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Resequencing or reference-based assemblies reveal large parts of
the small-scale sequence variation. However, they typically fail to
separate such local variation into colinear and rearranged variation,
because they usually do not recover the complement of large-scale
rearrangements, including transpositions and inversions. Besides the
availability of hundreds of genomes of diverse Arabidopsis thaliana
accessions, there is so far only one full-length assembled genome:
the reference sequence.We have assembled 117Mb of theA. thaliana
Landsberg erecta (Ler) genome into five chromosome-equivalent
sequences using a combination of short Illumina reads, long PacBio
reads, and linkage information. Whole-genome comparison against
the reference sequence revealed 564 transpositions and 47 inver-
sions comprising ∼3.6 Mb, in addition to 4.1 Mb of nonreference
sequence, mostly originating from duplications. Although rearranged
regions are not different in local divergence from colinear regions,
they are drastically depleted for meiotic recombination in heterozy-
gotes. Using a 1.2-Mb inversion as an example, we show that such
rearrangement-mediated reduction of meiotic recombination can
lead to genetically isolated haplotypes in the worldwide population
of A. thaliana. Moreover, we found 105 single-copy genes, which
were only present in the reference sequence or the Ler assembly,
and 334 single-copy orthologs, which showed an additional copy
in only one of the genomes. To our knowledge, this work gives
first insights into the degree and type of variation, which will
be revealed once complete assemblies will replace resequencing
or other reference-dependent methods.
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Landsberg erecta (Ler) is presumably the second-most-used
strain of Arabidopsis thaliana after the reference accession

Columbia (Col-0). It is broadly known as Ler-0, which is an ab-
breviation for its accession code La-1 and a mutation in the
ERECTA gene. In 1957, George Rédei, at the University of
Missouri–Columbia, irradiated La-1 samples, which were pro-
vided by Friedrich Laibach and were collected in Landsberg an
der Warthe (now called Gorzów Wielkopolski), Poland, where
Ler-0–related genotypes are still present (1). Some seeds of the
original batch were irradiated with X-rays, resulting, among
others, in the isolation of the erecta (er) mutant (2, 3). Will
Feenstra received this mutant from George Rédei in 1959 be-
cause he was interested in its erect growth habit and introduced
it as the standard strain in the Department of Genetics at
Wageningen University. There, he started a mutant induction
program that was later continued by Jaap van der Veen and
Maarten Koornneef. Mutants from this program as well as pa-
rental lines of recombinant inbred lines were mainly distributed
as Ler-0 lines to other laboratories, reflecting the increasing in-
terest in A. thaliana. Some descendants of Ler-0 were later
renamed to Ler-1 and -2 to identify genotypes used in different

laboratories, but most likely all derived from the original mutant
isolated by Rédei, and we will collectively refer to them as “Ler.”
First comparative analyses of the Ler genome included cyto-

genetic studies using pachytene cells and in situ hybridization (4,
5), suggesting a large inversion on the short arm of chromosome
4, as well as differences between 5S rDNA clusters compared
with the genome of Col-0 (4). The first large-scale analysis of the
Ler genome sequence was published together with the Col-0 ref-
erence sequence in 2000 (6). Within 92 Mb of random shotgun
dideoxy sequencing reads, 25,274 SNPs and 14,570 indels were
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identified. Although this was a severe underestimation (7–11), the
authors already observed that many of the large indels contained
entire active genes, half of which were found at different loci in the
genome of Ler, whereas others were entirely absent (6).
The advent of next-generation sequencing greatly expanded

the knowledge of natural genetic diversity in A. thaliana (reviewed
in refs. 12 and 13). However, genome-wide studies on gene
absence/presence polymorphisms were not repeated, because
short-read analyses focused on small-scale changes only. To
resolve large variation, reference-guided assemblies (8, 9, 14)
and structural variation-identifying tools (15) were introduced.
However, such methods mostly reveal local differences, which do
not include the complement of large-scale rearrangements in-
cluding inversions or transpositions.
So far, two de novo assemblies of Ler have been published.

