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Collective intelligence refers to the ability of groups to outperform
individual decision makers when solving complex cognitive prob-
lems. Despite its potential to revolutionize decision making in a wide
range of domains, including medical, economic, and political decision
making, at present, little is known about the conditions underlying
collective intelligence in real-world contexts. We here focus on two
key areas of medical diagnostics, breast and skin cancer detection.
Using a simulation study that draws on large real-world datasets,
involvingmore than 140 doctors makingmore than 20,000 diagnoses,
we investigate when combining the independent judgments of
multiple doctors outperforms the best doctor in a group. We find
that similarity in diagnostic accuracy is a key condition for collective
intelligence: Aggregating the independent judgments of doctors
outperforms the best doctor in a group whenever the diagnostic
accuracy of doctors is relatively similar, but not when doctors’ diag-
nostic accuracy differs too much. This intriguingly simple result is
highly robust and holds across different group sizes, performance
levels of the best doctor, and collective intelligence rules. The en-
abling role of similarity, in turn, is explained by its systematic effects
on the number of correct and incorrect decisions of the best doctor
that are overruled by the collective. By identifying a key factor un-
derlying collective intelligence in two important real-world contexts,
our findings pave the way for innovative and more effective ap-
proaches to complex real-world decision making, and to the scientific
analyses of those approaches.

collective intelligence | groups | medical diagnostics | dermatology |
mammography

Collective intelligence, that is, the ability of groups to out-
perform individual decision makers when solving complex

cognitive problems, is a powerful approach for boosting decision
accuracy (1–7). However, despite its potential to boost accuracy in
a wide range of contexts, including lie detection, political fore-
casting, investment decisions, and medical decision making (8–14),
little is known about the conditions that underlie the emergence
of collective intelligence in real-world domains. Which features of
decision makers and decision contexts favor the emergence of
collective intelligence? Which decision-making rules permit this
potential to be harnessed? We here provide answers to these
important questions in the domain of medical diagnostics.
Our work builds on recent findings on combining decisions, a

research paradigm known as “two heads better than one” (15–20).
In their seminal study, Bahrami et al. (15) showed that two indi-
viduals permitted to communicate freely while engaging in a visual
perception task, achieved better results than the better of the two
did alone. Koriat (17) subsequently demonstrated that this collec-
tive intelligence effect also emerges in the absence of communica-
tion when the “maximum-confidence slating algorithm” (hereafter
called confidence rule) is used and the decision of the more con-
fident dyad member is adopted. Importantly, in both studies,
combining decisions led to better outcomes only when both indi-
viduals had similar levels of discrimination ability, suggesting that

similarity in the discrimination ability of group members is a crucial
factor in predicting whether groups can outperform their best
member. At present, however, it is unclear whether these findings
can help to understand the emergence of collective intelligence in
real-world decision-making contexts, where stakes are high and
decisions are made by experts with a long history of training.
We address this issue in the domain of medical diagnostics. In

the United States alone, an estimated 200,000 patients die each
year from preventable medical errors (21), including a large
proportion of diagnostic errors (22, 23). Reducing the frequency
of diagnostic errors is thus a major step toward improving health
care (24, 25). Previous research on collective intelligence in
medical diagnostics has yielded conflicting results: Some studies
have found that group decision making boosts diagnostic accu-
racy (9, 12, 26, 27), whereas others have found null or even
detrimental effects (28, 29).
We here investigated whether similarity in doctors’ diagnostic

accuracy explains whether combining the independent decisions of
multiple doctors improves or deteriorates diagnostic accuracy. We
examined this question in two medical domains in which diagnostic
errors are rife: breast and skin cancer diagnostics (30, 31). Within
each domain, our approach was to use a simulation study that
draws on previously published datasets where a large number of
medical experts had independently diagnosed the same medical
cases. For all cases, the correct diagnosis (i.e., cancerous, non-
cancerous) was available. In particular, the breast cancer dataset on
which we drew comprises 16,813 diagnoses and subjective confi-
dence estimates made by 101 radiologists of 182 mammograms
(32), with a mean individual sensitivity ± SD = 0.766 ± 0.112 and
specificity = 0.665 ± 0.113 (SI Appendix, Fig. S1); the skin cancer
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dataset comprises 4,320 diagnoses and confidence estimates made
by 40 dermatologists of 108 skin lesions (33), with a mean indi-
vidual sensitivity ± SD = 0.833 ± 0.130 and specificity = 0.835 ±
0.070 (SI Appendix, Fig. S1). These datasets allowed us to in-
vestigate the performance of collective intelligence rules that are
based on aggregating the independent judgments of multiple
doctors, and how this performance depends on the similarity in
doctors’ diagnostic accuracy (a discussion of approaches based on
direct interactions between doctors is provided in Discussion).

