

HDF-file.

image

(root)
line 1 line 2 line 3
(node) (node) (node)
Lo (1] [9] [10][11] - [19] [20][21] - [29]
tiles tiles tiles
(leaves) (leaves) (leaves)
image
[1
ine | N

_>tiles

Figure 2.4.: Tllustration of a hierarchical data structure for image storing.

11

3. Image Enhancement

As soon as we have read an image from the hard drive and fed it to the tiling mechanism,
the image enhancement itself can be started. The raw scans that we process often are not
perfect and parts of the network, especially regions near the main vein and high branching
orders, might not be accurately parsed by simple segmentation algorithms. Figures
to show several details of images which illustrate that the vein network often initially
is not separable from the background, or where high brightness differences may confuse
the processing algorithms. Therefore, before we can extract the network data without too
much error, the visibility of the vascular network needs to be increased. The framework
offers several filters and methods for image enhancement that can be chosen and combined
freely to adapt to a given set of images with characteristic contrast, brightness and defects.
All filters are gathered in the filters-module documented in

In the following I will describe those filters along with the method that worked best for

the example images that I processed during the course of the work on this thesis.

(a) Overall poor contrast.

» w S
(c) Regional low contrast. (d) Brightness difference.

Figure 3.1.: Different occurrences of poor/uneven contrast in raw cleared leaf scans.

13

3.1. Point Operations

When we talk about filtering an image, we need to distinguish two classes of filtering
operations: point operations and neighborhood operations. Point operations are operations
on an image that only need information from one single pixel to calculate the resulting
pixel. The three main filters implemented in this framework that use point operations are

grayscale conversion, histogram equalization and the thresholding filter.

3.1.1. Grayscale Conversion

The scans we process in this framework are color-images. The first thing we need to do
before we apply further filters is a conversion from a color-image to a grayscale one. As
the color images use the RGB color space for color representation (information about
color spaces can be found for example in 43), this is done by adding one third of
the value of each color channel together to form the brightness information of each pixel.
Therefore the image now appears in 256 grayscale values. The color information of images
could at some point be used to do defect correction for defects that have characteristic
color information but at this stage in the framework’s development, color information is

neglected and the scans are immediately converted to grayscale.

(a) Detail of color-image. (b) Detail after grayscale conversion.

Figure 3.2.: Application of grayscale conversion.

14

3.1.2. Histogram Equalization

The histogram of an image holds information about how many pixels with each col-
or/brightness value are present in the image. When equalizing a histogram globally, it is
“stretched” so the whole range of possible values is used.

For each brightness level j in the image, the newly assigned value k is

256 <
k— .

= 7 ,
Ntotal p()

i=0
where the sum counts the number of pixels in the image (by integrating over each bin of
the histogram) with brightness equal to or less than j, normalized by the total number
of pixels Niua1. This enhances the contrast of the image and can make selection of a
global threshold for later thresholding easier. The effect of histogram equalization are
illustrated in figures and As can be seen, subtle brightness differences that
are present in the original detail but are not visible to the naked eye are enhanced in
the processed detail. However, the overall brightness gradient between vein and no-vein
regions is unchanged and it still would be difficult to extract the vein network from this
image without disconnected veins or too much noise present.

Histogram equalization is a point operation but in a sense each pixel has a global depen-
dency on each other pixel as the histogram of an image that will be equalized needs to be
the histogram of the whole image to get a uniform result. As a consequence, we cannot
execute the creation of the histogram using the above described tiling mechanism whereas
the assignment of new values itself can be executed that way. The framework implements

histogram equalization in function filters.histeqQ).

5/ a2l (e
\ LR)

(a) Detail with a brightness range of 131 values. (b) Brightness range stretched to 255 values.

Civ.

Figure 3.3.: Application of global histogram equalization.

15

3.1.3. Thresholding

Thresholding is used to create a binary image from a grayscale one. When we threshold
an image, we select one global value - the threshold -, and map every pixel above it to 1
and every pixel below it to 0, thus distinguishing between foreground and background of

the image. For a given threshold T the thresholding function is

0 ifz<T
fT(J:)_{ 1 ifz>T.