The first was based on Illumina short-read data and resulted in
an assembly with an N50 of 198 kb, showing similar performance
as a reference-guided assembly (8). The second was based on a
set of previously released Pacific Bioscience’s single-molecule,
real-time sequencing (PacBio) data (16) and assembled the ge-
nome into 38 contigs with an N50 of 11.2 Mb (17). This drastic
improvement outlines the potential of long-read sequencing
technologies such as PacBio sequencing (18) to overcome the
limitations of short-read methods because long reads can span
many of the repetitive regions, which are presumably the most
common reason for assembly breaks in short-read assemblies.
Alternatively, low-fold long-read sequencing could be combined
with cheaper short-read sequencing, either by using the short reads
for error-correcting the long reads (19) or for integrating long-read
information into short-read assemblies or vice versa (20).
Despite the unprecedented contiguity of this long-read as-

sembly, both earlier studies focused on methodological aspects
and did not perform any whole-genome comparisons of the Ler
genome or gene annotations, and, as a consequence, compre-
hensive reports on large-scale rearrangements and nonreference
genes are still sparse. We have generated an advanced de novo
assembly of Ler consisting of 117 Mb arranged into five se-
quences representing the five chromosomes, which is based on a
combination of short-read assembly, long-read-based gap clo-
sure, and scaffolding based on genetic maps. This chromosome-
scale assembly and its comparison with the reference assembly
revealed features that are typically not analyzed within next-
generation sequencing assemblies, including the location of a
polymorphic rDNA cluster and centromeric repeats, as well as
the exact makeup of all large rearrangements including a 1.2-Mb
inversion on the short arm of chromosome 4. This inversion
suppresses meiotic recombination in Ler and Col-0 hybrids, and
we show that this suppression introduced genetically isolated
inversion haplotypes into the worldwide population of A. thaliana.
De novo gene annotation revealed hundreds of copy-number
polymorphisms as well as novel genes that are entirely absent in
one or the other genome. Finally, we report on variation in dif-
ferent Ler genomes, suggesting that some Ler lines feature un-
expected footprints of an additional mutagenesis event.

Results
Karyotype-Resolving Assembly of A. thaliana Ler. We deeply se-
quenced the genome of Ler using Illumina libraries of different
insert sizes (SI Appendix, Table S1). Combined with recently
generated data (8), we obtained an initial assembly with an
N50 of 7.5 Mb using ALLPATHS-LG (21) and SSPACE (22).
For further improvement, we generated long-read data from 10
PacBio SMRTcells. However, during the course of this project,
Pacific Biosciences released sequencing reads of Ler with higher
quality (16), which we used for gap closure (20) and scaffolding
(23) to generate an assembly with an N50 of 12.8 Mb consisting of
65 scaffolds >50 kb. Following the POPSEQ approach (24), we
anchored 31 of these scaffolds to two public genetic maps (25, 26),

which allowed us to generate five chromosome-representing se-
quences using stretches of Ns as indication of assembly breaks
(Table 1 and SI Appendix, SI Materials and Methods and Fig. S1).
Because some of the short scaffolds were too small and did not
overlap with enough markers, we introduced an additional seven
scaffolds with a combined length of 1.4 Mb into the recon-
structed chromosomes based on homology information from
Col-0. The final assembly consisted of five pseudomolecules and
25 unplaced scaffolds (including scaffolds representing the or-
ganelle genomes) with a combined length of 118.9 Mb, including
<2 Mb of ambiguous bases.
Within the assembly, we found sequence similarity to telomeric

repeats at five of eight chromosome ends without heterochromatic
nuclear organizing region (i.e., shorter arms of chromosomes 2 and
4) and centromeric repeat sequences and rDNA clusters within
most of the pericentromeric regions (Fig. 1). Telomeric repeats
were also found as interstitial repeats near or in the pericentro-
meric regions, which is similar to their location in the Col-0 ge-
nome (27). Interestingly, we found a few rDNA copies in the
upper arm of chromosome 3, revealing the location of a (not fully
assembled) rDNA cluster, which is in agreement with earlier
findings of a Ler-specific rDNA locus in this region (4). To test the
assembly quality further, we analyzed nucleotide-binding leucine-
rich repeat (NB-LRR) gene loci, which include regions that are
known to be structurally diverse between accessions and are
challenging to assemble because of high levels of local repeats
(28). For 154 of the 159 genes, we could identify the orthologous
regions in the Ler assembly. Only 10 (6%) of these regions in-
cluded ambiguous sequences, which would indicate failures in
sequence assembly. In contrast, 49 (31%) of them revealed dif-
ferences >100 bp, corroborating their strong divergence.
Finally, we used Ler wild-type RNA-sequencing (RNA-seq)

reads from two public datasets (9, 29) and homology to Col-0 pro-
tein sequences to annotate 27,170 protein-coding genes in the
assembly of Ler (compared with 27,416 protein-coding genes in the
reference annotation) (SI Appendix, SI Materials and Methods).