Results
We investigated the performance of virtual groups of diagnos-
ticians using either of two collective intelligence rules: the con-
fidence rule (17, 20) and the majority rule (34, 35). For any
particular group evaluating any particular case, the confidence
rule adopts the judgment of the most confident diagnostician,
whereas the majority rule adopts the judgment receiving the
most support within that group. For any of our groups, we
compared the performance of these two rules with the per-
formance of the best diagnostician in that group in terms of
(i) sensitivity, (ii) specificity, and (iii) Youden’s index (J). The
last is a composite measure of accuracy that combines sensitivity
and specificity (J = Sensitivity + Specificity − 1) (36, 37).
Pooling the independent judgments of multiple diagnosticians

with the confidence or the majority rule can only promote collec-
tive intelligence when two conditions are fulfilled. First, the judg-
ments of different diagnosticians must not be perfectly correlated
with each other (if different diagnosticians give identical judgments
on all cases, there is no scope for collective intelligence). Second, in
case of the confidence rule, there has to be a positive correlation
between confidence and accuracy levels. Initial analyses of our
datasets showed that both conditions are fulfilled in both diagnostic
contexts (Fig. 1).
We first considered groups of two diagnosticians using the con-

fidence rule. In both diagnostic contexts, we found that as the dif-
ference in accuracy levels between two diagnosticians increases,
their joint ability to outperform the better diagnostician decreases
[breast cancer: estimate (est) ± SE = −1.03 ± 0.04, t = −24.9, P <
0.001, Fig. 2A; skin cancer: est ± SE = −0.55 ± 0.03, t = −20.1, P <
0.001, Fig. 2B]. When diagnosticians’ accuracy levels were relatively
similar (jΔJj < 0.1), the confidence rule outperformed the better
diagnostician (Fig. 2 A and B). In contrast, for relatively dissimilar
groups, the better diagnostician outperformed the confidence rule.
This effect was largely independent of the accuracy level of the
better diagnostician (Fig. 3 A and B), the accuracy level of the
poorer diagnostician (SI Appendix, Fig. S4 A and B), and the av-
erage accuracy level within groups (SI Appendix, Fig. S5 A and B).
When we analyzed the effects of similarity in accuracy on collective
sensitivity and specificity, the same pattern emerged: In both di-
agnostic contexts, combining decisions using the confidence rule led
to higher sensitivity and specificity (relative to the better individual),
but only when the two diagnosticians’ accuracy levels were similar
(SI Appendix, Fig. S6). Moreover, independent of similarity, the
confidence rule consistently outperformed the average individual
performance within the group (SI Appendix, Fig. S7). When con-
sidering groups of three and five diagnosticians using the confidence
rule, we find that the above results generalize to these larger group
sizes (SI Appendix, Fig. S8).
Similarly, when considering groups of three diagnosticians using

the majority rule, we found that as the differences in accuracy levels
across the three diagnosticians increase, the group’s joint ability to
outperform the best diagnostician decreases in both diagnostic
contexts (breast cancer: est± SE =−1.26± 0.05, t =−27.7, P < 0.001,
Fig. 2C; skin cancer: est ± SE = −0.68 ± 0.03, t = −23.3, P < 0.001,
Fig. 2D). As in the case of the confidence rule, the majority rule
outperformed the best diagnostician in that group only when
the three diagnosticians’ accuracy levels were relatively similar
(jΔJj < 0.1). Again, this effect was largely independent of the

performance of the best diagnostician (Fig. 3 C and D), the per-
formance of the poorest diagnostician (SI Appendix, Fig. S4 C and
D), and the average performance within groups (SI Appendix, Fig.
S5 C and D), and it held for both sensitivity and specificity (SI
Appendix, Fig. S9). Moreover, independent of diagnostic simi-
larity, the majority rule consistently outperformed the average
individual performance within the group (SI Appendix, Fig.
S10). When considering groups of five diagnosticians using the
majority rule, we find that the above results generalize to this larger
group size (SI Appendix, Fig. S11). SI Appendix, Fig. S12 provides a
direct comparison of the confidence and the majority rule for dif-
ferent group sizes.
To further understand the mechanisms underlying the above

findings, we developed simplified analytical models of the two most
basic scenarios investigated above, namely, two diagnosticians us-
ing the confidence rule and three diagnosticians using the majority
rule (model details are provided in SI Appendix). To illustrate,
consider two diagnosticians using the confidence rule. From the
point of view of the better (i.e., more accurate) diagnostician,
employing the confidence rule has two effects: The poorer

