
Conflation: a new type of accelerated expansion

Angelika Fertig,1, ∗ Jean-Luc Lehners,1, † and Enno Mallwitz1, ‡

1Max–Planck–Institute for Gravitational Physics (Albert–Einstein–Institute)

Am Mühlenberg 1, 14476 Potsdam-Golm, Germany

In the framework of scalar-tensor theories of gravity, we construct a new kind of cosmological

model that conflates inflation and ekpyrosis. During a phase of conflation, the universe

undergoes accelerated expansion, but with crucial differences compared to ordinary inflation.

In particular, the potential energy is negative, which is of interest for supergravity and string

theory where both negative potentials and the required scalar-tensor couplings are rather

natural. A distinguishing feature of the model is that it does not amplify adiabatic scalar and

tensor fluctuations, and in particular does not lead to eternal inflation and the associated

infinities. We also show how density fluctuations in accord with current observations may

be generated by adding a second scalar field to the model. Conflation may be viewed as

complementary to the recently proposed anamorphic universe of Ijjas and Steinhardt.
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I. INTRODUCTION

Inflation [1–5] and ekpyrosis [6] share a number of features: they are the only dynamical

mechanisms known to smoothen the universe’s curvature (both the homogeneous part and the

anisotropies) [3, 7]. They can also amplify scalar quantum fluctuations into classical curvature

perturbations which may form the seeds for all the large-scale structure in the universe today

[8, 9]. Moreover, they can explain how space and time became classical in the first place [10]. With

a number of assumptions, in both frameworks models can be constructed that agree well with

current cosmological observations, see e.g. [11, 12]. But in other ways, the two models are really

quite different: inflation corresponds to accelerated expansion and requires a significant negative

pressure, while ekpyrosis corresponds to slow contraction in the presence of a large positive pres-

sure. Inflation typically leads to eternal inflation and the associated ambiguities about its actual



3

predictions [13], while ekpyrosis requires a null energy violating (or a classically singular) bounce

into the expanding phase of the universe [14].

In the present paper, we will present a new cosmological model that combines features of both

inflation and ekpyrosis. This is in the same spirit as the recently proposed “anamorphic” universe

of Ijjas and Steinhardt [15], the distinction being that we are combining different elements of these

models. We will work in the framework of scalar-tensor theories of gravity. By making use of a field

redefinition (more precisely a conformal transformation of the metric), we transform an ekpyrotic

contracting model into a phase of accelerated expansion. Moreover, we are specifically interested

in the situation where matter degrees of freedom couple to the new (Jordan frame) metric, so that

observers made of this matter will measure the universe to be expanding. Conflation is reminiscent

of inflation in the sense that the background expands in an accelerated fashion. This then immedi-

ately implies that the homogeneous spatial curvature and anisotropies are diluted, thus providing

a solution to the flatness problem. However, other features of the model are inherited from the

ekpyrotic starting point of our construction: for instance, the model assumes a negative potential.

This might have implications for supergravity and string theory, where negative potentials arise

very naturally and where it is in fact hard to construct reliable standard inflationary models with

positive potentials [16]. Also, conflation does not amplify adiabatic curvature perturbations (nor

tensor perturbations). Hence eternal inflation, which relies on the amplification of large, but rare,

quantum fluctuations, does not occur. This has the important consequence that the multiverse

problem is avoided. As we will show, one can however obtain nearly scale-invariant curvature per-

turbations by considering an entropic mechanism analogous to the one used in ekpyrotic models

[17–21]. This allows the construction of specific examples of a conflationary phase in agreement

with current cosmological observations.

For related studies starting from an inflationary phase and transforming that one into other

frames, see [22–26]. In the language of the anamorphic universe [15], we are looking at the situation

where Θm > 0 and ΘPl < 0, while Ijjas and Steinhardt consider Θm < 0 and ΘPl > 0 (note that

inflation corresponds to Θm > 0 and ΘPl > 0 and ekpyrosis to Θm < 0 and ΘPl < 0).