The Complement, Divergence, and Impact of Nonallelic Rearrangements.
In contrast to resequencing, full-length assemblies facilitate direct
identification of large-scale genomic rearrangements, including
transpositions and inversions. These types of higher-order differ-
ences constitute a second layer of genetic variation, because local
differences (e.g., SNPs) can be found in colinear as well as in re-
arranged regions (Fig. 2A). However, because resequencing studies
typically cannot distinguish between rearranged and nonrearranged
regions, this distinction was so far not possible (30).
A whole-genome alignment of the Ler and Col-0 genome as-

semblies (31) revealed 512 colinear (allelic) and 611 rearranged
(nonallelic) regions comprising ∼107.6 and 3.6 Mb (Fig. 2B and
SI Appendix, SI Materials and Methods). Among the nonallelic
regions, we identified 47 inversions and 383 and 181 inter- and
intrachromosomal transpositions (Dataset S1). Most of the trans-
positions resided in pericentromeric regions, whereas inversions
were also found in chromosome arms (Fig. 2C). Nearly 40% of the
transposed sequences overlapped with transposable elements
(TEs); however, only a minor fraction of the inversion sequences

Table 1. Assembly statistics and comparison with the
reference sequence

Feature Col-0 Ler

Chromosome scaffolds 5 5
Unplaced scaffolds 0 25
Assembly length 119,146,348 118,890,721
Ambiguous bases 185,738 1,777,652
Gene no. 27,416 27,170
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were related to TEs. The inversion breakpoints overlapped with 7
and 10 genes in the Ler and Col-0 assemblies, which did not have
syntenic orthologs in the other assembly, suggesting that these
genes have been deleted by the inversion events.
The by far largest sequence difference between the two as-

semblies was an inversion of 1.2 Mb on chromosome 4, which we
confirmed by PCR (SI Appendix, Figs. S2 and S3). The latter
inversion was already described by Fransz et al. (5) and was
found to be associated with a polymorphic, heterochromatic
knob on the short arm of the Col-0 chromosome, presumably
due to inverting parts derived from the pericentromere (5, 32).
This inversion could also be observed between Col-0 and the
closely related plant Arabidopsis lyrata, further corroborating that
the Col-0 allele is the derived form (33). Moreover, 7.9 Mb of the
Col-0 and 4.1 Mb of the Ler assembly were not aligned to any
homologous region of the other genome at all. This sequence
space was separated into 713 and 535 regions, respectively (Fig.
2B). Even though not aligned in a strict one-to-one whole-genome
alignment, large portions of these unaligned regions showed ex-
tensive similarity to regions in the other genome, suggesting that
most of these regions originated from duplication events (Fig. 2 A
and B) (SI Appendix, SI Materials and Methods).
To compare sequence divergence in allelic and nonallelic re-

gions, we searched for local differences, including SNPs and
small and large indels, as well as highly divergent regions (HDRs)
(Fig. 2A, SI Appendix, SI Materials and Methods, and Dataset S2).
Approximately 4.5 Mb (4.2%) of the 107.6 Mb of allelic sequence
were polymorphic, with the majority of this variation organized in
long indels and HDRs (Fig. 2D). Approximately 39% of the long
indels had flanking (short or tandem) repeat sequences, indicating
that a large proportion of the indel mutations were introduced by
homology-dependent events, whereas only 16% of them highly
overlapped with TEs. Even though rearranged (nonallelic) se-
quence harbored less large local differences, presumably due to
their short length [average lengths: transpositions, 4 kb; inversions,
9 kb (without the 1.2 Mb inversion); allelic regions, 209 kb], the
average pairwise difference in the alignments of nonallelic regions
was still similar compared to the differences in allelic regions (Fig.
2 D and E).