Fig. 1. Two basic conditions underlying collective intelligence. (A and B) Fre-
quency distribution of Cohen’s kappa values for unique groups of two diag-
nosticians, randomly sampled from our datasets. A kappa value of 1 indicates
complete agreement of judgments among diagnosticians (i.e., identical judg-
ments on all cases), whereas a kappa value of 0 or lower indicates low levels of
agreement (i.e., few identical judgments). Although there is substantial variation
in the kappa values between groups, overall, there is a substantial amount of
disagreement among diagnosticians. SI Appendix, Fig. S2 shows that with de-
creasing kappa value, the ability of a group to outperform its best diagnostician
increases. (C–F) Relationship between confidence and sensitivity/specificity. The
more confident the diagnosticians were of their diagnosis, the higher were their
levels of sensitivity (C and D) and specificity (E and F) in both diagnostic contexts.
Symbol labels indicate the sample size. SI Appendix, Fig. S3 shows that this
positive relationship between confidence and sensitivity/specificity holds for the
best-performing, midlevel-performing, and poorest performing diagnosticians.
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diagnostician may overrule incorrect judgments of the better di-
agnostician (positive effect), and the poorer diagnostician may
overrule correct judgments of the better diagnostician (negative
effect). Importantly, our model shows that the strength of both
effects depends on the similarity in accuracy levels between the two
diagnosticians (SI Appendix). As similarity decreases (assuming
constant average accuracy), the better diagnostician gets better and
the poorer gets worse, thereby decreasing the positive effect (the
better diagnostician makes fewer incorrect judgments and the
poorer makes fewer correct judgments) and increasing the negative
effect (the better diagnostician makes more correct judgments and
the poorer makes more incorrect judgments). As a consequence,
and in line with our main findings above (Fig. 2), the model pre-
dicts that as similarity decreases, the ability of the group to out-
perform its better member also decreases. An analogous trend
holds for the situation where three diagnosticians use the majority
rule (SI Appendix).
Further analyses of our datasets showed that in both diagnostic

contexts and for both the confidence and the majority rule, the
number of correct and incorrect judgments of the best diagnostician
that are overruled is fully in line with the prediction from the above
modeling analysis. In particular, we find that as similarity decreases,
(i) the positive effect above decreases (i.e., the number of incorrect
judgments of the best diagnostician that were overruled by the
poorer diagnostician/the majority decreases; Fig. 4, green bars) and
(ii) the negative effect above increases (i.e., the number of correct
judgments of the best diagnostician that were overruled by the
poorer diagnostician/the majority increases; Fig. 4, red bars).
Moreover, while the positive effect outweighs the negative effect

for relatively high levels of similarity (jΔJj < 0.1), the reverse is true
for relatively low levels of similarity (jΔJj > 0.2), thereby explaining
why only relatively similar groups can successfully use the confi-
dence and majority rule to outperform their best member.

Discussion
Although collective intelligence has the potential to transform
decision making in a wide range of domains, little is known about
the conditions that underlie its emergence in real-world contexts.
Drawing on large real-world datasets, involving more than 140
doctors performing more than 20,000 diagnoses, we have identi-
fied similarity in decision accuracy as a key factor underlying the
emergence of collective intelligence in breast and skin cancer di-
agnostics. In particular, we have found that when a group of di-
agnosticians is characterized by relatively similar accuracy levels,
combining their independent judgments improves decision accu-
racy relative to the best diagnostician within that group. In contrast,
when accuracy levels become too disparate, combining independent
judgments leads to poorer diagnostic outcomes relative to those
diagnostic outcomes achieved by the best diagnostician. This re-
sult is highly robust and holds across different performance levels
of the best diagnostician, different group sizes, and different col-
lective intelligence rules (confidence rule and majority rule).
To reap the benefits associated with collective intelligence, we

need to know which characteristics of decision makers and de-
cision contexts favor the emergence of collective intelligence and
which decision-making rules allow this potential to be harnessed.
We have here provided answers to both questions in the domain

Fig. 2. Performance difference between the confidence/majority rule and
the best diagnostician in a group as a function of the difference in accuracy
levels (i.e., jΔJj) between diagnosticians. Results are shown for groups of two
diagnosticians using the confidence rule (A and B) and for groups of three
diagnosticians using the majority rule (C and D). Each dot represents a
unique combination of two (or three) diagnosticians. Values above 0 in-
dicate that the confidence/majority rule outperformed the best individual in
the group. Values below 0 indicate that the best individual outperformed
the confidence/majority rule. Red lines are linear regression lines. In both
breast cancer (A and C) and skin cancer (B and D) diagnostics, the confi-
dence/majority rule outperformed the best individual only when the diag-
nosticians’ accuracy levels were relatively similar (jΔJj < 0.1).

