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Abstract 

 
Animal habitats are highly complex and encode a surfeit of potentially meaningful 

information relevant to an animal’s immediate and future survival. Animals must sense 

and decode this complex environmental information in order to initiate an optimal 

behavioural response capable of meeting its survival requirements. Some environmental 

stimuli may elicit innate or learned attraction or aversion, while others may trigger 

courtship behaviour or grooming. However, the same stimuli may have different meaning 

to the animal depending on its internal state and the presence or absence of other stimuli. 

Thus, sensory cues often conflict with one another, requiring the animal to decide on 

which sensory objects to respond to.  

 

Like all animals, the fruit fly Drosophila melanogaster must resolve this sensory 

conflict within its olfactory environment. An ecologically relevant example of this is the 

conflict between the strongly aversive odour carbon dioxide (CO2), which is emitted by 

fermenting fruit, Drosophila’s primary food source, and vinegar volatiles, which include 

many attractive products of fermentation. It has been shown that when starved, the fruit fly 

Drosophila melanogaster is capable of overcoming its innate aversion to CO2 to approach 

the conflicting food odour vinegar (Bräcker et al., 2013). This implies a neural mechanism 

whereby a neural representation of vinegar is able to suppress the innate capability of CO2 

to drive aversion behaviour. It was found that a structure in the fly brain commonly 

associated with olfactory learning, the mushroom body (MB), is required for processing 

innate CO2 aversion in a starvation dependent manner (Bräcker et al., 2013). This 

suggested a possible common neural substrate for both learned and innate sensory 

processing and behaviour execution. 

 

To examine a possible role for the Drosophila MB in weighing conflicting 

olfactory inputs I conducted a systematic olfactory behavioural screen in which I tested 

responses to CO2, vinegar, and the conflicting CO2 plus vinegar. During testing MB 

neurons were thermogenetically inactivated via the targeted expression of UAS-Shibirets1 

to the three primary populations of neurons composing the MB: MB output neurons 

(MBON), MB neuromodulatory input neurons, and MB Kenyon cell (KC) interneurons. 

The behavioural screen recapitulated data previously obtained in our lab identifying the 
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α’/β’ KCs as playing the dominant role in representing CO2 (Bräcker et al., 2013). The 

screen also identified MBONs innervating the β’2 region of the MB horizontal lobe as 

being required for CO2 avoidance. Subsequent optogenetic behavioural experiments 

demonstrated that the same MBONs were sufficient to drive aversive behaviour, providing 

a putative MB circuitry for mediating CO2 aversion. Additional behavioural experiments 

and calcium imaging revealed that dopaminergic neurons (DAN) innervating the same β’2 

anatomical compartment represent vinegar, and that their activation is sufficient to reduce 

CO2 aversion. This observation suggests DAN inhibition of the flow of CO2 olfactory 

information from the presynaptic KCs to the postsynaptic MBONs. Indeed, these findings 

are consistent with our current understanding of MB neuromodulation by DANs, which 

are known to represent contextual information in the formation of associative memory and 

impinge on the KC-MBON synapse. Critically, it is demonstrated here that MBONs 

respond more weakly to a combination of vinegar and CO2 than they do to CO2 alone.  

 

Taken together my findings suggest that the β’2 MBONs are sufficient to mediate 

CO2 aversion, and that this sufficiency is dampened by vinegar responsive β’2 DANs, thus 

allowing flies to overcome their innate CO2 aversion in the context of appetitive vinegar 

stimulus. The implication of my work is that the processing of sensory information to 

drive immediate behavioural responses is carried out by the same structure responsible for 

forming lasting associations, the MB. The economy of energy and neural substrates 

available for performing the processing tasks required of brains often results in a 

convergence of multiple functions onto few brain structures. In the present case the 

inherent similarities between the tasks of immediate and lasting modulation of behaviours 

supports this parsimony.   
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1.0 Introduction 
 

 

1.1 Sensory neuroscience 

 

The body of an observer, animal or human, is continually awash with energy in the form 

of light and heat, and in physical contact with various forms of matter: solid, liquid, and 

gas. Diverse sensory systems evolved to allow animals to detect, process, and attach 

meaning to their interactions with environmental features relative to their biological needs. 

The sensory channels available to an animal converge in its brain and form multimodal 

representations of its environment (Cappe et al., 2009; Frye, 2010; Hidaka et al., 2015; 

Recanzone, 2009). Based on the information contained within these representations 

animals can execute behavioural programs via their motor systems and navigate through 

their surroundings (Sarlegna & Mutha, 2014). The ability to sense and respond to their 

environment means that animals are continually faced with decisions: where to move, 

what to eat, when to sleep. However, these decisions are not free but are constrained by 

the necessities of biological maintenance and reproduction, and these constraints are part 

of an animal’s evolutionary heritage; they are adaptations to the particular ecology in 

which it has evolved to survive. For example, if hungry, the smell of food will be a 

particularly prominent feature of an animal’s sensorium, and will dominate its decision-

making processes (Huetteroth & Waddell, 2011; Hunter, 2013; Rolls, 2015). In this way, 

the perceptual and behavioural characteristics of all animals are tuned by their evolution, 

and by immediate and remembered sensory information. 
  

The ability to adapt behaviour on a moment-by-moment basis is crucial to ensuring 

survival. But which factors determine the optimal behavioural adaptation? Animals must 

decide which behavioural program to enact in response to a given sensory stimulus, and 

the decision is usually influenced by a combination of nutritive, reproductive, and 

homeostatic requirements (Ejima et al., 2007; Huetteroth & Waddell, 2011; Hunter, 2013; 

Yang et al., 2015). The fruit fly, Drosophila melanogaster, is as constrained by these 

biological imperatives as are humans. To help them secure necessary food and water and 

to respond to social cues, flies must be experts in their own chemical ecology, and as such 

their chemical senses play a crucial role in guiding their behaviour. They spend their entire 
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lives on and around fruit where they develop from larvae, feed, court, mate, and lay eggs. 

It is therefore extremely important for flies that they correctly judge the quality of their 

potential habitat, and they do so by contrasting external olfactory stimuli against their 

internal state. For a decision to be made, diverse and often conflicting information must 

converge from the sensory organs and be prioritized by the fly based on prescient 

biological requirements. 

 

Despite the fundamental nature of these questions, the neural circuitry through 

which conflicting motivational drives are resolved is poorly understood. The genetic and 

experimental tools available to Drosophila researchers allow unparalleled control over the 

state of neural circuits in the fly brain, and offer an opportunity to investigate the 

processing strategies underlying decision-making.   

 

 

1.2 Chemical environments 

 

All organic life is composed of material that was once part of the environment, or 

indeed, part of other organisms. The system as a whole is in a continual state of flux as 

bacteria, plants, and animals exchange their chemical components with the environment 

around them. As a consequence, all environments inhabited by organic life are saturated 

with the chemical products of metabolism and decay. These products are distributed 

throughout the local ecology in various forms: they can be solid (an animal carcass), in 

solution (a piece of fruit rotting in shallows at the edge of a lake), or airborne (the smell of 

rain falling on dry soil). In all of these cases microorganisms, insects, and mammals 

contribute to a complex chemical ecology simply by performing their biological functions.  

 

 

1.2.1 Chemical environments as chemosensory environments 

 

Despite the vast complexity of chemical environments there is also some degree of 

order. Due to the high reproducibility of chemical reactions the appearance of a compound 

A in an environment co-occurs with the products of its decomposition or catabolism: 

compounds B and C. For example, fruit fallen from a tree (A) is initially fresh and gives 

off a plume of volatile gasses, but as bacteria and yeast on its surface begin to multiply 
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and metabolize sugars and proteins, the chemical composition of both the fruit itself (B) 

and the odour plume it gives off (C), changes dramatically. Despite there being many 

alterations in the chemical composition of the fruit, the process of decomposition and its 

products are similar every time it occurs. Many organisms take advantage of this 

consistency by detecting and evaluating these chemical by-products (chemical cues) and 

taking their composition to mean something about the state of the fruit, i.e. rotten, or fresh 

(Becher et al., 2012; Zhu et al., 2003).  

 

The products of biological metabolism are not only released through decay, but 

also by living animals. Predatory species take advantage of odours released by their prey 

to identify it as an appropriate food source and to locate it in space. Cats, foxes, and 

snakes, for example, have all been observed to visit mouse-scented locations up to six 

days after an initial odour cue was placed (Hughes et al., 2010). Individuals within a prey 

species presumably give off similar chemical signatures, meaning a predator can reliably 

identify its sources of food. Insects display similar adaptations. The leaf feeding pea aphid, 

Acyrthosiphon pisum, has been observed to drop from leaves upon detection of the 

elevated heat and humidity indicative of herbivore breath. Such a simple adaptation 

ensures that the aphids aren’t consumed by the feeding herbivore (Gish et al., 2010).  

 

The chemical environment is not only a product of bacterial, plant, and non-human 

animal life. Human biological processes also produce a wide variety of chemical by-

products that find their way into our immediate environments. Human exhaled breath 

alone contains more than 3,500 chemical components (Buszewski et al., 2007), with the 

exact composition being a unique representation of the biological state of the individual. 

The particular composition of this compound mix can be indicative of what the person 

recently ate, their emotional state, and whether or not they are suffering from a particular 

disease, an observation currently being exploited as a method of disease detection and 

diagnosis (Lourenço & Turner, 2014; Whittle et al., 2007). 

 

The above examples all illustrate that many biotic features of an environment 

produce specific chemical signatures, and that biological features of an environment can 

be identified by their chemical signatures. The accumulated chemical output of all 

biological life results in a vastly complex olfactory landscape that encodes information as 

to whether food is safe to eat or water safe to drink, or whether a predator is lurking in 
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bushes 30 meters away. Animal nervous systems are equipped to detect and decode this 

information, with a staggering diversity of mechanisms and behavioural responses having 

evolved simply to help animals appraise and navigate their chemical environment. 

Drosophila melanogaster is one such animal highly dependent on its chemical senses to 

guide its myriad behaviours.    

 

 

1.3 Drosophila as a model organism 

 

Largely thanks to the Columbia University professor Thomas Hunt Morgan, and 

his discovery of the White mutation in 1910 (Morgan, 1910), Drosophila has been 

rigorously studied in laboratories for well over 100 years. It is only in recent decades 

however that the accessibility and genetic tractability of the fruit fly has been exploited for 

the advancement of our understanding of neurobiology and olfaction. In the late 1960s and 

early 1970s Seymour Benzer used forward genetic approaches to identify genes important 

in fly behaviour. It was observed that chemical mutation of flies could lead to genetically 

heritable behavioural phenotypes in olfactory learning and memory. The mutants dunce 

(dnc) (Byers et al., 1981; Dudai et al., 1976) and rutabaga (rut) were identified in 

Benzer’s laboratory and were later shown to code for adenylate cyclase and 

phosphodiesterase respectively, both of which are proteins required for synaptic 

potentiation and therefore memory acquisition. Thanks to this work, and much that has 

been done in the following decades, Drosophila is now a powerful tool for understanding 

the relationship between the structure and function of neural circuits and the behaviours 

they generate.  

 

Experimental tools developed on the back of advances in genetics now allow the 

dissection of neural circuits via the targeted expression of reporter and effector proteins to 

specific cell types. The commonly used GAL4-UAS binary expression system has made it 

possible to uninvasively manipulate and visualize cells with a previously unattainable 

level of spatial and temporal resolution. In one fly line a GAL4 transgene is inserted 

downstream of an endogenous promoter element, thus targeting expression of the GAL4 

yeast transcription factor to a specific population of cells. In a second fly line an upstream 

activation sequence is inserted in to the genome along with a downstream transgene. If 

these two lines are crossed the transgene is expressed only in the cells expressing GAL4 
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(Brand & Perrimon, 1993; Fischer et al., 1988) (Figure 1A). This system, and others like 

it, allows an experimenter to drive the expression of transgenes such as UAS-Shibirets1 

(Kitamoto, 2001), a temperature sensitive allele of dynamin which blocks synaptic 

transmission upon exposure to an increased temperature, or UAS-dTrpA1 (Rosenzweig et 

al., 2005), a heat-activated transient receptor potential (TRP) ion channel protein, which 

can be used to transiently activate neurons.  

 

Being able to activate or block synaptic transmission of specific neurons allows 

gain of function and loss of function experiments to be conducted, thus establishing the 

necessity or sufficiency of a particular set of neurons for the functional output of a circuit. 

The expression of green fluorescent protein (GFP) can also be driven using the GAL4-

UAS system allowing the visualization of cells via microscopy. A newer technology based 

on the GAL-UAS system allows even more spatially defined expression of the desired 

transgene. The Split-GAL4-UAS system (Luan et al., 2006) works on the same principle 

of intersectional expression except that the GAL4 transcription factor is split into two 

stable domains, the DNA-binding domain (DBD), and the activation domain (AD).  

 

Figure.1 GAL4-UAS and Split-GAL4-UAS expression systems 
 

(A) The expression of the GAL4 transcription factor is under the control of an endogenous 
promoter. In cells in which it is expressed GAL4 binds to the UAS and triggers expression 
of the downstream transgene. 

(B) The DBD and AD form a functional GAL4 transcription factor in cells in which they are 
both expressed triggering transgene expression. The Split-GAL4 system allows for more 
specific targeting of cells.   

UAS GAL4 

DBD 

AD 

promoter 

promoter 

promoter 

UAS 

transgene 

transgene 

transgene expression 

transgene expression 

A 

B 
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The transgene for each GAL4 protein domain can be put under the control of a different 

endogenous promoter element, meaning that expression of the UAS-transgene only occurs 

in cells in which the DBD and AD are both expressed (Figure 1B). The addition of a third 

promoter element allows an even higher degree of specificity of transgene expression, and 

therefore more fine-grain manipulation of neural circuits. Other expression systems, such 

as the LexA-LexAop system (Lai & Lee, 2006; Szüts & Bienz, 2000), can be utilized 

within a single fly allowing the simultaneous expression of more than one transgene. For 

example, the expression of two different effector or fluorescence proteins can be driven in 

two different populations of cells in one fly. 

 

 As well as its enormous utility as a genetic system Drosophila is well established 

as a model system for studying the neurobiology of olfaction. As a result, a great deal is 

now understood about the anatomy and physiology of the olfactory pathways that allow 

the fruit fly to detect and respond to the odour cues important in its ecology.  

 

 

1.4 Insect chemoreception 

 

In order for environmental chemical information to be a useful driver of behaviour 

an animal must be ‘irritable’ to the compounds it comes into contact with, and be able to 

transduce and process the chemical information it senses. Most organisms have been 

endowed by evolution with the ability to sample chemical cues via the chemical senses, 

smell and taste. Both can be used to identify an object, but the sense of smell has the 

benefit of being able to function remotely, allowing an animal to appraise distant objects 

of biological and behavioural significance. For insects the sense of smell is particularly 

important and has been implicated in odour tracking during both flight (Chow et al., 2011; 

Stewart et al., 2010; S. Wasserman et al., 2012) and ground based locomotion, courtship 

(Grosjean et al., 2011; Tompkins et al., 1983; K. Wang et al., 2014), and aggression (W. 

Liu et al., 2011). Their olfactory sense provides an important window onto their 

environment with olfactory stimuli often describing environmental features critical to the 

fly’s survival. In comparison to mammals, a significant portion of the insect brain is given 

over to processing olfactory information, but despite this divergence the neurobiological 

solutions to olfactory sensation and processing are relatively conserved across animal 

kingdoms (reviewed in Laurent 2002; Ache & Young 2005). Given these attributes the 
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study of insect neurobiology is a particularly useful tool when trying to understand more 

general cross-species neurobiological phenomena.  

 

 

1.4.1 Conservation across vertebrate and invertebrate olfactory systems  

 

Pioneering work published in 1991 by Linda Buck and Richard Axel identified a 

large family of G-protein coupled receptors (GPCR) expressed in the rat olfactory 

epithelium. They proposed and demonstrated that these GPCRs were the olfactory 

receptors (OR) allowing animals to respond to environmental odour cues (Buck & Axel, 

1991). Bioinformatic comparison across species revealed a high degree of similarity 

between the general features of OR families in mammals, fish, birds, and amphibians. 

They also observed that the OR families found in invertebrate species shared this 

conservation, although to a lesser extent. At the detailed proteomic level there is a higher 

Figure 2. The mammalian olfactory bulb and insect antennal lobe share similar circuit 
morphology 
 
(A) The mammalian OB is composed of sensory receptor neurons synapsing with mitral/tufted 
cells (M/T) and periglomerular cells (PG). Glomerular neuropil indicated by dashed circles. 
The lateral olfactory tract (LOT) is transected by and receives dual level lateral inhibition from 
the PG cells and the granular cells (GR). (B) The insect AL has largely the same circuit format 
with the exception that PNs receive lateral inhibition from one set of LNs only, which form 
synapses exclusively within the AL.  
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level of divergence between species, likely reflecting the different ecological demands on 

the olfactory systems of difference animals.   

 

The olfactory pathways of different species are also similar in terms of the neural 

circuitry that processes olfactory information transduced at the periphery. Both the 

mammalian olfactory bulb (OB) and the insect antennal lobe (AL) share a glomerular 

structure whereby one glomerulus is innervated by olfactory sensory neurons (OSN) 

expressing similar ORs that synapse with downstream output neurons and local 

interneurons (Boeckh et al., 1990) (Figure 2). The anatomical conservation of this primary 

circuit structure indicates a perhaps critical role in olfactory signal processing. The genetic 

and structural similarities contribute to Drosophila being an ideal system in which to study 

the generalized neural systems and behaviours related to olfactory sensation. 

 

 

1.4.2 Peripheral odour detection 

 

Despite invertebrates not possessing noses, their olfactory systems are remarkably 

analogous to those of mammals (Figure 2.). In the case of the fruit fly, odours are 

absorbed directly into perilymph held in porous sensilla protruding from the third antennal 

segment and maxillary palps, the fruit fly’s olfactory sensory organs (Figure 3). There are 

three types of morphologically and functionally distinct sensilla: trichoid, basiconic, and 

ceoloconic, and each encases the dendritic projections of up to four OSNs. The antenna 

hosts all three sensilla types, whereas the maxillary palps only the basiconic type. This 

anatomical divergence likely relates to the types of odours processed by the respective 

organs, but as yet, little is known about what this means functionally. 

 

The sensilla and the OSNs they contain are tuned to specific odours that diffuse 

throughout the perilymph and either bind directly to the heterodimeric receptor complexes 

on the OSN dendrites or to soluble odour binding proteins (OBPs) that facilitate odour 

signal transduction (Xu et al., 2005). A combination of ORs and ionotrophic receptors (IR) 

are expressed in subpopulations of OSNs with each OSN expressing one to two ORs or 

IRs. All ORs are expressed alongside a co-receptor (Or83b / ORCO), without which the 

OSN is rendered anosmic (Larsson et al., 2004). IRs are typically formed of more 

monomeric subunits and as a result there are more IR co-receptors (e.g., IR8a, IR25b) than 
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there are OR co-receptors (Benton et al., 2009; P J Clyne et al., 1999). Some specialized 

sensilla house OSNs that, instead of ORs or IRs, express gustatory receptors (GR). GRs 

are typically expressed in gustatory sensory neurons in the labellum, tarsae, ovipositor, 

and wing tips, and facilitate taste sensation (P. J. Clyne, 2000; Nayak & Singh, 1983; Scott 

et al., 2001). However, they are also expressed by ab1C OSNs in the large basiconic ab1 

sensilla. The ab1C OSNs express the GRs Gr63a and Gr21a, and allow Drosophila to 

detect and respond to environmental and biogenic CO2 (Jones et al., 2007), an important 

molecule in Drosophila’s ecology and an experimental odour used in this study. 

 

The 60 OR genes (Buck & Axel, 1991; Vosshall et al., 1999), 61 IR genes (Benton 

et al., 2009), and 68 GR genes (Chyb, 2004; Dunipace et al., 2001; Scott et al., 2001), and 

their expression in the ~1300 OSNs (unilaterally), allow the fruit fly to detect and process 

odours across broad concentration ranges (Asahina et al., 2009), to distinguish single 

odours from complex mixtures (Parnas et al., 2013), and to initiate behavioural responses 

appropriate to nutritive, reproductive, and survival requirements. However, it is clear that 

~189 genes are not sufficient to convey sensitivity to the vast number of compounds the 

fly will encounter in its environment and has been shown to be sensitive to. To 

accommodate this complexity ORs, GRs, and IRs are usually sensitive to multiple ligands 

(Stortkuhl & Kettler, 2001; J. W. Wang et al., 2003), which hugely multiplies the number 

of possible detectible odours.  

 

 

1.4.3 The antennal lobe 

 

Many studies have sought to elucidate the mechanisms of olfactory information 

processing in the AL, the first processing substrate in the olfactory pathway. Much 

progress has been made in understanding the physiological mechanisms through which 

AL circuits respond uniquely and reliably to single or combinations of odours, maintain 

dynamic range of sensory neurons, and propagate processed olfactory information to 

higher brain centres (Bhandawat et al., 2007; Chou et al., 2010; Silbering & Galizia, 

2007). It should be noted that all anatomical nomenclature used in this text are as laid out 

by the Insect Brain Name Working Group (Ito et al., 2014). 
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Olfactory information is propagated to the AL from the antenna and maxillary 

palps via the antennal nerve (Figure 3), which is composed of fasciculated OSN axonal 

projections. OSN axons innervate one or more of the AL glomeruli, which are tuned to 

specific odours or groups of odours (Semmelhack & Wang, 2009). The ventral most 

glomerulus, or V-glomerulus, is solely responsible for processing aversive CO2 and is 

innervated only by OSNs expressing Gr63a and Gr21a (Jones et al., 2007; Suh et al., 

2004). Other glomeruli are dominantly involved in representing attractive cues. Upon 

inactivation of synaptic transmission in Or42b and Or92a expressing OSNs, which 

innervate the DM1 and VA2 glomeruli respectively, behavioural attraction to vinegar was 

almost completely abrogated (Semmelhack & Wang, 2009). Also innervating the 43 AL 

glomeruli are inhibitory and excitatory local interneurons (LN), which are involved in 

dynamic range control and lateral inhibition between glomeruli and olfactory PNs (J. 

Barth et al., 2014; Root et al., 2007).  

 

Figure 3. The Drosophila olfactory pathway 
 
Schematic of the Drosophila olfactory sensory organs, olfactory pathway, and higher brain 
centres. The antennal nerve is represented in green, the PNs in blue, the MB in orange, and 
the LH in red. The iALT innervates the MB calyx prior to innervating the LH. The mALT 
projects directly from the AL to the LH.  
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PNs output olfactory information from one or more glomeruli and propagate it primarily 

to two higher brain regions: the mushroom body (MB) (corpora pedunculata), and the 

lateral horn (LH) (Figure 2) (H.-H. Lin et al., 2013; Marin et al., 2002; Stocker et al., 

1997). They do this via three tracts; the inner antennal lobe tract (iALT), which first 

innervates the MB calyx and then the LH, the medial antennal lobe tract (mALT), which 

projects primarily to the LH but sends some collaterals to the MB calyx, and the outer 

antennal lobe tract (oALT) (not shown in Figure 3), which represents fewer PNs and 

innervates the LH directly (H.-H. Lin et al., 2013; Wong et al., 2002). Individual PNs 

diverge from these tracts to innervate various parts of the fly brain. It is not known what 

the precise functions of the non-MB/LH innervating PNs are, although it is likely that they 

relay odour specific information to parts of the brain for the purpose of neuromodulation. 