By convention the value “0” (black) is used for foreground pixels and “1” (white) for the
background during image enhancement. When we perform operations on a binary image
(as described in section , this convention is often inverted. The framework implements
various thresholding functions which allow thresholding both with a single threshold and
within a range of values, as well as mapping to custom values, see for example func-
tion filters.threshold().

While performing the thresholding itself is easy, the selection of a proper threshold can be
challenging. When we manually look at an image, after a few iterations of trial and error
we are able to find a threshold that does not include too much noise in the foreground
selection as well as leaving most of the veins connected. To automate this, the framework
implements a method called “Otsu Thresholding” [16].

While searching for the best threshold 7" we minimize the intra-class variance, which is a

sum of the weighted variances o; of both the foreground and the background class:
Tra(T) = wp(T)o3(T) +wp(T)oi(T) -

The same result can be achieved by maximizing the inter-class variance, using the class

means ji;:
Tonter(T) = wi(T)wp(T) - [up(T) — pr(T)]

The weights and class-means are defined as

T
wB—Zp(z), wp=1—-wp
=0
T 1 255 1
1B (;p() > on 0 <i;ﬂp()) o

16

where p(7) is the number of pixels in the ith bin of the image’s histogram.

As connectedness of veins is very important to be able to later correctly extract the topol-
ogy of the network and the appearance of noise is acceptable as long as it is disconnected
from the network, a constant value c is added to the threshold found by Otsu’s method.
Trial and error yielded a value of ¢ = 30 to be the best choice. This generally works well
on images that have a mean brightness in the middle of the spectrum and is implemented
in function filters.otsu_threshold(). On images that are either very light or
very dark, this can produce rather bad results. This is a problem that cannot really be
fixed computationally so the framework gives a warning if it encounters an image with
an overall brightness that lies at the outer boundaries of the spectrum and encourages
manual threshold selection.

Figures to show the results of the application of a thresholding filter with two
different thresholds applied to a grayscale detail of a raw scan without further processing.
It can be seen that in figure [3.4b only the main vein and one branching order is present
whereas the retention of higher branching orders is much better in figure [3.4d Neverthe-
less, the result is far from perfect. This shows that the images need further processing

before the vein network can be extracted properly via thresholding at the end of the image

enhancement.

/

(a) Grayscale detail. (b) Threshold Tp = 132. (c) Threshold Tp + 30 = 162.

Figure 3.4.: Application of a thresholding filter with two different thresholds to a detail
of a grayscale image.

17

3.2. Neighborhood Operations

Neighborhood operations need information from the neighborhood of the pixel currently
processed, taking into account their values for the calculation of the new pixel’s value.
The majority of neighborhood operations can be described by the discrete convolution of
the matrix representing the image with a convolution kernel which we calculate by taking
the sum of the pixel values in the region of the kernel size, multiplied by weights specified

in the convolution kernel (as described in [19]209):

+m
P ijm—m Wi Prvigyt;
Ty +m o
i j=—m Wi,

The size of the kernel determines the size of the neighborhood which will be taken into ac-
count, the values within the kernel determine the properties of the filter. In the following,
the filters implemented in the framework that make use of neighborhood operations and
their applications will be described. Those filters are a mixture between own implementa-
tions and improvements or adaptions of filters that already exist in libraries used for this
framework. Some filters are wrappers around filters from openCV which set options that

best fit the kind of images that are processed and handle the input and output formats.

3.2.1. Blurring

Applying a blurring (also called median) filter is a convolution with a kernel of the form

1 11 1
1 111 --- 1
K = -
Kwidth : Kheight
1 11 1

This averages over the values of all neighboring pixels and results in an overall decrease of
sharpness, thus blurring the features. The amount of blurring done to the image can be
controlled by adjusting the size of the filter kernel. Also, kernel shapes that approximate
a circular neighborhood around the processed pixel yield more “natural” results.

