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1. Introduction - Studies of ideal ballooning modes of MHD equilibria reconstructed
from ASDEX experimental data have shown that in this plasma configuration with
relatively small aspect-ratio (A = 4) toroidal effects play an important role, The large
differential displacement of the magnetic surfaces at high 8 and the effects of increased
q and shear in the neighbourhood of the separatrix require highly accurate, genuinely
toroidal reference equilibria and a correspondingly careful treatment of the stability
equations. Detailed stability analyses under this aspect (1] prove ASDEX equilibria to
be close to the f-limit as well as to the marginal ballooning stability limit.

In this paper we extend these investigations to resistive ballooning modes. We present,
in coordinate-invariant form, a closed system of four equations describing the resistive
evolution of velocity and magnetic fields in the high-m stability limit. Subsequently
the Fourier approximation of this set, leading to the resistive ballooning equations of
reference (2], is considered. We formulate a variational approach to this boundary value
problem in four dependent variables with real and imaginary parts of the growth rate
as parameters. Stationary values of the corresponding Lagrangian L are associated
with resistive modes. The resulting growth rates will be represented as functions of the
poloidal flux ¥, the toroidal mode number n and pressure scaling dpnm/dp (p being the
equilibrium and py the marginally-scaled pressure).

2. Theory — For sufficiently large values of the poloidal mode number m the resistive
MHD equations predict the following linear evolution of the velocity field ¥ and the
magnetic induction B from their values in the equilibrium state:
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Here o is the coordinate along the equilibrium magnetic field B with do": EB/B, s
being the field line arc length. The evolution of the four field scalars ¥-B, ®, A and §
is determined by solution of the following closed set of equations:
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f is a local beta value and k the curvature vector:

g = alealole k = (B-V(B/B))/B; (™)
A is the Laplacian A = V-V, ¢p/cy the ratio of the specific heats, 5 the resistivity and p
the mass density. Assuming a time-dependence ~ exp{~t} of the perturbed quantities
with complex growth rate ~y, and Fourier representing them in the neighbourhood of
a localization field line leads to the stability criterion formulated in [2]: The plasma
is unstable with respect to resistive ballooning modes if there are square-integrable
solutions u and v of
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on that line with Real{~y} > 0. Here kg and ky are the obvious decompositions of k in
geodesic and normal components, respectively;

nZn B2(1 + 82)

D=1+ — 10
poy |V (10)
and S is the local shear, a secular quantity given by
v 2 !
5(¥,0,0) = | ‘1‘| (BXVE) - rot(Bx V¥)—32 (11)
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where © is any angle-coordinate along B. The equations (8-9) can be seen to be
equivalent to the stationarity conditions with respect to u of the quadratic functional

+oo

L(1,%,00) = [ £(7,¥,0,00,u(6),1(6))de (12)
with the Lagrange density
ﬂ:%(ﬁT-P-ﬁfuT-Q-u] (13)

u = (u',u?,u®,u*) comprises real and imaginary parts of u and v in equations (8) and
(9) and 11 = du/d© the components du*/d®, k=1,.,4 . Q and P are equilibrium
determined symmetric matrices with nonlinear dependence on the the complex growth
rate . Thus unstable resistive ballooning modes u are those stationary points of L with
Real{} > 0.
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3. Computational Procedure - TRANSP code interpreted radial profile data are
used for the calculation of distributions of toroidal current I and pressure p over the
magnetic surfaces. Corresponding two-dimensional MHD equilibria are determined by
iterative solution of the equilibrium partial differential equation

a
av
applying the Gerching equilibrium code NIVA. R is the distance from the axis of symme-
try, V the volume of the considered magnetic surface, (..) the usual flux surface average
and fp = (dp/d¥) (dV/dI). Resistivity profiles are calculated using experiment data on
Zefrs Ne and T [3]. Discretization of (1) on a sufficiently large interval of the localiza-
tion line in finite elements [4] and appropriate numbering of function values lead to a
finite-dimensional quadratic form L =u” - S -u with a growth-rate dependent system
matrix S(7). For the investigation of resistive ballooning modes we perform a detailed
singular-value analysis of S, the methods will be described elsewhere [5 .

div(V¥/R?) + 4n2uo(1/RE(1/RY 7 + B (1 — 1/RE(1/R%) ) 0 (14)

4, Results - Ideal ballooning stability results for a typical high-f;, ASDEX discharge
are shown in Fig.1, where dpy/dp is plotted as a function of (V/Vs)'/? at the maximum
attained, code-calculated value of 8p ~ 2.26.

It can be seen that I i L. il
the plasma conﬁg‘ura— arginal Pressure Gradiem \"p“ - va .

tion is ballooning sta- Ay at Simall Growth Rate (i 0) ‘

ble on all flux surfaces iy =

as dpy/dp > 1 with a el y ' I
minimum value of 1.15. : l
Fig.2 demonstrates the
destabilizing effect of
resistivity for a partic-
ular magnetic surface
with a value of rf/a = |

(V/Vs)Y? ~ 0.65 with ‘

|

q = 2.04, where the ri-
ght-hand scale refers to | ]
the second stability re- " T : - | e T i o
: 0.50 10
gion. The n-value of
3.32 - 1078 Vm/A for
this surface and the relatively high ideal ballooning stability of ASDEX - for com-
parison we have represented the results for n = 0 by the dashed curves — require an
anomalous large toroidal mode number (n = 500) to make this effect plain. It is inter-
esting to note that at small growth rates a minimum of dpy/dp is observed which moves
to smaller growth rates with decreasing resistivity. This effect must be ascribed to the
stabilizing influence of the compressibility which is separately demonstrated plotting the
undermost curve which is valid for a very small value of cp/cv. Finally, Fig.3 shows the
radial dependence of the growth rate for different values of n, where v was normalized
by multiplication with the Alfven transit time 7, = (uop)/*R/Br (where p is taken on

Magnetic Axis =1 \ﬁ’;’\'u A Separatrix




the considered flux sur-
face and R/Br on the
magnetic axis). As in
the case of ideal bal-
looning modes (Fig.1)
the most unfavourable
flux surfaces with re-
spect to stability are
those with a r/a— val-
ue of about 0.8. Fig.3
illustrates that in the
considered range of gro-
wth rates Real{y} &€
(0.005,0.1) and resis-
tivities only modes with
very high values of n
are of remarkable ef-
fect.
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