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RESISTIVE BALLOONING STABILITY OF ASDEX EQUILIBRIA 

H.P. Zehrfe ld, K. Grassie 

Max-Planck-Inst itut fur PJasmaphysik, EURATOM Association 
D-8046 Garching, Federal Republic of Germany 

1. Introduction - Studies of ideal ballooning modes of MHD equilibria reconstructed 
from ASDEX experimental data have shown that in this plasma configuration with 
relat ively small aspect-ratio (A RI 4) toroidal effects play an important role. The large 
differential displacement of the magnetic surfaces at high {Jp and the effects of increased 
q and shear in the neighbourhood of the separatrix require highly accurate, genuinely 
toroidal reference equilibria and a correspondingly careful treatment of the stability 
equations. Detailed stability analyses under th is aspect [11 prove ASDEX equilibria to 
be close to the p-limit as well as to the marginal ballooning stab ili ty li mit. 
In this paper we extend these investigations to resistive ballooning modes . We present, 
in coordinate-invariant form, a closed system of four equations describing the resistive 
evolution of velocity and magnetic fields in the high-m stability limit. Subsequently 
the Fourier approximation of this set, leading to the resistive ballooning equations of 
reference [21, is considered. We formulate a variational approach to this boundary value 
problem in four dependent variables with real and imaginary parts of the growth rate 
as parameters. Stationary values of the corresponding Lagrangian L are associated 
with resistive modes. The resulting growth rates will be represented as functions of the 
poloidal flux \II, the toroidal mode number n and pressure scaling dpM / dp (p being the 
equilibrium and PM the marginally-scaled pressure). 

2. Theory - For suffic iently large values of the poloidal mode. number m the resistive 
MHD equations predict the following linear evolution of the velocity field v and the 
magnetic induction :B from their values in the equ ilibrium state: 

v = ~,(V.BB+BX(BX(V~ X Vu))) (1) 

- ~o -B = B,(-pB+B x (Bx(VAXVu))) (2) 

Here c is the coordinate along the equilibr ium magnetic fie ld B with dO' = ds/B, s 
being the fie ld line arc length. The evolution of the four field scalars Y·B, ¥, A and p 
is determined by solution of the following closed set of equations: 

(
1/+ f3) aaP = (2k _ (I /+ f3) Vp).(VuXV~) - B'V(VB·~)+Bl,~ap (3) 
cpcvpt cpcvP 

a(v.B ) _ _ 
p - - - = -I'o(Vu x VA)·Vp - B·Vp at 

aA - -
I'°Tt= B .v~ + ~aA 

p aiii 1 
B,a(Tt) = p ';"(B2~A)+2k'(Vp x Vu) 

(4) 

(5) 

(6) 
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f3 is a local beta value and k the curvature vector: 

{J 
_ ~o(CP /c,)p 
- B2 ' k ~ (B·V(B/ B))/B; (7) 

(). is the Laplacian a = 'V·V, cp / cv the ratio of the specific heats, T/ t he resis t ivity and p 

the mass dens ity. Assuming a t ime-dependence,....., expbt} of the perturbed quant it ies 
with complex growth rate /. and Fourier representing them in the neighbourhood of 
a localization fie ld line leads to the stabi lity criterion formulated in /21: The plasma 
is unstable with respect to resistive ballooning modes if t here are square- integrable 
so lutions u and v of 

{
(I+S') } ( dpk,S- kn ,l+S') dp 

B·V ---,B.Vu + 2~od'" 1" "'1 - ~on ---, u + 2"Od" 'V ~ 0 
DIVw l ~ v ~ Iv wl ~ 

(8) 

B .V{...!...B ''\7v} -2J.Lo dp ( n217 + Pi
2 

)kgS- knu _ 
B' dw ~o7 ~o(dp /dw)' IVwl 

_ (n'~( dpk,S- kn ,l+S') ~on'l +P}_ 
""" 2~o dw IVwl + ~on IVw l' + B' {J v - 0 (9) 

on that line with Real{-y} > O. Here kg and kn are the obvious decompositions of k in 
geodesic and normal components , respectively; 

(10) 

and S is the local shear, a secular quantity given by 

IVW I, /9 1 dEl' 
S(w,e, e o) '" - B- Ivw I4(B XVw). rot (B XVw)B.Ve' 