II. EKPYROTIC PHASE IN EINSTEIN FRAME

We start by reviewing the basics of ekpyrotic cosmology [6, 27]. During an ekpyrotic phase the

universe undergoes slow contraction with high pressure p. The equation of state is assumed to be

large, w = p/ρ > 1, where ρ denotes the energy density of the universe. Under these circumstances
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both homogeneous curvature and curvature anisotropies are suppressed, and consequently the

flatness problem can be resolved if this phase lasts long enough. The ekpyrotic phase can be

modelled by a scalar field with a steep and negative potential, with action (in natural units 8πG =

M−2
Pl = 1)

S =

∫
d4x
√
−g
[
R

2
− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (1)

where a typical ekpyrotic potential is provided by a negative exponential,

V (φ) = −V0e
−cφ . (2)

We consider a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe, with metric ds2 =

−dt2 + a(t)2δijdx
idxj , where a(t) is the scale factor and with ˙≡ d/dt. The equation of motion for

the scalar field is then obtained by varying the action w.r.t. the scalar field φ

φ̈+ 3Hφ̇+ V,φ = 0, (3)

and it admits the (attractor) scaling solution [6]

a(t) = a0

(
t

t0

)1/ε

, φ =

√
2

ε
ln

(
t

t0

)
, where t0 = −

√
ε− 3

V0ε2
and c =

√
2ε. (4)

The coordinate time t is negative and runs from large negative values towards small negative values.

The fast roll parameter ε = φ̇2

2H2 is directly related to the equation of state w = 2
3ε − 1, while the

condition that an ekpyrotic phase has to satisfy, w > 1, is equivalent to ε > 3.

III. CONFLATION

The above model was constructed in the standard Einstein frame where the scalar field is

minimally coupled to gravity. In the following we perform a conformal transformation to the

so-called Jordan frame, where the scalar field is now non-minimally coupled to gravity.

A. Jordan frame action

A general transformation to Jordan frame is obtained by redefining the metric using a positive

field-dependent function F (φ), with

gµν = F (φ)gJµν . (5)
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The corresponding action is given by

SJ =

∫
d4x
√
−gJ

[
F (Φ)

RJ
2
− 1

2
kgµνJ ∂µΦ∂νΦ− VJ(Φ) + Lm(ψ, gJµν)

]
, (6)

where we have included the possibility for the kinetic term to be of the “wrong” sign by keeping

the prefactor k unspecified for now. Note that we have added a matter Lagrangian to the model,

where we assume that the matter couples to the Jordan frame metric, with the consequence that

the Jordan frame metric may be regarded as the physical metric. The Jordan frame scalar field Φ

is defined via

dΦ

dφ
=

√√√√F

k

(
1− 3

2

F 2
,φ

F 2

)
(7)

and the potential becomes

VJ(Φ) = F (φ)2V (φ). (8)

From the metric transformation (5), we can immediately deduce the transformation of the scale

factor,

a =
√
FaJ . (9)

The transformation of the 00-component of the metric is absorbed into the coordinate time interval,

dt =
√
FdtJ , (10)

such that the line element transforms as ds2 = F (φ)ds2
J . Moreover, by differentiating the scale

factor w.r.t dt, we can determine the Hubble parameter

H ≡ a,t
a

=
1√
F

(
HJ +

F,tJ
2F

)
, (11)

where the Hubble parameter in Jordan frame is given by HJ ≡
aJ,tJ
aJ

.

B. A specific transformation

We will now specialise to the following ansatz

F (φ) = ξΦ2 = ecγφ, (12)

which is inspired by the dilaton coupling in string theory, see for example [28], and has been used

for instance in [25, 26]. Plugging in the solution for φ from (4), we can now integrate dt to find

the relationship between the times in the two frames, yielding

tJ
tJ,0

=

(
t

t0

)1−γ
, (13)
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where

tJ,0 =
t0

1− γ
. (14)

Using this result, we can calculate the scale factor in the Jordan frame from (9)

aJ = a0

(
t

t0

) 1−εγ
ε

= a0

(
tJ
tJ,0

) 1−εγ
ε(1−γ)

. (15)

In order to obtain accelerated expansion, the tJ -exponent has to be larger than 1,

1− εγ
ε(1− γ)

> 1. (16)

Moreover, an ekpyrotic phase in the Einstein frame has ε > 3. From (16), we see that for γ < 1

the denominator is positive and hence we would need ε < 1, which cannot be satisfied for our case.