 

 

1.4.4 The mushroom body 

 

The MB was first described in 1850 by French biologist Felix Dujardin, who 

proposed it as the insect’s centre of intelligence due to variability in its morphology 

between eusocial and non-social insects. Largely due to its irregular and characteristic 

morphology, the MB has long drawn attention and been central to the study of insect 

olfactory neurobiology. 

 

The MB is a second-order olfactory processing centre and anatomically 

pronounced neuropil structure found across most insect and some annelid species 

(Strausfeld et al., 1998), with it’s size, morphology, and function varying depending on an 

insect’s specific sensory ecology. In Drosophila it is associated with various functions 

including the sparsening of olfactory representation (Honegger et al., 2011), learning and 

memory (de Belle & Heisenberg, 1994; Perisse et al., 2013; Tully & Quinn, 1985), and 

multi-modal sensory integration (S. Lin et al., 2014; Vogt et al., 2014). However, across 

different insect species the MB plays a lesser or greater role in these functions depending 

on the specific processing tasks demanded by the animal’s ecological niche. In 

hymenoptera such as the honeybee Apis melifora the MB plays a significant role in 

integrating visual and olfactory information; the honeybee MB calyx has defined visual 

and olfactory input regions (Gronenberg, 2001). This contrasts strongly with the 

Drosophila MB, which receives comparatively little input from the optic lobes, although 
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the existence of dedicated visual projection neurons and a role in visual learning has 

recently been demonstrated (Vogt et al., 2014). These differences almost certainly reflect 

the differing requirements on the respective sensory systems between the two organisms. 

Similar functional properties have also been ascribed to the MB in the Hawkmoth 

Manduca sexta (Balkenius & Hansson, 2012), while studies of the Cockroach Periplaneta 

americana suggests a possible role for the MB in cancelling out self-generated motion via 

efference copy (Mizunami, Okada, et al., 1998). Interestingly, secondarily anosmic insects 

such as the diving beetle (Dytiscus) and cicadas, which don’t possess antennal lobes, still 

have MBs. In these cases however, the MBs lack calyces due to absence of olfactory input 

and presumably process information from other sensory systems (Strausfeld et al., 1998).  

 

This flexibility of function across species makes it clear that the MB is a complex 

structure sitting at or near the apex of the sensory information processing hierarchy. 

Indeed, it is often described as the insect equivalent of the mammalian cortex (Tomer et 

al., 2010), piriform cortex (N. K. Tanaka et al., 2009), hippocampus (Qi & Lee, 2014), and 

cerebellum (Farris, 2011), due respectively to its anatomical location, association with 

particular sensory systems, its role in learning and memory, and its specific neural circuit 

motifs.  

 

Due to its diversity of function, study of the MB presents many challenges, some 

of which can be immediately addressed through the choice of model organism. Drosophila 

is a largely olfactory animal with a significantly smaller brain than many of its arthropod 

cousins. The brain of a honeybee is composed of ~960,000 neurons (Randolf & Giurfa, 

2001), whereas the fruit fly brain is an order of magnitude smaller with ~100,000 neurons. 

This difference is also reflected at the level of the MB: the honeybee MB is composed of 

~170,000 interneurons compared to the fruit fly’s ~2000 unilaterally. 

 

The numerical simplicity of the Drosophila MB makes it an excellent tool for 

understanding fundamental neural processing features required to perform complex 

sensory integration tasks. This is reflected in the vast literature that has been published in 

recent decades, with great advances being made in our understanding of both the 

anatomical and functional aspects of Drosophila neurobiology. 
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1.4.5 The MB and LH: Innate and learned behavioural responses 

 

The stereotyped responses of flies to aversive odours such as CO2 (Suh et al., 

2004), geosmin (Stensmyr et al., 2012), and vinegar (Faucher et al., 2006; Semmelhack & 

Wang, 2009) are generally considered to be innate as opposed to learned. That is to say 

that these behavioural responses are genetically and developmentally encoded into the 

architecture of the fly brain without the fly having to learn that the odours are aversive or 

attractive. It was traditionally supposed that innate behaviours were ‘hardwired’ responses 

in which stimuli directly trigger the initiation of a motor program corresponding to the 

hedonic valence of the odour. However, that view is beginning to shift as neurobiologists 

acknowledge that the function and dynamics of even simple neural networks are highly 

dependent upon environmental and biological context.  

 

In contrast to innate behaviours, learned responses allow the fly to retain acquired 

information over time and to execute behaviour upon reoccurrence of the initial stimulus 

conditions. In the laboratory, classical Pavlovian conditioning (Pavlov, 1927) is used to 

associate a conditioned stimulus (CS), such as a weakly aversive odour (e.g., octonol, 

methylcyclohexanol), with an unconditioned stimulus (US) in the form of negatively 

reinforcing electric shock, or positively reinforcing sugar reward. For example, the 

simultaneous exposure of flies to electric shock and the odour causes flies, when later 

tested, to express an increased avoidance of the odour compared to unconditioned flies 

(Owald et al., 2015a). 

 

Over the past three decades, much research has gone into understanding what sets 

apart innate and learned behavioural responses. In the early 1980s researchers working 

with Martin Heisenberg, and following up work done in the laboratory of Seymour Benzer 

(Dudai et al., 1976), identified the fruit fly MB as a structure without which the fly’s 

ability to learn was impaired (de Belle & Heisenberg, 1994), although the first indication 

that the insect MB may be involved in learning came from work done on honeybees by 

Menzel et al. in 1974 (R. Menzel, J. Erber, 1974). It was typically thought that the MB 

was dispensable for innate odour processing, and indeed the data seemed to confirm this: 

upon ablation of the larval MB with hydroxyurea, adult flies were still able to respond to 

basic odour and light stimuli but were unable to form learned associations (de Belle & 

Heisenberg, 1994). It was therefore thought that the LH was the brain region responsible 
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for driving naïve olfactory behaviours. This idea was given further credence after the 

observation by Heimbeck et al. (Heimbeck et al., 2001) that upon blockade of both the 

MB and LH innate behavioural responses were also diminished. Furthermore, it has been 

observed that the LH has segregated pathways for processing pheromones and driving 

reproductive behaviours (Jefferis et al., 2007; Ruta et al., 2010). Since the early 

experiments much work has been done on the MB in the context of olfactory learning, but 

only recently has it been implicated in more fundamental processing tasks related to 

modulation of innate behaviours by various internal state conditions (e.g., hunger, thirst) 

(Bräcker et al., 2013; Krashes et al., 2009; S. Lin et al., 2014) and conflicting odour 

stimuli (DasGupta et al., 2014; Lewis et al., 2015).  

 

Research carried out in our laboratory demonstrated that the KCs are required for 

CO2 avoidance only when the fly is starved, implying that a MB-independent pathway 

processes CO2 when the fly is fed (Bräcker et al., 2013). It is likely that these different 

pathways are composed of the multiple V-glomerulus PNs and the brain regions they 

innervate (H.-H. Lin et al., 2013). It is also possible that the starvation dependent switch 

between the MB-independent and -dependent pathways is facilitated by the V-glomerulus 

PNs and their synaptic partners. The LH is therefore a good candidate structure for 

processing MB independent CO2 avoidance. The LH receives much of the PN output from 

the AL, but it also recurrently connects to the MB calyx and lobes, meaning it may 

potentially drive downstream motor signals. In addition to hunger there are other internal 

states that could potentially modify innate behaviours. Indeed another study has recently 

shown that the MB is involved in processing innate water search behaviour. When flies 

are thirsty they prefer humid air to dry air, but when water sated they avoid humid air. 

Inactivation of a subset of MB input neurons switched attraction to humid air in sated flies 

to aversion (S. Lin et al., 2014). Food and water are important motivators of behaviour, 

but so too is external temperature. As such it has been shown that the MB is also involved 

in processing hot and cold avoidance in Drosophila (Frank et al., 2015; Tomchik, 2013). 

 

All of these behaviours function independently of learning, suggesting a role for 

the MB in instantaneous innate behaviour modulation as well as in the formation of lasting 

associations, and that perhaps these two functions have a common basis in MB circuitry. 

In the case of hunger and thirst the MB only seems to play a significant role in either 

immediate odour processing or memory formation when flies are either hungry or thirsty, 
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implying that the MB or its input neurons integrate internal state information with external 

sensory information. How these two functions are both implemented in the MB circuitry is 

not yet understood. It may be the case that to maintain maximum behavioural flexibility 

innate preferences and learned associations interact and compete to drive behaviour. It has 

been suggested that certain innate responses might over time erode learned associations as 

a strategy to keep the MB representation of past and present olfactory environmental 

features up to date (Cohn et al., 2015).  

 

 

1.5 Functional anatomy of the Drosophila mushroom body 

 

1.5.1 Olfactory input to Kenyon cell interneurons 

 

The MB consists mainly of Kenyon cell (KC) interneurons with cell bodies located 

at the anterior of the fly’s brain. KCs send both dendritic and axonal projections anteriorly 

through the brain to form the MB’s primary input structure, the calyx, and its 

characteristic bifurcated lobe structure respectively (Figure 4). The calyx receives direct 

olfactory input from 3-4 PNs from each of the AL glomeruli. Connectivity between PNs 

and KCs is facilitated via claw-like structures found on KCs (Butcher et al., 2012), with 

each claw being innervated by one PN. Each KC has on average 6.4 input claws, which 

means that connectivity between PNs and KCs is very sparse. KCs are known to have very 

low spontaneous activity and act as coincidence detectors between odour evoked patterns 

of activation across PN populations (Gruntman & Turner, 2013), thus the physiological 

purpose for the KC input claws is likely to strengthen the synaptic input from the PNs. 

This KC odour representation and readout by downstream MB output neurons likely 

underlies Drosophila’s ability to discriminate and generalise similar odours (Campbell et 

al., 2013).  

 

 

1.5.2 Mushroom body lobe structure 

 

KC axons project anteriorly through the calyx and fasciculate to form the MB peduncle 

that bifurcates to form the vertical and horizontal lobes (Figure 4). The vertical lobe is 

itself composed of two separate sub-lobes, the α lobe and the α’ lobe. The horizontal lobe 
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is composed of three separate sub-lobes: β, β’, and γ (Figure 4). KCs can be broadly 

divided into three anatomically and genetically distinct groups based on which sub-lobes 

they compose: α/β, α’/β’, and γ (Crittenden et al., 1998). Each lobe within the MB, and 

therefore also the KCs, can be further subdivided. The α and β lobes can each be divided 

into posterior (p), central (c), and superior (s) regions with the corresponding KC named 

accordingly (e.g., α/βp). The α’ and β’ lobes are divided into medial (m), anterior (a), and 

posterior (p), and the γ lobe into main (m), and dorsal (d) (Aso, Hattori, et al., 2014; 

Nobuaki K Tanaka et al., 2008; Yao Yang et al., 1995). Both the vertical and horizontal 

lobes of the MB are sheathed in supportive glia (Awasaki et al., 2008). It is generally 

considered in the MB field that different populations of KCs making up both lobes of the 

MB might represent segregated channels representing input from different categories of 

odours and input from other sensory systems (visual, proprioceptive), and that MBONs 

innervating the MB lobes sample across all of these modalities to facilitate associative 

memory formation and drive behaviour (Figure 5). 

 

Figure 4. The Drosophila mushroom body (MB) 
 
Olfactory information is input to the MB via PN-KC synapses in the MB calyx. It then 
propagates along anteriorly projecting KC axons into the horizontal and vertical lobes. The 
horizontal lobe is subdivided in three further lobes: the β, β’, and γ lobes. The vertical lobe is 
subdivided into two further lobes: the α and α’ lobes. The KC populations innervating each of 
these lobes are genetically distinct and can be further subdivided based on a more fine-
grained analysis of their innervation patterns.  
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1.5.3 Mushroom body dopaminergic input neurons (DAN) 

 

If the calyx is the MB’s input structure, then the lobes are its output structures. 

They are also the sites at which neuromodulatory input impinges on the KC-MBON 

synapse (Aso, Hattori, et al., 2014; Cohn et al., 2015; Ichinose et al., 2015; Nobuaki K 

Tanaka et al., 2008). The MB lobes are innervated by two primary populations of neurons: 

approximately 200 cells comprising 20 types of dopaminergic neurons (DAN) of the 

protocerebral anteromedial (PAM) and protocerebral posteriolateral (PPL) clusters, and 34 

cells comprising 21 types of mushroom body output neurons (MBON) (Aso, Hattori, et 

al., 2014; Ito et al., 1998; Kim et al., 2007; Schwaerzel et al., 2003). In addition to these 

Figure 5. MB lobe input and output circuitry 
 
Schematic representation of the MB on one side of the fly brain. DANs of the PAM (red) and 
PPL1 (blue) clusters innervate the horizontal lobe (green) and vertical lobe (orange) 
respectively. MBONs innervating the horizontal lobe drive behavioural aversion and MBONs 
innervating the vertical lobe drive behavioural attraction. DANs and MBONs have anatomically 
compartmentalized overlapping innervation patterns that tile the MB lobes (γ lobe not shown). 
The MB output regions innervated by MBONs from each lobe are represented in grey behind 
the MB schematic. Crepine (CRE), superior lateral protocerebrum (SLP), superior intermediate 
protocerebrum (SIP), superior medial protocerebrum (SMP), and lateral horn (LH).  
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two neuron types there are also populations of octopaminergic and serotonergic neurons 

which innervate the MB (Aso, Hattori, et al., 2014; Nobuaki K Tanaka et al., 2008). DANs 

provide neuromodulatory axonal input to the lobes; with the PAM cluster neurons 

innervating the horizontal lobe and the PPL clusters innervating the vertical lobe (Figure 

5). DANs have been extensively studied in the context of learning and memory and have 

been shown to facilitate the formation of various types of memory in response to diverse 

sensory stimuli (Huetteroth et al., 2015; Schwaerzel et al., 2003). They have also been 

shown to respond directly to olfactory and gustatory stimulation and have been implicated 

in signalling internal state changes such as hunger and thirst (Krashes et al., 2009; S. Lin 

et al., 2014). Indeed, MB innervating DANs are required for the formation of reward 

based associative memory whereby starved flies reduce or increase their attraction to an 

odour paired with sugar reward (Huetteroth et al., 2015; Vogt et al., 2014; Yamagata et al., 

2015). PPL1 DANs have also been shown to signal punishment in experiments where 

electric shock is paired with an odour, increasing the flies’ subsequent avoidance response 

(Aso et al., 2012; Galili et al., 2014).	   

 

 

1.5.4 Mushroom body output neurons (MBON) 

 

DAN presynaptic arbours are constrained to specific compartments of the MB 

lobes and overlap with MBON innervation, forming anatomical and functional 

compartments (Figure 5). MBONs output information from the lobes, and so have a 

reversed input-output polarity relative to DANs (Aso, Sitaraman, et al., 2014). Their 

dendritic arbours are also constrained to anatomical compartments in the same way as the 

DANs (Figure 5). MBONs send axonal projections to neuropil regions medial and lateral 

of the MB vertical lobes: the superior medial protocerebrum (SMP), superior lateral 

protocerebrum (SLP), superior intermediate protocerebrum (SIP), and the crepine (CRE) 

(Figure 5). MBONs also innervate the LH and parts of the MB itself. MBONs innervating 

the horizontal lobe of the MB drive aversion and those innervating the vertical lobe drive 

attraction. This functional segregation is mirrored by a divergence in the neurotransmitter 

systems used for downstream signalling. Horizontal lobe MBONs (aversive) are 

glutamatergic and vertical lobe MBONs (attractive) are cholinergic and GABAergic (Aso, 

Hattori, et al., 2014; Aso, Sitaraman, et al., 2014). A recent study has shown that the 

decorrelated and sparse representation of odours at the level of the KCs broadly activates 



	   	   19	  

MBONs innervating both MB lobes (Hige, Aso, Rubin, et al., 2015). Thus it can be 

considered that the KC-MBON synapse may be the point in the fly brain where ascending 

olfactory information, in which odour identity is largely preserved, is generalized into 

positive and negative categories that may in turn drive attractive or aversive motor 

programs depending on the composition of the olfactory sensorium (Hige, Aso, Rubin, et 

al., 2015). 

 

KC-MBON connectivity alone may allow flies to weigh diverse information from 

a complex sensory environment and initiate a behavioural response. Modulatory input 

from DANs in the form of internal state, past experience, and sensory context likely 

regulates KC-MBON synaptic transmission, thus providing a biologically and 

environmentally appropriate contextual background for sensory-motor transformation.  

 

 

1.6 Aversive and attractive odour processing 

 

 Many odours elicit behavioural responses in flies, and often those behaviours take 

the form of attraction or aversion towards or away from an odour source. That is, flies 

exercise a hedonic preference in response to an innate or learned expectation of what an 

odour source is. Attractive odours often signal environmental sources of food and water, 

although some attractive pheromones have the specific purpose of attracting male and 

female flies during courtship (e.g., C 27 diene) (Bilen et al., 2013; Heimbeck et al., 2001). 

In general there seems to be a greater number of attractive odours than aversive (Knaden 

et al., 2012), probably due to the large number of compounds that can be produced by 

Drosophila melanogaster’s multiple sources of food and their decomposition. Aversive 

odours are generally considered to indicate sources of danger (e.g., geosmin, CO2), 

although as with attractive odours, some act as pheromone triggers of socially motivated 

behaviours (e.g., cVA). That odours have hedonic valence at all implies that each odour, 

or combination of odours, must have a specific representation in the fly’s brain whereby 

detection of an odour triggers a stereotyped behavioural response. Unlike spatial 

retinotopy in the mammalian visual cortex (Choudhury, 1978), or tonotopy (Ehret & 

Romand, 1994) in the auditory cortex, olfactory coding has been notoriously difficult to 

understand due to the absence of a simple mapping of ‘chemical space’ onto a defined 

neuroanatomical structure (Johnson & Leon, 2007; Murthy, 2011). Indeed, the MB and 
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LH of the Drosophila olfactory pathway have not easily yielded an explanation of 

olfactory coding. Despite this lack of an obvious logic to olfactory coding there is some 

degree of functional anatomical segregation. The glomerular structure of the insect 

antennal lobe (and mammalian olfactory bulb) is non-uniformly segregated into glomeruli 

that represent attractive odours and glomeruli that represent aversive odours (Semmelhack 

& Wang, 2009). In zebrafish it has been observed that odorants with similar 

physiochemical properties activate distinct regions of the olfactory bulb (Friedrich & 

Korsching, 1998). Segregation of olfactory attraction and aversion has also been observed 

in the fly at the level of the lateral horn (LH) (Strutz et al., 2014), and at the level of the 

mushroom body (MB), where two populations of output neurons each drive either 

attractive or aversive behaviour (Aso, Sitaraman, et al., 2014). Given that flies are 

continually exposed to a broad mix of odours with differing hedonic valences an 

interesting question, and part of the motivation behind the project described in this thesis, 

becomes apparent. How is conflict between odours of opposing hedonic valence resolved 

in the fly brain? 

 

 

1.6.1 Sensory conflict 

 

Sensory conflict is a common occurrence for all animals, and the fly’s ecology represents 

a particularly prominent and experimentally accessible example (Figure 6). The fly’s 

primary habitat and food source is fruit, which releases a vast array of conflicting odour 

signals over the course of its ripening and eventual decay. While they ripen, climacteric 

fruit, such as bananas, apples, and melons, release large amounts of CO2 (de Vries et al., 

1996; Silva et al., 2001; Young et al., 1962), a strongly aversive odour for Drosophila 

(Suh et al., 2004). However, as the fruit ripens the emission of CO2, a product of glucose 

metabolism, reduces while the attractive volatile products of fermentation and 

decomposition by yeast and bacteria increase (e.g., linalool, monoterpine, 2-heptanol). 

Intuitively, this causes flies to be strongly attracted to the fruit. However, as the fruit 

continues to decompose, the levels of CO2 emission begin to increase again, meaning the 

fruit releases both attractive and aversive odours. Despite this increase in aversive CO2 

flies continue to engage in approach behaviour (Bräcker et al., 2013). This behaviour has 

also been demonstrated in a laboratory setting using a standard two-choice T-maze assay 

(Tully & Quinn, 1985); hungry flies are able to overcome their strong aversion to CO2 
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when it is paired with an attractive appetitive stimulus such as vinegar (Bräcker et al., 

2013; Faucher et al., 2006). This behaviour represents a clear example of ecologically 

relevant olfactory conflict (Figure 6), in which a neural circuit mechanism able to contrast 

multiple sensory stimuli must initiate a singular behavioural output.  

 

An interesting consequence of decision-making also observable in flies is that it 

takes the insects longer to make a decision when faced with more complex stimuli. For 

example, when presented with two different but very similar concentrations of the same 

odour, flies took longer to initiate a behavioural response than when the concentrations 

were more dissimilar (DasGupta et al., 2014; Parnas et al., 2013). The behaviours 

demonstrated in these studies are also observable in other mammals, including humans 

(Drugowitsch et al., 2012).  

 

 

1.6.2 CO2 and vinegar as experimental odours 

 

Odours are often used experimentally as motivators of behaviour where the 

primary question is not necessarily how the olfactory component of the behaviour 

functions. For example, MCH and octanol are commonly used as conditioned stimuli in 

learning and memory experiments (C. Liu et al., 2012; Perisse et al., 2013; Préat, 1998), 

Approach Avoid 

Poten&al)
mate)

Food))
source)

Male))
compe&tor)

Unripe)
fruit)

Olfactory environment / habitat 

Figure 6. A fruit fly’s olfactory environment is composed of conflicting cues 
 
When deciding on whether or not to approach an area a fly has to weigh the potential gains 
and losses before choosing a course of action.   
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pheromones such as cVA and methyl laurate are used to induce courtship related 

behaviours (Dweck et al., 2015; Kurtovic et al., 2007), ethanol has been used to study the 

effects of alcohol dependence and withdrawal (Robinson et al., 2012), and vinegar to 

study olfactory and visual sensory integration (Stewart et al., 2010). The hedonic valence 

of the odours used in these studies is often of little consequence to the broader question the 

researchers are trying to elucidate. Therefore it is often the case that specific questions of 

how olfactory information drives the behaviours in question remain unanswered. 

 

In Drosophila, CO2 and vinegar drive opposing behavioural responses via 

segregated neural pathways that remain segregated even at the apex of the sensorimotor 

transformation, the mushroom body (Hige, Aso, Rubin, et al., 2015; Semmelhack & 

Wang, 2009). This is an important finding as it has previously been shown that CO2 

aversion can be inhibited at the level of the CO2 sensory neuron by the volatile compounds 

1-hexanol and 2,3-butanedione that are released by some fruits (S. L. Turner & Ray, 

2009). Importantly, these compounds are not found in vinegar, suggesting the reduction in 

CO2 aversion observed by Bräcker et al. was not a result of inhibition of peripheral CO2 

sensation. An additional unique aspect of CO2 olfaction is that stimulation with CO2 more 

strongly inhibits other AL glomeruli, presumably focussing the flies’ olfactory system on 

CO2 (Hong & Wilson, 2015). It has also been observed that the V-glomerulus, which is 

the exclusive recipient of innervation from CO2 sensory neurons in the AL, lacks 

expression of GABA receptor (J. W. Wang, 2012), providing further support for the 

hypothesis that vinegar inhibition of CO2 avoidance behaviour must occur in higher brain 

regions. These characteristics and experimental foundations make CO2 and vinegar ideal 

tools with which to study sensory conflict resolution and decision making in higher brain 

centres in Drosophila. 