90 

(U) 

where E> is any angle-coordinate along B. The equations (8- 9) can be seen to be 
equivalent to t he stationarity conditions with respect to u of the quad ratic functional 

+= 
Lh, w, eo) ~ / Ch, w, e, eo, u (e), ti (e))de (12) 

-= 
with the Lagrange density 

(13) 

u = (u 1, U 2, u:l , u40 ) comprises real and imaginary parts of u and v in equations (8) and 
(9) and u = du / d E> the components duk / d8, k = 1, .. ,4 . Q and P are equi librium 
determ ined symmetric matrices with nonli near dependence on the the complex growth 
rate j . Thus unstable resistive ballooning modes u are those stationary points of L with 
Real{"t} > o. 
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3. Computational Procedure - TRANSP code interpreted radial profile data are 
used for the calculation of distributions of toroidal current I and pressure p over the 
magnetic surfaces. Corresponding two-dimensional MHD equilibria are determined by 
iterative solution of the equilibrium partial differential equation 

div(V"'/R') + 4.'~o(!/R'( !/R') - 1 + Pp(! - !/R'(!/R')-l) :~ = 0 (14) 

applying the Ge.tching equilibr ium code NIVA. R is the distance from the axis of symme­
try. V the volume of the considered magnetic surface, ( .. ) the usual flux surface average 
and {3p == (dpj d1Jl)(dV Id!) . Resistivity profiles are calculated using experiment data on 
Zeff' ne and Te [3]. Discretization of (1) on a sufficiently large interval of the localiza­
tion line in finite elements [4) and appropriate numbering of function values lead to a 
finite-dimensiona l quadratic form L = UT . S· u with a growth-rate dependent system 
matrix Sb). For the investigation of resistive ballooning modes we perform a detailed 
singular-value analysis of S, the methods will be described elsewhere [5:. 

4. Results - Ideal ballooning stability results for a typical high-Pp ASDEX discharge 
are shown in Fig.I, where dpM/dp is plotted as a function of (V /VB)1/2 at the maximum 
attained, code-calculated value of {Jp ~ 2.26. 

It can be seen that 
the plasma configura­
tion is ballooning sta-

I 

.11 :'"".11 t: ... " , 11 Uil '" 1'1 
ble on all flux surfaces ,\1' 

as dPM/dp > 1 with a '1.11 1 --n 
minimum value of 1.15. 
Fig.2 demonstrates the 
destabilizing effect of 
res istivity for a partic-

ular magnetic surface 1.5 --1-_-~1 = w-
l 

L 
with a value of r /a = 

(V/VB) ' " '" 0.65 with 
q ~ 2.04, where the ri-
ght-hand scale refers to 
the second stability re- U t .L,,--- - _'--_____ .J.-__ 

1.0 gion. The I'J-value of n.:;u 
3.32. 10- 8 Vm / A for ~ 1;'Il ""l i, · ,bi~ ';,, / v lI S'· lm ra tri .~ 

this surface and the relatively high ideal ballooning stability of ASDEX - for com­
parison we have represented the results for '1 = 0 by the dashed curves - require an 
anomalous large toroidal mode number (n = 500) to make this effect plain. It is inter­
esting to note that at small growth rates a minimum of dpM / dp is observed which moves 
to smaller growth rates with decreasing resistivity. This effect must be ascribed to the 
stabilizing influence of the compressibility which is separately demonstrated plotting the 
undermost curve which is valid for a very small vah.lc of cp/cv. Finally, Fig.3 shows the 
radia l dependence of the growth rate for different values of n, where i was normalized 
by mu ltiplication with the Alfven transit time TA = (JJ.opP /2R/ BT (where p is taken on 



the considered flux sur­
face and RjBT on the 
magnetic axis). As in 
the case of ideal bal­
looning mode3 (Fig. 1) 
the most unfavourable 
flux surfaces with re­
spect to stability are 
those with a r/a- val­
ue of about 0.8. Fig.3 
illustrates that in the 
considered range of gro­
wth rates Real{,} E 
(0.005,0.1) and resis­
tivities only modes with 
very high values of n 
are of remarkable ef­
fect . 
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rea-Restrepo and K. 
Riedel. We also would 
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ber for providing us 
with experimental re­
sults of ASDEX in 
TRANSP-code interpre· 
tation. 
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