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Lippuner,1 Curran D. Muhlberger,6 Francois Foucart,7, 8 and Matthew D. Duez9

1TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA
2Albert Einstein Institute, Max-Planck-Institut für Gravitationsphysik, Potsdam, Germany

3DiFeST, University of Parma, and INFN Parma I-43124 Parma, Italy
4Department of Physics, Syracuse University, Syracuse, NY 13244, USA

5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91106, USA
6Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853, USA

7Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
8Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8, Canada

9Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, USA
(Dated: February 29, 2016)

Gravitational waves from binary neutron star (BNS) and black hole/neutron star (BHNS) inspi-
rals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave
Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of
the gravitational waveform, and these changes can be used to constrain the nuclear equation of state.
Current methods of generating BNS and BHNS waveforms rely on either computationally challeng-
ing full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new
method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian
(PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing
the nontidal terms in the PN expansion with BBH results. Comparing a waveform generated with
this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of
< 1 radian over ∼ 15 orbits. The numerical phase accuracy required of BNS simulations to measure
the accuracy of the method we present here is estimated as a function of the tidal deformability
parameter λ.

I. INTRODUCTION

In September 2015, the Advanced Laser Interferom-
eter Gravitational-Wave Observatory(aLIGO) directly
detected, for the first time ever, gravitational waves
(GWs) [1] and the network of observatories will be joined
shortly by advanced Virgo [2] and KAGRA [3]. The most
likely GW sources for these detectors are mergers of bi-
naries consisting of neutron stars (NSs) or black holes
(BHs) [4]. If both objects in the binary are NSs (BNS),
or if one is a NS and the other is a BH (a BHNS binary),
then the tidal deformability of the NS will alter the GW
signal in a way that is dependent upon the NS equation
of state (EOS), allowing these observatories to constrain
the EOS [5–13]. It is therefore of key importance to un-
derstand and model the influence of tidal effects on BNS
and BHNS waveforms. We show here that a binary black
hole (BBH) waveform can be augmented with PN tidal
effects to accurately model a BNS system during the in-
spiral portion of the binary evolution. In principle, this
method should also be applicable to BHNS systems.

BNS waveforms are typically computed using post-
Newtonian (PN) methods, which are perturbative expan-
sions in the invariant velocity v = (Mdφ/dt)1/3, where
M is the total mass of the system and φ is the orbital
phase (here we assume c = G = 1). For binaries con-
sisting of nonspinning point particles, the expansion is
known through 3.5PN order [14]. The static NS tidal

effects first enter at 5PN order and depend upon the
tidal deformability λi [15]. The parameter λi measures
how much each NS i deforms in the presence of a tidal
field, and depends on the NS mass and EOS implicitly
through its dimensionless Love number k2,i and radius
Ri: λi = (2/3)k2,iR

5
i [5]. As v increases throughout the

inspiral, the missing 4PN, 4.5PN, and 5PN point-particle
terms can result in the late portion of the PN wave-
form becoming inaccurate before the static tidal terms
are large enough to contribute. For estimating the NS
tidal deformability by using PN waveforms, the error in-
troduced by neglecting the higher order PN terms can
be as large as the statistical errors due to noise in the
measured signals [11, 12, 16, 17].

Effective-one-body (EOB) models that include tidal ef-
fects [18–20] also include the merger, and provide better
accuracy than PN by tuning higher-order vacuum terms
to numerical relativity (NR) BBH waveforms. Although
EOB has accurately reproduced waveforms from NR BNS
simulations [20, 21], here we discuss a new and different
approach that holds considerable promise for modeling
tidal interactions during the inspiral.

The most accurate method of computing waveforms is
carrying out full NR simulations for BNS and BHNS bi-
naries; see [10, 20–30] for recent work. However, BNS
and BHNS simulations are computationally challenging,
since they require solving not only the full Einstein equa-
tions but also relativistic hydrodynamics with a realistic
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EOS. It is unfeasible to use NR hydrodynamic simula-
tions alone to cover the parameter space given the wide
range of theoretically possible EOS and NS masses. In
contrast, BBH systems are easier to simulate with higher
accuracy. Several large catalogs of BBH simulations and
resulting waveforms have been compiled [31–37].