 

 

1.7 Internal states and innate behaviour modulation 

       

Sensory information is essentially an energetic map of the external world, neurally 

rendered in colour, motion, smell, temperature, sound, and touch. In many cases direct 

representations of this sensory map can be found in the brain, and the behavioural 

responses to different portions of this sensory map vary depending on an animal’s 

repertoire of innate behaviours. Innate behaviours in themselves can be interpreted as 
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learned associations formed in the brain’s architecture over evolutionary time. 

Unfortunately for an individual fly, human, or any other animal, evolution only brings 

about change on the time-scale of entire generations and does not necessarily reflect 

events as they happen. Consequently, innate responses to sensory stimuli are not always 

adequate to help an animal best find food or a mate. This places the requirement on 

nervous systems that they dynamically process sensory information and modulate innate 

behaviours instantaneously and over time. These modulations are online processes in 

which past and currently occurring experiences compete to drive behaviour through the 

excitatory or inhibitory action of neuromodulatory neurons (Cohn et al., 2015; Hige, Aso, 

Modi, et al., 2015). This processing task needs to take place in the context of prescient 

biological requirements that can bias the behavioural outcome in one direction or the other 

and allow the organism maximum flexibility to respond appropriately to its environment.  

 

Drosophila demonstrates a wide variety of behaviours in response to a wide range 

of stimuli. Often these behaviours are in response to external stimuli, such as a fly’s innate 

avoidance of CO2 (Suh et al., 2004), the initiation of grooming behaviour due to a build up 

of foreign material on its carapace (Seeds et al., 2014; Yanagawa et al., 2014), or its 

avoidance of high temperatures (Rosenzweig et al., 2005). But often these stimuli are 

filtered based on their relevance to internal biological requirements. For example, a 

recently sated male fly may approach a piece of fruit also inhabited by other flies (Figure 

6). With its requirement for nutrients met, reproductively salient stimuli may dominate its 

sensory experience leaving it free to pursue female flies and initiate courting behaviour. 

This behavioural outcome does not result from the fly’s nervous system no longer being 

sensitive to the food odours emitted by the fruit, but rather that the representation of food 

is actively inhibited in the context of satiety (Krashes et al. 2009). The courting behaviour 

executed in the absence of competing behavioural drives is itself likely a function of the 

male fly’s recent courting success and the reproductive receptivity of the female flies 

(McBride et al., 1999; Siegel & Hall, 1979; Yamamoto et al., 1997). All of these 

behavioural interactions may be overridden by an imminent danger signalled by a different 

set of sensory conditions and necessitating an immediate escape response. Recent research 

has shown that the sufficiency of a particular set of sensory information to drive a 

particular behaviour may be also be dependent on the precise behavioural state of an 

animal at the time of sensation (Cohn et al., 2015). This implies that execution of a 

particular behaviour in response to a stimulus depends not only on learned associations, 
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naïve biases, and internal state, but also on the likelihood that an animal is in an 

appropriate physical position and has enough time to execute a given behaviour.  

 

There is growing evidence from studies on insects and mammals to suggest that 

dopaminergic neurons represent internal state and gate the flow of sensory information to 

pre-motor and motor circuits necessary for behavioural execution (Bargmann, 2012; Cohn 

et al., 2015; Marder, 2012; Wise, 2004). In Drosophila the MB is a critical structure in 

mediating the modulation of sensory information and therefore allowing the adaption of 

behaviour within specific chemosensory environments based on biological requirements. 

It was a major goal of the study presented in this thesis to contribute to our understanding 

of the specific circuit mechanisms though which dopaminergic neurons in the Drosophila 

brain perform this gating of sensory information flow in the Drosophila MB for the 

immediate adaptation of behaviour.  

 

 

1.8 Thesis aims 

 

Due to the complexity of chemical environments the fruit fly, Drosophila melanogaster, 

often encounter situations in which it receives multiple conflicting odour stimuli. Within 

any chemical environment may be found compounds indicative of food, water, other flies, 

and potential predators. At any one moment a fly is likely inundated with competing 

signals compelling it to either avoid or approach an area or object (Figure 6). However, 

flies cannot move in two directions at once making most possible behavioural outputs 

mutually exclusive; it must choose. The process by which the fly weighs multiple possibly 

conflicting sensory inputs and initiates behaviour in response to just one of those inputs is 

the process of decision-making. But the singularity of the behavioural output belies the 

complexity of the required neural processing. All stimuli, conflicting or otherwise, are 

sensed, transduced, undergo primary processing, and are eventually integrated in higher 

brain regions where one or a combination will drive behaviour and associative learning. 

The Drosophila MB is a comparatively simple neural system that integrates complex 

sensory information to facilitate the execution of a number of behavioural tasks. The aim 

of the study presented in this thesis was to apply a number of techniques, including 

behavioural analysis, calcium imaging, and anatomical analysis, to better understand 

whether and how the sensory integration capabilities of the MB are utilized in resolving 
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immediate olfactory conflict. It has already been established by Bräcker et al. that the MB 

is required for processing what was traditionally considered an innately processed odour, 

CO2, in the context of starvation (Bräcker et al., 2013). These findings suggest a system 

whereby simple stimuli less relevant to immediate biological requirements more directly 

drive behaviour, while complex stimuli (e.g., multiple conflicting odours) and single 

stimuli relevant to biological maintenance, must be integrated by the MB in order for an 

eventual behavioural output to reflect their cumulative importance to the fly. The MB is a 

complex structure with a unique anatomy and multiple populations of neurons involved in 

its processing tasks. Therefore the main focus of this study has been in the identification 

and description of specific MBONs and DANs and the local circuits they form in order to 

resolve the sensory conflict represented via simultaneous presentation of the aversive 

odour, CO2, and the attractive odour, vinegar. 

 

The aims of this study can be broken down into several key points: 

 

1) Behavioural screening of MB Split-GAL4 lines labelling KCs, MBONs, and 

neuromodulatory neurons to identify putative MB compartment(s) involved in 

processing conflicting olfactory stimuli.  

 

2) Identification of specific MB compartment(s) responsible for processing olfactory 

conflict and description of the MBONs and neuromodulatory neurons innervating 

them. 

 

3) Application of calcium imaging to ascertain which neuron types represent which 

odours and describe physiological mechanisms of integration. Here I test the 

hypothesis that DAN activity suppresses CO2 aversion.   

 

4) Description of possible circuit mechanisms based on further behavioural analysis 

and calcium imaging.   
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2.0 Materials and Methods 
 

2.1 Flies 

 

2.1.1 Fly lines, rearing, and crosses 

 

 Drosophila melanogaster fly lines were stored and reared at either 18°C or 25°C 

and at 60% relative humidity in a 12h/12h light dark cycle. Flies were group housed on 

standard cornmeal medium and flipped onto fresh food every 2-3 weeks depending on the 

housing temperature. Crosses were made between 15-20 males and ~70 virgin females and 

stored at 18°C until hatching. Subsequently collected experimental flies were commonly 

aged 4-7 days and were stored on fresh food at 25°C prior to experimentation. The 

Canton-S (CS) fly line was used for wild type experiments, however the majority of 

experimentation was conducted on transgenic fly lines harbouring genetically functional 

cassettes introduced via p-element insertion. The Split-GAL4>UAS, GAL4>UAS, and 

LexA>LexAop expression systems were used to drive expression of thermogenetic, 

optogenetic, and fluorescence effector and reporter proteins. For experimentation only F1 

progeny of crosses between Split-GAL4, GAL4, and LexA line males and UAS and 

LexAop virgin females were used.  

 

All Split-GAL4, GAL4, and LexA driver line transgenes were inserted into a w- 

genetic background, as were all the effector and reporter lines with the exception of UAS-

dTrpA1, which was inserted into a w+ genetic background. To analyse the functional and 

anatomical characteristics of MB input, output, and interneurons required during the 

integration of conflicting olfactory signals we utilized a library of Split-GAL4 lines 

generated at Janelia Farm Research Campus by Dr. Hiromu Tanimoto, Dr. Yoshinori Aso, 

and Dr. Gerald Rubin. The Split-GAL4 lines were generated by inserting the GAL4 AD at 

loci attP2 on the third chromosome, and the DBD at loci attP40 on the second 

chromosome. In some Split-GAL4 lines the AD and DBD transgenes were recombined on 

the same chromosome  (for a summary of Split-GAL4 line expression see index).  For the 

purposes of the olfactory behavioural screen males of the Split-GAL4 lines were crossed 

to virgin females of 20XUAS-IVS-Shibirets1-p10 (Pfeiffer et al., 2012).  
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For follow up behavioural experiments the Split-GAL4 lines MB002B-Split-GAL4, 

MB011B-Split-GAL4, MB056B-Split-GAL4, MB047B-Split-GAL4, MB109B-Split-GAL4, 

MB316B-Split-GAL4, MB042B-Split-GAL4, and MB040B-Split-GAL4 were crossed 

variously to the effector lines UAS-Shibirets1 (Kitamoto, 2001), UAS-dTrpA1 (Hamada et 

al., 2008), and 10XUAS-CsChrimson-mVenus (attP18) (Klapoetke et al., 2014). For 

further anatomical characterization of MBONs and DANs MB011B-Split-GAL4 and 

MB109B-Split-GAL4 were crossed to UAS-mcd8::GFP (Lee & Luo, 1999), and UAS-

DenMark::mCherry; UAS-Syt::GFP (Nicolai et al., 2010). GRASP analysis (Pech et al., 

2013) was carried out using MB109B-Split-GAL4/CyO, R14C08-LexAp65, and R15B01-

LexAp65 in attP40, to drive expression of w-; Bi/CyO; UAS-CD4::spGFP1-10/TM2, and 

w-; LexAop-CD4::spGFP11/CyO; TM2/TM6B. And for double-labeling experiments the 

same lines were used to drive expression of LexAop2-mCD8GFP, and 10XUAS-IVS-

mCD8RFP. Calcium imaging experiments were carried out exclusively using the driver 

lines MB011B-Split-GAL4 and MB109B-Split-GAL4, which were crossed to UAS-

GCaMP6f (Nakai et al., 2001). 

 

 

2.1.2 Heat shock virgin production 

 

 Due to the large number of virgins required throughout screening and subsequent 

experiments we used virginator versions of the effector lines (UAS-Shibirets2 and UAS-

dTrpA1) and genetic background lines (w- and w+). A virginator line has an additional 

heat shock inducible hid gene on the Y chromosome that causes lethality in male larvae 

and pupae upon 2-4 hours of heat-shock at 37°C, leaving only virgin females to develop 

(Venema, 2006). 

 

 

2.1.3 Starvation 

 

 Throughout the study we sought to understand how starvation state affected innate 

behavioural responses to appetitive (vinegar) and aversive (CO2) odours. Therefore many 

experiments were performed simultaneously on fed and starved flies. Starvation was 

achieved by placing experimental flies in a bottle with tap water moistened tissue paper 

for 24-42h at 25°C. Flies were starved in the same way for both behavioural and calcium 



	   	  28	  

imaging experiments. Non-starved (fed) flies were stored on fly food until 

experimentation.  

 

   

2.2 Behavioural Setups 

 

2.2.1 T-Maze choice assay 

 

 To assay olfactory decision-making behaviour we used the simple T-maze 

olfactory choice assay (Tully & Quinn, 1985) (Figure 7). Approximately 40-80 flies were 

initially aliquoted into storage tubes containing filter paper moistened with 200µl of tap 

water. We used a standard non-aspirated T-maze to provide flies with a choice between 

two stimulus tubes, usually with atmospheric air on one side and an odour on the other. 

Flies were placed into an elevator at the top of the T-maze (Figure 7, left panels) from 

where they were inserted into the choice point and allowed to move into one stimulus tube 

or the other. After one minute the elevator was raised thus blocking flies into whichever 

stimulus tube they chose. Undecided flies that remained in the elevator were excluded 

from the analysis. Two T-mazes were always used simultaneously with each having the 

stimulus tubes placed in the opposite configuration to the other (Figure 7, right panel), 

thus controlling for unwanted spatial bias. The two tubes from each T-maze were then 

sealed and the number of flies in each counted. For each experimental group 8-12n was 

typically collected except during screening when 4n was collected. A preference index 

was then calculated for each n using the following equation: 

 

𝑃𝐼 =
#  𝑓𝑙𝑖𝑒𝑠  𝑠𝑖𝑑𝑒  𝑎 − #  𝑓𝑙𝑖𝑒𝑠  𝑠𝑖𝑑𝑒  𝑏

𝑡𝑜𝑡𝑎𝑙  #  𝑓𝑙𝑖𝑒𝑠  

 

Due to its versatility the T-maze was used for the initial screening of MB Split-GAL4 

lines and for a portion of the follow up experiments.  
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2.2.2 Stimulus tube preparation 

 

Odour stimulus tubes were prepared just prior to experimentation. For appetitive 

stimulation 40µl of a 10% Balsamic vinegar (Alnatura, Germany) solution, diluted with 

deionized water, was pipetted onto a small piece of filter paper and placed in the bottom of 

a stimulus tube. The tube was then sealed with parafilm. For filling stimulus tubes with 

CO2 we used a custom built filling setup that utilized two mass flow controllers (MFCs) 

(Natec sensors, Germany) to regulate the flow of bottled pure CO2 and pressurized 

atmospheric air. For most experiments we used a CO2 concentration of 0.3-0.5%, which is 

above atmospheric levels and sufficient to cause robust avoidance behaviour, but not high 

enough to have any anaesthetic effects. Upon leaving the MFCs the two gases converge 

and mix before being output from the filling setup into a stimulus tube.     

 

        1. Insertion 

      2. Pre-choice 

3. One minute choice 

Figure 7. T-maze behavioural assay and climate chamber 
 
The operational procedure of the T-maze assay is represented in the left three panels. The 
right panel shows the T-maze assays in situ in the climate control chamber. On the top of the 
chamber is the climate control apparatus. When in use a cover is placed over the front of the 
chamber. Armholes in the cover allow access. The metal plate at the bottom of the chamber 
heats up to increase the temperature.  
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2.2.3 Climate and environmental control 

 

 The initial screen and many of the subsequent experiments involved the 

thermogenetic silencing or activation of MB neurons via the targeted expression of 

Shibirets1 or dTrpA1 respectively. Thus it was necessary that we control the temperature 

and humidity of the environment in which the T-maze experiments were conducted. To 

achieve this we used climate control chambers in which T-mazes could be placed and used 

by an experimenter (Figure 7, right panel). Experiments were carried out at 60% relative 

humidity and at 32°C, a temperature at which Shibirets1 and dTrpA1 silence and activate 

neurons respectively. Low temperature controls were carried out at 25°C. When using 

Shibirets1 flies were acclimatized for 20 minutes prior to testing to ensure full depletion of 

synaptic vesicles in the targeted neurons. dTrpA1 expressing flies were acclimatized for 5 

minutes prior to testing. Stimulus tubes were also placed in the climate chamber before 

testing to ensure their temperature was equilibrated to that of the T-maze itself.  

 

 

2.2.4 Optogenetic arena 

 

To test whether subsets of MBONs and DANs providing output and 

neuromodulatory input to MB were sufficient to drive attractive or aversive behaviours we 

used an automated optogenetic arena assay. The assay was built by Dr. Yoshinori Aso at 

Janelia Farm Research Campus based on a previous olfactometer design (Aso, Sitaraman, 

et al., 2014; Vet et al., 1983). During experimentation the optogenetic arena was housed in 

dark conditions at ambient temperature and humidity.  

 

Expression of CsChrimson (Klapoetke et al., 2014) was targeted to MB neurons 

using the Split-GAL4 driver lines. CsChrimson is a red-shifted channel-rhodopsin that 

triggers neuronal depolarization upon exposure to red light. 15-20 experimental flies were 

introduced into the optogenetic arena, which consisted of a 10cm diameter, 3mm high 

open circular arena segregated beneath the arena level into four equally sized light 

quadrants (Figure 8, top panel). Each quadrant can be independently illuminated from 

beneath via arrays of 617nm red LEDs (Red-Orange LUXEON Rebel LED-122 lm), a 

wavelength sufficiently distant from the peak absorption of endogenous rhodopsins in the 

fly’s eyes, thus leading to negligible phototaxis behaviour. Neuronal activation is therefore 
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triggered only in CsChrimson expressing neurons in flies standing directly above the 

illuminated quadrants. The patterns of activation of the LED quadrants were computer 

controlled via an arduino and custom python script. An experimental protocol was 

designed to incorporate acclimatization and control of spatial bias. The protocol proceeded 

as follows: fly insertion into setup > 60 seconds acclimatization time > 30 seconds red 

light stimulation in two diagonally opposite quadrants > 30 seconds no stimulation > 30 

seconds red light stimulation in the alternate two diagonally opposite quadrants (Figure 8, 

top panel). The behaviour of the flies in response to LED illumination was captured via a 

camera positioned above the arena (Point Grey ROHS 1.3 MP B&W Flea3 USB3.0).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60s 30s 30s 30s 

Camera and optics 

Long-pass filter 

Fly arena 

LED array 

Figure 8. Optogenetic arena behavioural assay 
 
The operational procedure used during optogenetic arena testing is represented in the top 
panel. The bottom panel depicts the arena, filter, and camera arrangement.   
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For each experimental group a sample size of 10-16n was used. Video files were 

analysed using a custom ImageJ plugin. The behavioural responses in the last 5 seconds of 

each stimulus period were averaged and used to calculate a preference index relative to 

quadrant illumination using the following formula: 

 

𝑃𝐼 =
#  𝑓𝑙𝑖𝑒𝑠  𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠  𝑎  𝑎𝑛𝑑  𝑐 − #  𝑓𝑙𝑖𝑒𝑠  𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡𝑠  𝑏  𝑎𝑛𝑑  𝑑

𝑡𝑜𝑡𝑎𝑙  #  𝑓𝑙𝑖𝑒𝑠  

 

 

2.3 T-maze Split-GAL4 screening protocol 

 

 To test whether MBONs and DANs were involved in a starvation dependent MB 

olfactory integration circuit a library of Split-GAL4 lines was crossed to 20XUAS-IVS-

Shibirets1-p10 and screened for olfactory responses in the T-maze assay. The Split-GAL4 

library was produced at the JFRC by Dr. Yoshinori Aso. Initially lines were selected from 

a library of ~7000 GAL4 lines based on their expression in the MB. The Split-GAL4 

approach was applied to pairs of these lines to produce ~2500 intersections that were then 

anatomically screened for strong and sparse expression specifically targeting the MB. This 

process produced ~400 Split-GAL4 lines, ~80 of which (see table) were selected by Dr. 

Aso for inclusion in the JFRC MB collaboration.  

 

 Males from approximately 5 Split-GAL4 lines were crossed to 20XUAS-IVS-

Shibirets1-p10 virgin females per week. Experimental flies were collected and aged 4-7 

days before being starved for 42 hours. The flies were then tested at restrictive temperature 

(32°C) for CO2 avoidance, vinegar attraction, and response to a mixture of CO2 and 

vinegar. A total of 4n was collected per genotype per stimulus condition and then 

compared to a pooled control genotype (Shi/w-) from across all the screening experiments. 

Secondary experiments were performed on statistically significant hits from the primary 

screen and included a larger sample size (8n), parallel GAL4 genetic controls (+/Split-

GAL4), and low temperature controls (25°C).  
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2.4 Behavioural protocols for CO2 conditioning experiments 

 

To test whether CO2 avoidance can act as a CS in associative learning experiments 

we developed a test protocol for use with the T-maze. Experimental flies were first trained 

for 1 minute via exposure to air (procedural control), CO2 (adaptation control), or CO2 

(CS) plus vinegar (US). Flies were then returned to an odourless environment for 3 

minutes after which time their CO2 avoidance behaviour was tested in a T-maze assay 

(Figure 7).  

 

To test whether artificial activation of DANs was sufficient to induce CO2 

associated memory we designed a similar protocol. A group of flies expressing dTrpA1 in 

DANs were acclimatized to 32°C for 2 minutes after which they were placed in a CO2 

environment for a further 2 minutes, thus pairing activation of DANs with exposure to 

CO2. Flies were then removed from the CO2 environment and their CO2 avoidance 

responses tested in a T-maze. A second group of flies was tested in parallel at 25°C (non-

activating).  

 

 

2.5 Calcium imaging 

 

in-vivo two-photon calcium imaging was used to establish responsiveness of the 

MB input and output neurons to the experimental odours and to provide physiological 

evidence that single populations of MBONs integrate conflicting olfactory information. 

Experiments were performed on 4-7 day old female flies of the genotypes MB011B-Split-

GAL4;UAS-GCaMP6f and MB109B-Split-GAL4;UAS-GCaMP6f to measure changes in 

intracellular calcium levels in β’2 innervating MBONs and DANs. Flies were immobilized 

in a modified pipette tip with the antennae free and the dorsal side of the head carapace 

sealed with wax against a plastic membrane. A small window was then opened through 

the plastic membrane and the head carapace to expose the brain neuropil (Figure 9). A 

reservoir above the plastic membrane was then filled with fly ringer solution (see index for 

composition). The whole assembly could then be easily placed beneath the microscope 

objective, leaving clear access to stimulate the fly with olfactory cues from a custom 

odour delivery setup (Figure 9). To image and excite the GCaMP6f an Olympus FV-1000 
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microscope system was used in tandem with a mode-locked T:Sapphire MaiTai DeepSee 

laser. 

 

Throughout the entire experiment a charcoal filtered humidified continuous air 

stream of 1L/min was delivered by a Syntech stimulus controller to the antennae from a 

distance of ~10mm away via an 8mm diameter Teflon tube (Figure 9). The odour delivery 

setup functioned by redirecting ~30% of the continuous airstream for 1 second through an 

odour vial containing diluted odourant or solvent. For CO2 stimulation pure CO2 and 

pressurized atmospheric air were controlled and mixed by MFCs and then fed into the 

main airstream. For CO2 and vinegar combined stimulation both odours were fed 

simultaneously into the airstream via the activation of solenoid valves.   

 

  

 

 

 

Figure 9. in vivo calcium imaging stimulation preparation 
 
The in vivo preparation allows simultaneous olfactory stimulation of a living fly and 
measurement of calcium induced changes in the fluorescence signal emitted via the 
genetically encoded calcium sensor GCaMP.     
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For the analysis of calcium imaging data the appropriate anatomical regions were 

specified using ImageJ to define regions of interest and obtain time traces of fluorescence 

levels. The change in fluorescence intensity as reported by the calcium sensor (GCaMP6f) 

was calculated via the following formula: 

 
∆𝐹
𝐹   =   

100  (𝐹𝑛 − 𝐹𝑜)
𝐹𝑜  

 

Fn refers to the nth frame after stimulation and Fo the average basal fluorescence 5 frames 

prior to stimulation. All data was normalized to the ΔF/F calculated for the background 

signal measure when the flies were stimulated air alone. 

 

 

2.6 Statistics  

 

All behavioural data was tabulated and stored using Microsoft Excel and statistically 

analysed using Graphpad Prism software (Graphpad Inc.). All datasets were tested for 

normality prior to statistical analysis. Due to the small and variable sample sizes of the 

initial behavioural screen the statistically stringent Kruskal Wallis non-parametric One-

Way ANOVA was used, followed by Dunn’s post-hoc test for multiple comparison 

between pooled control (shi/w-), and experimental groups (shi/Split-GAL4). For analysis 

of subsequent data containing more than three experimental groups One-way ANOVA 

was used followed by planned pairwise Bonferroni’s multiple-comparison post-hoc test. 