We conclude that to realise a phase of accelerated expansion in Jordan frame (from an ekpyrotic

phase in Einstein frame), we need

γ > 1 . (17)

Another constraint is obtained from the relationship between the fields, given by the transfor-

mation in (7) and the ansatz we have chosen for F in (12). Plugging in the latter into the first and

integrating, we get

Φ =
1√
ξ
e
cγφ/2 , (18)

where the parameter ξ is now determined in terms of ε, γ and k and given as

ξ =
c2γ2k

4− 6c2γ2
=

εγ2k

2− 6εγ2
. (19)

This parameter has to be positive for the gravity term in the Jordan frame action to be positive.

A negative ξ would lead to tensor ghosts. Thus we need

ξ > 0 ⇐⇒ k < 0 (20)

since γ > 1 and ε > 3. Hence we see that we need the kinetic term for the scalar field to have the

opposite of the usual sign, and we set

k = −1 . (21)

Note that this “wrong” sign does not lead to ghosts, as there are additional contributions from the

scalar-tensor coupling to the fluctuations of Φ, and these additional contributions render the total
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fluctuation positive (as we will show more explicitly in section IV A). With the above choice of k

we then also obtain a bound on the parameter ξ,

ξ >
1

6
. (22)

The Jordan frame potential can be reexpressed in terms of Φ as

VJ(Φ) = F 2(φ)V (φ) = −V0e
(2γ−1)cφ = −VJ,0Φ4−2/γ , (23)

where we have defined VJ,0 ≡ V0ξ
2−1/γ . The negative exponential of the ekpyrotic phase gets

transformed into a negative power-law potential. We thus see that it is possible to obtain a phase

of accelerated expansion in the presence of a negative potential in Jordan frame, starting from

ekpyrosis in Einstein frame together with the conditions γ > 1, k = −1, and ξ > 1/6. We will refer

to this new phase of accelerated expansion as the conflationary phase.

C. Equations of motion in Jordan frame

Varying the action (6) w.r.t. the Jordan frame metric and scalar field, we obtain the Friedmann

equations and the equation of motion for the scalar field Φ:

3H2
JF + 3HJF,tJ =

1

2
kΦ2

,tJ
+ VJ , (24)

2FHJ,tJ + kΦ2
,tJ
−HJF,tJ + F,tJ tJ = 0, (25)

Φ,tJ tJ + 3HJΦ,tJ −
3F,Φ
k

(
HJ,tJ + 2H2

J

)
+
VJ,Φ
k

= 0. (26)

The first Friedmann equation (24) can be solved for the Hubble parameter,

HJ = −F,tJ
2F
±

√
F 2
,tJ

4F 2
+

k

6F
Φ2
,tJ

+
1

3F
VJ . (27)

HJ will give two positive solutions as the square root is always less than −F,tJ
2F > 0, since k, VJ < 0.

To determine the solution that corresponds to contraction in Einstein frame, we note that the

Hubble parameter in Einstein frame given in (11) has to be negative. Hence, we have to pick out

the solution for HJ which satisfies

HJ < −
F,tJ
2F

. (28)

This is exactly the term to which the square root is added or subtracted in (27), and thus we have

to choose the latter:

HJ = −F,tJ
2F
−

√
F 2
,tJ

4F 2
+

k

6F
Φ2
,tJ

+
1

3F
VJ . (29)
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We can rewrite Φ as a function of Jordan frame time, tJ , using equations (4) and (13),

Φ(tJ) =
1√
ξ

(
tJ
tJ,0

) γ
1−γ

. (30)

We can then determine the quantity VJ/Φ
2
,tJ

using Eq. (23), obtaining

VJ
Φ2
,tJ

=
ε− 3

ε (2− 6εγ2)
. (31)

This combination is (non-trivially) time-independent, and hence once it is satisfied for the initial

conditions of a particular solution it will hold at any time. This equation will be useful in setting

the initial conditions for specific numerical examples, as will be done in the next section.

D. Initial conditions and evolution with a shifted potential

In this subsection we first verify that our construction indeed gives an ekpyrotic phase in Einstein

frame while it leads to accelerated expansion in Jordan frame. We will then shift the potential in

Jordan frame by a small amount in order to end the respective phases.