To avoid recombination between nonallelic regions, meiotic
recombination requires pairing of homologous sequence between
allelic regions (11), implying that rearranged regions should be
suppressed for meiotic recombination in heterozygotes (Fig. 2F).
To test this hypothesis, we overlapped the precise location of 362
crossover (CO) events from Col-0/Ler hybrids previously collected
from different studies (34) with allelic and nonallelic regions (SI
Appendix, SI Materials and Methods). Only five of the CO events
did not reside in colinear, allelic regions (expected: 35 CO events),
of which four COs were located in nonaligned regions, and only
one CO was mapped to a transposition (Fig. 2G). This highly
significant underrepresentation of COs in nonallelic regions
provides evidence that rearranged regions are in fact suppressed
for meiotic recombination (P = 1.96e-06, χ2 test).

The Effects of Inversions on Natural Haplotypes. Inverted regions
were most drastically suppressed for meiotic recombination and
in consequence genetic exchange between the two alleles of an
inversion is expected to be minimized (35). Despite this strong
impact, no population-wide analysis of inversions in Arabidopsis
and only few inversions have been reported so far (5, 8, 36).
Two inversions between Col-0 and Ler were >100 kb, including a

170-kb inversion on chromosome 3 and the 1.2-Mb inversion on
chromosome 4. Overlapping the regions of the inversion with
meiotic recombination frequency data (26) showed locally re-
duced recombination rates co-occurring with both of these two
large inversions (Fig. 3A and SI Appendix, Fig. S4). The effect of
the chromosome 4 inversion extended its recombination sup-
pression into the heterochromatic pericentromere and was in
agreement with early reports of reduced recombination specific
to hybrids of these accessions (26, 37).
Selection acting on one of the alleles of an inverted region can

have dramatic effect on its allele frequency and haplotype di-
vergence across the entire inverted regions. To estimate the
impact of these large inversions on the population of A. thaliana,
we genotyped a worldwide selection of 409 accessions using
public whole-genome sequencing data (15, 30, 38) (SI Appendix,
SI Materials and Methods). For this process, we simultaneously
aligned the short reads against the Col-0 and Ler reference se-
quences and calculated the ratio of alignments to either of the
inversion breakpoints to assign the respective allele (SI Appendix,
Fig. S5). Surprisingly, only sequencing reads of Ler matched the
Ler inversion breakpoints of the 170-kb inversion on chromo-
some 3, whereas the reads of all other accessions matched the
Col-0 breakpoints, suggesting that this inversion was either specific
to the La-1 accession or was introduced during the mutagenesis
leading to the Ler genotype. In contrast, genotyping for the 1.2-Mb
inversion revealed 26 accessions as carriers of the Col-0 allele and
383 accessions as carriers of the Ler allele (Fig. 3B). Most acces-
sions could be characterized at the distal inversion breakpoint;
however, some accessions showed an additional rearrangement on
the proximal breakpoint complicating short read alignments. De-
spite this complication, none of the accessions showed contra-
dicting genotypes at the two breakpoints.
The relatedness of the accessions was estimated by using

20,408 SNPs from within the inversion and revealed a perfectly
separated subclade, which matched the assignment of the Col-0–
like inversion allele during the breakpoint genotyping (Fig. 3C
and SI Appendix, SI Materials and Methods). This finding sug-
gested that suppressed recombination and genetic exchange
separated the population in two distinct groups, in particular
because this separation was not mirrored by geographic isolation
(Fig. 3D). However, this separation was not absolute: Across the
20,408 sites, we found 13 (0.06%) sites with shared variation
between both groups (whereas 20,306 sites were polymorphic
only within the Ler-like inversion accessions, and 89 sites were
polymorphic only within the Col-0-like accessions). Although
this very low level of shared variation still could indicate the
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existence of rare (double) recombination events between two
inversion alleles, such patterns might also be explained by gene
conversions (11) or accumulation of false-positive SNP pre-
diction within the set of shared SNPs.