Fig. 3. Performance difference between the confidence/majority rule and
the best diagnostician in a group as a function of the difference in accuracy
levels between diagnosticians and the accuracy level of the best diagnostician.
Shown are results for groups of two diagnosticians using the confidence
rule (A and B) and for three diagnosticians using the majority rule (C and
D). Red areas indicate that the confidence/majority rule outperformed the
best diagnostician within that group, white areas indicate no performance
difference, and gray and black areas indicate that the best diagnostician
outperformed the confidence/majority rule. Shown are averaged values based
on (maximally 1,000) randomly drawn unique groups. The confidence/majority
rule outperformed the best diagnostician only when the diagnosticians’ ac-
curacy levels were relatively similar (i.e., left part of the heat plots). This effect
was independent of the accuracy level of the best diagnostician.
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of medical diagnostics. In particular, and in contrast to current
practice, our findings strongly suggest that similarity in diagnostic
accuracy should be a key criterion for assembling groups in medical
diagnostics, such as in the context of independent double reading
of mammograms, a standard practice in Europe (38). Our analyses
suggest that groups of diagnosticians with similar accuracy levels
can use simple algorithmic approaches (i.e., confidence rule, ma-
jority rule) to achieve a performance that is superior to their best
member. At a group size of two, the confidence rule can be
employed to outperform the best diagnostician. For a group size of
three onward, the majority rule tends to outperform the confidence
rule (SI Appendix, Fig. S12).
Future studies should address at least three issues. First, we

have focused on combining independent diagnostic judgments,
thus not investigating situations in which diagnosticians directly
communicate with each other. Therefore, one open question is
the extent to which our findings generalize to face-to-face inter-
actions and discussions within medical teams. Previous work in
nonmedical contexts has shown that similarity in accuracy is a
prerequisite for collective intelligence to arise during group dis-
cussions (15), suggesting that it may also matter in interacting
medical teams. Second and more generally, it remains unknown
how these two collective intelligence mechanisms (aggregation of
independent judgments versus group discussions) compare in
medical diagnostics (19). Group discussions are known to be a
double-edged sword (39). Phenomena such as group think, in-
terpersonal competition, social loafing, and obedience to authority

can compromise group accuracy (40–42), yet groups are known to
outperform individuals across a range of tasks (7, 43). It will thus
be important to compare the relative gains (or declines) in accu-
racy that these mechanisms afford across medical diagnostic
contexts. Third, improving decision accuracy is of prime impor-
tance across a wide range of contexts (e.g., economic decision
making, political decision making). Future work should investigate
whether and to what extent similarity in decision accuracy is a key
enabling factor of collective intelligence in these contexts.

Materials and Methods
Our analyses are based on the two previously published datasets outlined
below.

Breast Cancer Dataset. The breast cancer dataset comprises 16,813 interpreta-
tions of 182 mammograms made by 101 radiologists (mean number of mam-
mograms evaluated per radiologist = 166, range: 161–173) and is one of the
largest mammography datasets available (32). Mammograms included in the
test set were randomly selected from screening examinations performed on
women aged 40–69 y between 2000 and 2003 from US mammography regis-
tries affiliated with the Breast Cancer Surveillance Consortium (BCSC; Carolina
Mammography Registry, New Hampshire Mammography Network, New Mex-
ico Mammography Project, Vermont Breast Cancer Surveillance System, and
Group Health Cooperative in western Washington). Radiologists who inter-
preted mammograms at facilities affiliated with these registries between Jan-
uary 2005 and December 2006 were invited to participate in this study, as well
as radiologists from Oregon, Washington, North Carolina, San Francisco, and
New Mexico. Of the 409 radiologists invited, 101 completed all procedures and
were included in the data analyses. Each screening examination included im-
ages from the current examination and one previous examination (allowing the
radiologists to compare potential changes over time), and presented the cra-
niocaudal and mediolateral oblique views of each breast (four views per
woman for each of the screening and comparison examinations). This approach
is standard practice in the United States (32). Women whowere diagnosed with
cancer within 12 mo of themammograms were classified as cancer patients (n =
51). Women who remained cancer-free for a period of 2 y were classified to be
noncancer patients (n = 131; i.e., 28% prevalence).