There are three functions for blurring filters in the framework:

« Function filters.median_dynamic()
o Function filters.nan median()

« Function filters.openCV_median()

18

The dynamic filter supports creation and use of kernels with circular shapes, whereas the
nan_median filter supports the usage of NaN values in the image which specify pixels to
be ignored during the processing The openCV implementation is generally very fast.

At first glance, one might think that blurring is of limited use for the improvement of
contrast and sharpness of the image but this is not the case. Blurring an image with a
kernel-size smaller than the smallest features present in the image (in this case the highest
branching order) before applying other filters helps in reducing the amount of unwanted
noise. The blurring filter also is an essential part of the technique called “Unsharp Mask-

ing” [19]288-290 which is described in section [3.3.2] An application of the blurring filter
is shown in figures to [3.5d

Ls

(a) Grayscale detail. (b) Blurring, kernel size 11. (¢) Blurring, kernel size 31.

Figure 3.5.: Application of a blurring filter with two different kernel sizes.

3.2.2. Directional Derivatives

A directional derivative filter approximates the directional derivative of the brightness
B [19)296. The filter kernels for the horizontal (z) and vertical (y) direction look as

follows:

+1 0 -1
0B . :
s corresponds to a convolution with |[+2 0 —-2| ,
x
+1 0 -1
[+1 +2 +1
0B . .
—— corresponds to a convolution with 0O 0 O
% 1 -2 -1

19

In the above directional derivative filters, the original central pixel’s value does not enter
into the calculation at all. Instead the differences are formed between neighbors to the left
and right or top and bottom respectively. Therefore brightness changes in one direction
are emphasized whereas brightness changes in all other directions are suppressed. The
directional derivative filter is implemented in function filters.dir deriv(). An

application of the Directional Derivative filters in x- and y-direction with the addition of

a medium gray of value 128 to also make negative values visible is shown in figures

to B.6d

(a) Grayscale detail. (b) Derivative in x-direction. (c) Derivative in y-direction.

Figure 3.6.: Application of a directional derivative Filter in x- and y-direction.

3.2.3. Local Histogram Equalization

Local histogram equalization is the local counterpart of global histogram equalization
(described in section . When performing local histogram equalization, we compare
the value of each pixel in a specified neighborhood to the value of the pixel currently
processed. The new value is the number of values that are smaller than the processed
pixel’s value. This cuts down the range of possible values to the number of pixels in the
neighborhood but ensures global and brightness independent contrast enhancement. The
tradeoff is that this method also enhances noise with the same intensity as it enhances
contrast differences between vein and no-vein regions.

As can be seen in figure local histogram equalization works well to enhance visibility
of veins in regions with low contrast. The blind spot that can be seen in figure [3.7al
vanished after application of the filter. The appearance of noise in between the veins
as well as on the main vein can be observed in figure This can be counteracted

to some extent by blurring an image with a small blurring kernel before applying local

20

histogram equalization. The local histogram equalization filter itself can be accessed in

the framework via function B.4] filters.lochisteq().

gan
0 den

’ b‘ Ve g

A {

(c) Detail near the main vein. (d) Local histogram equalization.

Figure 3.7.: Application of local histogram equalization with an 11 x 11 neighborhood.

21

3.3. Filter Combinations

The image enhancement process aims to create an image with as low overall contrast dif-
ference and as high local contrast difference between vein and no-vein regions as possible.
If we have achieved that, we can select a global threshold value and then create a binary
image via application of the thresholding filter which can be used for further processing.
The filters introduced in the chapters above, on their own, have very limited possibilities
to improve the visibility of veins. To counter the weaknesses of each specific filter and
further improve visibility, they need to be combined. Filters can be combined by using
them one after another as well as by adding or subtracting images from different process-
ing states to create an enhanced image.

Commonly, the first step in image enhancement is a blurring operation with a relatively
small kernel size (smaller than the smallest feature that has to be preserved) to smooth
out some of the local noise. Blurring will be applied first in each of the following filter

combinations.