We introduce here a method we call “PN tidal splic-
ing”, which generates BNS inspiral waveforms from NR
BBH waveforms by adding tidal interactions derived in
the PN formalism, effectively replacing the point-particle
PN terms by the numerical BBH evolution.

We compare PN tidal splicing to NR using two sim-
ulations generated by SpEC [39], a code developed to
evolve Einstein’s equations and general relativistic hy-
drodynamics [40, 41]. The first is a new equal-mass
BNS simulation with 22 orbits before merger [42], and
the neutron stars were initialized with gravitational
masses mi ≈ 1.64M� and a polytropic EOS with P =
123.6M2

�ρ
2, leading to a tidal deformability of λi ≈

5.7 × 1036g cm2 s2. The other is an equal-mass, non-
spinning BBH simulation [43] tagged SXS:BBH:0180 in
the public simulation catalog of the Simulating eXtreme
Spacetimes Collaboration [35]. Using tidal splicing, we
add tidal terms to the BBH waveform in an attempt to
reproduce the BNS waveform. As a test, we also sub-
tract tidal terms from the BNS waveform in an attempt
to reproduce the BBH waveform.

Figure 1 shows that the GW phase difference,
|δφGW|, between the ‘BBH+tidal’ waveform and the
BNS waveform is the same as the difference between the
‘BNS−tidal’ waveform and the BBH waveform, and both
are a factor of ∼ 3 smaller than the difference between
the BNS and BBH waveforms throughout the inspiral.
Thus we can mimic the inspiral of a full BNS simulation
to within a few tenths of a radian at a fraction of the
cost. For the BBH waveform, the phase error is estimated
by the phase difference between the highest two resolu-
tions. The BNS simulation is a combination of spectral
and finite-volume methods with complicated convergence
properties; it is unclear how to construct an accurate er-
ror measure [42]. We choose the simple prescription of
plotting the phase difference between the highest two res-
olutions as a crude error estimate. While the BBH error
estimate is small, the error estimate in the BNS simula-
tion is as large as the tidal effects themselves. Therefore,
we cannot yet fully verify the accuracy of tidal splicing
until more accurate BNS simulations are available. Below
(cf. Fig. 3) we will estimate the phase accuracy required
of future BNS simulations for such verification.

II. METHODS

For nonprecessing binaries, the PN equations for qua-
sicircular orbits read

dv

dt
=F (v) , (1)

dφ

dt
=v3/M , (2)

where F (v) is the ratio of two functions, each known to
finite PN order in v, and also depends on the binary’s
intrinsic parameters [44]. Different ways of evaluating
these equations result in different PN approximants that
agree to the same PN order in v, but diverge at higher
orders. We present methods for tidal splicing using two
different approximants.

TaylorT4. If F (v) is expanded as a series in v and
then truncated to the appropriate PN order, then the
solution is known as the TaylorT4 approximant [45]. For
TaylorT4, the tidal effects manifest as additional terms
in the power series for F (v). Equation (1) can be written

dv

dt
= F (v) = Fpp(v) + Ftid(v) , (3)

where Fpp(v) are the point-particle terms, and where the
additional static tidal terms Ftid(v) are known to 6PN
order [15].

For inspiraling PN BBHs, F (v) is governed by the
point-particle terms. PN tidal splicing uses φ(t) from
a BBH simulation together with Eqs. (3) and (2) [with
Ftid(v) set to zero] to compute an accurate version of
Fpp(v), which we will call FNR(v). To do this, we set
φ(t) = φGW/2, where φGW is the GW phase of the
` = m = 2 spherical-harmonic mode of the NR wave-
form. Then Eq. (2) yields

v(t) =

(
M

2

dφGW

dt

)1/3

. (4)

Given v(t), we compute FNR(v) = dv/dt using finite dif-
ferencing. Assuming v(t) is monotonic, we can write
FNR(v) as a single-valued function of v.

