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Abstract

Quantum mechanics/molecular mechanics (QM/MM) simulations of reactions in solutions

and in solvated enzymes can be performed using the QM/MM-Ewald approach with periodic

boundary conditions (PBC) or a non-periodic treatment with a finite solvent shell (droplet

model). To avoid the changes in QM codes that are required in standard QM/MM-Ewald im-

plementations, we present a general method (Gen-Ew) for periodic QM/MM calculations that

can be used with any QM method in the QM/MM framework. The Gen-Ew approach approx-

imates the QM/MM-Ewald method by representing the PBC potential by virtual charges on

a sphere and the QM density by electrostatic potential (ESP) charges. Test calculations show

that the deviations between Gen-Ew and QM/MM-Ewald results are generally small enough to

justify the application of the Gen-Ew method in the absence of a suitable QM/MM-Ewald im-

plementation. We compare the results from periodic QM/MM calculations (QM/MM-Ewald,

Gen-Ew) to their non-periodic counterparts (droplet model) for five test reactions in water and

for the Claisen rearrangement in chorismate mutase. The periodic and non-periodic QM/MM

treatments give similar free energy profiles for the reactions in solution (umbrella sampling,
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free energy deviations of the order of 1 kcal/mol) and essentially the same energy profile (con-

strained geometry optimizations) for the Claisen rearrangement in chorismate mutase. In all

cases considered, long-range electrostatic interactions are thus well captured by non-periodic

QM/MM calculations in a water droplet of reasonable size (radius of 15–20 Å). This provides

further justification for the wide-spread use of the computationally efficient droplet model in

QM/MM studies of reactions in solution and in enzymes.
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1 Introduction

Solvent effects on chemical reactions have been extensively studied both experimentally and com-

putationally.1–5 In many cases, reactions are strongly affected by the solvent, for example in the

Claisen rearrangement2,3,6–9 or in Diels-Alder reactions.2,3,10,11 The solvent environment may also

change the reaction mechanism by stabilizing or destabilizing particular structures; for example,

the glycine zwitterion does not exist in the gas phase12,13 but dominates in aqueous media.

Solvent effects must clearly be taken into account in realistic simulations of condensed-phase

reactions. Well suited for this purpose are combined quantum mechanics/molecular mechanics

(QM/MM) approaches,14 in which the solute is treated quantum mechanically and the solvent

by classical force fields. Solvent effects often arise from solvent-solute electrostatic interactions:

short-range interactions will normally be dominant, but long-range electrostatics may also play

an important role. Long-range electrostatic interactions are also known to influence the structural

properties of biomolecules, for example of proteins15 and nucleic acids.16,17

Several computational methods are available to treat long-range electrostatics in a QM/MM

framework using periodic boundary conditions (PBC). The first published QM/MM-Ewald method

is designed for application with NDDO-based semiempirical methods: the QM charge density is

modeled by Mulliken charges and the PBC contributions are represented by additional terms that

are added to the Fock matrix.18 A faster implementation of this approach makes use of the parti-

cle mesh Ewald (PME) algorithm.19,20 There are also implementations for QM/MM methods that

employ density functional theory (DFT) as QM component.21,22 All these approaches require mod-

ifications of the underlying QM programs and are thus limited to particular QM methods. A recent

general QM/MM implementation for two- and three-dimensional systems relies on mechanical em-

bedding and thus treats long-range electrostatics at the MM level.23 The original QM/MM-Ewald

method can also be applied in combination with Hartree-Fock (HF) and DFT methods if minimal

basis sets are employed, but the use of Mulliken charges causes instabilities for extended basis

sets; these problems are overcome by representing the QM charge density by "ChElPG" atomic

charges using atom-centered Lebedev grids, which enables QM/MM-Ewald MD simulations with
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HF, DFT, and post-HF QM treatments.24,25 In a recently proposed multiscale method to perform

ab initio QM/MM calculations with periodic boundary conditions, the total energy of the system is

evaluated using the original QM/MM-Ewald method with a semiempirical QM treatment and then

corrected on the fly at the ab initio level of theory within the real space cutoff; in this approach, a

multiple time step technique is applied to minimize the number of costly ab initio calculations and

thus to speed up the QM/MM MD simulations.26

In this article, we first present another generalized QM/MM-Ewald method that can be used

with any QM program and QM method. Thereafter we compare periodic and non-periodic QM/MM

calculations on several test reactions and analyze the influence of long-range electrostatics on en-

ergy and free energy profiles. The comparisons cover the original18 and our generalized QM/MM-

Ewald approach as well as a non-periodic treatment using the standard QM/MM droplet model

with a finite solvent sphere.14

2 Methods

2.1 QM/MM-Ewald method

We start with a brief overview over the original QM/MM-Ewald implementation for semiempiri-

cal QM methods18 to establish notation. The electrostatic energy of a periodic QM/MM system

EPBC
QM/MM is defined as the sum of non-periodic real-space energy contributions (ERS), PBC correc-

tion terms (∆EPBC), and PBC contributions from the MM region (EPBC
MM ):

EPBC
QM/MM = ERS

QM[ρ,ρ]+∆EPBC
QM−QM[ρ,ρ]+ERS

QM−MM[ρ,q]+∆EPBC
QM−MM[ρ,q]+EPBC

MM [q,q] (1)

where ρ represents the electron density and the core charges of the QM atoms, and q denotes the

point charges of the MM atoms. The real-space energy terms ERS
QM and ERS

QM−MM are obtained

from a standard QM/MM calculation on a system obeying the minimum image convention, i.e.

with dimensions that are equal to or less than half of the unit cell box length used in the PBC

4



calculation. For the PBC correction terms ∆EPBC
QM−QM and ∆EPBC

QM−MM it is assumed that the QM

charge density can be approximated with Mulliken charges Q:

EPBC
QM/MM ≈ ERS

QM[ρ,ρ]+∆EPBC
QM−QM[Q,Q]+ERS

QM−MM[ρ,q]+∆EPBC
QM−MM[Q,q]+EPBC

MM [q,q] (2)

Following previous notation,18 we label QM atoms by α and β , MM atoms by i and j, and distance

vectors between atoms are denoted by R (with suitable indices identifying the two atoms). If the