We choose the parameters ε = 10 and γ = 2 leading to a negative Φ3 potential in Jordan frame

– see Fig. 1. For an initial field value of Φ(tbeg) = 10 and VJ,0 = 10−10, we require an initial field

velocity (using equations (23) and (31)) of |Φ,tJ | ≈ 5.83 · 10−3. Furthermore we set aJ(tbeg) = 1.

Numerical solutions for the scale factor and scalar field are shown in Fig. 2, where the blue curves

indeed reproduce the conflationary transform of the ekpyrotic scaling solution.

VHFL × 10
10

F
-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-1.0

-0.8

-0.6

-0.4

-0.2

wJ

tJ
2000 4000 6000 8000 10 000 12 000

-0.6

-0.4

-0.2

0.2

0.4

FIG. 1: Left: The original Jordan frame potential VJ is shown in blue, the shifted potential UJ in dashed

red. Right: The equation of state in Jordan frame, for the shifted potential.

Eventually, the conflationary phase has to come to an end. A simple such realisation consists

of adding a small constant term V1 to the potential in Jordan frame,

UJ(Φ) = VJ(Φ) + V1 . (32)
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FIG. 2: Scalar field and scale factor in Jordan frame: the blue curves show the transformed ekpyrotic scaling

solution and the red dashed curves correspond to the field evolutions in the shifted potential.

The shifted potential, with V1 =
VJ,0
10 , is plotted in Fig. 1. The corresponding evolution of the

scalar field Φ and the scale factor in Jordan frame are now shown as the red dashed curves in

Fig. 2, while the equation of state is plotted in the right panel of Fig. 1. The conflationary phase

lasts until tJ ≈ 10000 when the equation of state grows larger than wJ = −1/3, and accelerated

expansion ends. The scalar field continues on to about Φ ≈ 0.4 and then rolls back down the

potential. Meanwhile, the scale factor reaches a maximum value and starts re-contracting. This

re-contraction in Jordan frame is unavoidable: from equation (29), bearing in mind that F,tJ < 0,

it becomes clear that whenever ρJ = k
2 Φ2

,tJ
+ VJ = 0 we have HJ = 0 resulting in a re-contraction

in Jordan frame. Given that we start out with both a negative kinetic term (k = −1) and a

negative potential, but then want to reach positive potential values, means that we will necessarily

pass through ρJ = 0 as the scalar field slows down. One might imagine that the scalar field

could stabilise at a positive value of the potential. It could then either stay there and act as dark

energy, or decay such that reheating would take place. Once the scalar field stabilises, the Einstein

and Jordan frame descriptions become essentially equivalent1. However, this means that the scale

1 When the scalar field is constant, the two frames are equivalent. However, when the scalar field is perturbed, then
fluctuations in the Jordan frame will still feel the direct coupling to gravity.
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FIG. 3: The Einstein frame scalar potential used in the bounce model (33).

factor will only revert to expansion if a bounce also occurs in Einstein frame. This motivates us

to extend the present model by including dynamics that can cause a smooth bounce to occur after

the ekpyrotic phase.

E. Transforming an Einstein frame bounce

In ekpyrotic models, after the ekpyrotic contracting phase has come to an end the universe must

bounce into an expanding hot big bang phase. Many ideas for bounces have been put forward,

see e.g. [29–36] – here we will focus on a non-singular bounce achieved via a ghost condensate

[37, 38]. This model has the advantage of being technically fairly simple, and, importantly, it is

part of a class of models for which it has been demonstrated that long-wavelength perturbations

are conserved through the bounce [39, 40]. The action we will consider takes the form

S =

∫
d4x
√
−g
[
R

2
+ P (X,φ)

]
(33)

with

P (X,φ) = K(φ)X +Q(φ)X2 − V (φ) (34)

and where X ≡ −1
2g
µν∂µφ∂νφ denotes the ordinary kinetic term. The shape of the functions K(φ)

and Q(φ) can be chosen in various ways. The important feature is that at a certain time (here at

φ = −4) the higher derivative term is briefly turned on while the sign of the kinetic term changes.