Using this FNR(v) in place of Fpp(v) in Eq. (3), we
then re-solve Eqs. (3) and (2), including the tidal terms
Ftid(v), to generate a waveform for a binary that includes
tidal interactions. We express the orbital evolution of the
new binary in terms of a new time coordinate t̄. From
the analytic expression for Ftid(v) [15] and Eq. (3) we
write a differential equation for t̄:

dt̄

dv
=

1

FNR(v) + Ftid(v)
. (5)

Integrating this expression and inverting yields the func-
tion v(t̄) corresponding to the spliced waveform.
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FIG. 1. Phase difference between gravitational waveforms as a function of time, for an equal-mass binary of nonspinning
compact objects. Differences are shown between BNS and BBH waveforms (black), between a BBH waveform with TaylorT4
tidal terms added and a BNS waveform (blue), and between a BNS waveform with TaylorT4 tidal terms subtracted and a BBH
waveform (red). The red and blue curves nearly coincide. Also shown are the phase differences between BBH and point-particle
TaylorT4 waveforms (solid magenta) and between BNS and tidal TaylorT4 waveforms (dashed magenta). The numerical error
in the BBH waveform (dashed red) and an estimate of the error in the BNS waveform (dashed blue) are also shown. All
waveforms are aligned with the BNS waveform according to [38]; the alignment time window encompasses a 5% change around
a GW frequency of 280 Hz for a total mass of M = 2× 1.64M�. The blue and red curves are smaller than the black curve by a
factor of ∼ 3, demonstrating that tidal splicing can generate a BNS waveform from a BBH waveform and vice versa. The large
error in the BNS waveform prevents us from fully measuring the accuracy of tidal splicing.

The phase of the spliced waveform, φ̄GW(t̄), is com-
puted by integrating Eq. (2):

φ̄GW(t̄) =
2

M

∫ t̄

t̄min

v(t̄)3dt̄ , (6)

where t̄min is the start of the numerical waveform.
In TaylorT4, the amplitude of the waveform is a func-

tion of v only, with no explicit time dependence [46].
So here we assume that the amplitude of the original
NR waveform ANR(t) is likewise a function of v only,
so that we can write ANR(v) = ANR(t(v)). We then
use v(t̄) to express this amplitude in terms of t̄. In
other words, the amplitude of the resulting waveform is
Ā(t̄) = ANR(t(v(t̄))). We generate a BBH waveform from
a BNS waveform by the same method, except we subtract
instead of add Ftid(v) in the denominator of Eq. (5).

We require v(t) to be monotonic so that F (v) is sin-
gle valued. To remove high-frequency numerical noise,
the derivative in Eq. (4) is computed with a third order
Savitzky-Golay filter [47] with a window size of ≈ 48.5µs.
This is sufficient when adding tidal terms to the BBH
waveform considered here. However, when testing our
method by subtracting tidal terms from a BNS waveform,
the phase of the BNS waveform considered here [42] has
large enough oscillations in v(t) that stronger smooth-
ing is needed. We proceed by first subtracting the phase

of the TaylorT4 waveform from that of the BNS wave-
form, expanding this difference in Chebyshev polynomi-
als, truncating the Chebyshev expansion to n = 35, and
adding back the phase of the TaylorT4 waveform. We
find that the difference between the smoothed and un-
smoothed phase of the BNS waveform is less than 3×10−3