Ewald parameter κ is chosen according to the minimum image convention, the PBC correction

terms can be written as

∆EPBC
QM−QM[Q,Q] =

1
2

NQM

∑
α

NQM

∑
β

QαQβ ∆ψ(Rαβ ) (3)

∆EPBC
QM−MM[Q,q] =

NQM

∑
α

Qα

NMM

∑
j

q j∆ψ(Rα j) (4)

where the so-called18 Ewald pair potential ∆ψ(Rαβ ) is

∆ψ(Rαβ ) =
4π

V ∑
|k|6=0

exp(−k2/4κ2)

k2 · cos(k ·Rαβ )−
erf(κ|Rαβ |)
|Rαβ |

(5)

Here, V is the volume of the unit cell, k is the lattice vector of the reciprocal lattice, and erf(x) is

the error function. The PBC contributions are taken into account during the self-consistent field

(SCF) iterations by adding the following terms to the diagonal Fock matrix elements Fµµ for basis

functions µ at QM atom α:

∆FQM/MM−Ewald
µµ =−

(NQM

∑
β

Qβ ∆ψ(Rαβ )+
NMM

∑
j

q j∆ψ(Rα j)
)

(6)

The QM-QM PBC correction to the Fock matrix (first term in eq. 6) must be recalculated at each

SCF iteration, while the QM-MM PBC correction (second term in eq. 6) is constant since the MM

charges do not change.
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The PBC corrections affect the total energy and the forces on the atoms. Their contribution

to the gradient can be evaluated by taking the first derivative of ∆EPBC
QM−QM and ∆EPBC

QM−MM with

respect to the atomic coordinates. For a given QM atom A at position RA this yields formally:

∂

∂RA
∆EPBC

QM−QM = QA

NQM

∑
β

Qβ

∂

∂RA
∆ψ(RAβ )+

NQM

∑
α

∂Qα

∂RA

NQM

∑
β

Qβ ∆ψ(Rαβ ) (7)

∂

∂RA
∆EPBC

QM−MM = QA

NMM

∑
j

q j
∂

∂RA
∆ψ(RA j)+

NQM

∑
α

∂Qα

∂RA

NMM

∑
j

q j∆ψ(Rα j) (8)

The orbital coefficients, and hence also the Mulliken charges, are variationally optimized in the

SCF procedure. Therefore the Mulliken charge derivatives, ∂Qα/∂RA, are zero at the SCF level.

This results in simplified working equations for the gradient components on the QM atoms (which

hold only approximately when using other types of QM charges, see below):

∂

∂RA
∆EPBC

QM−QM = QA

NQM

∑
β

Qβ

∂

∂RA
∆ψ(RAβ ) (9)

∂

∂RA
∆EPBC

QM−MM = QA

NMM

∑
j

q j
∂

∂RA
∆ψ(RA j) (10)

The gradient components on a given MM atom I at position RI are calculated according to

∂

∂RI
∆EPBC

QM−MM = qI

NQM

∑
β

Qβ

∂

∂RI
∆ψ(RIβ ) (11)

Our implementation of the original QM/MM-Ewald method18 evaluates the PBC corrections to

the energy, the Fock matrix, and the gradient by using eqs. 3-5, eq. 6, and eqs. 9-11, respectively.

2.2 Generalized QM/MM-Ewald method

The main objectives in the development of the generalized QM/MM-Ewald (Gen-Ew) method are

efficiency and flexibility, i.e. it should work with any kind of QM method in QM/MM approaches.
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For this purpose, the theoretical framework of the original QM/MM-Ewald method is retained but

approximations are introduced in the evaluation of the QM/MM PBC correction terms. Motivated

by the concepts underlying the solvated macromolecule boundary potential (SMBP) approach,27

we model the QM density by electrostatic potential (ESP) charges QESP
α at the QM atoms α and

evaluate their interaction with the PBC potential ϕPBC(Rα) to determine the PBC energy correc-

tions:

∆EPBC
QM−QM +∆EPBC

QM−MM =
NQM

∑
α

QESP
α ϕ

PBC(Rα) (12)

ϕ
PBC(Rα) =

1
2

NQM

∑
β

QESP
β

∆ψ(Rαβ )+
NMM

∑
j

q j∆ψ(Rα j) (13)

The PBC potential is projected onto a set of Nvirt virtual charges {qvirt
m } at positions Rm, which

are uniformly distributed on a sphere centered at the geometrical center of the QM part (Figure 1).

ϕ
PBC
approx(Rα)≈

Nvirt

∑
m

qvirt
m

|Rα −Rm|
(14)
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Figure 1: Sphere charges (dark gray) used to represent the PBC potential in the case of ammonium
chloride solvated in water. The solute (QM region) is shown in a ball-and-stick model, while the
solvent molecules (MM region) are indicated as blue lines.

The virtual charges are optimized such that they reproduce the PBC potential ϕPBC(Rα) (eq.

13) at the positions of the QM atoms. As in previous work,27 this is achieved by minimizing the

penalty function

f̃ =
NQM

∑
α

(
ϕ

PBC(Rα)−
Nvirt

∑
m

qvirt
m

|Rα −Rm|

)2

(15)

using the conjugate gradient algorithm. The minimization starts with the virtual charges set to zero

and finishes when ϕPBC is reproduced with an absolute deviation of less than 2.0 · 10−5 au at the

position of every QM atom.

The iterative minimization proceeds as follows. (1) The QM ESP charges are taken from

the previous step. In the very first step, all QM atom charges are assumed to be zero. (2) The

PBC potential ϕPBC is calculated at the position of each QM atom. (3) The PBC potential ϕPBC

is projected on a set of virtual charges. (4) The QM wave function is computed in the field of

the virtual charges and the MM point charges; upon SCF convergence, new QM ESP charges are

calculated. (5) The QM ESP charges are checked for convergence; unless convergence is achieved,
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the algorithm returns to step 2. (6) Upon convergence in step 5, the force contributions from the

PBC potential are computed and added to the gradient. In this procedure, real-space cutoffs for the

QM-MM electrostic interactions may be introduced in steps 2 and 4.