Where only two experimental groups were compared, such as for calcium imaging data, p-

values were calculated via the student’s T-test. The significance threshold (α) was set to 

0.05. 

 

 

2.7 Anatomical analysis 

 

In order to examine whether MBONs and DANs are potential synaptic partners it 

was first important to determine whether they innervate the same anatomical regions 

within the fly brain. The targeted expression of fluorescent markers to neuronal subtypes 

was achieved using the fly lines and expression systems detailed in section 2.1. Flies were 
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dissected, fixed, and stained using standard methods (Bräcker et al., 2013). Microscopy 

was performed using an Olympus FV-1000 confocal microscope and image stacks 

processed using ImageJ and Photoshop. Detailed anatomical analysis of all Split-GAL4 fly 

lines used in this study can be found in the study published by Aso et al. (Aso, Hattori, et 

al., 2014). 

 

 

2.7.1 Antibodies 

 

 To provide anatomical background against which to judge neurons of interest 

neuropil was stained with the nc82 antibody (AB) (represented as magenta in figures). 

Anti-GFP AB and Dsred AB were used to amplify the fluorescence intensity of expressed 

GFP and mCherry respectively (Table 1). 

 

 

 

 

 

 

 

 

Staining Primary Antibodies Secondary Antibodies 

GFP 
α-GFP (rabbit, 1:1000, Invitrogen)  

(rat, 1:200, Chromotek) 

α-rabbit (Alexa Fluor 488, 1:1000, Invitrogen)  

α-rat (Alexa Fluor 488, 1:250, Invitrogen) 

Denmark 

(mCherry) 
α-Dsred (rabbit, 1:200, Clontech) α-rabbit (Cy3, 1:250, Jackson Immunoresearch) 

Synaptotagmin 

(GFP) 
α-GFP 3H9 (rat, 1:200,Chromotek) α-rat (Alexa Fluor 488, 1:250, Invitrogen) 

GRASP 

(GFP) 

α-GFP (mouse, 1:200,  

NeuroMab clone N86/38) 
α-mouse (Alexa 488, 1:250 Invitrogen) 

Dopaminergic 

neurons 
α-TH (mouse, 1:100, ImmunoStar) α-mouse (Alexa 633, 1:250, Invitrogen) 

Glutamatergic 

neurons 

α-dvGlut (rabbit, 1:1000, gift of 

DiAntonio) 
α-rabbit (Cy3, 1:250, Jackson Immunoresearch) 

nc82 neuropil α-nc82 (mouse, 1:50, DSHB) 
α-rabbit (Cy3, 1:250, Jackson Immunoresearch)  

α-mouse (Alexa 633, 1:250, Invitrogen) 

Table 1. Primary and secondary antibodies 
 
Antibodies used to stain genetically encoded markers or endogenously expressed proteins for 
anatomical characterization.   



	   	   37	  

2.7.2 MBON and DAN cell polarity 

 

 The input and output regions of MBONs and DANs were analysed using the Split-

GAL4 driver lines MB002B-Split-GAL4, MB011B-Split-GAL4, and MB109B-Split-GAL4 

to drive expression of UAS-DenMark::mCherry; UAS-Syt::GFP. Expression of 

DenMark::mCherry was therefore restricted to the dendritic input regions (red in the 

figures), and Synaptotagmin::GFP to the axonal output regions (green in the figures). 

 

 

2.7.3 Double labeling experiments 

 

To establish whether MBONs and DANs had anatomically overlapping fields of 

innervation we first recombined 1) MB109B-Split-GAL4/CyO (DAN) and R14C08-

LexAp65 (MBON), and 2) MB109B-Split-GAL4/CyO (DAN) and R15B01-LexAp65 in 

attP40 (MBON). R14C08-LexAp65 and R15B01-LexAp65 in attP40 both label MBONs 

targeting the β’2 MB lobe region. These lines were then used to drive expression of 

LexAop2-mCD8GFP, and 10XUAS-IVS-mCD8RFP. This allowed us to simultaneously 

visualize MBONs and DANs, expressing GFP and RFP respectively, in a single fly brain. 

 

 

2.7.4 GRASP (GFP reconstitution across synaptic partners) 

 

GRASP analysis was carried out using MB109B-Split-GAL4/CyO, R14C08-

LexAp65, and R15B01-LexAp65 in attP40, to drive expression of w-; Bi/CyO; UAS-

CD4::spGFP1-10/TM2, and w-; LexAop-CD4::spGFP11/CyO; TM2/TM6B. When two 

neurons come into close contact, and each expresses half of a split GFP, functional GFP is 

reconstituted and fluorescence restored. A fluorescence signal can therefore be taken as 

indicative of two neurons being synaptic partners. 
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3.0 Results 
 

3.1 Establishing the behavioural basis for olfactory conflict resolution 

 

 Bräcker et al. (Bräcker et al., 2013) previously demonstrated that starved flies can 

overcome their aversion to CO2 to approach appetitive vinegar odour. In order to 

determine the types of responses I would observe throughout experimentation I initially 

tested the effect of blocking transmission of either vinegar or CO2 olfactory information to 

the MB on the behavioural responses to vinegar, CO2, and the conflict mixture of both 

Figure 10. Food odour inhibits aversive behaviour 
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
The grey bars represent control flies capable of exhibiting wild type like behaviour. The red 
bars represent flies’ responses to vinegar and conflict stimulus upon silencing of vinegar 
representing PNs. The blue bars represent flies’ responses to CO2 and conflict stimulus upon 
silencing of the Gr63a OSNs. n=16-20. The upper and lower extents of the box plots represent 
the interquartile range, the bisecting line the median value, and the whiskers the 10th and 90th 
percentiles.  
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odours. As expected I observed that 42 hour starved flies are innately attracted to vinegar 

and innately averse to CO2 (Figure 10, grey bars). When exposed to the conflict odour, 

starved flies are capable of overcoming their aversion to CO2 to approach the vinegar 

odour (Figure 10, grey bars). This behaviour can be examined and dissected via the use of 

the T-maze behavioural assay and by blocking neurons critical to the sensation and 

execution of behavioural responses to these olfactory stimuli. GH146-GAL4 labels a 

subset of PNs required for vinegar attraction but does not include those PNs required to 

process CO2 aversion. When GH146 is used to drive expression of the temperature 

sensitive dominant negative allele of dynamin, Shibirets1, vinegar attraction is completely 

abrogated at the non-permissive temperature of 32°C (Figure 10, red bars). Upon stimulus 

with the conflict mixture of CO2 and vinegar flies are unable to properly process vinegar 

sensation and so avoid the CO2 (Figure 10, red bars) and instead choose the air-side of the 

T-maze. If the CO2 sensitive Gr63a OSNs are likewise blocked by expression of Shibirets1, 

flies are unable to sense CO2 and in response to the conflict stimulus approach the conflict 

stimulus vinegar component (Figure 10, blue bars). Through these simple experiments it is 

possible to show that selective silencing of populations of neurons in the fly brain restricts 

the sensory channels available to the fly for decision making and behavioural modulation. 

Throughout the study presented here I leverage this behavioural technique to analyse 

higher-level neural circuits mediating olfactory conflict resolution.  

 

 

3.2 Olfactory choice T-maze behavioural screen of MB neurons 

 

In order to examine the higher brain regions responsible for integrating conflicting 

stimuli and resolving sensory conflict for the purpose of singular behavioural output, I 

conducted a T-maze behavioural screen on a library of 79 Split-GAL4 lines specifically 

labelling nearly all MB associated neurons (see appendix tables 6, 7, 8, and 9). For the 

purposes of experimentation I took vinegar attraction, CO2 aversion, and a mix of the two, 

to be representative of generalised attraction, aversion and sensory conflict resolution 

respectively. Split-GAL4 lines labelling KC subpopulations, MBONs, DANs, and some 

additional MB innervating neurons were crossed to 20XUAS-IVS-Shibirets1-p10, and the F1 

generation collected and starved for 42 hours prior to experimentation. No fed flies were 

tested for the primary screen as Bräcker et al. (Bräcker et al., 2013) had previously shown 

that the MB was only required under starvation conditions. Each Split-GAL4 ; 20XUAS-
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IVS-Shibirets1-p10 line was tested at non-permissive temperature (32°C) against a vinegar 

concentration of 10% (v/v), and a CO2 concentration of ~0.1%. For the conflict stimulus 

the same concentrations of vinegar and CO2 were used and combined in one stimulus tube. 

The expression patterns of lines will be described where necessary. For those lines not 

directly referred to, details of expression pattern and level and promoter region can be 

found in the appendix (Tables 7-10). 

 

The following sections will describe the behavioural screening results of the four 

distinct populations of neurons. Namely the KCs, MBONs, DANs, and other MB 

innervating neurons.  

 

 

3.2.1 KC interneuron blockade  

 

3.2.1.1 α’/β’ KC play dominant role in CO2 avoidance 

 

A primary purpose of the screen was to elaborate on the findings of Bräcker et al. 

(Bräcker et al., 2013) by identifying with a higher degree of precision which KC subsets 

are involved in processing CO2 and to test whether there was any specificity for the 

vinegar and mixed stimuli. Bräcker et al. showed that silencing the α’/β’ KCs caused the 

largest reduction in CO2 avoidance, while silencing the α/β KCs didn’t produce a 

phenotype. The strongest phenotype was expressed upon silencing of all KCs, suggesting 

the γ KCs may play a role. However, in the context of the primary screen presented here, 

silencing γ KCs had no significant affect on CO2 avoidance (Figure 11, blue bars). In 

support of the findings from Bräcker et al. a significant reduction in CO2 avoidance was 

observed upon blockade in two of five Split-GAL4 lines labelling α’/β’ KCs: MB370B 

and MB461B (Figure 11, green bars). These lines both label α’/β’ KCs although there is 

some difference in terms of expression level (Table 2). With the exception of MB418B, 

which only labels α’/β’m KCs, the α’/β’ labelling lines express in all α’/β’ KC subsets (a, 

p, and m). Interestingly, a phenotype was observed upon blockade in line MB371B, which 

labels only a subset of α/β KCs, namely α/βp KCs (Figure 11, orange bars). This 

incongruence with the observations presented by Bräcker et al. – that the α/β KCs play 

little or no role in processing CO2 avoidance – could be explained by their usage of a 

different driver line (R67B04) in targeting α/β KCs that perhaps had lower expression 
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levels in the α/βp subset of α/β KCs. A statistically significant CO2 avoidance phenotype 

was also observed upon silencing of all KCs using the driver line MB152B (Figure 11, 

grey bars), which has strong expression in α’/β’ KCs, but not in other broadly expressing 

lines (Table 2). This irregularity of phenotype in lines that in principle should produce 

strong phenotypes may be due to uncontrollable changes in fly rearing conditions leading 

to a false negative results. This is certainly a possibility given that the sample size of most 

experimental groups in the primary screen was 4n, making the experiment susceptible to 

variability. In addition, the statistical test used to identify positive hits in the screen 

(Kruskal-Wallis ranked analysis of variance) was particularly stringent to avoid the 

possibility of false positive results. These results confirmed the findings of Bräcker et al. 

in suggesting a dominant role for α’/β’ KCs in processing innate CO2 aversion. They also 

suggest a possible, if more limited role for α/βp but not γ KCs. 
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Figure 11. CO2 avoidance response upon silencing of subsets of KC neurons 
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
CO2 response at non-permissive temperature. Control is Shi/w-. The upper and lower extents 
of the box plots represent the interquartile range, the bisecting line the median value, and the 
whiskers the 10th and 90th percentiles. The grey box spanning the length of the plot represents 
the control interquartile range. Experimental groups comprise 4-8n, control value pooled 
across 32n. (Kruskal-Wallis ANOVA and Dunn’s post-hoc test, ns p>0.05, *p<0.05, **p<0.01).   
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3.2.1.2 Vinegar response upon KC blockade 

 

 Given that vinegar is a complex food odour activating 6 AL glomeruli 

(Semmelhack & Wang, 2009), one would expect there to be a larger number of redundant 

pathways by which it can affect behavioural output. Indeed, upon inactivation of 

populations of KCs under starvation conditions, very few statistically significant vinegar 

attraction phenotypes were observed, although there were several non-significant 

reductions in attraction (Figure 12). The lines in which phenotypes were observed, 

MB185B and MB131B (Figure 12), labelled α/βs and γ KC interneurons respectively 

(Table 2). Further, the magnitude of vinegar attraction phenotypes upon γ KC blockade 

was generally higher than CO2 aversion phenotypes (Figures 11 and 12). That blockade of 

γ KCs (MB horizontal lobe) causes phenotypes in vinegar attraction but not CO2 aversion 

is perhaps intuitive given that γ KCs have been implicated in appetitive reward learning 

(Huetteroth et al., 2015). This implies that γ KCs may perhaps play a greater role in 

representing appetitive stimuli than aversive stimuli. 

 

 

 

  
 

Table 2. KC Split-GAL4 line expression patterns and levels 
 
Each fly line (MBxxxB) targets expression to cell types as indicated by greyscale rectangles. 
Black corresponds to strongest expression and light grey to weakest expression. Neuron 
designations are indicated on the far left. These anatomical and expression analysis were 
carried out by Aso et al. (Aso, Hattori, et al., 2014).     
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3.2.1.3 Mixed CO2 and Vinegar conflict stimulus upon KC blockade. 

 

   From behavioural analysis alone there was no clear way to distinguish whether a 

reduced or increased attraction to the conflict mix was a result of reduced attraction to 

vinegar (resulting in an increased aversion to CO2), a reduced aversion to CO2 (resulting 

in an increased attraction to vinegar), or a sensory integration phenotype indistinguishable 

from the single odour phenotypes. One possible way of interpreting the data was to see 

whether a phenotypic behavioural response to the conflict stimulus had a corresponding 

phenotype in the single odour tests. For example, the line MB370B-Split-GAL4 ; 20XUAS-

IVS-Shibirets1-p10, which targets α’/β’ KCs exhibited a strongly reduced CO2 response 

(Figure 11, green bars), and correspondingly, its attraction to the mixture of CO2 and 

vinegar was stronger than the control value (Figure 13, green bars). Thus, the line’s intact 

attraction pathway drove the behavioural response to the conflict stimulus. The situation is 

similar, although inverted, for the line MB005B, which also targets expression to α’/β’ 

KCs (Table 2).  Unlike MB370B its CO2 avoidance was not strongly reduced (Figure 11, 

green bars). Instead, when driving the expression of Shibirets1, it exhibited a non-
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Figure 12. Vinegar attraction response upon silencing of subsets of KC neurons 
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
Vinegar response at non-permissive temperature. Control is Shi/w-. The upper and lower 
extents of the box plots represent the interquartile range, the bisecting line the median value, 
and the whiskers the 10th and 90th percentiles. The grey box spanning the length of the plot 
represents the control interquartile range. Experimental groups comprise 4-8n, control value 
pooled across 32n. (Kruskal-Wallis ANOVA and Dunn’s post-hoc test, ns p>0.05, *p<0.05, 
**p<0.01).   
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significant reduction in vinegar attraction (Figure 12, green bars), and in response to the 

mixed odour conflict stimulus it was also less attracted (Figure 13, green bars). This 

suggests the line’s reduced attraction to vinegar caused its behaviour in response to the 

mixed odour stimulus to be dominated by its intact CO2 avoidance. Silencing γ KCs and 

stimulating the flies with the conflict odour produced significant phenotypes in three lines 

(MB009B, MB028B, and MB131B), with the flies exhibiting aversion rather than 

attraction (Figure 13, blue bars). This makes intuitive sense given that the same lines 

displayed more strongly reduced vinegar attraction upon silencing than they did reduced 

CO2 aversion (Figure 12 and 11, blue bars). Thus, their intact aversion pathway may have 

driven their aversive behavioural response. Lines targeting expression to α/β KCs 

followed the same general pattern. MB371B, which sparsely targets α/βp KCs (Table 2), 

exhibited a strong CO2 avoidance phenotype, a small non-significant reduction in vinegar 

attraction, and a non-significant increase in attraction to the conflict stimulus (Figure 11, 

12, and 13, orange bars). Here, the same logic applies. The line’s reduced aversive 

response leads to it’s increased attraction in the context of the conflict stimulus. Line 

MB185B, which labels only α/βs KCs (Table 2), displayed an almost normal aversive 
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Figure 13. Mixed odour conflict response upon silencing of subsets of KC neurons  
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
Mixed odour conflict response at non-permissive temperature. Control is Shi/w-. The upper 
and lower extents of the box plots represent the interquartile range, the bisecting line the 
median value, and the whiskers the 10th and 90th percentiles. The grey box spanning the 
length of the plot represents the control interquartile range. Experimental groups comprise 4-
8n, control value pooled across 32n. (Kruskal-Wallis ANOVA and Dunn’s post-hoc test, ns 
p>0.05, *p<0.05, **p<0.01).   
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response to CO2, a significantly reduced attraction to vinegar, and correspondingly, a 

significantly reduced ability to overcome CO2 aversion in the context of the conflict 

stimulus (Figure 11, 12, and 13, orange bars).  

 

 From these data a general observation can be made, that if a line displayed a 

reduction in aversion, it is more likely to be more attracted to the conflict stimulus. If the 

neuronal inactivation elicits a reduction in attraction, it will be more likely to be averse to 

the conflict stimulus: 

 

𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟  𝑣𝑎𝑙𝑒𝑛𝑐𝑒 = 𝑜𝑑𝑜𝑢𝑟𝐴   ±𝑥 + 𝑜𝑑𝑜𝑢𝑟𝐵  (±𝑥) 

 

Where x describes the valence and strength of representation of the given odour.  

 

While this observation may explain the relationships between single lines across different 

stimulus conditions, it doesn’t explain why the odour responses are different across 

several lines that target the same KC subpopulations. One reason for these differences may 

be that the differing expression levels between the lines lead to what amounts to a slightly 

different KC odour representation, capable of driving attractive and aversive behaviours 

with differing strengths. Given that 1) the α’/β’ and α/β KCs both innervate the vertical 

and horizontal MB lobes, and that 2) the vertical lobe drives attractive behaviour and the 

horizontal lobe aversive, differing expression levels in different KC populations may 

differentially drive attractive or aversive behaviour in response to what remains of the 

odour representation after neuronal silencing. This hypothesis makes sense in the context 

of recent research that demonstrated different thresholds for activation of aversive and 

attractive behaviours via horizontal lobe and vertical lobe MBONs. That blockade of the γ 

KCs seems to have more of an affect on vinegar attraction than CO2 aversion is somewhat 

confusing given that γ KCs are likely synaptically connected to MBONs driving both 

attractive and aversive behaviours. The reason for this should become clear once the 

nature of the synaptic connectivity between the KCs, MBONs, and DANs is better 

understood.   
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3.2.2 Mushroom body output neuron blockade 

 

3.2.2.1 Horizontal lobe β’2 mushroom body output neurons drive aversive CO2 

output 

 

 MBONs innervate specific anatomical compartments of the MB lobes and are 

post-synaptic to the KCs. The olfactory information they receive is gated by DAN 

modulation of the KC presynapse. Included in the behavioural screen were 25 Split-GAL4 

lines labelling MBONs innervating both the horizontal and vertical MB lobes. Upon 

neuronal inactivation only four statistically significant phenotypes were obtained 

(MB011B, MB074C, MB434B, and MB399B) for CO2 avoidance behaviour (Figure 14, 

green bars). Three of the four phenotypes were produced by lines almost exclusively 

labelling MBONs innervating the β’2 region of the MB horizontal lobe (MB011B, 

MB074C, and MB399B)  (Table 3) indicating a possibly dominant role for the horizontal 

lobe in processing CO2 aversive behaviour. The line MB011B exhibited the strongest CO2 

aversion phenotype and labels four MBONs that together cover the entire β’2 region of the 

MB (Table 3). Notably, these neurons have very little innervation in the adjacent γ lobe, 

which based on the KC silencing data, may represent vinegar. These data corroborate the 

findings published by Bräcker et al. and also fit with the KC silencing phenotypes in 

which the α’/β’ KCs were identified as dominantly representing CO2 aversion.  

Figure 14. CO2 avoidance response upon silencing of subsets of MBONs 
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
CO2 response at non-permissive temperature. Control is Shi/w-. The upper and lower extents 
of the box plots represent the interquartile range, the bisecting line the median value, and the 
whiskers the 10th and 90th percentiles. The grey box spanning the length of the plot represents 
the control interquartile range. Experimental groups comprise 4-8n, control value pooled 
across 40n. (Kruskal-Wallis ANOVA and Dunn’s post-hoc test, ns p>0.05, *p<0.05, **p<0.01).   
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3.2.2.2 Vertical lobe mushroom body output neurons dominantly represent vinegar 

attraction 

 

 Upon silencing of MBONs and stimulation with vinegar odour, it was observed 

that fly lines labelling vertical lobe outputs elicited stronger reductions in attraction than 

did horizontal lobe outputs (Figure 15). This observation is corroborated by the findings of 

Aso et al (Aso, Sitaraman, et al., 2014) which demonstrate that when activated, vertical 

lobe MBONs drive attractive behaviour. The strongest phenotype was exhibited by the 

line MB112C which labels a MB recurrent GABAergic MBON (MBON-γ1pedc>α/β) 

innervating multiple compartments of the vertical and horizontal lobes (Figure 15, blue 

bars, and Table 2). Despite this, it’s activation triggers attractive behaviour (Aso, 

Sitaraman, et al., 2014). Upon silencing, horizontal lobe MBONs did not display 

statistically significant reductions in attraction behaviour (Figure 15, blue bars). Analysis 
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MBON-β1>α (MB-MV2) "" 4" 3" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
MBON-γ5β'2a (MB-M6) "" "" "" 4" 5" 2" 1" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
MBON-β'2mp (MB-M4) "" "" "" 3" 4" 4" 4" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
MBON-β'2mp_bilateral "" "" "" 3" 1" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""

MBON-β2β'2a "" "" "" "" "" "" 3" 2" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
MBON-α1 "" "" "" "" "" "" "" "" 5" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
MBON-γ3 "" "" "" "" "" "" "" "" "" 5" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""

MBON-γ3β'1 "" "" "" "" "" "" "" "" "" 5" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""
MBON-β'1 "" "" "" "" "" "" "" "" "" "" 3" "" "" "" "" "" "" "" "" "" "" "" "" "" "" ""

MBON-γ1pedc>α/β (MB-MVP2) "" "" "" "" "" "" "" "" "" "" "" "" 4" "" "" "" "" "" "" "" "" "" "" "" "" ""
MBON-γ2α'1 "" "" "" "" "" "" "" "" "" "" "" "" "" 4" "" "" "" "" "" "" "" "" "" "" "" ""

MBON-α'2 (MB-V4) "" "" "" "" "" "" "" "" "" "" "" "" "" 1" 4" 2" 3" "" "" "" "" "" "" "" "" ""
MBON-α3 (MB-V3) "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" 5" 5" "" "" "" "" "" "" "" "" ""

MBON-α'1 "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" 2" "" 3" 1" "" 2" "" "" ""
MBON-α2sc (MB-V2α) "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" 4" 2" "" "" "" 4" 3" 2" ""

MBON-α2p3p "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" 2" 2" "" 2" "" "" "" "" ""
MBON-α'3ap (MB-V2α'3) "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" 2" 2" 2" "" 5" "" 3" "" ""
MBON-α'3m (MB-V2α'3) "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" 1" "" 2" 2" 5" "" "" "" ""
MBON-calyx (MB-CP1) "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" 3"

Table 3. MBON Split-GAL4 line expression patterns and levels  
 
Each fly line (MBxxxB) targets expression to cell types as indicated by greyscale rectangles. 
Black corresponds to strongest expression and light grey to weakest expression. Neuron 
designations are indicated on the far left. These anatomical and expression analysis were 
carried out by Aso et al. (Aso, Hattori, et al., 2014). The names of MBONs used as part of the 
old system of MB neuron nomenclature are indicated in brackets.      
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of these data indicates a functional divergence between the representation of the attractive 

and aversive odours, vinegar and CO2, between the vertical and horizontal lobes 

respectively. These data are somewhat incongruent with the γ KC silencing data that 

suggest that the γ lobe may also represent vinegar (Figure 12, blue bars), indicating a 

strong divergence in function between the sub-lobes of the MB horizontal lobe, and that 

attraction and aversion may be differentially represented in terms of amount of input 

required to initiate the respective behaviour.   