Radiologists viewed the digitized images on a computer (home computer,
office computer, or laptop provided as part of the original study). The computers
were required to meet all viewing requirements of clinical practice, including a
large screen and high-resolution graphics (≥1,280 × 1,024 pixels and a 1280MB
video-card with 32-bit color). Radiologists saw two images at the same time
(i.e., the left and right breasts) and were able to alternate quickly (≤1 s) between
paired images, to magnify a selected part of an image, and to identify ab-
normalities by clicking on the screen. Each case presented craniocaudal and
mediolateral oblique views of both breasts simultaneously, followed by each
view in combination with its prior comparison image.

Cases were shown in random order. Radiologists were instructed to di-
agnose them using the same approach they used in clinical practice (i.e., using
the breast imaging reporting and data system lexicon to classify their diagnoses,
including their decision that a woman be recalled for further workup).

Radiologists evaluated the cases in two stages. For stage 1, four test sets were
created, with each containing 109 cases (32). Radiologists were randomly assigned
to one of the four test sets. For stage 2, one test set containing 110 cases was
created and presented to all radiologists. Some of the cases used in stage 2 had
already been evaluated by some of the radiologists in part 1. To avoid having the
same radiologist evaluating a case twice, we excluded all cases from part 2 that
had already been viewed by that radiologist in part 1. This procedure resulted in
a total of 161 unique cases for radiologists in test sets 1 (n = 25 radiologists) and 2
(n = 30 radiologists) and 173 unique cases for radiologists in test sets 3 (n = 26
radiologists) and 4 (n = 20 radiologists), resulting in a total of 16,813 unique
readings. Between the two stages, radiologists were randomly assigned to one of
three intervention treatments. Because there were no strong treatment differ-
ences (44), we pooled the data from stages 1 and 2. For all group simulation
analyses, radiologists were always grouped within the four test sets (because
radiologists in the same test set had evaluated the same images).

In our analysis, we treated the recommendation that a woman should be
recalled for further examination as a positive test result. After providing each
final diagnosis, radiologists rated their confidence in it on a five-point scale.

Skin Cancer Dataset. The skin cancer dataset comprises 4,320 diagnoses by 40
dermatologists of 108 skin lesions and was collected as part of a consensus
meeting via the internet, called the Consensus NetMeeting onDermoscopy (33).
Skin lesions were obtained from the Department of Dermatology, University

Fig. 4. Number of correct/incorrect decisions of the best diagnostician
overruled by the confidence/majority rule as a function of the difference in
accuracy levels between diagnosticians. Green box plots correspond to the
number of cases where an incorrect decision of the best diagnostician (diag.)
within a group was overruled by the more confident diagnostician (A and B)
or the majority (C and D). Red box plots correspond to the number of cases
where a correct decision of the best diagnostician within a group was
overruled by the more confident diagnostician (A and B) or the majority
(C and D). Shown are averaged values based on (maximally 1,000) randomly
drawn unique groups, using either of the two collective intelligence rules.
Box plots show medians and interquartile ranges. As predicted from our
modeling analysis (SI Appendix), with decreasing similarity in accuracy levels
(i.e., higher jΔJj), the number of incorrect decisions by the best individual
that were overruled decreased and the number of correct decisions by the
best individual that were overruled increased.
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Frederico II (Naples, Italy); the Department of Dermatology, University of
L’Aquila (Italy); the Department of Dermatology, University of Graz (Austria);
the Sydney Melanoma Unit, Royal Prince Alfred Hospital (Camperdown, Aus-
tralia); and Skin and Cancer Associates (Plantation, FL). The lesions were se-
lected based on the photographic quality of the clinical and dermoscopic
images available. The goal of the study was to diagnose whether a skin lesion
was a melanoma, the most dangerous type of skin cancer. Histopathological
specimens of all skin lesions were available and judged by a histopathology
panel (melanoma: n = 27, nonmelanoma: n = 81; i.e., 25% prevalence).