In the original QM/MM-Ewald method, the PBC contributions give rise to extra terms in the

Fock matrix (see above, eq. 6). These contributions are handled in a formally different manner

in the Gen-Ew method: virtual charges representing the PBC potential ϕPBC at the position of

QM atoms are added and incorporated into the core Hamiltonian and the Fock matrix as extra

one-electron terms.

ĤGen−Ew = F̂Gen−Ew =
NQM

∑
α

Nvirt

∑
m

Zαqvirt
m

|Rα −Rm|
−

Nel

∑
ν

Nvirt

∑
m

qvirt
m

|rν −Rm|
(16)

The two terms describe the interactions of the virtual charges with the core charges Zα of the

QM atoms and the electrons (ν) of the QM region, respectively. We note that the corrections

∆FQM/MM−Ewald
µµ are the same for all basis functions µ at QM atom α (eq. 6), whereas the cor-

responding Gen-Ew corrections are evaluated as matrix elements of F̂Gen−Ew and may thus differ

for different basis functions at a given QM atom (eq. 16).

The PBC contributions to the gradient are the derivatives of the PBC energy correction (eq. 12)

with respect to the atomic coordinates. For the QM atoms the differentiation can take advantage of

the virtual-charge representation of the PBC potential (eq. 14) which leads to a simple point-charge

expression in terms of ESP and virtual charges. In the case of the MM atoms, the differentiation

of eqs. 12–13 yields a formula completely analogous to eq. 11, except that the Mulliken charges

are replaced by ESP charges. All PBC contributions to the gradient are thus easily available in the

Gen-Ew method.

One obvious issue is how well the QM/MM-Ewald results can be reproduced by their Gen-

Ew counterparts. Clearly the Mulliken and ESP charges will differ to some extent, and the PBC

potential is mimicked by the virtual charges only approximately (albeit quite accurately). Hence,

there will be differences in the PBC energy corrections as well as in the corresponding gradient

contributions. We note, in particular, that the gradient evaluation in the Gen-Ew method neglects
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the terms involving charge derivatives (eqs. 7–8), which vanish for Mulliken charges but not for

ESP charges (see above). These accuracy issues will be addressed in the following sections through

numerical tests.

3 Test systems

The effects of long-range electrostatics should be particularly pronounced for reactions of charged

species in water. Therefore we chose to study the dissociation of salts (NH4Cl and NH4PO3)18 as

well as the bimolecular nucleophilic substitution (SN2) reaction between chloride and chloromethane

in aqueous solution.28–31 As an example of a reaction of neutral species, we investigated the

Claisen rearrangement of allylvinyl ether in water.32–36 To explore the influence of long-range

electrostatics on the structure of biomolecules, we studied the internal rotation of glycine dipep-

tide (Ace-Gly-NMe) around one of the backbone dihedral angles (ϕ), again in water.37,38 For

these five test systems we compared potential of mean force (PMF) profiles obtained from periodic

simulations (QM/MM-Ewald and Gen-Ew methods) and from non-periodic simulations (droplet

model). We also carried out periodic and non-periodic MD simulations for glycine in water to

check for energy conservation in the NVE ensemble. Finally, we performed a series of constrained

geometry optimizations to compute a potential energy profile of the Claisen rearrangement in the

enzyme chorismate mutase (conversion of chorismate to prephenate).39–60

In the QM/MM calculations, the QM region consisted of the solute (simulations in aqueous

solution) or the substrate (enzymatic reaction). The semiempirical AM1 Hamiltonian61 was used

for ammonium chloride and glycine dipeptide; PM362 for glycine; MNDO/d63 for ammonium

metaphosphate; and PM3-PDDG64,65 for the Claisen rearrangement of allylvinyl ether, the SN2

reaction, and chorismate. The MM region consisted of the solvent (water) and included the protein

environment in the case of the enzymatic reaction (chorismate mutase). MM water was always

represented by the TIP3P model,66 while chorismate mutase was described by the CHARMM

force field.67
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4 Computational details

The original QM/MM-Ewald method and the Gen-Ew method were implemented in a develop-

mental version of the program package ChemShell.68,69 The smooth particle mesh Ewald (SPME)

method70 was also implemented in ChemShell to speed up the time-consuming reciprocal space

calculations. The QM/MM calculations were performed using the MNDO program71 for the

semiempirical QM calculations and the DL_POLY program72 for the MM calculations. Prior to

QM/MM calculations all systems were equilibrated by means of a 500 ps classical NPT molecular

dynamics simulation.

Table 1: Computational setup for the periodic calculations.

System N box size, Å rcut , Å rvdW
cut , Å κ , Å-1

NH4Cl 6861 41x40x41 10.0 11.5 0.34
NH4PO3 7173 40x40x42 10.0 11.5 0.34
SN2 7797 42x41x43 11.5 11.5 0.30
allylvinyl ether 3662 34x33x32 15.5 15.5 0.24
Ace-Gly-NMe 8563 41x46x44 15.5 15.5 0.24
glycine 7312 42x41x41 10.5 11.5 0.32

Table 2: Size of systems in the non-periodic calculations.

System N droplet radius, Å

NH4Cl
3627 20
1890 15
1023 12

NH4PO3 3675 20
SN2 4971 22

allylvinyl ether
3662 20
1886 15

Ace-Gly-NMe 3610 20
glycine 12766 30

Specific choices for the individual test systems are shown in Table 1 and Table 2. For each

test system, the setup for the periodic MD simulations is specified in Table 1 in terms of the total

number of atoms N, the box size, the cut-offs for the real-space electrostatics (rcut) and the van-

der-Waals (vdW) interactions (rvdW
cut ), and the Ewald parameter κ . The chosen system size in the
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non-periodic MD simulations is given in Table 2 in terms of N and the radius of the droplet. In

the following, we document the computational options that were generally applied throughout this

study for the various types of calculations.

Periodic MD simulations. Group-based cut-offs were applied for the real-space electrostatics

and the van-der-Waals (vdW) interactions (see Table 1); i.e. a water molecule was added to the

cut-off list if any of its atoms was less than the cut-off distance from any QM atom. The SPME

method was employed in all periodic simulations for the reciprocal summation between MM sites

using a grid size of ∼ 1 Bohr. In the Gen-Ew calculations, the QM ESP charges were considered

converged when the root-mean-square deviation (rmsd) in successive iterations dropped below

1.0 · 10−5, and the radius of the sphere containing the virtual charges was set equal to the cut-off

for the real-space electrostatics plus 2 Å.