 

 

3.2.2.3 Vertical lobe and horizontal lobe MBON conflict odour response 

 

 As with the KC data, I looked to see if a reduction or increase in behavioural 

response to the mix of CO2 and vinegar could be explained by deficits in processing of the 

single odour response. Line MB083C, for example, exhibited a strong avoidance (Figure 

16, green bars), and although only small in magnitude, it had a relatively strong reduction 

in vinegar attraction compared to other lines targeting horizontal lobe MBONs (Figure 15, 

green bars). A larger proportion of the vertical lobe innervating MBONs exhibited conflict 

odour response phenotypes (Figure 16, blue bars). This is likely due to the overall larger 

number of single odour vinegar attraction phenotypes observed upon silencing of the same

 

Figure 15. Vinegar response upon silencing of subsets of MBONs 
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
Vinegar response at non-permissive temperature. Control is Shi/w-. The upper and lower 
extents of the box plots represent the interquartile range, the bisecting line the median value, 
and the whiskers the 10th and 90th percentiles. The grey box spanning the length of the plot 
represents the control interquartile range. Experimental groups comprise 4-8n, control value 
pooled across 46-48n. (Kruskal-Wallis ANOVA and Dunn’s post-hoc test, ns p>0.05, *p<0.05, 
**p<0.01).   
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neurons (Figure 15, blue bars). Line MB112C, for example, exhibits a largely normal CO2 

avoidance (Figure 14, blue bars), a strongly reduced vinegar attraction (Figure 15, blue 

bars), and an aversive conflict odour response (Figure 16, blue bars), suggesting it strongly 

represents vinegar. Importantly the lines labelling MBONs that innervate the β’2 region   

(MB011B, MB074C, and MB399B) did not exhibit phenotypes, which one would expect 

given their reduction in CO2 aversion.   

 

The MBON screening data, like the KC data, recapitulate the findings of Bräcker 

et al. (Bräcker et al., 2013) that the α’/β’ KCs dominantly represent CO2, and implicate the 

β’2 MBONs as the downstream postsynaptic neurons that mediate CO2 avoidance 

behaviour.  They exhibit strong reductions in CO2 aversion (Figure 14, green bars), but not 

in conflict response (Figure 16, green bars), and did not display reductions in vinegar 

attraction suggesting they may be specific for aversive odours. Correspondingly, silencing 

of the vertical lobe MBONs elicited vinegar attraction but not CO2 phenotypes (Figures 14 

and 15), a finding supported by the recent study by Aso et al. (Aso, Sitaraman, et al., 

2014). These data, along with findings from Lin et al. point to the possibility of the 

horizontal lobe playing a greater role in the processing of innate behavioural responses (S. 

Lin et al., 2014). 

 

 

Figure 16. CO2 and Vinegar conflict response upon silencing of subsets of MBONs  
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
Conflict response at non-permissive temperature. Control is Shi/w-. The upper and lower 
extents of the box plots represent the interquartile range, the bisecting line the median value, 
and the whiskers the 10th and 90th percentiles. The grey box spanning the length of the plot 
represents the control interquartile range. Experimental groups comprise 4-8n, control value 
pooled across 46-48n. (Kruskal-Wallis ANOVA and Dunn’s post-hoc test, ns p>0.05, *p<0.05, 
**p<0.01).   
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3.2.3 PAM and PPL1 cluster dopaminergic neuron blockade 

 

3.2.3.1 PAM cluster neurons modulate both aversive and attractive responses 

 

 Given that the screening data for the MBONs seemed to indicate that the vertical 

lobe plays a dominant role in mediating attractive olfactory responses and the horizontal 

lobe a role in aversive responses, I expected the populations of dopaminergic neurons 

innervating the lobes to functionally segregate in a similar fashion. Indeed, DANs of the 

PAM cluster that project axonal terminals to the horizontal lobe (aversion mediating) 

cause reductions in CO2 aversion upon silencing (Figure 17A), while the statistically 

significant phenotypes observed upon silencing neurons of the PPL1 cluster that innervate 

the vertical lobe (attraction mediating) are found in response to vinegar but not CO2 

(Figure 18). I also observed that silencing PAM neurons causes vinegar attraction 

phenotypes (Figure 17B). This could possibly be explained in relation to the γ lobe KC 

vinegar stimulus data, which suggests that the γ KCs may represent attractive vinegar 

odour (Figure 12, blue bars). Many of the PAM neurons also directly innervate the γ lobe 

(Table 4) and so may be responsible for modulating horizontal lobe mediated vinegar 

attraction as well as aversion.  

  

 Given that the MBON silencing data presented above implicated the β’2 horizontal 

lobe region in processing CO2 aversion one would expect that the DANs innervating this 

same region may generate CO2 response phonotypes upon silencing. However, in the 

screening data presented here, lines labelling DANs innervating the β’2 region (Table 4) 

did not produce consistent or readily interpretable results.  
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Figure 17. CO2 and Vinegar single odour responses upon silencing of subsets of PAMs  
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
PAM cluster neurons innervate the MB horizontal lobe. CO2 and vinegar single odour 
responses at non-permissive temperature. Control is Shi/w-. The upper and lower extents of 
the box plots represent the interquartile range, the bisecting line the median value, and the 
whiskers the 10th and 90th percentiles. The grey box spanning the length of the plot represents 
the control interquartile range. Experimental groups comprise 4-8n, control value pooled 
across 46-48n. (Kruskal-Wallis ANOVA and Dunn’s post-hoc test, ns p>0.05, *p<0.05, 
**p<0.01).   
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Only one line (MB042B) expressing in β’2 innervating PAM DANs produced a significant 

reduction in CO2 avoidance (Figure 17A, blue bars). However, due to its broad expression 

(Table 4) it is not possible to say with any certainty that it was indeed the β’2 PAM DANs 

that caused the phenotype. Several other lines did produce non-significant CO2 phenotypes 

but not in a manner consistent with the data obtained from the silencing of MBONs 

innervating the same MB compartments (Figure 14). Interestingly some of the DAN 

labelling lines produced vinegar attraction phenotypes upon silencing. For example line 

MB087C, which targets expression to PAM-β’2a, exhibited a significant reduction in 

vinegar attraction (Figure 17B). This was contradictory to my initial expectation that these 

neurons represent vinegar in order to suppress CO2 avoidance, and that therefore their 

activity is not necessarily required for attraction to vinegar. Alternatively, if PAM DAN 

activity is required to inhibit aversive behaviour, and therefore drive attractive behaviour, 

it may also be logical that their silencing reduces attractive behaviours.  

 

The most likely explanation for the lack of an obvious pattern in PAM DAN 

function across the lines tested here is that within the cluster of ~200 PAM neurons there 

is significant functional redundancy. The existence of multiple PAM DAN neurons that 

perform the same or similar tasks may effectively reduce the magnitude of a phenotype 

caused by blocking only one neuron. Given this redundancy and that DANs may allow 

complex internal state information to positively or negatively impinge on the 

transformation of olfactory information into behaviour (Cohn et al., 2015; Owald et al., 

2015b) it is likely that behaviour is modulated dynamically by the entire ensemble. Thus, 

interpretation of the effect of silencing an individual or arbitrary population of neurons is 

very difficult without detailed understanding of the DAN representation of internal state. 

This situation does not apply in the same way to behavioural analysis of MBON function 

due to their much reduced ensemble size and therefore level of redundancy.     

 

 Another possible interpretation of the PAM DAN lack of valence specificity is that 

they often innervate lobes also innervated by KCs that seemingly represent both attractive 

and aversive odours (Figures 11 and 12). Indeed, in comparison to the PAM DAN findings 

presented here, synaptic silencing of the vertical lobe innervating PPL1 DANs appeared to 

cause clearly different effects in behavioural responses to vinegar and to CO2 (Figure 18); 

I observed significant reductions in vinegar attraction (lines MB058B, MB065B, and 

MB304B) (Figure 18B), but not in CO2 avoidance (Figure 18A). These may reflect the 
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findings presented by Aso et al. (Aso, Sitaraman, et al., 2014) in which all MBONs 

innervating the vertical lobe seem to drive attractive behaviour upon optogenetic 

activation. In addition, the vertical lobe consists of only two sub-lobes (α and α’) to the 

horizontal lobe’s three (β, β’, and γ), and appears to have a more consistent appetitive 

representation across these two sub-lobes whereas the horizontal lobe may have opposing 

representations between the γ (appetitive) and β / β’ (aversive) sub-lobes (Figures 11-16), 

effectively making the PAM DAN modulations more complex than those of the PPL1 

DANs.  

 

Taken together, these PAM DAN and PPL1 DAN data may reflect the relative 

complexity of the processing tasks performed by the two MB lobes. The PAM DAN 

ensemble may modulate outputs from sub-lobes representing both attractive and aversive 

stimuli, whereas the PPL1 DAN neurons may only modulate the KC representation of 

attractive odours. It is not clear from these data whether the β’2 MBONs are modulated by 

PAMs also innervating this region. However, this will be elaborated upon in later sections. 

 

  
 

Table 4. DAN Split-GAL4 line expression patterns and levels 
 
Each fly line (MBxxxB) targets expression to cell types as indicated by greyscale rectangles. 
Black corresponds to strongest expression and light grey to weakest expression. Neuron 
designations are indicated on the far left. These anatomical and expression analysis were 
carried out by Aso et al. (Aso, Hattori, et al., 2014). The names of DANs used as part of the 
old system of MB neuron nomenclature are indicated in brackets.      
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!! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
PPL1-γ1pedc (MB-MP1) !! !! 3! 4! !! 3! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!

PPL1-γ2α'1 (MB-MV1) 5! 3! 4! !! 4! !! !! !! 3! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
PPL1-α'2α2 (MB-V1) 4! 3! 4! 2! 2! 3! !! 5! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!

PPL1-α3 4! 4! 2! 1! 1! 3! 1! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
PPL1-α'3 2! 1! !! !! !! !! 4! !! !! 3! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
PPL1-γ1 !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !!
PAM-γ5 !! !! !! !! !! !! !! !! !! !! !! 5! 1! !! !! !! !! !! !! !! !! !! 3! 3! 3! 1! !! !! !!

PAM-β'2a !! !! !! !! !! !! !! !! !! !! !! !! 5! 1! !! !! !! !! !! !! !! !! 1! 1! 2! !! !! 1! 1!
PAM-β2β'2a !! !! !! !! !! !! !! !! !! !! !! !! !! 3! !! !! !! !! !! !! !! !! !! !! 1! !! !! !!

PAM-β2 !! !! !! !! !! !! !! !! !! !! !! !! !! !! 3! 1! !! !! !! !! !! 1! 3! !! !! !! 3! !!
PAM-β'2m 1! 2! 2! 1! 4! 3! 2!
PAM-β'2p !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! 1! 1! 1! 1! 5! !! 4!

PAM-γ4<γ1γ2 !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! 4! !! !! !! !! 1! 1! 3! !! !! !! 4!
PAM-γ4 !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! 4! !! 1! !! !! 3! 3! 3! !! 1! !! 4!

PAM-β1(MVP1) !! !! !! !! !! !! !! !! !! !! !! !! !! !! 3! 1! !! 2! !! !! !! 1! !! !! !! 1! 4! !!
PAM-β1ped !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! 2! !!

PAM-α1 !! !! !! !! !! !! !! !! !! !! !! !! !! !! 1! 3! !! 5! !! !! !! 1! 2! !! !! 1! 2! !!
PAM-γ3 !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! 3! 2! !! 3! 3! 3! 1! !! !! !!

PAM-β'1ap !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! 2! 5! !! 4! 1! 2! 1! !! !! !! !!
PAM-β'1m !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! !! 2! 5! !! 4! 1! 2! 1! !! !! !! !!
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Figure 18. CO2 and Vinegar single odour responses upon silencing of subsets of PPL1s  
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
PPL1 cluster neurons innervate the MB vertical lobe. CO2 (A) and vinegar (B) single odour 
responses at non-permissive temperature. Control is Shi/w-. The upper and lower extents of 
the box plots represent the interquartile range, the bisecting line the median value, and the 
whiskers the 10th and 90th percentiles. The grey box spanning the length of the plot represents 
the control interquartile range. Experimental groups comprise 4-8n, control value pooled across 
46-48n. (Kruskal-Wallis ANOVA and Dunn’s post-hoc test, ns p>0.05, *p<0.05, **p<0.01).   
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3.2.3.2 PAM and PPL1 DAN conflict odour response 

 

In response to blockade of subsets of DANs and simultaneous presentation with a choice 

between conflict odour and air, flies generally exhibited a reduction in attraction relative 

to controls (Figure 19). This can possibly be explained by the fact that vinegar attraction 

phenotypes were observed in both the PAM and PPL1 clusters of DANs leaving intact 

avoidance pathways to drive CO2 aversion behaviour. Line MB299B labels PAM neurons 

innervating both the vertical lobe (PAM-α1) and horizontal lobe (PAM-β1, PAM- β2) 

(Table 4) and demonstrated a significant phenotype in CO2 avoidance (Figure 17A, red 

bars), a non-significant phenotype in vinegar attraction (Figure 17B, red bars), but no 

phenotype in conflict stimulus response (Figure 19, red bars), indicating that both 

attractive and aversive behaviours may have been suppressed leading to a normal response 

to the mixed attractive and aversive stimulus. This interpretation is corroborated by 

findings from several recent studies. Aso et al. (Aso, Sitaraman, et al., 2014) demonstrated 

that simultaneous activation of aversive and attractive MBONs leads to behavioural 

responses at neither extreme; neither strong attraction nor strong aversion. It has 

additionally been shown that DAN input to the KC-MBON synapse can either depress or 

potentiate MBON output. Taken together with these findings, my screening data seems to 

indicate that the fly’s response to the conflict stimulus is a summation of attractive and 

aversive drives.  
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Figure 19. Conflict odour responses upon silencing of subsets of PPL1 and PAM DANs 
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
(A) PPL1 cluster neurons innervate the MB vertical lobe. (B) PAM cluster neurons innervate 
the horizontal MB lobe. Conflict odour responses at non-permissive temperature. Control is 
Shi/w-. The upper and lower extents of the box plots represent the interquartile range, the 
bisecting line the median value, and the whiskers the 10th and 90th percentiles. The grey box 
spanning the length of the plot represents the control interquartile range. Experimental groups 
comprise 4-8n, control value pooled across 46-48n. (Kruskal-Wallis ANOVA and Dunn’s post-
hoc test, ns p>0.05, *p<0.05, **p<0.01).   
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3.2.4 Blockade of octopaminergic neuromodulatory input 

 

 Until recently it was though that in insects octopamine (OA) was the primary 

signalling molecule for reward (Hammer, 1993; Mizunami & Matsumoto, 2010; Schroll et 

al., 2006; Schwaerzel et al., 2003) and that dopamine mediated aversive reinforcement 

(Aso et al., 2010; Claridge-Chang et al., 2009). However, it is now understood that 

dopamine signals both appetitive and aversive reinforcement to the MB lobes and that 

octopamine has a more limited role in representing appetitive motivation (Burke et al., 

2012; C. Liu et al., 2012). To test whether octopamine is required for innate olfactory 

behaviour or in resolving olfactory conflict I included three lines (MB021B, MB022B, and 

MB113C) labelling octopaminergic neurons in the behavioural screen. The lines labelled 

two neurons, OA-VPM3 and OA-VPM4 (Table 5), which both innervate the MB (Busch 

et al., 2009). Upon synaptic inactivation via Shibirets expression none of the lines 

exhibited CO2 avoidance phenotypes but did display non-significant reductions in vinegar 

attraction and significant reductions in conflict stimulus attraction (Figure 20). These 

findings are consistent with previous observations that octopaminergic neurons do not 

encode aversive information (Schwaerzel et al., 2003). 
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Figure 20. CO2, vinegar, and conflict odour responses upon silencing of MB innervating 
octopaminergic neurons  
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
Control is Shi/w-. The upper and lower extents of the box plots represent the interquartile 
range, the bisecting line the median value, and the whiskers the 10th and 90th percentiles. The 
grey box spanning the length of the plot represents the control interquartile range. Experimental 
groups comprise 4-8n, control value pooled across 46-48n. (Kruskal-Wallis ANOVA and Dunn’s 
post-hoc test, ns p>0.05, *p<0.05, **p<0.01).   
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3.2.5 Blockade of additional mushroom body extrinsic neurons 

 

 As well as neuromodulatory input neurons and output neurons there are other cell 

types that innervate various parts of the MB. Four lines in the Spli-GAL4 library I had 

access to sparsely labelled neurons innervating broadly across the superior protocerebrum 

and part of the MB (Table 5). Line MB013B targeted expression to a SIFamide secreting 

neuron that innervates both the MB calyx and lobes (Aso, Hattori, et al., 2014; Verleyen et 

al., 2004). Not a lot is understood about the function of SIFamide except that it may play a 

role in sexual behaviour (Terhzaz et al., 2007) and the promotion of sleep (Park et al., 

2014). Silencing of synaptic transmission of MB innervating SIFamide neurons elicited no 

CO2 aversion phenotypes but did cause a significant reduction in vinegar attraction and a 

corresponding non-significant reduction in attraction to the conflict stimulus (Figure 21). 

Line MB380B targeted expression to the GABAergic MB-C1 neurons, which innervate 

both the LH and the MB calyx (Aso, Hattori, et al., 2014; Nobuaki K Tanaka et al., 2008) 

and are postulated to sparsen the KC odour representation. In the context of the 

behavioural screen blockade of the MB-C1 neurons produced significant reductions in 

vinegar attraction and conflict odour attraction but only a slight non-significant reduction 
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Figure 21. CO2, vinegar, and conflict odour responses upon silencing of MB innervating 
neurons  
 
Negative PI value denotes aversion, positive PI value denotes attraction.  
Control is Shi/w-. The upper and lower extents of the box plots represent the interquartile 
range, the bisecting line the median value, and the whiskers the 10th and 90th percentiles. The 
grey box spanning the length of the plot represents the control interquartile range. Experimental 
groups comprise 4-8n, control value pooled across 46-48n. (Kruskal-Wallis ANOVA and Dunn’s 
post-hoc test, ns p>0.05, *p<0.05, **p<0.01).   



	   	   59	  

in CO2 aversion (Figure 21). In later confirmation experiments no CO2 aversion phenotype 

was observable but the vinegar phenotype remained robust. This selectivity for an 

appetitive odour may be due to the MB-C1 neuron’s spatially restricted innervation of the 

LH, which also makes the neuron a potential candidate for altering KC odour 

representation based on internal state changes. Line MB460B selectively labels the 

bilateral dorsal giant interneurons (DGI) of the dorsal anteriolateral cluster (DAL). Upon 

blockade the DGIs displayed a non-significant reduction in CO2 aversion and significant 

reductions in vinegar and conflict stimulus attraction (Figure 21). The reduction in CO2 

aversion was not observed in subsequent confirmation experiments, although the vinegar 

attraction phenotype remained. These neurons have been previously implicated in 

starvation dependent inhibition of dopaminergic input to the MB horizontal lobe (Krashes 

et al., 2009) and are, like the MB-C1 neurons, good candidates for providing a modulatory 

hunger signal that can, via the DANs, alter MB olfactory output. Finally, MB465C labels a 

contralaterally projecting, serotonin immunoreactive, deutocerebral (CSD) neuron (Aso, 

Hattori, et al., 2014; Dacks et al., 2009; Kent et al., 1987).  
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Table 5. Octopaminergic and other neuromodulatory neuron expression patterns and 
levels 
 
OA denotes octopamine. Each fly line (MBxxxB) targets expression to cell types as indicated 
by greyscale rectangles. Black corresponds to strongest expression and light grey to weakest 
expression. Neuron designations are indicated on the far left. These anatomical and 
expression analysis were carried out by Aso et al. (Aso, Hattori, et al., 2014). 
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Based on work in the hawkmoth Manduca sexta it has been suggested that this neuron 

may modulate AL activity based on mechanosensory stimuli from air movement, and 

therefore may gate olfactory input to the MB in situations when olfaction is required. 

Upon synaptic silencing MB465C did not exhibit any phenotypes significantly different 

from the control (Figure 21).   

 

 

3.2.6 Summary of screening data 

 

 From the screening data it is possible to postulate relationships between the 

behavioural phenotypes observed in response to attractive and aversive single odours and 

corresponding phenotypes in response to the mixed conflict stimulus in the context of 

starvation. However, it is not possible from the screening data alone to establish the 

specific relationships between the phenotypes observed for the MBONs and DANs and 

whether they are representative of olfactory conflict resolution. It generally seems that the 

MB vertical lobe innervating neurons (α, and α ‘ KCs, PPL1 DANs, and vertical lobe 

MBONs) generate more phenotypes in response to vinegar upon silencing than they do to 

CO2 (Table 6).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2$ Vinegar$

KCs$
γ - + 

α'/β' + + 
α/β + + 

MBONs$

Horizontal lobe  
(γ + β + β' + β' KCs) + - 

Vertical lobe  
(α + α' KCs) - + 

DANs$

PAM  
(Horizontal lobe) + + 

PPL1  
(Vertical lobe) - + 

Table 6. Summary of dominant phenotypes per MB anatomy 
 
Non-quantitative summary of phenotypes across all lines representing various subsections of 
MB anatomy. (-) represents the absence of a strong phenotype and (+) represents the 
presence of significant or non-significant phenotypes.       
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Blockade of horizontal lobe innervating neurons (β, β’, and γ KCs, PAM DANs, and 

horizontal lobe MBONs) causes phenotypes in response to both vinegar and CO2. 