3.3.1. Sobel Filter

The Sobel filter is based on the directional derivative filter (described in section [3.2.2)

and computes the magnitude M of the vector that represents the brightness change, as

described in [19]301:
0B* (0B\’
= (3) ()

A combination of blurring and apllication of the Sobel filter results in an image with

greatly emphasized edges and smoothed local details (noise) at the expense of the inner
parts of the veins. This goes so far as to keep only the boundaries of the veins when
using larger kernel sizes for the Sobel filter. The framework implements the Sobel filter
in function filters.sobel() which in turn uses the directional derivative filter.
The fact that only information about the boundaries of the veins is retained gives rise
to the problem of how to decide what is outside the vein and what is inside the vein,
a problem which is not trivial to solve. The resulting appearance of contour-like shapes
after application of the Sobel filter can be seen in figures to [3.8d

22

(c) Grayscale detail.

Figure 3.8.: Application of blurring and Sobel filter with a kernel size of 7.

3.3.2. Unsharp Masking

Another common processing technique for sharpening edges in images is the wunsharp
masking (USM). In order to sharpen the image, we first create a blurred (unsharp) version
of the image. With that we can create a mask by taking the absolute value of the difference
between the original and the blurred image and thresholding it (typically with a very small
threshold 7" because the difference will not be too large). The mask is a map filled with
Boolean values which are true where brightness changes in the original image happen and
false otherwise. We then create the sharpened image by subtracting the blurred image
from the original (optionally weighted with a constant value w) and inserting those newly
created values into the original image wherever the mask holds a “true” value.

The unsharp masking process can be modified via the Gaussian standard deviation s of
the blurring filter (which is equivalent to the kernel size), the threshold T" and the weight
w. This offers a wide range of adjustability but also imposes the need to exhaustively
adjust each mask to a given image. Doing this in a mostly automated way proved to
be very difficult. Nevertheless the USM method including all parameters to adjust it is
implemented in function filters.unsharp mask().

The process of unsharp masking as well as the results of two iterations with different

23

blurring filter sizes are shown in figures [3.9a] to As can be seen, the USM with a
blurring filter with a standard deviation of s = 1 produces nearly no visible effect, whereas

the USM with a standard deviation of s = 3 emphasized steep brightness changes and

suppressed slower ones.

G, A
' I
] ". ;
;—-'_-'!'l A A .
(a) Grayscale detail. (b) Mask created with a stan- (c) USM filter with T = 3, w = 2,
dard deviation of s = 1. s=1.

(d) Mask created with a stan- (e) USM filter with T = 3, w = 2,
dard deviation of s = 3. 5=3.

Figure 3.9.: Illustration of the application of the unsharp mask filtering method.

3.3.3. Blurring and Local Histogram Equalization

The local histogram equalization introduced in section combined with a blurring
filter of suitable size can be a very powerful tool to emphasize edges regardless of position
in the brightness spectrum and large variances in brightness and contrast.

To counteract the appearance of edges where there are none (e.g. within larger veins), we
can combine the processed image with the original one. Trial and error has shown that a
proportion of one third of the processed image to two thirds of the original to form the
resulting image works well in keeping a balance between noise and emphasized edges.
The results of the above described method are shown in figures [3.10a] to [3.10cl As can be

24

seen, edges were emphasized in different regions of the leaf (tip, main vein, region with
former low contrast) and all connections between the veins are well preserved. A lot of
noise appeared in between the veins as well as on the main vein but the superposition
with the original image ensured that the brightness of the noise is not too different from

the surrounding regions to compromise correct thresholding.

iz

(a) Detail at the leaf tip

(¢) Former low contrast region.

Figure 3.10.: Examples processed with blurring (s = 5), local histogram equalization
(k = 11) and combination of processed and original image (1/3 to 2/3).

3.4. Summary

3.4.1. Comparison and Choice of Method

With the possibilities of digital image enhancement and availability of many different
filters and algorithms, countless different, promising ways to reach the goal of sharpen-
ing the edges of the vein network and emphasizing contrast are imaginable. As this is a
Bachelor’s thesis, I have focused on the methods introduced in section utilizing the
tools introduced in sections [3.1 and [3.2] and proceeded to binary processing as soon as I
found a method that suited the needs of the framework.