Free energy calculations. The TIP3P water molecules were kept rigid with SHAKE con-

straints.73 All MD simulations were performed under NVT conditions at 300 K, the temperature

was controlled with the Nosé-Hoover chain thermostat,74–76 and the time step was chosen to be

1 fs. The PMF profiles for the chosen test reactions were determined using umbrella sampling.

The umbrella sampling parameters adopted for the different systems are summarized in Table 3.

Each umbrella sampling window was equilibrated for 10 ps followed by a production run of 40

ps (90 ps in the glycine dipeptide Ace-Gly-NMe case). The weighted histogram analysis method

(WHAM)77 was employed to determine the PMF as a function of a reaction coordinate.

Table 3: Umbrella sampling: chosen test systems, distances d used as reaction coordinate, number
M of sampling windows, and restraining force constants in Hartree/Bohr2.

System Reaction coordinate M Force constant
NH4Cl d(N-Cl) 33 0.03
NH4PO3 d(N-P) 32 0.03
SN2 d(C-Cl)-d(C-Cl’) 42 0.05
allylvinyl ether d(C-C)-d(C-O) 45 0.30
Ace-Gly-NMe dihedral angle ϕ 36 0.05

Geometry optimizations. The Claisen rearrangement from chorismate to prephenate in the

chorismate mutase enzyme was studied by QM/MM potential energy scans. The QM region in-
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cluded only the reacting molecule and consisted of 24 atoms with a net overall charge of -2. Geom-

etry optimizations were performed using hybrid delocalized internal coordinates.78 The optimized

region comprised all amino acid residues and water molecules containing atoms within a distance

of 6 Å from any atom of the QM part; the coordinates of more distant protein residues and solvent

molecules were kept fixed. The QM-MM electrostatic interactions were treated by electrostatic

embedding.79

Non-periodic calculations. Non-periodic QM/MM calculations were performed using the

droplet model. The solute was first solvated in a water box and equilibrated by the means of 500

ps molecular dynamics in the NPT ensemble. Thereafter the system was truncated to generate

a droplet model with the solute solvated in the water ball. In the non-periodic MD simulations,

we either used spherical boundary conditions or simply froze the outer solvent layer to prevent

evaporation. In case of spherical boundary conditions, we chose a central atom (one of the solute

atoms) and applied a harmonic restraint that exerts a force acting towards the central atom on every

atom farther away than some distance x0 from the central atom. This distance x0 was chosen such

that the water ball keeps the proper volume. No cut-off for QM-MM electrostatic interactions was

applied in the droplet model calculations.

5 Results

5.1 Validation of the Gen-Ew method

One key feature of the Gen-Ew approach is that it represents the PBC potential by virtual sphere

charges and the QM density by ESP charges. These approximations cause deviations between the

results from Gen-Ew and QM/MM-Ewald calculations, which will depend on the chosen number

of virtual sphere charges. This is illustrated in Figure 2 for the gradient components at the QM

atoms of the NH4Cl/water test system.
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Figure 2: Mean absolute deviations (MAD, left) and maximum absolute deviations (MAX, right)
between Gen-Ew and QM/MM-Ewald results: gradient components at the QM atoms of the
NH4Cl/water test system.

The mean absolute deviations (MAD) and maximum absolute deviations (MAX) of the Gen-

Ew QM gradient components from the QM/MM-Ewald reference values are around 5.5 ·10−5 and

1.3 · 10−4 au, respectively, for 20 or more virtual sphere charges. Such deviations are not critical

for QM/MM geometry optimizations, because the normally chosen convergence criterion for the

maximum gradient component is considerably higher (typically 4.5 · 10−4 au). In this sense, the

QM/MM gradient calculation in the Gen-Ew approach can be considered converged already for a

rather small number of virtual sphere charges (default choice: 80).

Table 4: Comparison between QM/MM-Ewald and Gen-Ew results for three test systems: MAX
and MAD deviations in the gradient components (see text), deviation in the total energy ∆E, and
computation times.

System MAX, au MAD, au ∆E, au
single-point cpu time, s

QM/MM-Ewald Gen-Ew
NH4Cl in water 1.3 ·10−4 5.6 ·10−5 < 1 ·10−5 5.3 6.2
allylvinyl ether in water 9.0 ·10−5 3.9 ·10−5 7 ·10−5 3.1 3.8
chorismate mutase 2.3 ·10−4 7.6 ·10−5 2.6 ·10−4 215 222

Further numerical comparisons between QM/MM-Ewald and Gen-Ew results are collected in

Table 4. Evidently, the deviations are of similar magnitude for all three test systems, typically less

than 10−4 au for the MAD value (gradient) and of the order of 10−4 au for the total energy. The

computation time for a single-point energy and gradient calculation is slightly higher for Gen-Ew
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compared with QM/MM-Ewald (Table 4). This is because the Gen-Ew method is by construction

slower since it requires several QM computations (usually 2-3) and virtual charge evaluations to

converge the QM ESP charges.

We also checked the importance of the contributions from ESP charge derivatives, ∂Qα

∂RA
, in the

gradient calculations for the Gen-Ew approach (eqs. 9–10). Without inclusion of these contribu-

tions we observed maximum absolute deviations and mean absolute deviations of the QM gradient

of the order 10−5 au compared with finite-difference reference values (Table 5). The contributions

from the ESP charge derivatives are thus not zero but small enough to obtain sufficiently accurate

QM gradients without calculating them.

Table 5: Comparison between Gen-Ew results with and without contributions from ESP charge
derivatives for two test systems: MAX and MAD deviations in the gradient components (see text).

System MAX, au MAD, au
NH4Cl in water 7.9 ·10−5 2.5 ·10−5

allylvinyl ether in water 4.9 ·10−5 1.1 ·10−5

We now address the origin of the deviations between the QM/MM-Ewald and Gen-Ew results.

As already described above, the PBC contributions are handled in a formally different manner in

these approaches, and the PBC potential is mimicked by the virtual charges only approximately

(with high but finite accuracy). The second distinction is that the QM density is represented by

Mulliken charges in the QM/MM-Ewald method and by ESP charges in the Gen-Ew method.