Considering the occurrence of vinegar phenotypes upon blockade of γ KCs (horizontal 

lobe) but not horizontal lobe MBONs, it is possible the horizontal lobe vinegar attraction 

phenotypes are caused by disruption of the γ lobe. This latter observation fits with the KC 

silencing screening data in which the horizontal lobe specific γ KCs give strong vinegar 

but not CO2 phenotypes, while the α/β and α’/β’ KCs gave phenotypes for both stimuli. It 

is difficult to establish from these data alone what role the horizontal lobe may play in 

processing vinegar attraction. The horizontal lobe β’2 region innervating MBONs 

exhibited only weak, non-significant, reductions in vinegar attraction, while some of the 

PAM neurons innervating the same regions as α’/β’ KCs displayed significant reductions 

in vinegar attraction despite not innervating the γ lobe (e.g., PAM-β’2a, MB087C) (Figure 

17B, green bars). These screening data allow me to 1) Identify the horizontal lobe β’2 

region as a candidate for representing the aversive odour CO2 (Figure 22), and 2) identify 

the horizontal lobe β’2 region MBONs as good candidates for driving CO2 aversive 

behaviour (Figure 22). However, it did not identify a DAN candidate for the modulation of 

aversive output from the β’2 region. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 22. β’2 region MBONs dominantly required for CO2 aversion 
 
Behaviour screening data implicates MBONs innervating the β’2 region of the MB horizontal 
lobe (dashed line) as being specifically required for mediating CO2 aversion behaviour. The 
lines identified in the screen innervate across all anatomical β’2 subregions (a, m, and p). 
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3.3 β’2 MBON characterisation  

 

3.3.1 β’2 region MBONs are necessary for CO2 aversion 

 

The β’2 region of the medial tip of the MB horizontal lobe was identified during 

the screen as being a candidate region for the processing of CO2 aversion (Figure 22). Due 

to experimental constraints not all necessary controls were performed during screening, 

therefore it was necessary to confirm important hits from the screen alongside the  
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Figure 23. Confirmation of β’2 MBON hits  
 
(A) Top figure shows reduction of CO2 aversion in T-maze assay upon synaptic silencing of 
MBONs in line MB011B. Top anatomy panel represents MBON morphology through expression 
of UAS-mCD8-GFP (green). Neuropil stained with nc82 (magenta). Bottom anatomy panel 
shows presynaptic boutons (green), and postsynaptic regions (red) through the expression of 
UAS-Synaptotagmin and UAS-DenMark respectively. (B) Represents the same as in (A) 
except for line MB002B. PIs are averaged across 10-12n; +/- SEM. P-values calculated via 
one-way ANOVA and Bonferroni multiple comparison post-hoc test, ns p>0.05, *p<0.05, 
**p<0.01, ***p<0.001.   
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appropriate genetic and procedural controls. To this end MB011B and MB002B were 

selected as representative of β’2 MBONs to confirm the screen data (Figure 23). MB011B 

targets three neurons, MBON-β’2mp_bilateral, MBON-β’2mp, and MBON-γ5β’2a. 

MB002B targets only MBON-β’2mp, and MBON-γ5β’2a (Table 3). Both lines 

demonstrated strongly reduced CO2 avoidance responses compared to both genetic and 

low-temperature (permissive) controls. In addition to the behavioural experiments 

anatomical analysis was conducted using the same Split-GAL4 lines to drive expression of 

the reporters mCD8-GFP and DenMark / Synaptotagmin to visualise the polarity of the 

MBONs (Figure 23). The MBONs have dendritic fields within the MB lobes and send 

axonal projections into the SMP. MB011B and MB002B are redundant for one another 

and both innervate the entirety of the β’2 region.  
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Figure 24. Odour specificity for different horizontal lobe MBONs 
 
(A) Neurons targeted by line MB434B not necessary for CO2 aversion. (B) Schematic of the 
MB depicting the β’2 region MBONs necessary for CO2 aversion. (C) Drosophila vesicular 
glutamate transporter (dvGlut, red) stainings identify MBONs labelled by MB011B and 
MB002B (green) as glutamatergic neurons (arrow heads). PIs are averaged across 10-12n; 
+/- SEM. P-values calculated via one-way ANOVA and Bonferroni multiple comparison 
post-hoc test, ns p>0.05, *p<0.05, **p<0.01, ***p<0.001.   
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To ensure that these MBONs were indeed excitatory both lines were used to drive 

expression of mCD8-GFP and were stained using anti-dvGlut antibody. When imaged, the 

GFP signal and anti-dvGlut colocalised to the output synapses of the MBONs, confirming 

them as glutamatergic (Figure 24 C). 

 

Taken together with the screening data these behavioural and anatomical 

experiments convincingly establish the β’2 region as part of a pathway necessary for 

outputting aversive olfactory information from the MB (Figure 24B). However, the screen 

also identified other possible MB regions that may be involved in processing CO2 

avoidance. Upon synaptic silencing line MB434B, which labels two MBONs (MBON-

γ4>γ1 and MBON-β1> α), appeared to elicit a reduction in CO2 aversion. To test whether 

these neurons were indeed involved in processing CO2 aversion I performed confirmation 

experiments alongside appropriate controls and with an increased sample size. Upon re-

testing the line MB434B did not exhibit a reduced CO2 aversion (Figure 24A), thus 

eliminating this neuron as necessary for CO2 aversion.  
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Figure 25. β’2 region MBONs are sufficient to drive aversion behaviour 
 
(A) Schematic representation of optogenetic experimental protocol and arena. (B) Optogenetic 
arena avoidance light avoidance responses of MBON lines crossed to UAS-CSChrimson (left 
bars) or w- (right bars). The control genotype is the empty driver, pBDPGAL4U in attP2 / UAS-
CSChrimson or w-. PIs are averaged across 10-12n; +/- SEM. P-values calculated via one-way 
ANOVA and Bonferroni multiple comparison post-hoc test, ns p>0.05, *p<0.05, **p<0.01.   
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3.3.2 β’2 region MBONs are sufficient to drive aversive behaviour 

 

 It is increasingly apparent that the MB is near the apex of the sensory-motor loop. 

In a recent study it was suggested that the precise point at which processed sensory 

information can be said to drive motor output is the KC to MBON synapse (Hige, Aso, 

Rubin, et al., 2015). To test whether the β’2 region MBONs are sufficient to drive aversive 

behaviours we used a custom-built behavioural arena in which flies are able to freely 

move in response to optogenetic stimulation via red LEDs positioned under the arena floor 

(Figure 8 and Figure 25A). Starved flies expressing CSChrimson, a red-shifted channel 

rhodopsin, in the β’2 region MBONs consistently avoided the red light (Figure 25B).  

 

When taken together with the silencing data it is apparent that these MBONs are 

both necessary and sufficient to drive CO2 aversive behaviour. That these MBONs are 

sufficient to drive aversion in starved flies indicates that they are perhaps directly 

upstream of premotor circuits, or at least provide a behavioural valence to subsequent 

downstream processing. 

 

 

3.4 β’2 PAM neuron characterisation 

 

3.4.1 β’2 region innervating PAM DANs are sufficient to reduce CO2 aversion 

 

 The data described above establishes the β’2 region innervating MBONs as the 

neurons responsible for driving MB (starvation) dependent CO2 aversion. The obvious 

candidates for representing the other half of the conflict stimulus (vinegar), and providing 

inhibition to the aversive MB output, are the neuromodulatory dopaminergic PAM 

neurons also innervating the horizontal lobe (Table 4, red box). However, as mentioned 

previously, no clear candidates were identified in the primary screen so I decided to retest 

two of the sparser lines innervating the β’2 region. I searched the Split-GAL4 library for 

candidate lines and found two that between them provided complete coverage of the β’2 

region. MB109B labels PAM-β’2a, and MB056B (not included in the original screen) 

labels PAM-β’2m, and PAM β’2p (Table 4). I confirmed that these neurons were indeed 

dopaminergic via staining for tyrosine hydroxylase (TH) (Figure 27A). From a superficial 

assessment of their anatomy (Figure 26, top anatomy panels), and polarity (Figure 26, 
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bottom anatomy panels) it appears that the axonal arborisations of these neurons in the 

MB lobes overlap with the dendritic fields of the β’2 MBONs. In the context of a neural 

circuit it appears these PAM neurons receive input from the SMP region of the fly brain, 

between the MB vertical lobes, and inputs it to compartments of the MB horizontal lobes. 

Various studies have suggested that dopaminergic neurons innervating the MB lobes 

modulate the KC-MBON synapse via the release of dopamine. However, the precise form 

of the modulation is not well understood. It is also not known which neuronal populations 

provide input to the DANs. To test whether these β’2 innervating PAM neurons are 
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Figure 26. β’2 region innervating PAM neuron activation phenotypes and anatomy 
 
(A) Top figure shows reduction of CO2 aversion in T-maze assay upon neuronal activation of 
PAMs in line MB109B. Top anatomy panel represents MBON morphology through expression 
of UAS-mCD8-GFP (green). Neuropil stained with nc82 (magenta). Bottom anatomy panel 
shows presynaptic boutons (green), and postsynaptic regions (red) through the expression of 
UAS-Synaptotagmin and UAS-DenMark respectively. (B) Represents the same as in (A) 
except for line MB056B. PIs are averaged across 10-12n; +/- SEM. P-values calculated via 
one-way ANOVA and Bonferroni multiple comparison post-hoc test, ns p>0.05, *p<0.05, 
**p<0.01, ***p<0.001.   
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sufficient to suppress CO2 aversion behaviour I used the lines MB109B and MB056B to 

drive the expression of UAS-dTrpA1. Testing at 32°C strongly reduced CO2 aversion 

(Figure 26), suggesting that whatever this dopaminergic signal represents is sufficient to 

inhibit the MBON aversive output from the MB horizontal lobe. However, this 

observation is only meaningful if the β’2 PAMs respond to vinegar and not CO2. To this 

end I collaborated with Dr. Siju Purayil who used in vivo two-photon calcium imaging 

(Figure 9) to measure the activity of these neurons in response to stimulation with vinegar 

and CO2. The Split-GAL4 line MB109B (Table 4) was used to drive expression of the 

calcium sensor GCaMP6f in PAM-β’2a with imaging performed at the level of the MB 

lobe (Figure 27B). Upon stimulation with 1% vinegar a significant increase in 

fluorescence was observed compared to stimulation with humidified air (Figure 27C). 

Importantly, the same neuron does not respond upon stimulation with CO2 (Figure 27D), 

indicating that it may specifically confer appetitive contextual information to the MB 

aversive output region in order to dampen an innate aversive behaviour. It was also 

observed that the β’2 PAM neurons responded more strongly when the flies were starved 

than when fed (Figure 27C), indicating that starvation information may modulate PAM 

C D 

Figure 27. β’2 PAM neuron responds to vinegar but not CO2  
 
(A) MB109B-Split-GAL4 driving expression of mCD8GFP (green), anti-TH antibody (red) stains 
MB109B labelled cell bodies (yellow, arrow head). (B) Schematic representation of PAM-β’2a 
MB lobe innervation pattern. (C) Peak MB109B-GCaMP6f intensity change after stimulation 
with vinegar in starved and fed flies. (D) Fluorescence intensity change after stimulation with 
CO2 in fed and starved flies. 10n; +/- SEM. P-values calculated via one-way ANOVA and 
Bonferroni multiple comparison post-hoc test, ns p>0.05, *p<0.05, **p<0.01, ***p<0.001. p-
values calculated via paired Mann Whitney or Wilcoxon matched-pair single rank test. Calcium 
imaging experiments performed by Siju Purayil, stainings by Anja Friedrich.    
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neuron activity somewhere upstream of their input to the MB. PAM neurons are known to 

convey diverse sensory information from multiple sensory modalities to the MB in order 

to facilitate associative learning (Krashes et al., 2009; S. Lin et al., 2014; Vogt et al., 

2014). To establish whether β’2 innervating PAM neurons specifically represent attractive 

odours the responses of PAM-β’2a to a small panel of attractive and appetitive odours 

were tested, including acetoin acetate, an appetitive odour produced during yeast 

fermentation, isoamyl acetate, an appetitive banana associated odour, and benzaldehyde, 

an odour aversive to Drosophila. Stimulation with acetoin acetate, but not isoamyl acetate 

elicited a fluorescence increase in PAM-β’2a suggesting PAM neurons may be tuned to 

specific food related odours (Figure 28). It was also observed that the acetoin acetate 

response was larger in starved flies than it was in fed flies, providing further evidence that 

starvation state may impinge on PAM neuron activity (Figure 28). Interestingly the 

neurons did not respond to the aversive odour benzyladehyde, which may suggest that 

PAM-β’2a is specific for appetitive odours and not aversive (Figure 28). If this were 

shown to be true for all PAM neurons innervating MB regions outputting aversive 

information it would represent a satisfying functionally and ecologically meaningful 

asymmetry in the relationship between MB lobe input and output neurons.   
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Figure 28. β’2 PAM respond selectively to food odours and not to aversive odours  
 
 Peak MB109B-GCaMP6f intensity change after stimulation of starved and fed flies with solvent 
paraffin oil, acetoin acetate, isoamyl acetate, and benzaldehyde. 10n; +/- SEM. ns p>0.05, 
*p<0.05, **p<0.01, ***p<0.001. p-values calculated via paired Mann Whitney or Wilcoxon 
matched-pair single rank test. Experiments performed by Siju Purayil.    
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3.5 β’2 region MBONs and PAMs are functionally connected 

 

3.5.1 β’2 region innervating PAMs and MBONs are anatomically colocalised and 

synaptically connected 

 

Taken together, the data presented so far specifically implicate MBONs 

innervating the medial β’2 tip of the MB horizontal lobe as necessary and sufficient for 

driving CO2 aversive behaviour in starved flies. Additionally, a vinegar responsive PAM 

cluster DAN innervates the same MB region and upon activation causes a reduction in 

CO2 aversion. It is important to establish that these two populations of neurons are indeed 

synaptically connected. In order to visualise both populations of neurons in the same brain 

double labelling experiments were performed. The driver components of two expression 

systems labelling the PAM-β’2a neurons and β’2 MBONs, MB109B-Split-GAL4 and 

R14C08-LexAp65 respectively were genetically inserted into a single fly line and then 

Figure 29. β’2 innervating PAM and MBONs show overlapping innervation and synaptic 
connectivity 
 
 (A) β’2 MBONs labelled by R14C08-LexAp65 driving expression of LexAop2-mCD8GFP 
(green). β’2a PAM neuron labelled by MB109B-Split-GAL4 driving expression of 10UAS-IVS-
mCD8RFP (red). The dotted line represents the MB lobe. (B) GRASP using R14C08 to label 
β’2 MBONs and MB109B to label β’2a PAM neurons. Large arrow indicates reconstituted GFP 
signal at level of β’2 MB lobe region (green). Brain neuropil stained with nc82 (magenta). The 
dotted line represents the MB lobe. (C) Schematic representation of PAM and MBON 
innervation in β’2 MB region. Staining and imaging performed by Anja Friedrich.    

A 

B 
C 

β′2amp MBON β′2a PAM merge 

M
B

 lo
be

 

R14C08 MB109B 

SMP 
CRE 

MBON β′2amp  
PAM β′2a  

PAM MBON 

no GFP signal GFP signal 

GRASP 



	   	  70	  

used which was then used to drive the expression of LexAop2-mCD8GFP (green) and 

10xUAS-IVS-mCD8RFP (red) in a single fly. β’2 MBONs and PAMs display overlapping 

innervation in the MB horizontal lobe indicating the possibility of connectivity (Figure 

29A). To strengthen the evidence for connectivity the ‘GFP reconstitution across synaptic 

partners’ (GRASP) method was used. The same driver lines as in the double labelling 

experiments were used to drive expression of two halves of the split-GFP in order to 

establish possible connectivity between the PAMs and MBONs (Figure 29C). A strong 

signal was observed at the level of the horizontal MB lobes at the innervation sites of the 

two neuron types (Figure 29B). As neurons often come into close contact, a GRASP signal 

does not guarantee synaptic connectivity, but taken together these two lines of evidence 

provide a strong case for connectivity between β’2 MBONs and PAMs.        

 

 

3.5.2 PAMs and MBONs are functionally connected 

 

 Despite the evidence for synaptic connectivity provided by the double labelling 

and GRASP data, the possibility remains that the two populations of neurons are not 

functionally connected. To clarify whether β’2 MBONs and PAMs are indeed synaptic 

partners calcium imaging experiments were performed in collaboration with Dr. Siju 
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Figure 30. β’2 innervating PAM and MBONs show functional synaptic connectivity 
 
 (A) Schematic representation of P2X2 experiment. β’2 MBONs labelled by R14C08-LexAp65 
driving expression of LexAop2-GcAMP6f (green). β’2a PAM neuron labelled by MB109B-Split-
GAL4 driving expression of UAS-P2X2 (red). (B) The blue curve represents the fluorescence 
response of GcAMP6f in the MBONs upon bath application of ATP. The black curve is a P2X2 
negative control in which P2X2 is not expressed in the PAM neurons. Experiments performed 
by Siju Purayil.    
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Purayil. Transgenic flies were generated in which UAS-P2X2, an ATP responsive ion 

channel, was expressed under the control of the broad R58E02 PAM neuron labelling 

promoter, while expression of the calcium sensor GcAMP6f was driven in β’2 region 

MBONs using the MB011C promoter (Figure 30A). 2mM ATP was bath applied to the fly 

brain during the experiment and evoked activity in the MBONs observed via changes in 

the GcAMP6f fluorescence. Upon ATP application a strong increase in MBON activity 

was observed (Figure 30B) providing conclusive evidence of direct or indirect synaptic 

connectivity between the PAM neurons and MBONs innervating the β’2 region.  

 

 Despite these data providing convincing evidence of functional connectivity 

between PAM neuromodulatory dopaminergic MB input neurons and MB output neurons, 

we would have expected to see a suppression of MBON activity to below baseline. The 

data so far suggests that the vinegar responsive PAM neurons suppress the innate aversive 

output of the β’2 region MBONs. However, the P2X2 data demonstrates an increase in 

MBON activity upon artificial stimulation of the PAM neurons. Either this is an artefact of 

the artificial activation, or we provided only a partial input to the circuit required for 

suppression. The P2X2 experiments we performed were done so in the absence of an 

olfactory stimulus such as CO2, which means the MBONs were presumably less active or 

inactive prior to stimulation of the PAMs via ATP application. It is possible that if the 

MBONs had received aversive olfactory input from the α’/β’ KCs then the simultaneous 

activation of PAM neurons would result in a reduction in MBON activity. Were this 

hypothesis correct, it would reveal part of the mechanism by which olfactory information 

is transformed into motor output by these three populations of neurons (KCs, DANs, and 

MBONs), and would give some idea of the organisation of the synaptic connectivity 

between them.  

 

 

3.6 The role of β’2 PAM neurons in modulating MBONs 

 

3.6.1 PAM cluster neuron activation is sufficient to drive attraction behaviour 

 

 The β’2 PAM neuron response to appetitive vinegar stimulus and sufficiency to 

reduce CO2 aversion (Figure 31B) predict that these neurons should be sufficient to drive 

the attractive behaviour observed in starved wild type flies as they overcome their CO2 
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aversion to approach vinegar. To test this hypothesis we crossed four sparse Split-GAL4 

lines (MB056B, MB047B, MB109B, and MB316B) labelling β’2 PAM neurons and two 

broad Split-GAL4 lines labelling populations of PAM neurons with innervation across the 

horizontal lobe (MB042B and MB040B) (Table 4), to UAS-CSChrimson and tested 

progeny for their optogenetic behavioural response. In support of our hypothesis all tested 

genotypes exhibited attraction behaviour to the illuminated quadrants of the arena (Figure 

31A). Interestingly, there was no divergence in the behavioural valence elicited by the 

various lines. When taken together with the horizontal lobe MBON data presented here 

and by Aso et al. (Aso, Sitaraman, et al., 2014) an inhibitory role for DANs presents itself 

as the most likely method by which neuromodulation occurs at the KC / MBON synapse. 

Indeed, a recent study has demonstrated electrophysiologically that dopaminergic input to 

MB compartments is sufficient to suppress MBON response to KC odour representation 

(Hige, Aso, Modi, et al., 2015). Hige et al. focussed on regions of the MB best know for 

facilitating appetitive learning and so didn’t specifically study the β’2 region. 
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Figure 31. β’2 innervating PAM neuron activation is sufficient to drive behavioural 
attraction 
 
(A) Optogenetic attraction of Split-GAL4 lines specifically labelling PAM neurons innervating 
the β’2 MB region (red bars) and broader populations of horizontal lobe innervating PAM 
neurons (blue bars) drive expression of UAS-CSChrimson (left bars) or w- (right bars). All 
genotypes were attracted to the illuminated area quadrants. The control genotype is the empty 
driver, pBDPGAL4U in attP2 / UAS-CSChrimson or w-. (B) Schematic representation of PAM 
DAN impingement on KC-MBON synapse. For line anatomy see Table 4. PIs are averaged 
across 10-12n; +/- SEM. P-values calculated via one-way ANOVA and Bonferroni multiple 
comparison post-hoc test, ns p>0.05, *p<0.05, **p<0.01.   
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However given our findings, it is likely the mechanism is the same, although perhaps with 

a differing level of PAM activation required to supress MBON output.  

 

 

3.6.2 Vinegar odour is sufficient to suppress β’2 MBON CO2 response 

 

 Starved wild type flies are motivated to overcome their aversion to CO2 in order to 

approach an appetitive odour source such as vinegar. I have demonstrated that β’2 

MBONs are necessary and sufficient for CO2 avoidance in starved flies, and that 

functionally connected dopaminergic neurons of the PAM cluster respond strongly to 

vinegar but not CO2. The same β’2 innervating PAM neurons are sufficient to strongly 

reduce CO2 aversion and drive behavioural attraction (Figures 26 and 31B). To clearly 

show that MBON aversive output is suppressed in the context of a conflicting appetitive 

odour we expressed the calcium sensor GcAMP6f in β’2 MBONs under the control of the 

MB011B-Split-GAL4 driver, and stimulated flies with CO2, vinegar, and a mixture of CO2 

and vinegar (conflict stimulus) (Figure 32A). The β’2 MBONs responded strongly to 

Figure 32. Vinegar reduces aversive β’2 MBON CO2 output  
 
 (A) Schematic representation of β’2 MBONs and experimental imaging plane (dotted line). β’2 
MBONs (green) labelled by MB011B-Split-GAL4 driving expression of UAS-GcAMP6f. (B) 
Starved and fed flies were stimulated with humidified air (control), CO2, vinegar, and conflict 
odour mix (CO2 + vinegar). β’2 MBONs respond strongly to CO2 alone. The Conflict stimulus 
evokes the same level of MBON response as vinegar alone. 10n; +/- SEM. ns p>0.05, *p<0.05, 
**p<0.01, ***p<0.001. p-values calculated via paired students T-test. Experiments performed by 
Dr. Siju Purayil.    
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stimulation with CO2 alone. They also responded to vinegar alone, albeit with a significant 

reduction compared to the CO2 elicited activity (Figure 32B). Importantly, when 

stimulated with the conflict stimulus, the evoked activity was of the same magnitude as 

when the fly was stimulated with vinegar alone (Figure 32B). This clearly indicates that 

the CO2 induced activity is suppressed in the context of vinegar. Interestingly, in the 

context of these experiments starvation state elicited no discernable effect on the MBON 

representation of these odours. Responses to both CO2 and vinegar were observed at 

similar levels regardless of starvation state (Figure 32B). Given that the findings of 

Bräcker et al. (Bräcker et al., 2013) indicate that the KC representation of CO2 is 

starvation dependent, it is possible that these MBONs receive CO2 input from another 

population of neurons. Taken together the data described thus far and in combination with 

the findings presented by Bräcker et al., represent a convincing model for how a fly is able 

to process coincident conflicting stimuli and execute a behavioural program based on 

nutritional requirements. The precise connectivity between the KCs and MBONs is not 

well understood. Nor is it known how the DANs modulate the functional relationship 

between these neurons. There is however a great deal of work currently being conducted 

to elucidate the form and physiology of these synapses, so an answer to these questions is 

likely imminent. 