radians.
As discussed above, Figure 1 displays the phase dif-

ferences between NR and tidally spliced TaylorT4 wave-
forms. We now examine how well pure PN waveforms
agree with NR waveforms. The magenta solid and dashed
curves in Fig. 1 show phase differences between TaylorT4
and BNS or BBH waveforms. The point-particle Tay-
lorT4 waveform does an excellent job of reproducing the
phase evolution of the BBH waveform, about at the level
of the BBH numerical error. However, while TaylorT4
is surprisingly accurate in the inspiral for equal-mass,
nonspinning systems [45, 48], this does not hold true in
general [49–51]. Tidal splicing should be applicable to an
arbitrary BNS/BHNS system with spins and/or unequal
masses, where there may not be an accurate PN approx-
imant. References [11, 12] showed that uncertainties in
the PN waveforms are one of the largest sources of error
for tidal parameter estimation, and conclude that more
accurate waveforms are needed.
TaylorF2. If Eqs. (1) and (2) are instead converted to

the frequency domain (FD) using the stationary phase
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approximation before expanding the series, the approx-
imant is called TaylorF2 [52]. TaylorF2 waveforms are
expressed in the FD, and can be written

h̃(f) = Ã(f) exp
(
iΨ̃(f)

)
, (7)

where Ã(f) is real and Ψ̃(f) is the Fourier phase as a
function of the GW frequency f = v3/(πM). For point
particles, Ψ̃(f) = Ψ̃pp(f) is known for nonspinning sys-
tems to 3.5PN order [52, 53]. For tidally deformable ob-
jects, we write Ψ̃(f) = Ψ̃pp(f) + Ψ̃tid(f), where Ψ̃tid(f)
has been calculated up to 7.5PN order, with the excep-
tion of a few unknown constants [7, 19]. Here we include
both 6PN tidal effects and 7.5PN tidal effects, setting the
unknown constants to 0 as was done in [13].

To add the static tidal terms to an existing BBH wave-
form, first the Fourier transform of the waveform h̃NR(f)
is computed. The early portion of the waveform is win-
dowed using a Planck taper [54] while the merger and
ringdown provide a natural windowing for the late por-
tion. We then compute Ψ̃NR(f) and ÃNR(f) by decom-
posing according to Eq. (7). The spliced Fourier phase
is then Ψ̃(f) = Ψ̃NR(f) + Ψ̃tid(f). Because the known
tidal terms do not affect the amplitude ÃNR(f), the new
waveform is then

h̃(f) = ÃNR(f) exp
(
i
[
Ψ̃NR(f) + Ψ̃tid(f)

])
. (8)

No smoothing of the numerical waveforms is needed for
TaylorF2 splicing, unlike the TaylorT4 case.

Since the PN approximation breaks down for high fre-
quencies, we impose a high frequency cutoff which we
choose to be fISCO = 1/(63/2πM) = 1338 Hz, the GW
frequency corresponding to the innermost stable circu-
lar orbit of a Schwarzschild black hole of mass equal to
the total mass of the system. It has been shown that
for BNS systems, fISCO is approximately the merger fre-
quency [55]. The starting frequency of the NR BNS wave-
form after windowing is ∼ 285 Hz.

We estimate the error of the spliced waveforms by an-
alyzing the phase differences in the time domain after
taking the inverse Fourier transform. To avoid jump dis-
continuities in the Fourier phase, we roll off the effect of
Ψ̃tid(f) from fISCO to 2 × fISCO with a cosine window.
While this will contaminate the higher frequency content,
this should allow the lower frequencies of the inspiral to
be mostly unaffected. After the inverse Fourier trans-
form, the time domain waveforms are aligned in a 10%
region around 300 Hz. The phase differences are shown
in Fig. 2 and are similar to Fig. 1. With the exception
of the last ∼ 3 ms of the waveforms, which are affected
by the high frequency contamination, all of the spliced
waveforms maintain phase differences under 0.1 radians
during most of the inspiral, below the difference between
the BNS and BBH waveforms. It is not clear why the
6PN terms approximate the tidal effects better than the

FIG. 2. The phase difference |δφGW(t)| as a function of
time for waveforms spliced with TaylorF2. Differences are
shown between a BNS and a BBH waveform (black), between
a BBH+tidal and a BNS waveform (blue), and between a
BNS−tidal waveform and a BBH waveform (red) at the 6PN
(solid) and 7.5PN (dot-dashed) orders. Only the time after
the windowing function is shown here, resulting in a shorter
time axis here than in Fig. 1. The late-time noise is an ar-
tifact caused by inverse Fourier transforming the unphysical
high-frequency behavior of Ψ̃tid(f). At both PN orders, tidal
splicing can generate a BNS waveform from a BBH waveform
and vice versa.