The minor Col-0 inversion allele mostly co-occurred together
with the Ler-like allele across its entire distribution range in
Central and Northern Europe, and even in recently invaded
North America (39). Although the Ler-like genotypes showed
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Fig. 3. Impact of large-scale inversions on meiotic recombination and haplotype diversity in a worldwide collection of A. thaliana accessions. (A) Male meiotic
recombination frequencies across chromosomes 3 and 4 contrasted with the location of the two large-scale inversions (dark gray boxes) and the pericen-
tromeric regions (light gray boxes) [recombination data generated by Giraut et al. (26)]. Recombination frequency was measured between markers with an
average distance of 316 kb. Both inversions co-occur with locally reduced recombination frequencies. The interval harboring the inversion on chromosome 3,
however, showed residual recombination activity, which does not imply recombination in the inverted region, but might arise from recombination in 111 kb
of noninverted sequence in this interval. (B) The names of 409 accessions colored by the inferred chromosome 4 inversion allele (blue, Ler allele; red, Col-0
allele) as assessed on the left and right breakpoints of the inversion. The accessions were ordered after their occurrence in the haplotype clustering shown in
C. (C) Haplotype clustering based on 9,198 SNPs located within the chromosome 4 inversion, revealing two distinct clusters, which perfectly matched the two
chromosome 4 inversion alleles. (D) Distribution of the accession origins in central Europe, colored by their respective chromosome 4 inversion alleles.
(E) Haplotype diversity within the accessions carrying a Col-0–like (red) or Ler-like allele (blue) of the chromosome 4 inversion. (F) Population differentiation
(Fst) between these two groups of accessions. Inversion and pericentromere shown with dark and light gray boxes.

E4056 | www.pnas.org/cgi/doi/10.1073/pnas.1607532113 Zapata et al.

www.pnas.org/cgi/doi/10.1073/pnas.1607532113


genetic diversity within the inversion region, which was not different
from the rest of the genome, the diversity among the Col-0–like
genotypes was greatly reduced within the inversion (Fig. 3E and SI
Appendix, Fig. S6) and extended across the low recombining peri-
centromere. The drastic reduction in diversity most likely reflects a
bottleneck event as a result of the inversion generating the derived
Col-0 allele, which was maintained by the suppression of recom-
bination in inversion heterozygotes.
Taken together, these findings suggest that the inversion was

introduced by a single event, and, in consequence, population
differentiation between the two groups was not uniform across
the chromosome. Wright’s fixation index (FST) was elevated in
the inversion, and, again, the effect was extended into the peri-
centromeric region (Fig. 3F and SI Appendix, Fig. S7).
Finally, we assessed patterns of genic selection in the inversion

by calculating Ka/Ks to explain the relatively high allele frequency
of the inversion allele. One of the genes in the inversions,
RLP46, a LRR-receptor domain-containing gene with function
in defense response, was among the four genes with the highest
Ka/Ks values across the entire genome. However, the numbers of
nonsynonymous and synonymous changes were not high enough
to prove a significant difference from neutral evolution, pre-
venting a final conclusion as to whether selection of a gene in the
inversion helped to retain the inverted allele or whether the in-
version simply drifted into the population.

Genic Copy Number Variation Between Two A. thaliana Lines. To
assess the amount of genes that are specific to Ler or Col-0, we
first calculated groups of orthologous genes between the two
genomes (SI Appendix, SI Materials and Methods). This process
revealed initial sets of 212 and 240 single-copy genes that

appeared specific to either of the genomes. These gene sets were
then further filtered to exclude the possibility that their acces-
sion-specific occurrence was due to failures in the assemblies,
annotations, or assignment of orthologs (SI Appendix, SI Mate-
rials and Methods). This conservative approach led to 40 unique
genes specific for Ler and 63 genes specific for Col-0. Using the
genome of the close relative A. lyrata (36, 40) as outgroup, we
found that the majority of these polymorphic genes (77%)
evolved via deletions within the genome in which they are absent,
rather than by a spontaneous appearance in the genome in which
they are present (Fig. 4A). In fact, the number of genes is pre-
sumably underestimated because the A. lyrata assembly might
not be complete and might lack some genes, leading to a false
categorization of genes.
Single-copy gene loss is an extreme type of modification of the