Moreover, we add a local minimum to the potential, as shown in Fig. 3: after the bounce the

scalar field rolls into a dip in the potential where the scalar field stabilises and where reheating can
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occur. For specificity we will use the functions [38]

K(φ) = 1− 2(
1 + 1

2(φ+ 4)2
)2 , (35)

Q(φ) =
V0(

1 + 1
2(φ+ 4)2

)2 , (36)

V (φ) = − 1

e3φ + e−4(φ+5)
+ 100

[
(1− tanh(φ+ 4))

(
1− 0.95e−2(φ+6)2

)]
, (37)

where compared to [38] the theory has been rescaled according to gµν → V
1/2

0 gµν which implies

K → K, Q→ V0Q and V → V −1
0 V . The equations of motions obtained by varying the action (33)

read

∇µ (P,X∇µφ)− P,φ = 0 (38)

3H2 = ρ (39)

Ḣ = −1

2
(ρ+ p) (40)

where the pressure and energy density are given by p = P and ρ = 2XP,X − P . Note that

Ḣ = −XP,X , which shows that the Hubble rate can increase (as is necessary for a bounce) when

the ordinary kinetic term switches sign. The purpose of the X2 term in the action is twofold:

it allows the coefficient of the ordinary kinetic term to pass through zero, and it contributes

to the fluctuations around the bounce solution in such a way as to avoid ghosts. The Einstein

frame bounce solution is shown in Fig. 4, where we have chosen the initial conditions φ0 = 0,

φ̇0 = −2.4555, a0 = 100 and have set V0 = 10−6 and c = 3. The scalar field first rolls down the

potential during the ekpyrotic phase. A bounce then occurs near φ = −4 due to the sign change

of the kinetic term. After this, the universe starts expanding, the potential becomes positive and

the scalar field rolls into the dip where it oscillates with decaying amplitude – see Fig. 4.

In the following we want to transform this bouncing solution into Jordan frame, in order to

see how such a bounce translates into a graceful exit for the conflationary phase. The Ricci scalar

transforms under our conformal transformation (5) as [41]

R =
1

F

(
RJ − 6�J ln

√
F − 6gµνJ ∂µ

(
ln
√
F
)
∂ν

(
ln
√
F
))

, (41)

where the second term contributes as a total derivative in the action. Note that the kinetic term

transforms as

X ≡ −1

2
gµν∂µφ∂νφ = − 1

2F
gµνJ ∂µφ∂νφ = − 1

2F

(
∂φ

∂Φ

)2

gµνJ ∂µΦ∂νΦ ≡ 1

F

(
∂φ

∂Φ

)2

XJ . (42)



12

Φ

t

-3.0 -2.5 -2.0 -1.5 -1.0
-8

-6

-4

-2

0

ln a

t
-3.0 -2.5 -2.0 -1.5 -1.0
2

4

6

8

10

12

14

ln a

Φ

-8 -6 -4 -2 0

4

6

8

10

12

14

FIG. 4: Left: Scalar field and scale factor for the bounce solution in Einstein frame. Right: Parametric

plot of the scalar field and scale factor in Einstein frame. This plot nicely illustrates the smoothness of the

bounce.

Plugging everything into equation (33) yields the action in Jordan frame

SJ =

∫
d4x
√
−gJ

[
F (Φ)

RJ
2

+ PJ(XJ ,Φ)

]
, (43)

where we have defined the new functions in Jordan frame as

PJ ≡ KJXJ +QJX
2
J − VJ , (44)

KJ ≡ F

(
K − 3

2

F 2
,φ

F 2

)(
∂φ

∂Φ

)2

= 4ξ

(
K

c2γ2
− 3

2

)
, (45)

QJ ≡ Q

(
∂φ

∂Φ

)4

=
16

c4γ4Φ4
Q, (46)

VJ ≡ F 2V = ξ2Φ2V, (47)

where we have used

∂φ

∂Φ
=

2

cγΦ
and F (Φ) = ξΦ2. (48)

Thus the equations of motions in Jordan frame are given by

∇µ (PJ,X∇µΦ) = PJ,Φ +
1

2
RJF,Φ (49)

3FH2
J + 3HJF,tJ = ρJ (50)

ρJ + pJ + 2FHJ,tJ −HJF,tJ + F,tJ tJ = 0 (51)

with the effective energy density ρJ = 2XJPJ,X − PJ and effective pressure pJ = PJ .
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FIG. 5: Left: Scalar field and scale factor for the transformed solution in Jordan frame. Right: Parametric

plot of the scalar field and scale factor in Jordan frame. As the scalar field stabilises, the scale factor goes

through oscillations as well, but eventually increases monotonically.