These differences are illustrated for the NH4Cl/water test system in Table 6 and Figure 3. They

are fairly small but non-negligible; for example, during the MD simulation the ESP charges of the

Cl atom are less negative than the Mulliken charges (average values: -0.834 vs. -0.891), and they

fluctuate somewhat more (standard deviations: 0.034 vs. 0.029).
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Table 6: Average QM charges during MD simulations of the NH4Cl/water test system: QM/MM-
Ewald (Mulliken) versus Gen-Ew (ESP).

QM/MM-Ewald Gen-Ew
N -0.079 0.172
H 0.252 0.212
H 0.265 0.170
H 0.275 0.196
H 0.217 0.163
Cl -0.930 -0.913

Figure 3: QM charge of the Cl atom during MD simulations of the NH4Cl/water test system:
QM/MM-Ewald (Mulliken, black curve) versus Gen-Ew (ESP, red curve).

Finally, we examine energy conservation during MD simulations in the NVE ensemble. We

performed QM-only (PM3) simulations of a single glycine molecule in the gas phase as well as

non-periodic and periodic QM/MM (PM3/TIP3P) simulations of the glycine/water test system; in

the non-periodic QM/MM MD simulations the outer water layer was frozen such that the same

number of atoms were free to move in the periodic and non-periodic calculations. In all cases,

standard SCF convergence thresholds were adopted for the energy (10−8 eV) and for the diagonal

elements of the density matrix (10−8). In the QM-only MD simulations with a time step of 1 fs,

the total energy remained constant and fluctuated within 0.5 kcal/mol (Figure 4); upon decreasing

the time step in the QM-only MD simulations from 1 to 0.1 fs, the root-mean square fluctuation in
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the energy dropped from 0.074 to 0.0009 kcal/mol (data not shown). The same behavior was found

in the non-periodic QM/MM MD simulations of the glycine/water test system with a time step of

1 fs using the droplet model (Figure 5). By contrast, the total energy was not conserved in the

periodic QM/MM MD simulations, neither for the QM/MM-Ewald nor for the Gen-Ew method:

in both cases, there was a change of about 10 kcal/mol within 100 ps (Figure 6). This may hap-

pen because both methods use a cut-off scheme in the PBC treatment by construction (minimum

image convention): in the inner region up to a cut-off (rcut , see Table 1) the MM point charges

interact with the QM density directly, while outside this region the MM point charges interact with

Mulliken (QM/MM-Ewald) or ESP (Gen-Ew) charges representing the QM density. This will cre-

ate problems when MM molecules cross the cut-off border between the two regions during MD

simulations, leading to an inherent slight discontinuity of the computed energy, which will in turn

cause some slight discontinuity in the computed gradient. In view of these issues, we performed all

following QM/MM-Ewald and Gen-Ew MD simulations in the NVT ensemble (section 5.2). We

also note that such problems do not arise in QM/MM PBC geometry optimizations with a frozen

outer region (i.e. with the optimization restricted to the relevant part of the inner region, as often

done in practice).

Figure 4: QM-only MD simulations in the NVE ensemble: total energy versus time for one glycine
molecule (see text).
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Figure 5: Non-periodic QM/MM MD simulations in the NVE ensemble using the droplet model:
total energy versus time for the glycine/water test system.

Figure 6: Periodic MD simulations in the NVE ensemble using the QM/MM-Ewald and Gen-Ew
methods: total energy versus time for the glycine/water test system.

5.2 Free energy calculations

5.2.1 Dissociation of salts

Ammonium chloride. PMF profiles for NH4Cl dissociation in water were determined from sim-

ulations with periodic boundary conditions using the standard QM/MM-Ewald and the Gen-Ew
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methods and from non-periodic calculations with spherical boundary conditions (SBC); in the lat-

ter case, the nitrogen atom of the solute served as central SBC atom.

The computed PMF profiles are shown in Figure 7. They are qualitatively similar with free

energy barriers of 5.5-6.0 kcal/mol from the periodic calculations and 5.5 kcal/mol from the non-

periodic calculations with a 20 Å solvent sphere; they all become rather flat beyond an N–Cl

separation of 6 Å. The three PMF profiles in Figure 7 generally agree to within 1 kcal/mol over the

whole range of N–Cl distances and have the same shape.

The same system was studied previously at the AM1/TIP3P level using the standard QM/MM-

Ewald method.18 The previously reported PMF curve for NH4Cl dissociation is similar to the one

obtained presently but has a slightly smaller free energy barrier of 3.5 kcal/mol.18 These small

deviations reflect small differences in the chosen computational protocols, for example concerning

the use of different vdW parameters for QM/MM interactions and of different MD ensembles

(NVT vs. NPT).

Figure 7: Potential of mean force profiles for ammonium chloride dissociation in water from
AM1/TIP3P calculations: periodic and non-periodic simulations.

We also examined the question of how large the solvent shell should be in non-periodic calcu-

lations to properly capture all QM/MM electrostatic interactions. For this purpose, we performed

two additional non-periodic simulations in water spheres with radii of 12 and 15 Å (Figure 8).
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Figure 8: Potential of mean force profiles for ammonium chloride dissociation in water from
AM1/TIP3P calculations: non-periodic simulations with water spheres of different size.

The PMF profiles from the non-periodic simulations with water spheres of 20, 15, and 12 Å

are generally similar, especially at small N–Cl distances. However, in the case of the 12 Å system,

a deviating behavior is observed beyond an N–Cl separation of 7.5 Å, with the energy falling off

too quickly (Figure 8). This is easily rationalized: in this calculation the NH4
+ fragment is located

at the center of the sphere (SBC convention), and hence Cl- moves towards the surface; at an N–Cl

separation of 7.5 Å the Cl- ion is only 4.5 Å away from the surface, which is apparently too close

for an adequate inclusion of all relevant interactions with the bulk solvent. This example serves as

a reminder that a sufficiently large solvent shell is required in non-periodic QM/MM calculations

for a realistic treatment of solute-solvent interactions.

Ammonium metaphosphate. The periodic and non-periodic QM/MM simulations yield es-

sentially the same PMF profiles for dissociation of ammonium metaphosphate in water (Figure 9).