gene content of a genome, because no additional copy can re-
place the function of the absent gene. In contrast, small gene
families with multiple copies are expected to be at least partially
functionally redundant and, therefore, more variable for copy
number. In fact, 330 unique one-to-one orthologous gene pairs
showed one additional copy in either the Ler or Col-0 genome
(again, after strict filtering for artifacts) (SI Appendix, SI Mate-
rials and Methods). In 151 of the cases, the additional gene was
found in the genome of Col-0, whereas in 179 of the cases, the
additional copy was found in Ler. In contrast to accession-specific
genes, copy-number variation did not primarily evolve through
deletion events; instead, copy loss events were underrepresented
(36%) compared with acquiring new copies by novel duplication
(64%) (again, gain and loss events were distinguished by using
A. lyrata as an outgroup) (Fig. 4B). These additional genes re-
sided in 134 duplicated regions in Col and 148 duplicated regions
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in Ler, implying that some of the duplicated genes were introduced
by the same duplication event (Fig. 4C). Interestingly, although
the loss of additional copies was independent of the location, the
gain of additional copies was clearly enriched for copies residing
close to the original gene (Fig. 4D), suggesting that novel genes
primarily evolved by local duplication events. This result was
further supported by differences in the similarity between new
copies and the original genes. Gained copies were much more
similar to each other compared with copies, where the other ge-
nome lost one copy, corroborating that gene gains predominantly
result from recent events (Fig. 4E).
Performing a Gene Ontology enrichment analysis, we found

that polymorphic single-copy genes are enriched for signaling
and signal transduction-related pathways, whereas genes with
copy-number changes were enriched for defense-related cate-
gories, protein polymerization, and translation.

Polymorphisms Between Diverse Ler Lines. Earlier comparisons of
different Ler lines have revealed a polymorphic premature stop
codon in the HUA2 gene (41). This allele, hua2-5, was specific
only to some, but not all, Ler lines; could not be identified in any
of 29 other A. thaliana accessions (41); and still has not been
identified in any of the hundreds of other accessions released by
the 1001 Genomes Project (www.1001genomes.org). This result
suggested that the hua2-5 mutation occurred after the original
La-1 mutagenesis and, because it was not found in some flowering
time mutants isolated in the 1960s but was present in mutants
isolated in the early 1970s at the Genetics Department in Wage-
ningen, this mutation most likely occurred in that laboratory (41).
We have reanalyzed six different datasets, all of which have

been labeled as whole-genome sequencing data of Ler (8–11) (SI
Appendix, Table S2). We aligned the reads of all sets against the
Ler reference sequence, and, after stringent filtering, we identi-
fied only a marginal amount of structural variations between
these lines, including five deletions and two duplication events
using read copy and read pair analysis. However, we also iden-
tified an unexpected amount of 723 single-nucleotide variations,
including the hua2-5 mutation, which was present in two of the
six lines. Surprisingly, most of the other polymorphic sites were
not specific to a single genome as expected for inbred strains
distributed to different laboratories, but were associated to the
hua2-5 mutation. Nearly all of these mutations were C→T or
G→A mutations and were found in large clusters throughout the
entire genome (Fig. 5). Because such mutations and their clus-
tering are characteristic for ethyl methanesulfonate (EMS) mu-
tations, it is likely that the hua2-5 mutation (and all other
associated mutations) resulted from an EMS mutagenesis.

Discussion
We have used a combination of short Illumina reads, long PacBio
reads, and genetic maps to generate a chromosome-level
assembly of A. thaliana Ler. Despite the unprecedented conti-
guity that we achieved by combining different data types, in-
tegration was not straightforward. In contrast, de novo assemblies
based only on long reads are easier to perform and start to become
a powerful alternative (17, 42), although they do not assemble
entire chromosomes yet. Independent of the assembly type, the
amount of rearranged sequence that was revealed by comparing
two assemblies underlines the general importance of chromosome-
level assemblies, in particular because rearrangements have been
recognized as confounding factors in genome-wide screens (11, 43)
and are essential to fully understand the segregation and evolution
of natural haplotypes.
Recent meiotic recombination estimates suggested that high

levels of sequence divergence themselves are not inhibitory for
meiotic recombination (26, 44, 45), which is in agreement with a
positive correlation of ancestral recombination frequency and
regions with high sequence divergence (46). However, this finding