The conflationary solution is shown in Fig. 5. The scalar field Φ rolls up the approximately

−Φ3 potential with decreasing velocity. It starts out at Φ0 = 2.4267 (we have not shown this early

evolution in the figure, as it would have rendered the interesting subsequent dynamics invisible)

and very quickly decreases to a field value Φ ∼ 10−9 where it stays for a long time. By this time, the

bounce in Einstein frame has already taken place, but interestingly it leads to nothing dramatic in

Jordan frame – the universe simply keeps expanding and the scalar field keeps decreasing. The more

interesting dynamics in Jordan frame occurs later. As we have already discussed, the universe re-

contracts for ρJ = 0. The potential energy increases to positive values (in this model accelerated

expansion ends as the potential becomes positive!) and the kinetic term decreases leading to a

re-contraction at tJ ≈ 4.05 · 109. The re-contraction HJ < 0 leads to an increased scalar field

velocity, allowing the scalar field to roll over the potential barrier and into the dip, where it starts

oscillating around the minimum, eventually settling at the bottom. The Hubble rate HJ changes

sign each time the energy density passes through zero, so that the scale factor oscillates together

with the scalar field. Once the scalar field is settled, continuous expansion occurs. Note that these

oscillations of the scale factor do not correspond to a violation of the null energy condition - they

are simply due to the coupling between the scalar field and gravity in Jordan frame. It would be

interesting to see whether reheating might speed up the settling down of the scalar field – we leave

such an analysis for future work.
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IV. PERTURBATIONS

It is known that under a conformal transformation of the metric perturbations are unaffected.

Thus we know what kind of cosmological perturbations our model leads to: during the ekpyrotic

phase, both adiabatic scalar fluctuations and tensor perturbations obtain a blue spectrum and are

not amplified. However, with the inclusion of a second scalar field, nearly scale-invariant entropy

perturbations can be generated first, which can then be converted into adiabatic scalar curvature

fluctuations at the end of the ekpyrotic phase. Translated into the conflationary framework of

the Jordan frame, these results are nevertheless surprising: they imply that we have a phase of

accelerated expansion during which adiabatic perturbations as well as tensor fluctuations have a

spectrum very far from scale-invariance, and moreover they are not amplified. It is thus instructive

to calculate these perturbations explicitly in this frame, which is what we will do next. In the

following subsection, we will also describe the entropic mechanism from the point of view of the

Jordan frame. Throughout this section, we will use the notation that a prime denotes a derivative

w.r.t. conformal time τ, which is equal in both frames as dt/a = dtJ/aJ .

A. Perturbations for a single scalar field

As has been calculated for instance in [25], the quadratic action for the comoving curvature

perturbation ζJ in Jordan frame is given by

S
(2)
J =

1

2

∫
d4x

a2
JΦ′2(

HJ + Φ′

Φ

)2 (6ξ − 1)
(
ζ ′2J − (∂iζJ)2

)
, (52)

where we have assumed F (Φ) = ξΦ2. The absence of ghost fluctuations can thus be seen to translate

into the requirement

ξ >
1

6
, (53)

which is the same condition on ξ that we had discovered before in Eq. (22). We can define

z2
J =

a2
JΦ′2(

HJ + Φ′

Φ

)2 (6ξ − 1) , (54)

so that for the canonically normalised Mukhanov-Sasaki variable vJk = zJζJ we obtain the mode

equation in standard form, namely

v′′Jk + (k2 −
z′′J
zJ

)vJk = 0 . (55)
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Note however that zJ does not have the usual form ∼ aJΦ′/HJ , but the denominator contains an

extra contribution from the scalar field. This contribution is crucial, as it implies that the usual

intuition gained from studying inflationary models in Einstein frame is not applicable here. For

the conflationary transform of the ekpyrotic scaling solution we have

aJ(tJ) = a0

(
tJ
tJ,0

) 1−εγ
ε(1−γ)

, Φ(tJ) =
1√
ξ

(
tJ
tJ,0

) γ
1−γ

, (56)

while the relationship between physical time and conformal time is given by

tJ ∼ (−τ)
ε(1−γ)
ε−1 . (57)

These relations imply that zJ(τ) ∼ (−τ)1/(ε−1) which leads to

z′′J
zJ

=
2− ε

(ε− 1)2

1

τ2
. (58)