All participating dermatologists had at least 5 y of experience in dermoscopy
practice, teaching, and research. They first underwent a training procedure in
which they familiarized themselves with the study’s definitions and procedures
in web-based tutorials with 20 sample skin lesions. They subsequently evaluated
108 skin lesions in a two-step online procedure. First, they used an algorithm to
differentiate melanocytic from nonmelanocytic lesions. Whenever a lesion was
evaluated as melanocytic, the dermatologist was asked to classify it as either
melanoma or a benign melanocytic lesion, using four different algorithms.
Here, we focus on the diagnostic algorithmwith the highest diagnostic accuracy
which is also the one most widely used for melanoma detection: pattern
analysis (33). It uses a set of global (textured patterns covering most of the
lesion) and local features (representing characteristics that appear in part of the
lesion) to differentiate between melanomas and benign melanocytic lesions.

We treated the decision to classify a lesion as melanoma as a positive test
result. After providing each final diagnosis, dermatologists rated their con-
fidence in it on a four-point scale.

Ethics Statement. The breast cancer data were assembled at the BCSC Statistical
Coordinating Center (SCC) in Seattle and analyzed at the Leibniz Institute of
Freshwater Ecology and Inland Fisheries in Berlin (IGB), Germany. Each registry,
the SCC and the IGB, received institutional review board approval for active and
passive consent processes or were granted a waiver of consent to enroll par-
ticipants, pool data, and perform statistical analysis. All procedures were in
accordancewith theHealth InsurancePortability andAccountabilityAct. All data
were anonymized to protect the identities of women, radiologists, and facilities.
The BCSC holds legal ownership of the data. Information regarding data re-
quests can be found at breastscreening.cancer.gov/work/proposal_data.html.

For the skin cancer data, the review board of the Second University of
Naples waived approval because the study did not affect routine procedures.
All participating dermatologists signed a consent form before participating in
the study. The skin cancer dataset has been included in Dataset S1.

Collective Intelligence Rules. Both datasets include the judgments of experts
who independently evaluated the same cases and rated their confidence in
each diagnosis. We created virtual groups of diagnosticians who evaluated
the cases “together” using two collective intelligence rules: the confidence
rule (17, 20) and the majority rule (34, 35).
Confidence rule. Separately for both datasets, we created virtual groups (for
group sizes of two, three, and five diagnosticians). For each group size, we set
an upper limit of 1,000 randomly drawn unique groups. The confidence rule
stipulates that the diagnosis of the most confident diagnostician in the group
is adopted for the case in question. Given a group size of two, for example,
the confidence of both diagnosticians was compared for the case in question
and the decision of the more confident diagnostician was adopted. All cases
were evaluated in this way. If both diagnosticians were equally confident, one

of the two decisions was chosen randomly. We calculated the performance of
the confidence rule for each group in terms of (i) sensitivity, (ii) specificity, and
(iii) Youden’s index (J). The last is a composite measure of accuracy, combining
sensitivity and specificity (J = Sensitivity + Specificity − 1) (36, 37). The value of
J ranges from −1 to 1, a perfect test has J = 1 (i.e., sensitivity = specificity = 1)
and lower values correspond to lower discriminatory power. We then com-
pared the performance of the confidence rule (i) with the performance of the
best diagnostician in that particular group and (ii) with average individual
performance in that particular group.
Majority rule. Separately for both datasets, we created 1,000 unique groups
with sizes of three and five (odd numbers to avoid the use of a tie-breaker
rule) and evaluated the performance of the majority rule in each group. The
majority rule stipulates that the decision that received the most votes is
adopted, irrespective of the confidence associated with those decisions. We
classified each case as “cancerous” or “noncancerous” depending on which
of the two diagnoses received more votes among the group members. We
then evaluated the performance of the majority rule for each group in terms
of (i) sensitivity, (ii) specificity, and (iii) Youden’s index (J). Finally, we
compared the performance of the majority rule with the (i) performance of
the best diagnostician in that particular group and (ii) average individual
performance in that particular group.

Statistical Analyses. To determine the similarity in accuracy between group
members, we calculated J for each group member and then used the mean
pairwise absolute deviation (MPAD) to calculate the similarity in J among
group members. MPAD = 2

nðn− 1Þ ·
P

i<j

�
�
�
�
�
Ji − Jj

�
�
�
�
�
, where n is the number of diag-

nosticians i and j. For a group size of two, this measure is simply the abso-
lute difference in J between the two group members. For a group size of
three or more, this measure is the expected absolute difference in J between
two randomly chosen group members. We analyzed the effect of similarity
in accuracy on a group’s ability to outperform its best and average individual(s)
using general linear models in R (version 3.2.2). Significance levels were de-
rived from the t values and associated P values.
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