While the Sobel filter emphasized edges very well and might have yielded some very good
results, it introduced the additional problem of refilling the interior of the veins. Unsharp
masking is a very versatile tool with many different possibilities to adapt and adjust to
a given data set and can yield results of high quality when enough time and thought ad-
justing the parameters are invested. The need for higher time investment and user input
conflicts with the requirement for the framework to be able to operate mostly automated,
therefore USM is not the method of choice to base binary processing upon.

The properties of local histogram equalization (LHE) fit best into the requirements for

25

the framework. The fact that local, disconnected noise (the appearance of which is one
of the major drawbacks of LHE) can be dealt with in binary processing as well as the
advantage of the method being very independent of the specific image it is used on led to
the decision of using this method as the basis for further processing.

One other major drawback of LHE which should be mentioned here is its time consump-
tion. Most of the methods mentioned above are adaptions from already existing, optimized
methods in libraries. As a method for LHE was not readily available in a form that would
fit our workflow, I had to develop it in its entirety. Despite my effort to optimize the code
for speed, the method consumes a sizeable portion of the total time needed to complete
the image processing from raw scan to extraction of raw data (around 30 min for a 1 GB

image).

3.4.2. Intermediate Results

To show a few intermediate results, I selected some scans of leaves belonging to plants
of the Burseraceae family which are representative of the plethora of scans in the cleared
leaf database, and processed them from the raw state to the binary image. Figure [3.11
shows the scan that is the source of most of the details shown in this thesis to illustrate
various concepts. Figure m (with its size of 1 GB) was one of the biggest images I had
at hand for testing. Figure [3.13] was chosen because it is a relatively dark scan with a
lot of poor contrast regions near the main vein. Finally figure is a relatively bright
scan with very sharp contrast between vein and no-vein regions and therefore yielded very

appealing results.

26

\ i ‘ 7
\ | | r \ \
// I f‘[y’l ‘

(a) Original Scan: complete leaf. b) Original Scan: detail.

g 'W”??E%% éé
}
- o %@g

g&%@a ngmﬁ ,m_g mlm:

J o s%g
5‘3%%@3 Egm
‘ : ' ggy @Bn@h@

(c) Binary image: complete leaf (d) Bmary image: detail.

Figure 3.11.: Original and processed versions of a scan of Protium Grandifolium.

3

=

(¢) Binary image: complete leaf. (d) Binary image: detail.

Figure 3.12.: Original and processed versions of a scan of Brosimum Guianensis.

27

28

(b) Original Scan: detail.

X

=

t;g
Booc
e
EvaTiag;

(c) Binary image: complete leaf. (d) Binary image: detail.

Figure 3.13.: Original and processed versions of a scan of Protium Cubense.

N\

\
N\

(a) Original Scan: complete leaf. (b) Original Scan: detail.

(¢) Binary image: complete leaf. (d) Binary image: detail.

Figure 3.14.: Original and processed versions of a scan of Protium Apiculatum.

4. Binary Processing: Skeletonization

and Distance Maps

After we have created a suitably enhanced image by application of the methods mentioned
in section [3| to the scan of the leaf, we create a binary image by application of the
thresholding filter (described in section with a threshold calculated with Otsu’s
method. A binary image consists of only zeros and ones, representing foreground and
background of the image. Such an image, which needs only one bit for the storage of
information for every pixel, also consumes notably less memory. The binary versions
of the images that I processed during the development of the framework typically only
had 1/90th of their original size, therefore making concerns about memory consumption
negligible for the following course of the processing.

It should be noted that in binary processing, the convention of which value represents the
foreground often is contrary to the convention used in previous chapters: white (value
“17) is now used as foreground or feature and black (value “0”) represents the background.
The next step before the nodes and edges of the leaf’s network can be extracted is the

retrieval of the skeleton of the network.