Imposing Bunch-Davies boundary conditions in the far past selects the solution (given here up to

a phase)

vJ =

√
−π

4
τH(1)

ν (−kτ) , (59)

where H
(1)
ν is a Hankel function of the first kind with index ν. This leads to a scalar spectral index

nζ − 1 = 3− 2ν = 2−
∣∣∣∣ε− 3

ε− 1

∣∣∣∣ , (60)

where ε corresponds to the Einstein frame slow-roll/fast-roll parameter. Here ε > 3 and thus the

(blue) spectrum is always between 3 < nζ < 4, i.e. the spectrum is identical to that of the adiabatic

perturbation during an ekpyrotic phase, as expected [42].

The calculation of the (transverse, traceless) tensor perturbations γJij proceeds in an analogous

fashion. Their quadratic action is given by

SJ = −1

8

∫
d4xF (Φ)

√
gJg

µν
J ∂µγJij∂νγJij . (61)

Writing the canonically normalised perturbations as hεij ≡ zTγij , where εij is a polarisation tensor

and where z2
T = F (Φ)a2

J , the mode equation in Fourier space again takes on the usual form

h′′k +

(
k2 −

z′′T
zT

)
hk = 0 , (62)

except that here zT is not just given by the scale factor but involves the scalar field too. In fact

zT ∝ ΦaJ ∝ (−τ)1/(ε−1) and thus zT ∝ zJ . The spectral index comes out as

nT = 3−
∣∣∣∣ε− 3

ε− 1

∣∣∣∣ , (63)
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which is the same blue spectrum as that obtained during an ekpyrotic phase, as it must.

These simple calculations have an important consequence. In the limit where |kτ | � 1, which

corresponds to the late-time/large-scale limit, the adiabatic scalar and tensor mode functions be-

have as [43, 44]

v , h ∝ π

22νΓ(ν)Γ(ν + 1)
(−kτ)1−1/ε − i(−kτ)1/ε . (64)

Given that ε > 3, this implies that as (−kτ)→ 0 neither the scalar nor the tensor perturbations are

amplified. Thus we have found an example of a model in which the spacetime is rendered smooth

via accelerated expansion, but without the amplification of perturbations and thus also without

the possibility for the run-away behaviour of eternal inflation. Note that eternal inflation happens

because rare, but large quantum fluctuations change the background evolution by prolonging the

smoothing phase in certain regions, with these regions becoming dominant due to the high expan-

sion rate. In the absence of these amplified quantum fluctuations, the background evolution will

be unaffected and will proceed as in the purely classical theory. This property certainly deserves

further consideration in the future.

B. Non-minimal entropic mechanism in Jordan frame

In order to obtain a nearly scale-invariant spectrum for the scalar perturbations a second field

has to be introduced. There are two possibilities that have been studied extensively in the ekpyrotic

literature: either one introduces an unstable direction in the potential [9, 45–47], or one allows for a

non-minimal kinetic coupling between the two scalars [17–21]. In both cases nearly scale-invariant

entropy perturbations can be generated during the ekpyrotic phase, and these can then be converted

to adiabatic curvature perturbations subsequently. Here we will discuss the case of non-minimal

coupling, and we will show that it carries over into the context of conflation.

In Einstein frame, one starts with an action of the form [17, 18]

S =

∫
d4x
√
−g
[

1

2
R− 1

2
gµν∂µφ∂νφ−

1

2
gµνe−bφ∂µχ∂νχ+ V0e

−cφ
]
. (65)

In the ekpyrotic background, the second scalar χ is constant. One can then see from the scaling

solution (4) that when b = c the non-minimal coupling mimics an exact de Sitter background

e−bφ ∝ 1/t2 for the fluctuations δχ (which correspond to gauge-invariant entropy perturbations),

which are then amplified and acquire a scale-invariant spectrum. When b and c differ slightly, a

small tilt of the spectrum can be generated.