These profiles are barrierless and become flat beyond an N–P separation of 6 Å.
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Figure 9: Potential of mean force profiles for ammonium metaphosphate dissociation in water from
QM(MNDO/d)/TIP3P calculations: periodic and non-periodic simulations.

5.2.2 Claisen rearrangement of allylvinyl ether

The Claisen rearrangement is a C-C bond forming pericyclic reaction (Figure 10) that is accelerated

in aqueous solutions.

Figure 10: Claisen rearrangement of allylvinyl ether.

Two non-periodic QM/MM simulations were performed in water balls with radii of 15 and 20

Å using spherical boundary conditions, with the oxygen atom of the solute serving as the central

atom (for SBC). The reaction coordinate was chosen to be the difference between the distances in

the forming C-C bond and the breaking C-O bond.

21



Figure 11: Potential of mean force profiles for the Claisen rearrangement of allylvinyl ether in
water from PM3-PDDG/TIP3P calculations: periodic and non-periodic simulations.

Figure 12: Potential of mean force profiles for the Claisen rearrangement of allylvinyl ether in
water from periodic QM/TIP3P calculations (Gen-Ew; QM = PM3-PDDG, HF/STO-3G, HF/3-
21G, BLYP/STO-3G, BLYP/3-21G).

The periodic and non-periodic QM/MM simulations give almost identical PMF profiles for the

Claisen rearrangement of allylvinyl ether in water (Figure 11), with free energy barriers and re-

action free energies of about 40 and 20 kcal/mol, respectively. The four computed PMF profiles

generally agree to within 1-2 kcal/mol throughout the entire reaction. In the periodic calculations,
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the QM/MM-Ewald curve is well reproduced at the Gen-Ew level, and in the non-periodic calcu-

lations, the results are apparently well converged already for the smaller water sphere (radius of 15

Å). The close similarity between the PMF curves from the periodic and non-periodic simulations

suggests that long-range electrostatic interactions in this reaction are well captured by the use of a

finite water ball.

To illustrate that the Gen-Ew approach can be used with any QM method, we performed free

energy QM/MM calculations of the Claisen rearrangement reaction using the Hartree-Fock (HF)

method and density functional theory (DFT) as QM components (Figure 12). To minimize the

computational effort, we applied the minimal STO-3G and the split-valence 3-21G basis sets. The

computed free energy barriers from the HF/MM calculations bracket the PM3-PDDG/MM value

while those from the DFT/MM calculations are significantly lower.

5.2.3 Chloride exchange reaction

In the simple halide exchange SN2 reaction, Cl’- + CH3Cl → CH3Cl’ + Cl-, one may expect to

see pronounced long-range electrostatic effects. Therefore we investigated this reaction using both

non-periodic and periodic QM/MM free energy calculations. In the model system for the non-

periodic simulations, the outer 4 Å water layer was frozen to avoid evaporation.
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Figure 13: Potential of mean force profiles for the chloride exchange reaction in water from PM3-
PDDG/TIP3P calculations: periodic and non-periodic simulations.

The chloride exchange reaction is symmetric so that it is sufficient to calculate only half of the

PMF profile in each case. All computed PMF curves have similar shapes: they are quite flat in

the entrance and exit channels (reaction coordinate below -3 Å and above +3 Å, solvent-shielded

reactants and products, respectively), and there is a shallow minimum at closer distances (ion-

dipole complex) before the PMF profiles rise sharply upon approaching the symmetric transition

state (Figure 13). The free energy barriers obtained from the periodic and non-periodic simulations

lie in the range of 28.5-29.0 kcal/mol and are thus close to each other. Apparently, this reaction

can be described equally well by periodic and non-periodic QM/MM simulations.

5.2.4 Glycine dipeptide rotation

Finally, we studied the internal rotation of glycine dipeptide Ace-Gly-NMe in water (around the

backbone dihedral angle ϕ , Figure 14) using periodic and non-periodic QM/MM simulations. Non-

periodic simulations were performed in a water ball with a radius of 20 Å using spherical boundary

conditions, with the Cα atom of the solute as the central atom (for SBC).
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Figure 14: Schematic representation of the glycine dipeptide molecule. The backbone dihedral
angle ϕ is shown.

Figure 15: Potential of mean force profiles for the rotation of glycine dipeptide in water around the
backbone dihedral angle ϕ: periodic and non-periodic AM1/TIP3P simulations.

The computed PMF profiles from periodic and non-periodic QM/MM simulations are again

quite similar over the whole range of dihedral angles, with minor deviations of less than 1 kcal/mol

(Figure 15). The free energy barriers to internal rotation are calculated to be around 4.5 kcal/mol

(non-periodic) and 5.0 kcal/mol (periodic).
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5.3 Geometry optimization

The enzyme chorismate mutase catalyzes the Claisen rearrangement of chorismate to prephenate

(Figure 16). The setup for chorismate mutase was adapted from previous work of our group.80 The

system was solvated in a water box containing 16966 water molecules (TIP3P) and equilibrated by

means of a 500 ps classical MD simulation in the NPT ensemble using the NAMD program.81 For

the non-periodic calculations it was truncated such that only water molecules within 12 Å of the

protein were kept. The difference between the distances in the forming C-C bond and the breaking

C-O bond was chosen as reaction coordinate. The geometries along the reaction coordinate were

optimized using the periodic QM/MM-Ewald and Gen-Gw approaches as well as a non-periodic

QM/MM treatment with a 20 Å water sphere.

Figure 16: Claisen rearrangement from chorismate to prephenate catalyzed by chorismate mutase.
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Figure 17: Potential energy profile of the Claisen rearrangement in chorismate mutase from
AM1/CHARMM calculations.

The computed potential energy profiles are virtually indistinguishable (Figure 17). Evidently,

the adopted periodic and non-periodic procedures capture the long-range effects of the protein

environment in an essentially equivalent manner.

6 Conclusions

We present a general method (Gen-Ew) for periodic QM/MM calculations that can be used with

any QM method, without requiring changes in the QM software. Being an approximation to the

established QM/MM-Ewald method, the Gen-Ew approach represents the PBC potential by vir-

tual sphere charges and the QM density by ESP charges. The deviations between Gen-Ew and

QM/MM-Ewald results are generally small enough to justify application of the Gen-Ew method.