refers to local sequence divergence without considering rear-
rangements like transpositions or inversions. In fact, by analyzing
CO events, which were observed in Col-0/Ler hybrids, in respect to
their occurrence in colinear and rearranged regions, we could
show that nonallelic regions have significantly reduced levels of
meiotic recombination, despite no obvious difference in local
sequence divergence.
Such cross-specific suppression of recombination was de-

scribed for individual regions before including the 1.2-Mb in-
version on the upper arm chromosome 4 (5, 26, 37), which was
found between Col-0 and Ler, as well as Ws and Ler. Similar
suppression patterns were found in a 2.2-Mb region on the upper
arm of chromosome 3 within the offspring of Bay-0 and Sha (47)
[and were later also observed in crosses between Col-0 and Sha
(45, 48, 49)], a 2- to 3-Mb region on the upper arm of chromo-
some 5 specific to RRS7 and a 0.2-Mb region on the lower arm
of chromosome 1 specific to Bay-0 (49). Recently, local sup-
pression of recombination on the lower arm of chromosome 4
between a cross of Col-0 and Ws-2 led to the identification of a
1.8-Mb inversion, which perfectly matched the region without
any CO events (36).
Using a 1.2-Mb inversion on the upper arm of chromosome 4

as an example, we studied the effects of such inversion-mediated
suppression of meiotic recombination on the global population
of A. thaliana. Suppression of genetic exchange between these
two inversion alleles introduced a new genetically isolated hap-
lotype into the global population. Although accessions carrying
the Col-0–like allele showed a clear concentration in Germany
and Sweden, it was surprising that these genotypes were rather
widely distributed. Other examples of widely distributed polymor-
phisms include deletions in FRIGIDA (50), which could be asso-
ciated with different selective pressures. We could not identify
similar signals for any of the alleles in the derived form of the
inversion, which, nevertheless, does not exclude a possible se-
lective advantage of this inversion allele, but might point to a
more complex scenario of selection.
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Fig. 5. SNPs between six Ler genomes from different laboratories. Location
and type of SNPs distinguishing six genomes published as the genome of Ler.
Genome-wide visualization revealed large blocks of C→T and G→A muta-
tions specific to two Ler lines.
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In addition to rearrangements, an even larger portion of the
genome was not assigned to any orthologous region in the whole-
genome alignment. Many of these regions resulted from dupli-
cation events, which had a drastic impact on the gene content
of the genomes. Gene absence/presence polymorphisms have
been connected to phenotypic variation (1) and genetic in-
compatibilities (51–54) before, but the genome-wide extent of
hundreds of polymorphic genes in both genomes was surprisingly
high, even though we only looked at low-copy differences. The
functional classes, which were enriched among the duplicated
genes, included defense-related genes, which can have a selective
advantage when duplicated because they can evolve race-specific
resistances exemplified by the RPP1 locus where Ler has a 70-kb
additional sequence including several strain-specific genes (1, 55).
Even in an organism with so many resequenced genomes as

A. thaliana, a single chromosome-level genome assembly enabled
us to analyze a second layer of genetic variation, which so far could
not be considered in most short-read-based genome-wide studies.
These regions showed a drastic impact on natural haplotypes and
introduced great variability into the gene space, giving a first
glimpse of the degree of natural variation, which can be revealed

once more chromosome-level de novo genome assemblies become
available.

Materials and Methods
To assemble the genome of the A. thaliana Ler genome, we used ALLPATH-
LG (21) and SSPACE-ShortRead (22) for an Illumina short-read contig as-
sembly and scaffolding. Integration of public PacBio sequencing data (16)
was performed with PBJelly (20) to close gaps and SSPACE-LongRead (23) to
connect scaffolds. Higher-order scaffolding was based on two public genetic
maps with 676 and 386 markers with a location on the scaffolds (25, 26). Ad-
ditional integration of seven scaffolds (combined length of 1.4 Mb) based on
synteny assumptions led to the final assembly of five chromosome-representing
scaffolds. Finally, PacBio data were used to correct 3.5-Mb ambiguous (N) ba-
ses. For gene annotation, we used AUGUSTUS, including alignment from
public RNA-seq data.
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