7.5PN terms; it may be because we zero the unknown
constants in the 7.5PN expression.

III. DISCUSSION

We have shown that PN tidal splicing of BBH wave-
forms can produce inspiral waveforms for nonspinning
BNS systems. This method should easily generalize to
objects with spins and to BHNS systems. Once a BBH
waveform is generated for a particular mass ratio and spin
configuration, it should be easy to produce BNS/BHNS
waveforms via PN tidal splicing for any EOS simply
by adjusting the tidal parameters λi, allowing the en-
tire tidal parameter space for inspiral waveforms to be
spanned.

The accuracy of this method is limited by that of the
PN tidal terms. In particular, additional finite size ef-
fects not captured by the current static tidal PN terms
can influence waveform amplitude and phase, and dy-
namical tidal effects can also contribute to the phase
evolution [56], especially as the NSs approach merger.
This method in principle can be improved with better
PN tidal terms. Unfortunately, it is currently difficult to
fully measure the accuracy of tidal splicing until higher-
accuracy many-orbit BNS simulations are available for
multiple masses and EOS.

Figure 3 estimates the accuracy needed for equal mass,
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FIG. 3. Phase difference between equal-mass, nonspin-
ning BBH and ‘BBH+tidal’ waveforms. Each horizontal slice
through this plot shows the phase difference as a function of
time for a particular dimensionless deformability λi/m

5
i . For

our BNS simulation, λi/m
5
i ≈ 453. Contours show selected

values of the phase difference. A BNS simulation starting at
dimensionless time t/M ≈ −4500 would need phase errors
smaller than the values shown here in order to measure tidal
effects. Even more accurate BNS simulations would be needed
to measure the accuracy of the tidal splicing method.

nonspinning BNS simulations to see the tidal effects on
the inspiral phase of the waveform. Even smaller BNS er-
rors would be necessary to constrain the accuracy of tidal
splicing. We chose the start time in Fig. 3 so that the
inspiral spans a large enough frequency range for aLIGO
to recover 97% of the information about λi, according
to the analysis presented in Fig. 3 of [7]. We assume
M = 2.8M� (corresponding to a prototypical NS mass
of 1.4M�) and an upper frequency cutoff of fISCO.

An alternative to computing tidal terms to a higher PN
order is to resum them in some way, as is done in [20, 21,
57] in the context of EOB. It is not clear how to do this
with tidal splicing.

Additionally, the merger/ringdown cannot be mod-
eled with splicing alone, especially for BNS mergers and
BHNS systems that undergo tidal disruption. One pos-
sibility is to combine an analytic waveform in the very
early inspiral with a spliced BBH waveform in the mid to
late inspiral and then with a waveform from a full hydro-
dynamical simulation for the merger and ringdown, to
create a “tribridized” waveform. This might reduce the
need for expensive hydrodynamical simulations lasting
many orbits. If necessary, surrogate models [43, 58, 59]
that cover the parameter space including the EOS can
be forged from spliced BBH waveforms.
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Scheel, M. Tiglio, and D. A. Hemberger, Phys. Rev. Lett.
115, 121102 (2015), arXiv:1502.07758 [gr-qc].

[44] L. Blanchet, Living Rev.Rel. 17, 2 (2014).
[45] M. Boyle, D. A. Brown, L. E. Kidder, A. H. Mroué, H. P.
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