 

 

3.6.3 β’2 PAM neurons are not sufficient for CO2 memory formation   

 

 Much of the description of MB physiology and function is focussed on its role in 

learning and memory. β’2 MBONs and PAM have themselves been implicated in memory 

formation and retrieval (Owald et al., 2015a). However, our data and those from other 

studies have identified a possible role for the MB in non-learning related instantaneous 

modulation of behaviour. Therefore we were motivated to test whether 1) vinegar 

attraction can be used as an unconditioned stimulus (US) to condition a reduction in CO2 

aversion (Figure 33A), and 2) whether pairing of dTrpA1 activation of the vinegar 

responsive PAM-β’2a labelled by line MB109B with CO2 exposure is sufficient to 

artificially condition a lasting (3 minute) reduction in CO2 aversion (Figure 33C). It was 

not possible to use innate vinegar attraction in starved flies as a US to condition a lasting 

reduction in CO2 (CS) avoidance (Figure 33B). Nevertheless, to be sure that the MB β’2 

local circuit was not sufficient to facilitate memory formation we paired artificial 
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activation of PAM-β’2a with 2 minutes of CO2 exposure and tested flies’ CO2 avoidance 

response 3 minutes after the end of conditioning. No reduction in CO2 aversion was 

observed indicating that these neurons are not sufficient to support memory formation 

(Figure 33D). In light of these data it is possible that the β’2 region of the MB is dedicated 

to modulating innate behaviours. That the MB might subserve dedicated functions other 

than learning is an interesting finding that demands a re-evaluation of the mechanisms by 

which the MB processes sensory information and drives behaviour. In particular it would 

be interesting to better understand how learned associations and immediately processed 

sensory information interact, and which one is prioritised.    
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Figure 33. CO2 avoidance cannot be conditioned  
 
 (A) Schematic representation of CO2 / vinegar T-maze conditioning and testing protocol in wild 
type flies (CantonS). (B) CantonS flies conditioned and tested using the protocol described in 
(A). (C) Schematic representation of conditioning and testing protocol whereby CO2 exposure 
is paired with dTrpA1 activation of PAM-β’2a (MB109B). (D) MB109B; UAS-dTrpA1 flies tested 
using the protocol described in (C). 10-12n; +/- SEM. ns p>0.05, *p<0.05, **p<0.01, ***p<0.001. 
p-values calculated via one-way ANOVA and the Bonferroni post-hoc test.  
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3.7 KC starvation dependence not strictly recapitulated in MBONs and PAMs. 

 

 The MB is not required for CO2 aversive behaviour in fed flies. Bräcker et al., 

however, showed that when flies are hungry a MB dependent pathway is necessary for 

CO2 aversion (Bräcker et al., 2013). This was achieved via thermogenetic silencing of 

subsets of MB KCs. Despite the KCs providing odour representation to the MB lobes 

there was the possibility of PAM / MBON local circuits still playing a role in KC 

independent pathways necessary for facilitating motor output from the putative LH MB 

independent pathway. To test this I repeated β’2 MBON silencing and PAM activation 

behavioural experiments in fed flies instead of starved. I expected to observe normal CO2 

avoidance in recapitulation of the data presented by Bräcker et al. Surprisingly there were 

reductions in avoidance upon both silencing of β’2 MBONs and activation of β’2 PAMs 

(Figure 34Aa – Ca), indicating that the β’2 MB compartment performs a role independent 

of starvation state. Importantly, the reductions in CO2 avoidance were significantly 

smaller than those observed in starved flies (Figure 34Ab – Cb) , suggesting that increased 

hunger is still represented in the strength of MBON output.  
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Figure 34. β’2 MBONs and PAM neurons function in fed flies 
 
 (Aa - Ba) T-maze CO2 aversion response of β’2 MBON lines MB011B, and MB002B upon 
neuronal silencing. (Ca). T-maze CO2 aversion response of line β’2 PAM labelling line MB109B 
upon neuronal silencing. (Ab – Cb) Plots represent the deltas calculated via the starved PIs 
shown in (Figure 21 and 24A) and the fed PIs shown here. Asterisks represent statistical 
significance calculated between the starved and fed PI for each delta. 10-12n; +/- SEM. ns 
p>0.05, *p<0.05, **p<0.01, ***p<0.001. p-values calculated via one-way ANOVA and the 
Bonferroni post-hoc test.  
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4.0 Discussion 

 

4.1 Summary of results 

 Using a combination of new genetic tools, behavioural genetics, and two-photon 

calcium imaging, we have demonstrated that flies’ ability to contrast two conflicting 

olfactory stimuli and resolve the conflict into one behavioural output, is facilitated by a 

local circuit of the MB horizontal lobe β’2 compartment. An olfactory response 

behavioural screen in which subsets of MB intrinsic and extrinsic neurons were 

thermogenetically silenced confirmed and built upon previous work by Bräcker et al. that 

implicated the MB in starvation-dependent innate CO2 aversion (Bräcker et al., 2013). The 

screen confirmed that α’/β’ KCs are dominantly involved in CO2 aversion and that 

vinegar 

Output%(')% reduced 
aversion CO2 

with vinegar context 

Output%(')% strong 
aversion 

CO2 

without vinegar context 

KC input PAM context behavioral output 

horizontal 
lobe 

Figure 35. β’2 MBONs and PAM conflict resolution model 
 
In response to CO2 stimulation alone β’2 MBON are able to mediate normal CO2 avoidance. In 
the context of vinegar, β’2 innervating PAM neurons inhibit the avoidance mediating MBONs, 
thus reducing CO2 avoidance and allowing the fly to approach the vinegar. 
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downstream β’2 region MBONs are required for flies to execute aversive behavioural 

responses (Figure 14). Subsequent experimentation confirmed that β’2 MBONs are CO2 

responsive (Figure 32) and are necessary and sufficient for CO2 aversion behaviour in 

starved flies (Figure 23 and Figure 25). This finding is consistent with recent literature that 

identifies a functional divergence between the MB horizontal and vertical lobes for 

aversive and attractive behaviour respectively (Aso, Sitaraman, et al., 2014). We also 

found that vinegar responsive neurons belonging to the PAM cluster subset of MB 

innervating DANs, which also innervate the β’2 compartment (Figure 26), are sufficient to 

suppress the aversive output of their canonical MBONs (Figure 26). These two 

populations of neurons, differentially responsive to one of a pair of conflicting odours, 

represent a neural substrate for internal state dependent decision-making in the fly brain. 

In an ecological setting these circuits allow flies to determine whether their degree of 

hunger is sufficient for them to approach a food source. The neural substrates described 

here are likely candidates for facilitating this important behaviour. This study adds 

significantly to a fledgling but growing literature that examines roles for the insect MB 

beyond learning and memory (DasGupta et al., 2014; S. Lin et al., 2014) and contributes 

to our growing understanding of how neural circuits subserve sensory processing and 

behavioural execution. Furthermore, I have identified additional types of neurons that 

appear to contribute to the behaviours in question. These results open the way to 

understanding neural circuits underpinning decision-making outside of the KC-MBON-

DAN circuit.   

 

4.2 Different KC sub-types dominantly represent vinegar and CO2 

4.2.1 Deciphering KC olfactory representation from behavioural output 

 In Drosophila the MB’s ~2000 KCs represent olfactory information projected from 

the AL via ~200 PNs.  This significant divergence in connectivity allows odours to be 

sparsely represented by the activity of distributed subsets of KCs (Campbell et al., 2013). 

Different odours activate different subsets of KCs that differ between individual flies 

based on developmental experience dependent synaptic plasticity (Campbell et al., 2013). 

All KC subsets, α/β, α’/β’, and γ KCs, co-innervate MB regions with populations of 

MBONs driving both attractive and aversive behaviour (Aso, Sitaraman, et al., 2014), 
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therefore silencing of their synaptic output would be expected to produce behavioural 

phenotypes that depend on 1) the strength of the attraction and aversion mediating 

synapses (post-synaptic MBONs) being blocked relative to those that remain active, 2) the 

strength of the representation of a given odour by the KCs, and 3) the strength of 

expression of Shibirets1 by the driver. Given these factors, one can only make general 

observations of KC function, as it is difficult to assess how redundancy within the system 

manifests in the phenotypes and to quantify the different representation strengths of 

different odours.  

 

4.2.2 KC lobes differentially represent attractive and aversive olfactory drive 

Despite the limitations mentioned above some general features emerge from 

analysis of the KC screening data. It is clear that γ KCs don’t drive CO2 aversion 

behaviour (Figure 11, blue bars), but do play a role in attraction to vinegar (Figure 12, 

blue bars). This may be due to the relative proportions of attractive and aversive MBONs 

downstream of γ KCs: 2 aversive and 4 attractive (Aso, Hattori, et al., 2014). Silencing of 

γ KCs may therefore have a larger affect on attractive behavioural drive than it does on 

aversive. Both α/β and α’/β’ KC populations led to some non-significant and significant 

reductions in CO2 aversion and vinegar attraction upon silencing (Figures 11 and 12). This 

isn’t surprising given that both populations also have overlapping innervation with both 

attractive and aversive MBONs. However, α’/β’ KC blockade produced no significant 

reductions in vinegar attraction but did cause strong significant reductions in CO2 aversion 

(Figures 11 and 12) suggesting that CO2 aversion is driven more strongly by these KCs 

than is vinegar attraction. The functional basis for the differential representation of odours 

between KC subsets is not yet fully understood, although it has long been suggested that 

different KC ensembles might represent different olfactory channels based on the 

behavioural significance of an odour (G. C. Turner et al., 2008; Yao Yang et al., 1995), or 

represent information from other sensory systems. For example, recent studies have shown 

that certain subsets of KCs respond to visual stimuli (Vogt et al., 2014). 

The data presented here indicate a possible functional divergence between 

attraction and aversion at the level of the KCs that may be also be represented in the 

tuning of MBONs post-synaptic to the KCs. When considering olfactory ecology intuition 
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would suggest that not all odours be represented equally by the KCs, nor that all odours be 

equally sufficient to drive behaviour. A recent study by Hige et al. confirms this idea 

(Hige, Aso, Rubin, et al., 2015). They have shown that although most MBONs are 

generally broadly tuned to many odours regardless of valence, the representation of CO2 

and vinegar is almost always segregated, providing labelled line like channels by which 

these odours can drive behaviour. This means that upon stimulation with the CO2 and 

vinegar conflict stimulus, two segregated ensembles of KCs represent each of the two 

odours. It may also be possible that individual KCs represent odour mixes, nevertheless 

the data from my behavioural screen indicate that the aversive CO2 component of the 

conflict mix is represented dominantly by the α’/β’ KCs and that vinegar is represented 

mainly by γ KCs. If the two odours are essentially summed by MBONs then removing the 

primary channel for one of the two odours should allow the remaining odour to drive 

behaviour, and indeed some of my olfactory screen data supports this hypothesis. When 

the γ KCs are silenced flies mostly exhibited a strong avoidance of the conflict stimulus, 

suggesting the vinegar representation was compromised and an intact CO2 avoidance 

response dominated (Figure 13, blue bars). In the case of α’/β’ KC blockade the responses 

were harder to observe as the attraction of the control to the conflict stimulus was already 

very high, not leaving much room for the observation of an increased attraction. However, 

upon blockade of α’/β’ KCs some lines exhibited an observable increase in attraction to 

the conflict stimulus relative to the control (MB461B and MB470B) (Figure 13, green 

bars), while the other lines gave behavioural responses similar to the control. Only one 

line exhibited a reduction in attraction (non-significant) to the stimulus.  

Taken together, these data and the findings of Hige et al. (Hige, Aso, Rubin, et al., 

2015) support a model of MB olfactory representation whereby odours of greater 

ecological significance, such as CO2 and vinegar, elicit more robust KC representations 

that in turn more reliably activate specific subsets of MBONs to drive innate aversion or 

attraction. Despite what the behavioural data presented here indicates, there is as yet no 

electrophysiological or imaging data to suggest that CO2 and vinegar are represented any 

differently by the KCs than other odours lacking segregated representation at the level of 

the MBONs. It may be that, for the purposes of CO2 and vinegar response behaviour, the 

KC odour code is already sufficiently sparse, and that additional sparsening is only 

required at the level of MBONs. However, it is also possible that the sensation of certain 

ecologically important odours such as vinegar may be able to sparsen KC olfactory 
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representation via neurons such as MB-C1 which when blocked elicits strong reductions in 

vinegar attraction. It can also be said that CO2 and vinegar are not likely integrated by the 

KCs, although this is hard to demonstrate behaviourally as there are no driver lines that 

label KCs on a single cell basis, thus it is currently difficult to block the KC representation 

of a single odour.    

Despite these KC silencing data providing an indication of defined attraction and 

aversion pathways within the MB, further experimentation would be required in which a 

larger sample size was used along with appropriate controls and a broader panel of 

attractive and aversive odours. Additionally, it would be advisable to calibrate the conflict 

stimulus odour concentrations such that the control attraction was lower, allowing for 

better observation of increased attraction in behavioural experiments. Finally, these 

behavioural data would benefit from supporting neuronal physiological data showing the 

segregation more directly.  

 

4.3 MBONs function downstream of KCs in a DAN dependent manner 

4.3.1 β’2 and γ MBON silencing phenocopies α’/β’ and γ KC blockade  

 I showed that aversion mediating MB horizontal lobe β’2 MBONs generate the 

strongest CO2 avoidance phenotypes upon silencing (Figure 14, green bars, Figure 23), 

whereas no significant vinegar response phenotypes were observed (Figure 14, blue bars). 

Interestingly, attraction-mediating MBONs innervating the vertical lobe gave the strongest 

vinegar attraction phenotypes in response to silencing (Figure 15, blue bars). The strongest 

vinegar phenotypes were elicited in lines labelling MBONs innervating MB compartments 

also innervated by γ KCs (MB112C and MB051B), or in lines specifically or strongly 

labelling MBON-α2sc (MB50B and MB080C), which has been shown in other studies to 

be a strong driver of attractive behaviour (Aso, Sitaraman, et al., 2014; Hige, Aso, Modi, 

et al., 2015). These MBON data corroborate the KC data; both α’/β’ KCs and β’2 MBONs 

elicited CO2 avoidance phenotypes upon silencing, while γ KCs and γ innervating 

MBONs both elicited vinegar attraction phenotypes. These observations are also in line 

with the findings presented by Hige et al. (Hige, Aso, Rubin, et al., 2015), in which 

vinegar and CO2 representation is segregated at the level of the MBONs. A consequence 
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of these findings is that if I had used attractive and aversive odours other than vinegar and 

CO2 then I may have only observed odour specific behavioural phenotypes in lines 

labelling KCs, which maintain segregated odour representations, but not in lines labelling 

MBONs, which only have segregated representations for vinegar and CO2 and not for 

other odours. In the same study Hige et al. (Hige, Aso, Rubin, et al., 2015) show that 

MBONs don’t sample information from every KC fibre that passes through their 

anatomical compartment. It is possible therefore that a larger degree of synaptic 

connectivity might be found between KCs and MBONs more strongly representing CO2 

and vinegar which might contribute to their sparser representation. 

 

 4.3.2 Are naïve and learned behaviours mediated via the same MBONs?  

 MBONs innervating all lobes of the MB have been implicated in facilitating 

memory formation and recall (Aso, Sitaraman, et al., 2014). It is now clear that at least 

some MBONs are also responsible for processing innate behaviours (S. Lin et al., 2014) 

that may possibly relate to the fulfilment of important biological requirements (this thesis; 

Lewis et al. 2015). Taken together these findings raise questions about the extent to which 

these two processes are separable. My data suggests a role for β’2 MBONs in the naïve 

processing of the food related odours, CO2 and vinegar, which despite being of opposing 

valences and eliciting strong behavioural responses, are not associable in a standard 

learning paradigm (Figure 33). I also showed that β’2 innervating PAM neurons are not 

sufficient to induce an appetitive association with CO2 in spite of their sufficiency in 

instantaneous suppression of CO2 avoidance (Figure 33s and 26). The MB is therefore 

necessary for the processing of at least some odours independent of the formation of 

learned associations. Other studies also demonstrate roles for the β’2 region in temperature 

response and naïve water vapour attraction in thirsty flies (S. Lin et al., 2014; Tomchik, 

2013). Lin et al. found that two different DANs were responsible for naïve water attraction 

and for thirst motivated odour learning, providing further evidence of a possible functional 

segregation between MBONs responsible for outputting associative information and those 

responsible for outputting innate behavioural drives. However, while this segregation 

between naïve odour response modulation and associative learning is a possibility, is also 

possible that there is very little functional difference between MBONs beyond behavioural 

output valence, and that they simply serve as integrators of biologically relevant 
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contextual information (thirst, hunger, food and water odours) from the DANs, and raw 

olfactory information from the KCs. It may be the case that every MBON is capable of 

outputting both modulated responses in naïve flies and also learned responses. Further, it 

is also likely that, given the limited number of MBON output channels (32 neurons in 15 

compartments), MBON outputs are a summation of both learned and naïve odour 

representations. This would provide the fly with the capability of affecting a behavioural 

response based on immediate internal state and external sensory environment, and learned 

responses. Any apparent segregation observed to date may simply be representative of 

experiments performed with a limited number of olfactory and other stimuli. Moreover, it 

makes sense that an immediate value-based decision may trigger a long-lasting 

representation in the brain, and that the same circuit elements subserve both of these 

functions. Whether or not a lasting association is formed may depend on the context 

represented by the value-encoding DANs. Such a system allows maximum flexibility of 

behavioural output depending on environmental and biological context.  

The recent elegant study by Aso et al. (Aso, Sitaraman, et al., 2014) aimed at a 

broad characterisation of MBON function and focussed on learning and memory related 

behaviours. While they described the role of MBONs in the formation of distinct forms of 

learned association (e.g., visual, olfactory, gustatory), they did not account for MBONs’ 

possible role in processing basic olfactory drives that may be a prerequisite for learning. 

The data presented here (Figure 33) and as part of other studies (S. Lin et al., 2014) 

suggest that there may be specific MBONs responsible for memory formation and 

MBONs responsible for processing naïve odour responses. In the Aso et al. study there 

were often single MBONs identified as being involved in learned responses that has also 

been implicated in naïve odour processing in other studies. For example, Aso et al. 

showed that MBONs of the β’2 region are involved in 2 hour appetitive olfactory memory, 

appetitive odour-ethanol intoxication memory, and visual appetitive memory (Aso, 

Sitaraman, et al., 2014). The same study also showed that β’2 MBONs are wake 

promoting when activated. They were, however, not required for thirst motivated water 

memory (S. Lin et al., 2014) and elicited very strong phenotypes in naïve odour avoidance 

(Figure 23).  

Given the degree of feedback between MBONs and DANs (Cohn et al., 2015; 

Ichinose et al., 2015) and the experimental similarity between naïve and learned 
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behaviours (attraction or aversion), it may be difficult to precisely distinguish whether 

observed phenotypes are indeed learning phenotypes, or whether they result from evoked 

deficits in the fly’s ability to respond naïvely to stimuli during the training, retention, and 

expression phases of learning behavioural paradigms. Thus, the learning phenotypes 

observed by Aso et al. could in principle derive from deficits in basic naïve stimulus 

processing observed by Lin et al. and by me. Furthermore, despite the MBON>DAN 

feedback demonstrated by Ichinose et al. (Ichinose et al., 2015) and Cohn et al. (Cohn et 

al., 2015), Hige et al. showed that learning may not be dependent on spiking activity in 

MBONs (Hige, Aso, Modi, et al., 2015). So the question remains whether MBONs are 

simply downstream conduits for the DAN modulated olfactory information, or whether 

they play an active role in naïve odour processing and the formation of learned 

associations. It is likely that both accounts are true and that MBONs are differentially 

recruited depending on the specific processing task at hand. It is clear that more work is 

required in order to fully understand the differing functional states of the MB lobe 

circuitry.  

 

4.3.3 Experimental approaches to dissect naïve and learned mushroom body output 

neuron mediated behavioural responses  

 Based on our current understanding it is not easy to distinguish MB neurons or 

modes of function related to naïve odour processing from those related to learning. The 

differences between these two functions of the MBONs are likely very subtle and 

continuous with one another. In order to elucidate the precise roles of specific MBONs 

they will have to be fully behaviourally and physiologically characterised under multi-

modal stimulus conditions, and in the varying biological contexts (hunger, thirst, pregnant, 

sick, etc.) represented by DANs. Moreover, due to redundancy and feedback within the 

MB circuits it may be insufficient to perform single blocks or activations of populations of 

neurons. Carefully designed perturbations must be made in which some components of the 

circuitry are silenced while others are activated. For example, it would be very informative 

to see the effect on naïve and learned odour behavioural responses while the entire 

ensemble of either aversion mediating or attraction mediating MBONs are blocked while 

the remaining MBONs are artificially activated. It would be ideal for this simultaneous 

silencing and activation to be carried out on every combination permutation of pairs and 
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ensembles of MBONs. Under such perturbation conditions it might be possible to expose 

the how the state of the DAN-KC synapses (e.g. learning biased or naïve) and the artificial 

perturbations combine to drive the eventual behavioural output. In order for such an 

experiment to be meaningful the odour tuning of individual MBONs would have to be 

known prior to perturbation so that a naïve response can be distinguished from a learned 

response. Such an experiment would build significantly on my MBON activation data 

(Figure 25) and the findings of Aso et al. (Aso, Sitaraman, et al., 2014) in which it was 

demonstrated that activation of horizontal lobe MBONs drive aversion and vertical lobe 

MBONs drive attraction, and that when both aversive and attractive MBONs are activated 

the behavioural response falls somewhere between the responses upon single MBON 

activation, thus indicating summation of outputs downstream of the MBONs.  

Experiments such as these would allow the highly detailed dissection of 

relationships between pairs and groups of neurons, and could reveal a possible segregation 

between naïve and learned behavioural output between different MBON populations. 

Alternatively it might be revealed that naïve and learned output is mediated across all 

MBONs but one or the other dominates during different internal and external sensory 

contexts and biological states. It may also be necessary to take a similar approach with 

DAN populations. Given that DANs appear to modulate the KC-MBON synapse to 

instantaneously adapt behaviour and skew the synaptic weighting for the purpose of 

learning, it may be impossible to correctly elucidate downstream MBON function without 

a detailed understanding of the nature of DAN modulation. 

Previously it would have been impossible to target expression of effectors to 

neurons with the precision required to perform such experiments. However, due to the 

recent advances in intersectional expression systems, such as the Split-GAL4 system 

employed in this thesis, precision of expression is no longer a barrier.   
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4.4 DAN representation and modulation 

4.4.1 DANs encode biologically meaningful internal and external sensory information 

 In functional terms the MB serves as a coincidence detector. Largely unfiltered 

odour information is represented by the KCs (CS in learning experiments), which in naïve 

flies drive aversive and attractive behaviour via specific sets of MBONs (Lewis et al., 

2015; Owald et al., 2015b). Two primary clusters of DANs provide valence specific 

axonal input to the MB and encode the US in learning experiments. The PAM cluster 

innervates the horizontal lobe and the PPL1 cluster innervates the vertical lobe, and they 

each modulate the KC>MBON synapse, over time in the case of learning or 

instantaneously, to shift the balance between behavioural attraction and aversion. 