4.1. Skeletonization

The skeleton of a feature is a one pixel thin line that has the same distance from all
corresponding boundary points and preserves the topology of the shape (i.e. points that
are connected in the original image are also connected in the skeleton - no additional loops
and endpoints appear) as well as its size. In figure an illustration of the skeleton of
a vein-network-like shape can be seen. In image processing, skeletons usually are used to
save information about objects in an image in a more compressed way and make them
comparable. In our case we need the skeleton to identify the nodes and edges of the

network.

29

Figure 4.1.: Sketch of a skeleton.

We distinguish between two fundamentally different approaches for skeletonization: pizel-
wise thinning approaches and wectorization approaches that “construct” the skeleton of
the features. Pixel-wise thinning is the most general approach and can be applied to
any class of features that are represented in a binary image. Vectorization approaches by
design presuppose additional information about the shape of the features in an image (such
as ribbon-like shapes for vein networks on leaf-images) and vectorize them based on this
information. During the development of the framework I have tested both approaches and
will describe their operating principles and the results from application to binary images

of leaves in the following sections.

30

4.2. Skeletonization by Thinning

To create the skeleton of a shape via pixel-wise
thinning, the algorithm traverses the image multi-
ple times and removes redundant pixels. To decide
whether a pixel is redundant, in each iteration it
compares the 3 x 3 neighborhood of the currently
processed pixel with the elements of a lookup table
containing all possible 28 = 256 binary 3 x 3 neigh-
borhoods. A pixel is not redundant if it is necessary
for the connection of two other pixels or if it is an
endpoint. The pixel’s removal also must not change
the number of connected background or foreground
areas in the neighborhood.

It has to be noted that by convention connectedness
is defined differently for foreground and background.
Foreground is so-called eight-connected which means
that a foreground pixel is connected to another fore-
ground pixel if it is touching the other pixel either
at an edge or at a corner point. Background is four-
connected which means that background pixels are
only connected if they are touching at the edges.
Examples of possible 3 x 3 neighborhoods can be
seen in figures to [£.2¢f In every example, the
figure shows the currently processed pixel at the cen-
ter of the neighborhood, marked red. Figure 4.2a
shows an example of an endpoint, therefore the cen-
tral pixel is essential and will not be removed by the
thinning algorithm. In figure the central pixel
connects the two pixels at the edges. Removal of the
central pixel would create two separate foreground
regions, therefore the central pixel is again essen-
tial. Figure shows an example of a redundant
pixel. The central pixel is neither an endpoint nor
does its removal change the number of foreground

and background regions in the neighborhood. The

(a) Not redundant.

(b) Not redundant.

(¢) Redundant.

(d) Not redundant.

(e) Redundant.

Figure 4.2.: 3 x 3 neighborhood
examples.

31

example also illustrates one of the major drawbacks of this method: depending on the
rest of the shape the central pixel is part of, during further processing its removal might
lead to the creation of additional end points, thus creating branches in regions that were
one single vein before the thinning.

Figure 4.2d| shows an example where removal of the central pixel would not change the
number of foreground regions but increase the number of background regions by one, as
background pixels are only four-connected. Finally, figure shows an example where
the central pixel is redundant and its removal will not cause the appearance of additional

endpoints either.

The thinning algorithm “melts” the features in the image layer by layer and needs as
many iterations over the whole image as the width of the widest feature in pixels. Thin-
ning is very prone to irregularities and small protrusions at the vein-boundaries.

The results of a skeletonization of network parts with a MATLAB implementation of
thinning are shown in figures to and figures to [4.4d] It can be seen that

a lot of additional small branches appear - especially at the boundaries of larger veins -

and therefore the topology of the network is distorted.

RN

AV |

Blnary detail.) Zoomed in detail.

(c) Skeleton detail. (d) Zoomed in detail.

Figure 4.3.: Skeletonization of a binary detail via thinning implemented in MATLAB.

32

(a) Binary detail.

(c) Skeleton detail.