17

Transforming the action (65) to Jordan frame, we obtain

SJ =

∫
d4x
√
−gJ

[
ξΦ2RJ

2
+

1

2
gµνJ ∂µΦ∂νΦ− 1

2
gµνJ ξ

γc−b
γc Φ

2γc−2b
γc ∂µχ∂νχ+ VJ,0Φ

4− 2
γ

]
. (66)

The background equations of motion read

�Φ +
γc− b
γc

ξ
γc−b
γc Φ

γc−2b
γc gµνJ ∂µχ∂νχ−

1

2
F (Φ),ΦRJ + V (φ)J,Φ = 0, (67)

�χ− 2γc− 2b

γc

Φ′

Φ
χ′ − 2a2

Jξ
b−γc
γc Φ

2b−2γc
γc V (Φ)J,χ = 0. (68)

Since the potential is again independent of χ, we still have the background solution χ = constant.

To first order, the equation of motion for the (gauge-invariant) entropy perturbation δχ is given

by

δχ′′ +

(
2
a′J
aJ

+ n
Φ′

Φ

)
δχ′ + k2δχ = 0 , (69)

with n = 2γc−2b
γc . We introduce the canonically normalised variable vJs,

vJs = aJΦ
n
2 δχ , (70)

whose Fourier modes satisfy the mode equation

v′′Js +

[
k2 +

n

2

Φ′2

Φ2
− n2

4

Φ′2

Φ2
+
a′′J
aJ

(3nξ − 1)− a2
J

n

2

VJ,Φ
Φ

]
vJs = 0 . (71)

Here we have made use of the background equation for Φ. Plugging in our conflationary background,

and using the notation ∆ = b
c − 1 so that n = 2γ−∆−1

γ , we obtain

v′′Js +

(
k2 − 1

(ε− 1)2τ2

[
2− (4 + 3∆)ε+ (2 + 3∆ + ∆2)ε2

])
vJs = 0 (72)

This equation can be solved as usual by
√
−τ multiplied by a Hankel function of the first kind with

index

ν =
3

2
+

∆ε

ε− 1
, (73)

which translates into a spectral index

ns − 1 = 3− 2ν = −2∆
ε

(ε− 1)
. (74)

The spectrum is independent of γ, and in fact it coincides precisely with the spectral index obtained

in Einstein frame [19]. Thus, even for this two-field extension, the predictions for perturbations are
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unchanged by the field redefinition from Einstein to Jordan frame. Note that for models of this type

there is no need for an unstable potential, as considered in earlier ekpyrotic models. Also, given

that the action does not contain terms in χ of order higher than quadratic, the ekpyrotic phase

does not produce non-Gaussianities, although the subsequent process of converting the entropy

fluctuations into curvature fluctuations (which we assume to occur via a turn in the scalar field

trajectory after the end of the conflationary phase) induces a small contribution |f localNL | ≈ 5 [48, 49],

in agreement with observational bounds [50, 51].

V. DISCUSSION

We have introduced the idea of conflation, which corresponds to a phase of accelerated expansion

in a scalar-tensor theory of gravity. This new type of cosmology is closely related to anamorphic

cosmology, in that it also combines elements from inflation and ekpyrosis – in fact, our model may

be seen as being complementary to anamorphic models. In the conflationary model, the universe

is rendered smooth by a phase of accelerated expansion, like in inflation. However, the potential

is negative, and adiabatic scalar and tensor fluctuations are not amplified, just as for ekpyrosis.

Several features deserve more discussion and further study in the future: the first is that, as

just mentioned, the conflationary phase described here does not amplify adiabatic fluctuations and

consequently does not lead to eternal inflation and a multiverse. This remains true in the presence

of a second scalar field, which generates cosmological perturbations via an entropic mechanism,

since the entropy perturbations that are generated have no impact on the background dynamics.

In other words, even a large entropy perturbation is harmless, as it does not cause the conflationary

phase to last longer, or proceed at a higher Hubble rate, in that region. This provides a new way

of avoiding a multiverse and the associated problems with predictivity, and may be viewed as the

most important insight of the present work. The second point is that it would be interesting to

study the question of initial conditions required for this type of cosmological model, and contrast

it with the requirements for standard, positive potential, inflationary models. A third avenue for

further study would be to see how cyclic models in Einstein frame get transformed. Finally, it will

be very interesting to see if a conflationary model can arise in supergravity or string theory, with

for instance the dilaton playing the role of the scalar field being coupled non-minimally to gravity.

Being able to stick to negative potentials while obtaining a background with accelerated expansion

opens up new possibilities not considered so far in early universe cosmology.
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