Traditionally, in the context of memory formation, PAM cluster neurons have been 

understood to signal reward stimuli such as a sugar meal (S. Lin et al., 2014; C. Liu et al., 

2012; Vogt et al., 2014), water consumption (S. Lin et al., 2014), nutrient value 

(Huetteroth et al., 2015), and possibly stimuli related to courtship (M a Joiner & Griffith, 

2000; Mei-ling a. Joiner & Griffith, 1999; McBride et al., 1999; Neckameyer, 1998). 

PPL1 cluster DANs signal aversive stimuli such as cold (Tomchik, 2013) and electric 

shock (Aso, Sitaraman, et al., 2014; Qin et al., 2012; Vogt et al., 2014). These stimuli all 

convey information relevant to the health and survival of the fly in some respect, whether 

they represent potential danger or sources of food. Most studies have sought to understand 

how biologically relevant stimuli can be associated with other environmental odours to 

facilitate useful learning. However, it is also the case that flies must make instantaneous 

decisions based on the convergence of internal and external biologically relevant stimuli 

without necessarily having to form associative memories. It is therefore intuitive that 

DANs represent appetitive and aversive stimuli other than those commonly used to drive 

associative learning. In this study it is demonstrated via 2-photon calcium imaging that 

PAM neurons innervating the CO2 aversion mediating β’2 region respond strongly to 

stimulation with vinegar in a starvation-dependent manner (Figure 27), and that the 

activation of these PAM neurons is sufficient to reduce CO2 aversive behaviour and to 

drive attractive behaviour (Figure 26 and Figure 31). This integration is effectively the fly 

making a value-motivated decision whether to obey the CO2 or the vinegar signal. The 

calcium imaging data also showed that the same PAM neurons were strongly responsive 

to acetoin acetate but much less to isoamyl acetate (Figure 28), both of which are 
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appetitive food related odours, suggesting that there may be odour tuning at the level of 

the DANs. The same neurons were not responsive to the aversive odours CO2 or 

benzaldehyde (Figure 28) which accords with the common understanding of PAM neurons 

as representing positive or rewarding stimuli. Hige et al. (Hige, Aso, Rubin, et al., 2015) 

showed that, with the exception of some biologically relevant attractive and aversive 

stimuli, there is limited segregation of odour representation at the level of the MBONs. 

Perhaps one explanation for this broad tuning is that the DANs represent a second more 

segregated and biologically relevant odour code that impinges on the KC-MBON synapse 

to filter environmental olfactory information for the execution of attractive or aversive 

behaviour. The generally broad tuning of the MBONs allows most of the odours 

represented by the KCs to be paired, either for learning or instantaneous decision making, 

with internal state and sensory information represented by the PAM DANs. The odours 

which maintain a segregated representation at the level of the MBONs (e.g., CO2 and 

vinegar) may still be able to be paired with other stimuli (as my data has shown), but 

might, due to their importance to the animal, have an additional channel through which 

they can drive behaviour. Thus, future experimentation might find that odours with more 

segregated representations are more able to override learned or innate responses to odours 

lacking non-segregated MBON representation.  

My findings are consistent with those from the learning and memory field except 

that they relate to behavioural response upon the initial integration of the biologically 

relevant contextual information (vinegar) with the environmental odour (CO2), rather than 

a subsequent expression of a learned association. Thus, they demonstrate that the MB is 

important for behavioural flexibility independent of learning or memory. During the 

training phase of classical conditioning paradigms commonly used in Drosophila learning 

and memory research, flies are not given the option to behave, nor is behaviour measured. 

It is not standard practice to employ operant conditioning procedures in which the training 

session constitutes an active decision-making process where the behavioural outcome is 

measured and recorded. Were learning experiments to be conducted in this fashion any 

deficits observed in the initial training / decision-making phase of the paradigm may 

explain phenotypes resulting from the silencing of MBONs. Acquisition of data and 

perturbation during both training and testing phases may allow a better distinction to be 

made between phenotypes that relate to the disruption of naïve olfactory processing and 

those that relate directly to learning. However, this depends on the extent to which naïve 
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and learned representations interact. If it can be demonstrated that under certain internal 

and external stimulus conditions an MBON only drives naïve behaviour, then any 

phenotypes observed upon their manipulation could be excluded from subsequent 

analysis. Furthermore, the detailed characteristics of behavioural execution during the 

training phase of a learning paradigm might affect how memory is formed. If there are 

MBONs specific for processing naïve behavioural responses, then they may be able to 

modulate memory formation indirectly via the modulation of behavioural execution during 

memory acquisition.  

 

4.4.2 DANs modulate MBON activity 

 If DANs are to directly modulate the KC-MBON synapse they must possess 

axonal projections overlapping with the MBON dendritic field located in the MB lobes. 

Via double-labelling experiments and GRASP we identified a set of β’2 PAM DANs that 

have overlapping innervation with β’2 MBONs (Figure 29). In collaboration with Dr. Siju 

Purayil I showed that activation of β’2 PAM neurons reduces CO2 avoidance (Figure 26) 

and that upon stimulation with a combination of CO2 and vinegar β’2 MBONs respond 

more weakly than they do to CO2 alone (Figure 32B). These data explain how the aversive 

behavioural drive to CO2 is reduced upon presentation with the conflict stimulus. 

Interestingly, the aversive β’2 MBONs also responded to vinegar alone (Figure 32B), and  
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Figure 36. KC DAN MBON synapse 
 
In the naïve state olfactory information represented by the KCs drives behaviour via the 
MBONs. In the context of biologically relevant information the PAM neurons (or PPL1) either 
suppress or excite the KC to either inhibit or reinforce MBON output.  
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it was observed that the reduction in activity in response to the conflict stimulus was to the 

level of the vinegar response. A possible explanation for this is that one of the MBONs 

innervating the β’2 region (MBON-γ5β’2a) also innervates the γ5 region of the γ lobe, 

which my data suggests is vinegar responsive (Figure 12 and Figure 13). Recent work by 

Hige et al. examined the physiological basis for PPL1 (vertical lobe innervating) DAN 

modulation of MBONs in the context of learning, and also showed that direct activation of 

PPL1 neurons physiologically suppresses MBON activity. The molecular mechanism by 

which this suppression is achieved is not yet understood; indeed there are contradictory 

accounts of DAN modulation. Some recently published research suggests that dopamine 

receptor (DopR1) expression is required in α/β KCs for the normal formation of long-term 

memory (Ichinose et al., 2015). Dopamine can elicit both excitatory and inhibitory effects 

on post-synaptic neurons depending on the receptor expression profile (Keeler et al., 

2015). Ichinose et al. suggest that a recurrent circuit consisting of an MBON that feeds 

back onto itself via a PAM neuron and its input KC is required for memory consolidation. 

Even though they don’t provide physiological data it is likely that in this case the PAM 

neuron excites the KC>MBON synaptic partners. Our data corroborate these findings; we 

showed that activation of PAM neurons excites β’2 MBONs (Figure 30B) despite 

expectations of observing suppression. It is possible that DANs either excite (Cohn et al., 

2015; Ichinose et al., 2015; Owald et al., 2015b) or suppress (Cohn et al., 2015; Hige, Aso, 

Modi, et al., 2015; Owald et al., 2015b) MBONs depending on the particular KC odour 

representation or the type of internal stimulus. This would suggest a highly dynamic 

system whereby biologically relevant olfactory information represented by the DANs 

modulates the KC activation of MBONs depending on KC activity. If the KCs are inactive 

and the PAMs active, the PAMs may excite MBONs via the KC synapse, however if KCs 

are actively representing a competing odour then the PAM representation may suppress 

that of the KCs (Figure 36). Indeed Cohn et al. (Cohn et al., 2015) have elegantly 

demonstrated precisely this relationship. They showed that KC-MBON signalling is 

depressed when PAM neuron activation is temporally paired with KC activation, and that 

when the activity in these two neuron types in unpaired KC-MBON signalling is 

potentiated. However, further experimentation is required to resolve the precise processing 

capabilities of the KC-DAN-MBON synapse and whether it operates in different 

functional modes depending on different types of input from the KCs and DANs. A 

greater understanding of the MBON-DAN recurrence observed by Ichinose et al. will also 



	   	  90	  

be required to understand to what degree MB output results from feedback from its lobes 

and how this ultimately impinges on behavioural drive.  

 

4.4.3 PAM DAN integration of internal state and internal state relevant odours 

 Changes in internal state elicit dramatic effects on the metabolism and physiology 

of all animals (Rolls, 2015; Root et al., 2011; Schloegl et al., 2011; Siju et al., 2010). A 

possible mechanism for the modification of behaviour based on changes in internal state is 

one in which specific internal state information, for example hunger, is integrated with 

external sensory information relevant to hunger, i.e. food odours. The hungry state of the 

fly may lead to an increased representation of the food odour in DAN neurons innervating 

appropriate MB compartments and capable of modulating behavioural output, e.g., 

suppress CO2 aversive output via the MBONs. Given that Drosophila olfactory sensitivity 

and behaviour appears to be concentration dependent (Semmelhack & Wang, 2009; J. W. 

Wang et al., 2003) it may be that behavioural valence and magnitude derive from the 

Figure 37. Idealised model of interaction between CO2 and vinegar concentration and 
starvation time 
 
Green represents behavioural attraction and red behavioural aversion. Odour concentrations 
on the x and z axes are percentages. The bottom surface represents the behavioural 
response at starvation time 0 and the top surface after 20 hours of starvation. At t=0 CO2 
aversion dominates, but as starvation time increases vinegar attraction dominates. When 
both CO2 and vinegar concentrations are 0 the behavioural preference is also 0.  
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relative salience of the odours between which the fly has to decide plus the magnitude of 

its hunger (Figure 37). Thus, in the case of vinegar and CO2, a strong starvation dependent 

PAM DAN vinegar representation would be needed in order to overcome a strong CO2 

representation (Figure 37). Indeed, my data shows that β’2 PAM neuron responses to the 

food odours vinegar and acetoin acetate are significantly higher in starved flies than in fed 

(Figure 27C and Figure 28), and presumably increase the PAM suppression of aversive 

MBON output. There is also evidence from another study that has shown that neurons 

releasing Drosophila neuropeptide F (dNPF), the Drosophila homologue of human NPY 

and a regulator of satiety, regulate MB innervating DANs (Krashes et al., 2009). The 

dNPF neurons therefore provide a satiety internal state signal to the DANs, which in turn 

suppress MB MBON output. On the basis of these findings it would be informative to 

conduct calcium-imaging experiments to see whether PAM neuron vinegar representation 

is modulated via dNPF. Further, a GABAergic neuron (DGI/DAL, line MB460B) in the 

same cluster as the Krashes et al. dNPF neuron was identified in my MB behavioural 

screen as eliciting a strong reduction in vinegar attraction upon silencing (Figure 21), 

meaning it may also provide a basic starvation dependent drive in response to vinegar 

stimulation. It may be that MB innervating DANs act as coincidence detectors between 

internal state conditions and external sensory information, allowing them to effectively 

filter sensory information in order to then direct which olfactory information is able flow 

from KCs to MBONs and drive behaviour. It would be interesting to see if the DGI/DAL 

neuron mentioned above is capable of modulating DANs in the case of naïve behavioural 

execution. 

 

4.4.4 Putative PAM olfactory input pathways 

A significant unknown in the MB field is how information reaches the DANs. More 

specifically, it is not yet understood how the olfactory vinegar signal and hunger 

information reach the PAM neurons. DAN dendritic input regions are in roughly the same 

brain region as the MBON output regions, namely the CRE, SMP, SIP, and SLP (Figure 

23 and Figure 26). It is clear from the data presented in this study that DANs are 

responsive to olfactory stimulation, and they are likely also responsive to gustatory input 

(Burke & Waddell, 2011; Colomb et al., 2009). As mentioned, it is likely that DANs 

represent internal state filtered multimodal information rather than a raw sensory code. 
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This is illustrated by the fact that certain forms of learning and memory execution are 

entirely dependent on starvation state. It is already known that the two primary 

populations of DANs that innervate the MB, the PAM and PPL1 clusters, represent a 

segregation of rewarding and punishing signals. However, the question remains, what are 

the inputs to the DANs? They seem to integrate external sensory information with internal 

state information, and then present this internal / external abstraction to relevant regions of 

the MB for comparison with current olfactory information from the KCs. Therefore, they 

must receive at least two primary sources of input. I have already postulated one possible 

input for starvation state (DGI/DAL neuron), but as yet there are no strong candidates for 

providing other forms of internal state information such as reproductive state, thirst, 

sickness, temperature, etc. The same is true of olfactory and gustatory inputs to the DANs. 

Despite this lack of concrete evidence for DAN input candidates there are three main 

possibilities based on anatomical and functional constraints (Figure 38). First, DANs 

receive olfactory input directly from the AL. Lin et al (H.-H. Lin et al., 2013) identified a 

PN (PNv-2) labelled by the GAL4 line E0044 that directly innervates the SMP and 

possibly has overlapping innervation with DANs and MBONs innervating the MB. This 

odour information MBON-β’2amp behaviour 

Antennal 
Lobe 

(PNv2) 

Lateral 
Horn 

(LHONs)  

PAM  

Figure 38. Putative sources of PAM neuron olfactory inputs 
 
Possible sources of PAM neuron olfactory input are the LH via LH output neurons (LHONs), 
the antennal lobe via PNs, and from the MB lobes by way of MBONs.   
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PN, and others like it, should they exist, could potentially synapse onto the DAN dendritic 

fields and provide direct olfactory input. Second, DANs receive segregated olfactory input 

from LH output neurons. The LH receives olfactory information from the majority of 

olfactory PNs and outputs information across the protocerebrum (H.-H. Lin et al., 2013; 

Nobuaki K Tanaka et al., 2004). It is possible that LH output neurons project to the DAN 

MBON input output regions and synapse with DANs. This is also an intriguing possibility 

as the LH has been shown to filter olfactory information based on attractive and aversive 

odour characteristics (Strutz et al., 2014). If the LH output neurons provide channel-based 

input to the DANs it may explain why they appear to be tuned to specific odours. It might 

also explain why certain aversive and attractive odours (CO2 and vinegar) have been 

observed to maintain segregated representation at the level of the MBONs despite most 

MBONs exhibiting broad odour tuning (Hige, Aso, Rubin, et al., 2015), i.e. DAN input to 

the MBONs may slightly sparsen the broad MBON odour code for innately aversive and 

attractive sensory information. Third, DANs may receive olfactory information via the 

MBONs. If the limited segregation of the MBON odour code into a central broad odour 

tuning and aversive and attractive extrema is mediated by the MBONs themselves then the 

putative DAN odour selectivity could result from MBON input. It has been demonstrated 

that MBONs likely synapse with DANs outside of the MB lobes (Cohn et al., 2015; 

Ichinose et al., 2015), and the MBONs do respond to olfactory stimulation (Figure 32), 

therefore they are possible candidates for providing olfactory input to the DANs. A likely 

situation is that all three of these possibilities are to some extent true, and that each 

ensemble of candidate neurons plays some regulatory role on the system as a whole. 

However, I think the LH is the best candidate for providing olfactory input to the DANs. 

This would allow the system to encode a second olfactory representation based on a 

different set of filter properties than those imposed at the level of the KCs. The 

convergence of these two olfactory representations at the level of the DAN KC MBON 

synapse would maximise the processing space available to impose internal biological 

requirements on the processing of immediate and learned olfactory information.        
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4.5 How meaningful is the idea of ‘hard-wired’ sensory information processing? 

The observation that fundamental, and regularly occurring, internal state changes 

modulate innate behaviours challenges the idea of innate behavioural responses to odours 

being ‘hard-wired’ and therefore inflexible. The concept goes hand-in-hand with the 

functional neuroanatomical idea of labelled lines, in which sensory information, rather 

than being processed or modulated, is simply transmitted from the peripheral sensory 

organs to a brain region where it triggers a stereotyped behavioural or homeostatic 

response. That innate behaviours can be modulated at all implies that there is no such 

‘hard-wired’ system whereby a stimulus will always evoke a characteristic response. It is 

reasonable to assume that all organisms are at times hungry, thirsty, sated, or exposed to 

sensory information with conflicting valences. When there are so many factors that require 

a ‘hard-wired’ system to be flexible, the notion of the system being ‘hard-wired’ at all is 

called into question. The findings of this study illustrate this clearly and implicate a neural 

substrate traditionally associated with learning and memory in modulation of innate 

behaviour. Behavioural responses previously though of as being ‘hard-wired’, such as CO2 

aversion, were only though of as such because no one had yet observed a circumstance in 

which innate CO2 response behaviour needed to be modulated by higher brain regions – it 

has been shown that CO2 sensation can be inhibited at the periphery by the antagonistic 

action of the odorants 1-hexanol and 2,3-butanedione (S. L. Turner & Ray, 2009). It is 

important to distinguish between closed sensory-motor loops such as the Drosophila 

optomotor response, and seemingly inflexible sensory responses, yet people often fail to 

make this distinction. In any case, no neural network is independent of modulation, for 

example, under certain conditions the optomotor response is modulated (M. Barth et al., 

2010; S. M. Wasserman et al., 2015). There is likely always a set of conditions under 

which a so-called reflexive action will be modulated. This is certainly true of sensory 

processing pathways, which many neurobiologists still insist can sometimes be considered 

‘hard-wired’. There has to be recognition that a cognitive tool for understanding and 

discussing neural processes has limits when applied as an actual model for neural function. 

Otherwise our interpretation of experimental data may become biased without our 

knowing it, and long-lasting damage done to fields of study in which researchers are often 

not privy to each other’s interpretive processes.   
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4.6 Behavioural flexibility and the mushroom body in an evolutionary context 

Across insect species MB morphology, circuitry, and function varies depending on 

the sensory processing tasks specific to an insect’s ecology. Despite this variability 

different evolutionary iterations of the MB neuropil all allow the comparison of past and 

on-going multi-modal sensory information (Haehnel & Menzel, 2012; Mizunami, 

Weibrecht, et al., 1998; Owald et al., 2015b). Complex MB structures seem to evolve 

more often in generalist insects, such as Drosophila (Lachaise et al., 1988), Hymenoptera, 

and Periplaneta (Bell et al., 2007) that feed from diverse food sources and in diverse 

environments, thus demanding the construction of more salient (i.e., multimodal) 

representations of sensory objects. This additional functionality afforded MB possessing 

insects may come at the cost of higher energy requirements, which may explain why 

insect species living in more limited ecological niches secondarily lose their MBs (Chittka 

& Niven, 2009; Niven & Laughlin, 2008; Strausfeld et al., 1998). It is also likely that 

more complex brains are a requirement of complex social behaviours (Farris, 2013). 

 

In mammals various structures have been identified as critical for sensory 

integration and memory formation including the hippocampus (Basu et al., 2016; 

Bekinschtein et al., 2010), and amygdala (Yiu et al., 2014). It has recently been suggested 

that the insect mushroom body and vertebrate pallium, the most highly developed portion 

of the vertebrate forebrain, share a common evolutionary origin (Tomer et al., 2010) in a 

bilaterian ancestor. Specifically the older hippocampus and dentate gyrus, but not the 

neopallium, may share a genetic heritage with the mushroom body (Tomer et al., 2010). 

Obviously in ~600 million years a significant amount of divergent evolution has taken 

place, driven by the diversity of habitats in which subsequent bilaterians have found 

themselves. The apparent utility of the ancestral structure from which both the MB and the 

pallium developed makes it clear that an increased understanding of the relatively simple 

Drosophila MB can inform broader lines of questioning within neurobiology.  
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5.0 Summary 

 

Animals must integrate both internal and external sensory information. Moreover, 

external sensory information must be processed in the context of the internal sensory 

information in a way that allows animals to respond flexibly to both learned and 

immediate cues relevant to their survival. A structure in the Drosophila brain capable of 

performing such tasks is the MB. It receives the majority of its input from the primary 

olfactory processing neuropil, the AL. Its ~2000 KC interneurons form a sparse olfactory 

representation that propagates throughout its horizontal and vertical lobes where it outputs 

aversive or attractive behavioural drive respectively via MBONs. The modulatory DANs 

also innervating the MB lobes represent internal and external sensory information filtered 

on the basis of biological requirements such as hunger, thirst, high temperature avoidance, 

etc. The DANs modulate MBON output via dampening or exciting the KC presynaptic 

terminal (Figure 36), thus modulating the effective behavioural responses to 

environmental odours based on these biological requirements. The synapses between the 

KCs, DANs, and MBONs are also responsible for encoding lasting associations so that the 

fly’s behaviour is an integration of both its past and present experiences. Presumably 

either the current or previous sensory information is sufficient to drive behaviour at a 

given choice point depending on their relative importance. The aim of this project and 

thesis was to build a case for the requirement of the Drosophila MB in facilitating 

instantaneous modification of behaviour using the same neural mechanisms underpinning 

learning, and to demonstrate that the two processes require the same types of sensory input 

relating to both the environment and internal state. My experimental work and that of my 

collaborators showed that prescient biologically important information, in the form of a 

β’2 region innervating PAM neuron representation of the food odour vinegar, is sufficient 

to dampen the fly’s immediate aversive behavioural response to CO2, an environmental 

odour important in the fly’s ecology. Moreover, this dampening is likely similar to the 

process by which memories are expressed.  

 My data identified a specific subset of MBONs innervating the β’2 MB region as 

being necessary and sufficient for naïve behavioural avoidance of CO2. This same region 

has also been specifically linked to the processing of other naïve behavioural responses, 

establishing it as a strong candidate either as a segregated MB sub-region dedicated to 
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processing naïve behavioural responses, or a region important for processing a specific 

type of naïve responses. It remains to be elucidated what the fine grain nature of DAN 

representation actually is, and how different internal and external circumstances impact on 

their modulation of MB output.  

The MB field is now at a stage where real insight into its function is up for grabs. 

Much of the legwork relating to anatomical description has now been done, and the 

general impressions emerging from decades of behavioural analysis are beginning to fit 

together. What remains is the necessary description of the many physiological functions of 

the MB, and importantly, how that physiology relates to diverse internal and external 

sensory stimuli. It will be important for the MB field to not focus too heavily on 

established methods of investigation and the trains of thought surrounding the MB’s 

function primarily as a centre of learning and memory. A broader characterisation of the 

MB in the context of the functioning fly brain demands a more open mind-set with regards 

to how its neural substrates might underpin a broader range of functions, only one of 

which is learning and memory.  
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Table 7. KC Split-GAL4 lines.  
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Table 8. MBON Split-GAL4 lines. 
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Table 9. DAN Split-GAL4 lines. 
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Table 10. Octopaminergic neurons and other MB extrinsic neuron Split-GAL4 lines. 

 

 

 

 

 

 

 

Table 11. Olfactory channel blockade data. Preference indexes (16-20n). 

 

 

 

 

 

Li
ne

 p65ADZp
DNA fragement 

 ZpGdbd
DNA fragement O

A-
VP

M
3

O
A-

VP
M

4
CS

D
M

B-
C1

SI
Fa
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id

e
DG

I/D
AL

MB021B R24E06 R95A10
Octopaminergic neurons MB022B R24E06 RTDC2

MB113C TDC2 R95A10

MB465C R37D04 R51B02
MB380B R17A04 R65D07
MB013B R14F05 R14B03
MB460B R34E09 R45E06

Other MB extrinsic neurons

Genotype CO2 Vinegar Vinegar0+0CO2
Shi/w6 60.61 60.11 0.51

GH146/Shi 6 60.03 60.58
Gr63a/Shi 0.05 6 0.38

Stimulus
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