Figure 4.4.: Skeletonization of a binary detail via thinning implemented in MATLAB.

Countering this without losing information of the highest branching orders proves very
challenging. Features can be “smoothed” to reduce the number of origins of surplus
branches. If we do not want to manually look at problematic regions, every “fix” for a
regional problem also affects the whole image and it is very difficult to find operations
that improve the image in a region without destroying information in other regions as
well.

Another way to get rid of surplus branches is the “pruning” of the network, i.e. cutting
off all branches with a length shorter than a given threshold. This naturally also affects
the small branches belonging to the highest branching orders, which will be lost in the
process. One would need to determine in an automated way whether a short branch
originates in a very large vein and therefore is an unwanted artifact or is situated in a
region of very delicate branches and actually belongs to the network. Such an operation,
though feasible, would be error prone and computationally cumbersome. In contrast, a
vectorization approach natively makes it possible to selectively remove branches according
to their neighborhood.

As the appearance of surplus branches could not be dealt with in a satisfactory way,
we decided to take a less general approach to the problem of skeletonization by using
the information that the features we are interested in are ribbon-like and implement a

skeletonization algorithm based on vectorization of the features.

33

4.3. Skeletonization based on Constrained Delaunay

Triangulation

The second class of approaches to the problem of skeletonization is the vectorization of a
shape and subsequent construction of the skeleton using information about the boundaries
of the shape by iterating only a few times or even only once over the whole image. As the
shape of the vein network consists of ribbon-like parts with many junctions and crossings
and of various widths, the approach proposed by Zou and Yan [12] is a good fit for our
data set.

For the construction of the skeleton, we first need the contours of the shape. On these
contours we can perform a Constrained Delaunay Triangulation (CDT) with the inclusion
of the contour segments as constraints. The result of the CDT-algorithm is a mesh of
triangles. By classifying those triangles into end triangles, normal triangles and junction
triangles, we can find the skeleton segments which approximate the exact skeleton. In
the following, I will describe a customized skeletonization algorithm based on a CDT: I
adapted the algorithm to the problem of the skeletonization of large vein networks, and

I will detail both its operating principles and implementational particulars.

4.3.1. Contour Extraction and Linearization

As a first step, we extract the contours of the shapes that are to be skeletonized. This can
be done in various ways and may already influence the resulting skeleton by a large degree.
The first and simplest approach is to extract every pixel that has at least one background
and one foreground pixel as a neighbor and build the contour with those pixels. This
results in a boundary that consists of a very large amount of pixels. As the triangulation
(described in section triangulates every contour point, this leads to a very large
amount of triangles with extremely sharp angles, as one of their sides, by construction,
has a length of one pixel. This, in turn, slows down the triangulation significantly. Also,
if we select every pixel with one background and one foreground neighbor, this copies all
irregularities, small variations, curves and noise at the boundaries into the contour. The
result is a distorted skeleton that may even contain additional branches originating in
former noise-pixels. To prevent that, the contour has to be linearized before continuing to
work with it: we need to select dominant points representing the contour. The retrieval
of the contour, including several modes for dominant point detection is already available
via OpenCV’s function cv2.findContours (). OpenCV implements the contour retrieval

as suggested in [21]; the available contour approximation modes are:

34

« No approximation - all contour points are treated as dominant points and returned.

e Simple approximation - compresses horizontal, vertical and diagonal segments and

yields the endpoints of the segments as dominant points.

o The two flavors of the Teh-Chin Dominant Point Detection Algorithm (DPDA)
which differ by their curvature measure and further compress the contours, reducing

the number of dominant points.

The journal article [22] offers a thorough description of the DPDA as well as an up-
per boundary for the error between the original contour and the approximating polygon
formed by the dominant points. In the framework the default value for the DPDA is the
selection of the 1-curvature measure because it yields good compression results and is
the faster one of the two flavors of the algorithm. The framework’s function for contour
creation is function [C.7]triangulation_functions.getContours() and it offers several

useful functions for the conversion of the list of contour coordinates into oth<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>