We report free energy calculations for five test reactions in water and potential energy scans for

the Claisen rearrangement in chorismate mutase using periodic QM/MM calculations (QM/MM-

Ewald, Gen-Ew) as well as non-periodic QM/MM calculations (droplet model). The periodic

and non-periodic QM/MM treatments give similar PMF profiles for the test reactions in solution

(free energy deviations of the order of 1 kcal/mol) and essentially the same energy profile for the
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reaction in chorismate mutase. Non-periodic QM/MM calculations in a water droplet of reasonable

size (radius of 15–20 Å) thus appear to capture long-range electrostatic interactions well enough in

all cases considered presently. This provides further justification for the use of the computationally

efficient droplet model in QM/MM studies of reactions in solution and in enzymes.

Acknowledgement

We acknowledge support from the Cluster of Excellence RESOLV (EXC 1069) funded by the

Deutsche Forschungsgemeinschaft.

28



References

(1) Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th edition;

Wiley-VCH: Weinheim, 2010.

(2) Li, C.-J. Chem. Rev. 1993, 93, 2023–2035.

(3) Li, C.-J. Chem. Rev. 2005, 105, 3095–3165.

(4) Cramer, C. J.; Truhlar, G., Donald Chem. Rev. 1999, 99, 2161–2200.

(5) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3094.

(6) White, W. N.; Wolfarth, E. F. J. Org. Chem. 1970, 35, 2196–2199.

(7) White, W. N.; Wolfarth, E. F. J. Org. Chem. 1970, 35, 3585–3585.

(8) Gajewski, J. J.; Jurayj, J.; Kimbrough, D. R.; Gande, M. E.; Ganem, B.; Carpenter, B. K. J.

Am. Chem. Soc. 1987, 109, 1170–1186.

(9) Brandes, E.; Grieco, P. A.; Gajewski, J. J. J. Org. Chem. 1989, 54, 515–516.

(10) Rideout, D. C.; Breslow, R. J. Am. Chem. Soc. 1980, 102, 7816–7817.

(11) Breslow, R. Acc. Chem. Res. 1991, 24, 159–164.

(12) Junk, G.; Svec, H. J. Am. Chem. Soc. 1963, 85, 839–845.

(13) Ding, Y.; Krogh-Jespersen, K. Chem. Phys. Lett. 1992, 199, 262–266.

(14) Senn, H. M.; Thiel, W. Angew. Chem., Int. Ed. 2009, 48, 1198–1229.

(15) Piana, S.; Lindorff-Larsen, K.; Dirks, R. M.; Salmon, J. K.; Dror, R. O.; Shaw, D. E. PLoS

One 2012, 7, e39918.

(16) York, D. M.; Yang, W.; Lee, H.; Darden, T.; Pedersen, L. G. J. Am. Chem. Soc. 1995, 117,

5001–5002.

29



(17) Norberg, J.; Nilsson, L. Biophys. J. 2000, 79, 1537–1553.

(18) Nam, K.; Gao, J.; York, D. M. J. Chem. Theory Comput. 2005, 1, 2–13.

(19) Walker, R. C.; Crowley, M. F.; Case, D. A. J. Comput. Chem. 2008, 29, 1019–1031.

(20) Seabra, G. d. M.; Walker, R. C.; Elstner, M.; Case, D. A.; Roitberg, A. E. J. Phys. Chem. A

2007, 111, 5655–5664.

(21) Laino, T.; Mohamed, F.; Laio, A.; Parrinello, M. J. Chem. Theory Comput. 2006, 2, 1370–

1378.

(22) Sanz-Navarro, C. F.; Grima, R.; García, A.; Bea, E. A.; Soba, A.; Cela, J. M.; Ordejón, P.

Theor. Chem. Acc. 2010, 128, 825–833.

(23) Doll, K.; Jacob, T. J. Theor. Comput. Chem. 2015, 14, 1550054.

(24) Holden, Z. C.; Richard, R. M.; Herbert, J. M. J. Chem. Phys. 2013, 139, 244108.

(25) Holden, Z. C.; Richard, R. M.; Herbert, J. M. J. Chem. Phys. 2015, 142, 059901.

(26) Nam, K. J. Chem. Theory Comput. 2014, 10, 4175–4183.

(27) Benighaus, T.; Thiel, W. J. Chem. Theory Comput. 2009, 5, 3114–3128.

(28) Kuechler, E. R.; York, D. M. J. Chem. Phys. 2014, 140, 054109.

(29) Basilevsky, M. V.; Chudinov, G. E.; Napolov, D. V. J. Phys. Chem. 1993, 97, 3270–3277.

(30) Park, K.; Götz, A. W.; Walker, R. C.; Paesani, F. J. Chem. Theory Comput. 2012, 8, 2868–

2877.

(31) Chandrasekhar, J.; Smith, S. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 154–163.

(32) Cramer, C. J.; Truhlar, D. G. J. Am. Chem. Soc. 1992, 114, 8794–8799.

(33) Gao, J. J. Am. Chem. Soc. 1994, 116, 1563–1564.

30



(34) Severance, D. L.; Jorgensen, W. L. J. Am. Chem. Soc. 1992, 114, 10966–10968.

(35) Jorgensen, W. L.; Blake, J. F.; Lim, D.; Severance, D. L. J. Chem. Soc., Faraday Trans. 1994,

90, 1727.

(36) Davidson, M. M.; Hillier, I. H.; Hall, R. J.; Burton, N. A. J. Am. Chem. Soc. 1994, 116,

9294–9297.

(37) Gould, I. R.; Cornell, W. D.; Hillier, I. H. J. Am. Chem. Soc. 1994, 116, 9250–9256.

(38) Iwaoka, M.; Okada, M.; Tomoda, S. J. Mol. Struct.:THEOCHEM 2002, 586, 111–124.

(39) Lyne, P. D.; Mulholland, A. J.; Richards, W. G. J. Am. Chem. Soc. 1995, 117, 11345–11350.

(40) Martí, S.; Andrés, J.; Moliner, V.; Silla, E.; Tuñón, I.; Bertrán, J. J. Phys. Chem. B 2000, 104,

11308–11315.

(41) Martí, S.; Andrés, J.; Moliner, V.; Silla, E.; Tuñón, I.; Bertrán, J. Theor. Chem. Acc. 2001,

105, 207–212.

(42) Ranaghan, K. E.; Ridder, L.; Szefczyk, B.; Sokalski, W. A.; Hermann, J. C.; Mulholland, A. J.

Mol. Phys. 2003, 101, 2695–2714.

(43) Lee, Y. S.; Worthington, S. E.; Krauss, M.; Brooks, B. R. J. Phys. Chem. B 2002, 106, 12059–

12065.

(44) Martí, S.; Andrés, J.; Moliner, V.; Silla, E.; Tuñón, I.; Bertrán, J.; Field, M. J. J. Am. Chem.

Soc. 2001, 123, 1709–1712.

(45) Guo, H.; Cui, Q.; Lipscomb, W. N.; Karplus, M. Proc. Natl. Acad. Sci. U. S. A. 2001, 98,

9032–9037.

(46) Hur, S.; Bruice, T. C. J. Am. Chem. Soc. 2003, 125, 1472–1473.

31



(47) Martí, S.; Andrés, J.; Moliner, V.; Silla, E.; Tuñón, I.; Bertrán, J. J. Mol. Struct.:THEOCHEM

2003, 632, 197–206.

(48) Martí, S.; Andrés, J.; Moliner, V.; Silla, E.; Tuñón, I.; Bertrán, J. J. Am. Chem. Soc. 2004,

126, 311–319.

(49) Martí, S.; Andrés, J.; Moliner, V.; Silla, E.; Tuñón, I.; Bertrán, J. Chem. - Eur. J. 2003, 9,

984–991.

(50) Ranaghan, K. E.; Ridder, L.; Szefczyk, B.; Sokalski, W. A.; Hermann, J. C.; Mulholland, A. J.

Org. Biomol. Chem. 2004, 2, 968–980.

(51) Claeyssens, F.; Ranaghan, K. E.; Manby, F. R.; Harvey, J. N.; Mulholland, A. J. Chem. Com-

mun. 2005, 5068.

(52) Zhang, X.; Zhang, X.; Bruice, T. C. Biochemistry 2005, 44, 10443–10448.

(53) Szefczyk, B.; Mulholland, A. J.; Ranaghan, K. E.; Sokalski, W. A. J. Am. Chem. Soc. 2004,

126, 16148–16159.

(54) Szefczyk, B.; Claeyssens, F.; Mulholland, A. J.; Sokalski, W. A. Int. J. Quantum Chem. 2007,

107, 2274–2285.

(55) Giraldo, J.; Roche, D.; Rovira, X.; Serra, J. FEBS Lett. 2006, 580, 2170–2177.

(56) Ishida, T.; Fedorov, D. G.; Kitaura, K. J. Phys. Chem. B 2006, 110, 1457–1463.

(57) Crehuet, R.; Field, M. J. J. Phys. Chem. B 2007, 111, 5708–5718.

(58) Claeyssens, F.; Ranaghan, K. E.; Lawan, N.; Macrae, S. J.; Manby, F. R.; Harvey, J. N.;

Mulholland, A. J. Org. Biomol. Chem. 2011, 9, 1578–1590.

(59) Senn, H. M.; Kästner, J.; Breidung, J.; Thiel, W. Can. J. Chem. 2009, 87, 1322–1337.

32



(60) Claeyssens, F.; Harvey, J. N.; Manby, F. R.; Mata, R. A.; Mulholland, A. J.; Ranaghan, K. E.;

Schütz, M.; Thiel, S.; Thiel, W.; Werner, H.-J. Angew. Chem., Int. Ed. 2006, 45, 6856–6859.

(61) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107,

3902–3909.

(62) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209–220.

(63) Thiel, W.; Voityuk, A. A. J. Phys. Chem. 1996, 100, 616–626.

(64) Repasky, M. P.; Chandrasekhar, J.; Jorgensen, W. L. J. Comput. Chem. 2002, 23, 1601–1622.

(65) Tubert-Brohman, I.; Guimarães, C. R. W.; Repasky, M. P.; Jorgensen, W. L. J. Comput. Chem.

2004, 25, 138–150.

(66) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem.

Phys. 1983, 79, 926.

(67) MacKerell, A. D. et al. J. Phys. Chem. B 1998, 102, 3586–3616.

(68) Sherwood, P. et al. J. Mol. Struct:THEOCHEM 2003, 632, 1–28.

(69) Metz, S.; Kästner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. Wiley Interdiscip. Rev.: Comput.

Mol. Sci. 2014, 4, 101–110.

(70) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem.

Phys. 1995, 103, 8577.

(71) Thiel, W. MNDO Program, Version 6.1, Mülheim an der Ruhr, Germany, 2013.

(72) Smith, W.; Forester, T. J. Mol. Graphics 1996, 14, 136–141.

(73) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. J. Comput. Phys. 1977, 23, 327–341.

(74) Nosé, S. J. Chem. Phys. 1984, 81, 511–519.

33



(75) Nosé, S. Mol. Phys. 1984, 52, 255–268.

(76) Hoover, W. Phys. Rev. A 1985, 31, 1695–1697.

(77) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. J. Comput.

Chem. 1992, 13, 1011–1021.

(78) Billeter, S. R.; Turner, A. J.; Thiel, W. Phys. Chem. Chem. Phys. 2000, 2, 2177–2186.

(79) Bakowies, D.; Thiel, W. J. Phys. Chem. 1996, 100, 10580–10594.

(80) Benighaus, T.; Thiel, W. J. Chem. Theory Comput. 2011, 7, 238–249.

(81) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.;

Skeel, R. D.; Kalé, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781–1802.

34



Graphical TOC Entry

35


	Introduction
	Methods
	QM/MM-Ewald method
	Generalized QM/MM-Ewald method

	Test systems
	Computational details
	Results
	Validation of the Gen-Ew method
	Free energy calculations
	Dissociation of salts
	Claisen rearrangement of allylvinyl ether
	Chloride exchange reaction
	Glycine dipeptide rotation

	Geometry optimization

	Conclusions



